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Abstract: The dynamic behavior of plane, self-acting, pivoted slider bearings of infinite length is exam-

ined for the case of an incompressible lubricating film. The equations of motion for the slider are derived,

with the lubricant force expressed in terms of the motion-coordinates and their derivatives and of the pa-

rameters that characterize the system. Equilibrium positions of the system are determined numerically and

the stability of small motions in the neighborhood of these positions is examined. The nature of large mo-

tions is investigated by numerical integration of the equations of motion, and the transient behavior of the

system is shown and discussed for some specific cases.

Introduction

In the past few decades numerous investigators have
studied the problems of stability and motion of bearing
systems supported by a fluid film. Most of the published
work in this field relates to the behavior of cylindrical jour-
nal bearings,"? presumably because of their importance
in practical applications; in comparison, the dynamic
behavior of pivoted slider bearings has received scant
attention except for extensive studies of the dynamic
properties of the fluid film for a prescribed clearance be-
tween the bearing surfaces.>*® The purpose of the present
paper is to describe an attempt to begin to fill this gap and
to contribute to further work, both analytical and numeri-
cal, on the problems of motion of slider bearings.
Although the bearing system considered in this paper
is a considerably simplified model of actual configura-
tions, the results of the work are believed to be of more
than academic interest. The main simplifications it in-
volves derive from the assumptions of infinite length of
the slider and incompressibility of the lubricant. For an
arbitrary kinematic condition of the slider, these assump-
tions allow us to perform analytical integration of the
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Reynolds equation for the pressure distribution in the
lubricant and to calculate the corresponding force and
moment exerted upon the slider. The mathematical for-
mulation of the problem of motion is thereby reduced
to a set of two simultaneous ordinary differential equa-
tions of second order in the motion coordinates of the
slider. These equations contain the reactions of both
the lubricant and the bearing suspension system, the
former being represented by highly nonlinear damping
and restoring functions of the motion coordinates and
their derivatives. The equations are used for the determi-
nation of equilibrium positions of the slider for various
values of the system parameters, for the investigation of
the stability of small motions near these positions, and
for the numerical calculation of some specific motion
trajectories.

It is believed that the results of this study will con-
tribute to a further understanding of the dynamic be-
behavior of actual sliders, and in particular to knowledge
of their response to disturbances from equilibrium and
the effects of modifications in system configuration. The
results can also serve as a check and, perhaps, a point
of departure for computer programs for the solution of
the much more complex problem of motion of slider bear-
ings with a compressible lubricant.
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Referent

Breadth of slider
Lubricant friction force per unit length on slider

Moment of inertia of slider per unit length
around center of mass

Spring force per unit length on slider
Lubricant pressure moment per unit length on
slider around pivot point
Rotational spring moment per unit length on
slider around pivot point

Speed of driving surface

Lubricant pressure force per unit length on slider
Distance along slider from pivot point to trail-
ing edge

Distance along slider from pivot point to center
of mass
Distance in direction of driving surface motion
Clearance between slider and driving surface
Clearance at pivot point

Mass per unit length of slider

Lubricant pressure

Ambient pressure
P/Pa

Time

Vpa/m

wlt

h,/b

3 at equilibrium

Bob

x/b

Angle of slider with respect to driving surface

€ at equilibrium

/B

eo/ Bo

B — Bo

€— €

h(x)/b

K'(ho)/pa

0'(e0)/B’pa

Viscosity of lubricant

b/B

d,/b

(6uU)/Bp. (= o*83A)

(12u0)/p. (= «"832)

(d+ md/mb* = (1/12a%) + §°

[K(bo) — boK'(ho)l/Bp.,

— [O(&0) — €Q'(e))/B’p.
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Part 1: Analysis of the dynamical problem

& Equations of motion for the slider

We are here concerned with the model of an infinitely
long plane slider which is loaded by a linear spring as
shown in Fig. 1. The spring is connected to the slider sur-
face at a pivot point whose movement is constrained to
a vertical path. Motion of the slider around the pivot
point is restrained by a rotary spring that is also assumed
to be linear. The assumption of linearity of both system
springs is technically justified since their force-displace-
ment curves are smooth enough to be replaced by linear
approximations over the relatively minute range of bear-
ing motion that is involved. On the other hand, since the
speeds of the bearing motion components are not neces-
sarily small and the damping in the mechanical suspension
system cannot be correspondingly simplified, we neglect
the influences of damping in the suspension system to
maintain a rigorous model and achieve simplicity.

The driving surface of the bearing is assumed to move
horizontally with constant speed U, and to have no verti-
cal velocity component. While not essential, this assump-
tion of constant velocity of the driving surface will permit
mathematical convenience. By restricting the analysis to
plane bearing surfaces we are able to express the dynami-
cal problem simply in terms of the motion coordinates
and the parameters that characterize the system.

In the model the action of the lubricant upon the slider
can be represented by W, the resultant of the pressure
acting normal to the face of the slider, and F, the resultant
of the shearing stresses acting along the slider surface.
It is not necessary to consider the latter force because it
can be shown* to be of order of ¢, where eis the inclination
angle of the slider; hence, the vertical component of F is

Figure 1 Geometry of the bearing configuration.
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a quantity of the order of ¢. Furthermore, we assume
that the center of gravity (CG) is located along the face
of the slider so that there is no moment-component around
this point due to F.

As seen in Fig. 1, the coordinate z of CG is given by

z= h — d,sine, (1
where h, is the coordinate of the pivot. Neglecting terms
of order ¢ and smaller and letting K be the spring force,
M be the moment about the pivot point due to the film

pressure, and Q be the loading moment about the pivot
point, we derive the two equations of motion

mlh, + di(e€ — ] = W — K, ()

expressing force-equilibrium along the translation direc-
tion of the pivot point, and

Ié=—M— Q0+ (W— K, A3)
expressing moment-equilibrium around the center of
gravity. (In both expressions, dots indicate differentiation

with respect to t.) Henceforth, we assume linearity of
the springs, i.e.,

K = K(hO) + K’(ho)'(hl - ho)
= [K(hO) - hoK’(ho)] + K’(ho)hu (4)

where A, is the coordinate of the pivot at equilibrium, and

Q= Q(fo) -+ Q,(fo)(6 - 50)
= [Q(fo) - foQ/(GO)] + Q’(GO)E; (5)

where ¢, is the equilibrium angle, and primes indicate
differentiation with respect to the argument. In addi-
tion we assume that the term e¢é” in (2) may be neglected
in comparison with &.

For purposes of convenience, we transform the equa-
tions of motion (2) and (3) into dimensionless form. We
define w = \/p_/m and 7 = wt. The motion coordinate
h, and d, are normalized with respect to b by &, = b
and d, = §&b. The equations of motion then become

P L] ®)
aBp, @
(c — 62)'6' _ M Wé + s Ve
*B’p.  aBp, o
— 5<H + 76). @
(24

In Egs. (6), and (7) and hereafter, dots indicate differ-
entiation with respect to . Multiplying Eq. (6) by é and
subtracting (7) yields

B — o = 8
a2sza az ( )

Henceforth we shall deal with Egs. (6) and (8).

e Lubricant action upon the slider

The effect of the lubricant on the motion of the slider is
represented by the factors W/« Bp, and M/a’B’p, in (6)
and (8). These factors represent the resultant film force
and moment around the pivot point due to the pressure
distribution in the lubricant. This pressure distribution
is governed by the well-known Reynolds equation

(K°p.). = 6uUh, + 12uh,. (9

Note that (9) is obtained from the equations of con-
servation of mass and momentum of the lubricant, using
an order-of-magnitude analysis of the individual terms
in the expression for momentum to show that the fluid
inertia forces are negligible, Detailed derivations of (9)
can be found in Reference 5 and elsewhere in the literature.

With the substitutions

h = 6b, p = ¢pa, x = b, (10)

we can write (9) in dimensionless form
a(0°d) = «0; + \b,a, (1)
where parameters x and \ are defined as

_ 6uU’ \ = 12uw. (12)
Bp, Pa

K

These parameters are related to the bearing and squeeze
numbers A and X, often used in gas lubrication analyses,
by the equations

A= K<hi:)2, s = x(;ﬁ)z, (13)

where h, = B,b. The film thickness is given by

h = h — xtane. (14)
By using the substitutions of (10) and

h, = Bb,e = BX (15)

and recalling that higher order terms in e are neglected
in our approach, we obtain the normalized expression for
film thickness

0 =8—¢t=p6(1—¢tX). (16)

Now (11) can be written as

o[B°(1 — £X)pele = — ke + NB — £ (17)

and we find directly by integration over £,

b = G + (ke —3 Y +3a>\é(£ /2) ’ (18)
af’ (1 — £X)

where C, represents a constant of integration. We shall
use (18) for deriving the normalized pressure ¢ as a func-
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tion of the independent variable £, the motion coordi-
nates 8, ¢ and their derivatives B, €, and the parameters
that characterize our model. The expressions for the film
force W, and moment M around the pivot point then
follow immediately by integration over .

The pressure, ¢, may be expressed as a function of £

_ 1 [FCo+ (ke — aMB)E + (aNet?)/2
¢ gl a — £x) %
(19)
where £, = —(1 — a)/a; hence we have the expression

¢E) = ¢o — 2—15[{C0X2 — (ke — aNB) X
€

— Zahé + 2[(Ke — oM) X + anEX}/(1 — £X)*
—aXIn (1 —£X)], (20)
with X = ¢/8.

The integration constants C, and ¢, are obtained from
the condition that the pressure must be ambient at the

bearing ends. In view of our definitions, these boundary
conditions assume the form

¢<—1 "‘> =1 =¢(D). (21)
o

The calculation of the constants C, and ¢, from (20) and
(21) is a laborious procedure which need not be given.
It is necessary only to mention that substitution in (20) of
the resulting expressions for these constants, which are
functions of the motion coordinates and their derivatives,
yields for ¢ an expression of the form

¢ =14 3E B, ¢ B, 6, &, N\, (22)

where ® is a complicated function which is strongly de-
pendent on the factor X, that is, on the ratio ¢/8. It may
be easily verified from the geometry of the model of Fig. 1
that all possible motions of the slider are those in the
region

o

<x<1, (23)
1 —«a

where the end-values represent contact between the slider

and the driving surface at the bearing ends. It follows

from (22) that the pressure distribution along the face of
the slider is given by

p=pa|:1+<i>< ,666,604'6?\)} (24)

and is a function, of course, of the kinematic condition
of the slider.

The force and moment exerted upon the slider by the
lubricant follow directly from (24). Since the pressure
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above the slider is ambient, we have

w

b
f (p — p.) dx
~B+b

= aBp, [ @ — 1) d (25)
—(l—a)/a

and

b
M= f (p — po)x dx
~B+b

= o8, [ @ — DE dt. (26)
—(l1-a)/«

Substitution of the expression (24) in (25) and (26) yields
the force, W, and the moment, M, around the pivot point
as functions of the motion coordinates, 8 and ¢, and their
derivatives, B and ¢, and the parameters «, x and \. We
omit the details of this calculation and present only the
final expressions for force and moment, respectively,

— akﬂ

W= aBpa[ cla, X) + —B— d(e, X)jl (27

and
M= aZsz,,[i_a—“m eler, X) + % fla, X)]. (28)
€ €

The symbol X represents the ratio ¢/3, and the functions
cle, X), d(e, X), e, X) and f(or, X) are given in Appendix 1.
The expressions for the functions c(e, X) and e(ax, X) were
verified by comparison with expressions obtained inde-
pendently for pressure force and moment for the station-
ary slider.* For the functions d(e, X) and (o, X) such
verification was not possible.

o Positions of equilibrium and the stability of small motions

This study of the dynamic behavior of the slider is based
on the differential equations of motion obtained from (6)
and (8) using force and moment equations of (27) and
(28). The equations of motion assume the form

B — 8¢+ )\‘C—(a_f’)'% )\.M.é
X B X g
—xc<""X)1+ +48=0 (29)
x g

and
ela, X) 6 f(a, X) ¢
— gé+ ok s TN ST
# = ot 8 P

— el 2ode_ o )
X B @




The terms [x/B°1-[c(a, X)/X] and [¢/B8°][e(, X)/X"]
may be interpreted as the “spring” reaction of the lubri-
cant against, respectively, the vertical translation and
rotation of the slider. Furthermore, the terms [\/8’]-
- cl, X)/X*)- B and [\/B°)-[d(e, X)/X]- € in (29), and
N/B) laele, X)/X°)- B and [\/B°1-[fla, X)/X"]- ¢ in (30)
may be interpreted as the ‘“damping” reaction of the
lubricant that is due to translation and rotational motion
of the slider against its vertical motion and rotation
around the pivot point, respectively.

The functions d(a, X)/X and (o, X)/X*, not hitherto
given in the literature, can be checked for small values of
X. From (18) we find directly for X = O(e),

o = —é [Co + (ke — aMB)E + 0%5-52]' (31)

Q

Hence

1 . £2 ) 23
¢ =¢o— — I:Co‘.;’ + (ke — aNB) -3 + a)\e‘—]. (32)
of 2 6
The integration constants C, and ¢, are again obtained
from the boundary conditions (21). The corresponding
lubricant force, W, and lubricant moment, M, exerted
upon the slider for smaller values of X follow directly
from resulting expressions ¢(£) by the integrations (25)
and (26). Giving only the results of these calculations, we
have

_— aBpa[xe —492\3 (11— 42a3)>\e':| (33)
1248 2408
and
M= aszpa{_(l - 201)(": 3" a)\B)
240°8

LERE 5—3201)2])\&}‘ (34)
7200°8

To make these expressions agree with (27) and (28) we
must have, of course, the relations

lim [M] =L im [M] __l-

X0 b & 120" x-0 X 240"

(35)
and
lim [d("" X):l - 1=
X—0 X 24¢

2

i [f(a, 2X)] _ 141501 5 22)° 36)
X-0 X 720c

These limits agree well with numerical evaluations of the
functions c(a, X)/ X, e(a, X)/ X*, d(at, X)/ X, and f(a, X)/ X
near zero.

Since (29) and (30) are too involved for analysis of
the dynamical problem, we first apply the simplifica-
tions of the theory of small motions and examine the
stability of these motions near the equilibrium. posi-
tions of the slider; thereafter, we shall investigate the
nature of large motions by means of numerical techniques.
The numerical integration procedure is discussed further
in Part 2 and some typical results are presented there.

Let us denote the state of motion of the slider by the
vector (3, ¢, B, €) in phase-space S. The rest positions in
this space are given by the vectors (8,, €, 0, 0), the equi-
librium-coordinates 8, and ¢, being functions of the
parameters that characterize the system. These func-
tions follow directly from (29) and (30) as the solutions
Bolk, a, 1, v, ®, ) and e,(x, o, 11, v, ®, ) of the algebraic
equations

@ X oy g, (37)
60,30
and
xozz-?ﬁa’—z&g = & — Y. (38)
€9

In many applications the incremental external spring
force 48, and moment ¢, are small compared with the
“bias” force II and moment &, It is reasonable, then, to
consider the special case v = ¢ = 0. We combine (37)
and (38) obtaining

Pocla, Xo) _ a-ela, Xo

2

II X, Xo

(39)

for the equilibrium value X, as a function of the param-
eters «, II and ®. Either (37) or (38) may then be used
for the determination of 3, and ¢,. From (37) we find

2 k cla, Xo)
Bo @ I X, (40)
In this case, therefore, the dependence of the equilibrium-
coordinates 8, and €, upon the physical properties of the
system is a function of the parameter ratios «/II and &/1I.
Again, it should be noticed that these results are valid
only for the special case ¥ = ¢ = 0; more general re-
sults can be obtained in a similar way directly from (37)
and (38).

The criteria for the stability of small motions in the
neighborhood of the equilibrium positions are obtained
by linearizing the equations of motion with respect to
the perturbation variables { = 8 — B, and 7 = ¢ — .
Linearized forms of (29) and (30) are thus obtained by
means of the substitutions 8 = 8,4+ {, €e = ¢ + nand
omission of all terms of order two and higher in {, » and
their derivatives; furthermore, the relations (37) and (38)
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are utilized. The final forms of the linearized equations
of motion are given below. (In (41) and (42) and here-
after, primes are used to indicate differentiation with re-
spect to X,.)

- d(e, Xo) "7
3
Xo Bo XO BD

+ K{[z‘@X—X) n X<M)]§

_ (cE_X))l’} +at =0 1)

f(a9 XO) "l
Xo Bg X() 60

+ {[zug N XO(M)'J Iy
X; X; B>
- ("—(“‘—;"3’2)'—2} —¥n_y (42)

Equations (41) and (42) describe the motion of the slider
near its positions of equilibrium (8,, €, 0, 0). The criteria
for the stability of such motions follow directly from well-
known theorems of the theory of linear differential
equations.

Let us write Egs. (41) and (42) as

§ — 8 + N(A§ — Bn) + «(Ct — D) + i = 0 (43)

and
8¢ — i + N(P{ — 09)

+ xRt — Sn) — M = 0. (44)

Here, the coefficients 4, B, C, D and P, Q, R, S are func-
tions of the coordinates 8, €, (through X, = ¢,/3,) and
the parameter «; the expressions for these functions are
given in Appendix 2. After substitution of the trial solu-
tion { = {ee’”, 7 = nee’” we derive the characteristic
equation

vt aptarr + aw +a, =0 (45)
with
a, = 12a°\[Q + Ao — (B -+ P)§] (46a)

I

12a2{K[S + Co — (D 4+ R)8]

az

+ 240 — BP) + & e + "} (46b)
a
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IZaZ{IO\[( A8 + €Q)

4 =
— (BR + DP)] + "‘J~Q~a+—¢—/‘} (46c)
a, = 12a2[,<2(cs — DR)
L @S+ alC + w]’ (46d)
o

using the definition ¢ = (1/12&°) 4+ &°. The imaginary
parts of the roots v of this equation represent the oscil-
latory character of small motions near the positions of
equilibrium, and the real parts indicate growth or decay.
The conditions for stability of these motions® are

a; >0, g= aa, — a3 >0,
azg — ajay; > 0, a, >0  (47)
or
a;, >0, ajaas — a3 — ala, > 0,
as > 0, a, > 0. (48)

With the four expressions of (46) and those given in Ap-
pendix 2, the conditions of (47) and (48) can be written
in terms of the equilibrium coordinates 8,, ¢, and the
parameters that characterize the system. Their final
form is considerably involved. By way of example we
present here only the form they assume for the case v = 0
and ¢y = 0. In this case the stability conditions are

A, >0, A4, >0, A4; >0,

2

A
aA0A1A3 > Al(AlAg - A3A4) + 1_5;‘;_2) (49)

where

Ao = cla, Xo)fla, X,) — dla, Xpela, Xo)

fla, X,) + aocla, X,) — 5|: Xod(a, Xo)

A, =

Ay = 2X0{c(a, xo)[ "(“’X ;“’) + o', Xo):l
— (@, Xpela, Xo)}

A; = a{c(a, Xo)[ _@.’Xoﬁ + e'(a, X"):I

— (e, Xole(a, Xo)} + Xolfla, Xo)lcla, Xo)

+ Xoc'(a, Xo)] — Xod(e, Xo)e'(a, Xo)}




= —2e(a,TA/02 + e,(a’ XO) + XO[c(a, XO)

4]

+ Xo(a, Xo)]'f + 5{0(0‘» Xo)
- XO[C,(O‘: XO) + e’(a, XO)]}
and a = (\%)/(xB3X2). (50)

The expressions of (50) were evaluated by means of (39)
and (40), and the stability of small motions was investi-
gated numerically for a number of cases. In all these cases
the conditions of (49) were found to be satisfied so that
the equilibrium positions of (39) appear to be inherently
stable in the presence of small disturbances.

Part 2: Numerical calculations and results

Numerical calculations for this study have two parts:
(1) the calculation of equilibrium positions and the
testing of each for stability; (2) the numerical inte-
gration of the two second-order ordinary differential
equations of motion in order to investigate types of
motion and stability in the large. The following section
discusses the method used in (1), and the next discusses
the methods used in (2) along with the errors involved
in the calculations. In the concluding section typical re-
sults are presented and their implications discussed.

o Equilibrium positions and stability in the small

As shown in the concluding section of Part 1, equi-
librium positions for the slider are found by solving (37)
and (38), which are repeated below,

Kac—(a’—XO) = II + avBo (37
€0

and

Kka ?La’—;\l) =& — g (38)

€

for 8, and ¢, where X, = ¢,/8.

In most cases of physical interest, the terms 3, and
Y ¢, are negligible. Consequently, the computations were
performed only for the case where v = ¢ = 0. Under
this assumption, the problem reduces to that of solving

@y XO) — ic(a’ XO) (51)
X5 o X,

for X,, and then finding 8, and ¢, from the relations

ic(a, Xo)

T (52)

Bs =

and

€ — Xoﬁo . (53)

Once an equilibrium position has been found it is a
simple matter to calculate 4,, 4,, A,, A;, A, and a as
defined in (50) and then check the inequalities in (49) to
determine stability. (Note that the conditions in (49) also
assume v and ¢ to be zero).

By writing (51) in the form

ic(a, Xo) _ e(a, Xo) —
Mo X, X;

X)) = 0, (54)
solutions may be obtained using the well-known Newton-
Raphson iteration,

Xc()n) _ f( X(()n)) . (55)
F1(X)

This method was found to be quite satisfactory; with
an initial approximation of X, which differed from the
true value by 209, or less the iteration usually converged
to an accuracy of five significant figures in five or fewer
iterations. However, there were some cases (usually where
the slider was less stable) where an initial approximation
of less than 209}, from the solution was required to achieve
convergence. As stated in Part 1, all equilibrium posi-
tions calculated were stable.

In some cases where the initial approximation was too
far from the solution, a value of X, outside the interval
[0, 1] was reached during the iteration. Such values are
physically meaningless and in these cases the iterations
were stopped. When rerun, these cases were always found
to converge to values of X, in the interval [0, 1] when
sufficiently close starting values were used.

(n+1)
Xon =

o Integration of the differential equations of motion

To carry out the numerical integration of the equations
of motion we first reduce the two second-order equa-
tions of (29) and (30) into the following system of four
first-order equations.

8 126°(cy — 62) (56)
é = 124%(6y — 2) (57)

O kele, X) As lzazl:ozc(oz,2 X)

a g X 8
(oy — 82) — d——(a;(X) (8y — Z)]

-2y %e'(a—;X—) -2 12a2|:a eler, X) 3X)
N . ¢ 8

“(oy — &2) —&)}TX) (6y — Z)]- (59)

Two main considerations helped in choosing a numeri-
cal integration procedure for this system: First, because
of the large amount of computation required for the
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derivative evaluations, high order formulas permitting
large time increments A7 were desirable. In addition to re-
ducing computing time, large time steps reduce the possi-
bility of excessive round-off error. Second, since it is not
possible to predict the behavior of the solutions, a built-in
check on local truncation error is required so that the
optimum step size can be determined by the program.
This is the most practical way to minimize truncation
and propagated error because no a priori choice for the
step size can be made. Thus, A7 is decreased when trunca-
tion error becomes too large and increased when the
local error becomes very small, resulting in an efficient
utilization of computer time.

Both Runge-Kutta and Predictor-Corrector methods
were considered. R-K methods are desirable because they
are self-starting and inherently stable. (The simple Euler
P-C method is self-starting but is ruled out by the first
consideration above.) However, a P-C method can be
more easily and satisfactorily programmed to include
automatic determination of the step size. (For one method
of including error control with Runge-Kutta methods see
pp. 238-239 of Reference 7.) The main objection to meth-
ods of the R-K type is that they require too many deriva-
tive evaluations. It was decided that a fourth-order method
would be necessary to comply with the first consideration
sited above. The standard fourth-order R-K formula re-
quires four sets of derivative evaluations at each step. On
the other hand, a fourth-order P-C method with the cor-
rector applied only once requires two sets of derivative
evaluations at each step. Experience has shown that apply-
ing the corrector only once is generally quite adequate and
requires no significant decrease in step size. It was de-
cided that a Predictor-Corrector method with the cor-
rector applied only once, along with a Runge-Kutta
method for starting, and restarting after a change in step
size, would give the most satisfactory results.

It is desirable to choose a pair of P-C formulas which
have error terms of opposite sign. For example, suppose
that the calculated solution up through the value r, of
the independent variable is exactly correct. Then, if the
error terms are of opposite sign, one knows that the true
solution at ¢, lies between the predicted and corrected
values. Consequently, if the program selects a step size
such that the predicted and corrected values differ by
less than some 8, one can be sure that the corrected value
differs from the true solution by less than §. Of course,
in an actual calculation the previous solution is not
exactly correct and we are thus controlling only local
truncation error with the hope of minimizing propagated
error. The fourth-order Adams formulas have error terms
of opposite sign and these were selected. All of the fore-
going requirements are met by a SHARE program (RW INT).
(This sap-coded FORTRAN sub-routine was written in 1958
for Adams-Moulton, Runge-Kutta integration by R.
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Causey and W. L. Frank of Space Technology Labo-
ratories.)

Let a general system of first-order equations be given
in the form

. . d

Vi =fi(ta Y1, Y2, * 7 s.VN)) y = ;f, (60)
with initial conditions of y,(¢;) = y;o, 61)
wherei = 1,2, ---, N.

If y,, equals y; at t = t,, {,, equals the derivative of
y; at t = t,, and % is the step size of the independent
variable f, the standard fourth-order Runge-Kutta for-
mulas are

Yime1 = Vu + %(kil + 2k;s
+ 2kis + ki) + O (62)
kil = h_fi(trn ylns yZns tet yNn) (63)

h
h.fi<tn + 2 Yin + 3k, Yoa

_
S
it

+ %kzu SRR S %kzw) (64)
h 3 1
ki = hfi\t, + 5, Vin + 3ki2s Yo T+ Koz,

S o %km) (65)

ki4 hﬁ(tn + ha Yin + k13a Yon

+ k23’ Tt s Van + kN3)- (66)

In the sHARE computer program these formulas are modi-
fied as proposed by Blum® to control the growth of round-
off errors.

The Adams Predictor-Corrector formulas are

h
yz(.-pT)L‘Fl = Yin T '22 (55fin — 591

+ 37fin-s — fin-s) + O  (67)

R h
yg,:.n = Yin + EZ (9fz‘,n+1 + 19/,

= Sfiin-1 F Sfiinm2) — O(K). (68)

Double precision arithmetic is used in evaluating the
Adams formulas since it reduces round-off error with a
very small increase in computing time.

Examining (58) and (59) we see that to obtain an ac-
curate solution, the functions c(a, X), d(c, X), e(a, X) and
f(a, X) must be evaluated accurately before each set of
derivative evaluations. We recall that physical consider-
ations require —a/(1 — @) < X < 1. Examining the




four functions above it is clear that we need to look care-
fully at evaluations in the neighborhood of X = 0, From
(35) and (36) one sees that c(ar, X)/ X7, d(a, X)/ X, e, X)/ X*
and f(ee, X)/ X have finite limits as X — 0. Hence,
limc(e, X) = lim d{a, X)

X0 X0

lime(a, X) = lim fla, X) = 0. (69)
X-0 X0

It is clear, however, that these four functions, as they are
written in Appendix 1, cannot be evaluated numerically
for X = 0. Also, as X approaches zero some of the indi-
vidual terms of the functions do not approach zero. These
terms then cancel each other resulting in small values for
the functions, and consequently in large losses in signifi-
cant figures. The absolute error is even greater if c(a, X),
d(a, X), e(a, X) and f(a, K) are calculated and stored and
then the functions c(a, X)/X, cla, X)/X°, dlo, X)/X,
ela, X)/X°, ela, X)/X® and f(a, X)/X*, which appear in
(58) and (59), are calculated by dividing by the appropriate
powers of X.

Two approaches can be taken to avoid these difficulties
as X — 0. The first approach and the most laborious
requires expanding the logarithmic terms in power series
and then writing the expressions for

cla, X), cla, X)/ X, cla, X)/X°,
da, X), da, X)/X,
ela, X), ela, X)/ X, ela, X)/X°,
fla, X), fle, X)/X*,  (70)

so that they can be evaluated numerically for X near or
equal to zero, without dividing by small numbers or
causing the subtraction of very nearly equal terms. The
second simply requires a determination of € such that
for | X | > € the loss of accuracy is tolerable. Physically,
this means not being able to study slider motions very
close to or passing through the parallel position.

The second approach was taken because sufficient in-
formation could be obtained without considering motions
close to the parallel position. The functions c(e, X),
d(e, X), ela, X) and f(e, X) were programmed very much
as they appear in Appendix 1. The four functions are
calculated and stored and then the necessary divisions
by powers of X are made as needed. Some tabulations
were made of the ten functions in (70). The results showed
that X can get close to zero before loss of accuracy be-
comes excessive. After examining c(e, X), d(a, X), e(ee, X)
and f(a, X) and the tabulations of (70), it was decided
that for | X | > 0.1, the losses of accuracy in calculating
the functions of (70) are two significant figures or less.
(In the computer used, floating point arithmetic gives
eight significant digits).

It should be noted that in the Newton-Raphson iter-

ation discussed in the previous section on equilibrium con-
ditions the same difficulties with loss of accuracy are
present because (54) involves c(e, X,) and e(w, X;). With
only c(a, X;) and e(e, X;) involved, however, the loss of
accuracy is two significant figures or less for X, > 0.05.
In the equilibrium positions calculated, X, was always
much greater than 0.05.

The integration program was designed to stop when
any of the following three conditions occur: | X | < §;
X > 1;0r X £ — a/(1 — a). None of these conditions
were encountered in the trajectories computed.

Even if the functions c(a, X), dla, X), ela, X) and
fle, X) were evaluated with no error, there would still be
error as a result of the integration procedure itself, As
stated above, the integration program has a built-in error
control which operates as follows: At each time step, if
6 equals the maximum of the absolute values of the dif-
ferences between the predicted and corrected values for 3,
¢, ¥, and z, then the step size is suitably chosen so that
e < & < ¢ where e and ¢ are input parameters. For all
the trajectories computed 2 = 107 % and ¢ = 1075, The
accuracy yielded by these bounds was investigated by
computing a trajectory several times using a smaller and
smaller fixed step size and comparing the results with
those obtained using the variable step size.

The trajectory studied is shown as Fig. 2, page 313.
The greatest motion occurs near + = 0 and then di-
minishes as 7 increases. Therefore, near = 0 truncation
error is dominant, whereas as 7 increases, it is propa-
gated error due to round-off that becomes more signifi-
cant. Table 1 shows tabulations of ¢ and 8 at + = 0.125,
0.25, and 1.0 for several fixed step sizes and for the vari-
able step mode, in which A7 ranges from 0.015625 to
0.0625. One will notice that for the largest step size, 0.125,
there are no entries for + = 1.0. This is because 0.125
is too large for the motion near + = 0 and, consequently,
the truncation error became so great that X exceeded
its upper bound causing the program to stop at 7 = 0.5.

Examining Table 1 we see that all the variable step
entries for e and 8 agree to at least five significant figures
with the entries for the smallest three step sizes. Thus, it
appears that & = 10~ ° assures at least five figures of
accuracy for this trajectory. Trajectories with larger
motions than those in Fig. 2 generally used somewhat
fewer time steps (meaning that truncation error becomes
more important), while the trajectories showing over-
damping required more time steps (meaning that propa-
gated error becomes more significant). However, the two
most extreme cases required, on the one hand, more than
two-thirds as many and, on the other, fewer than three
times as many time steps as did the case illustrated in
Fig. 2. Consequently, it appears that & = 10~° ensures
sufficient accuracy for all the trajectories since no more
than three significant figures are required.
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Table 1 Values of ¢ and 3 for fixed step sizes and
the variable step mode.

o Results and comments

The computer programs we have mentioned can be used

At e X 10° B8 X 10° for the determination of equilibrium positions and motion
trajectories of the slider for various combinations of the
parameters a, 6, k, A, II, & and arbitrary initial conditions

At = 0.125: Bis €, Bn €;. A number of runs has been completed and

0.125 1.7658884 4.2506446 a set of typical results is presented in Figs. 2-10. The

0.0625 1.7414479 4 3083826 parameter values and initial conditions used in the cor-

0.03125 1.7399853 4.3113894 responding calculations are set forth in Table 2. The initial

0.015625 1.7400383 4.3112939 conditions chosen were the same for all cases, i.e.,

0.0078125 1.7400369 4.3112913 8; = 1.26,, & = ¢, B, =0=¢. (71)

0.00390625 1.7400362 4.3112913

Variable 1.7400383 4 .3112939 Note that the results apply to a bearing without rotary
stiffness in the suspension system so that the parameter &
has the value zero. The parameter-values used in the

At T = 0.25: example of Fig. 2 describe a bearing with physical param-

0.125 1.8539759 4.0761222 eters B= 1.0in., b = 0.4 in., p, = 14.7 psi, U = 2000 ips,

0.0625 1.8274397 4.1167538 p= 262X 107° Ib sec/in®, m = 3.0 X 10~° Ib sec’/in’,

0.03125 1.8236381 4.1187019 K = 1.01b/in and Q = 0. From the definition 7 = wt =

0.015625 1.8237601 4.1182705 t\/ 1:/711 the time-scale in Fig. 2 is thus given by the re-

0.0078125 1.8237747 4.1182519 lation 7 = 700 ¢, where ¢ is expressed in seconds.

0'09390625 1.8237742 4.1182510 The system of Fig. 2 is arbitrarily identified as the

Variable 1.8237691 4.1182705 typical system and succeeding examples are obtained by
making one single change in the values of the physical

AtT = 1.0 parameters for the typical case. The same time scale,

0.125 . o 7 = 700 ¢, thus applies to all examples except that repre-

0.0625 1.5848905 3 8453113 sented by Fig. }0, wt'xich is obtained by increasing the

0.03125 1.5844493 3 8449128 mass of t%xe typlcallshd(?r by a' factor of ten. It foll(?ws

0 .015625 1.5844424 3 8449055 that the time-scale 1n. Fig. 10 is fleﬁned by the relation

0.0078125 1.5844413 3 8449051 T= 221.36 t where ¢ is expresse'd m' seconds'.‘

0.00390625 1.5844411 3 .8449054 Figures 2-'10 pre§ent tpe equilibrium positions (8,, €)

Variable 1.5844628 3 8449122 and the motion trajectories (8(7), e(r)) for the cases con-

sidered. The trajectories show an instantaneous coupling

Table 2 Parameters and initial conditions for calculation of motion trajectories in Figs. 2-10. (For all Figures

d =—0.)

Figure Parameter values and initial conditions:

Number |« 8 kX 10° A X 10° I o X 100 ¢ X 10° By X 10° 8, X 10°
2 0.4 —0.25 2.1388 1.4971 0.068027 0.58333 1.5864 1.5864 3.8241 4.5889
3 02 -—1.5 2.1388 1.4971 0.068027 4.3333 7.5901  7.5901 8.5140 10.217
4 0.4 0.25 2.1388 1.4971 0.068027 0.58333 1.5864 1.5864 3.8241 4.5889
5 04 —0.25 2.1388 1.4971 0.034014 0.58333 2.2434 2.2434 5.4080 6.4896
6 0.4 —0.25 2.1388 1.4971 0.0068027 0.58333 5.0165 5.0165 12.093 14.511
7 0.4 —0.25 2.1388 1.4971 0.13605 0.58333 1.1217 1.1217 2.7040 3.2449
8 04 —0.25 1.0694 1.4971 0.068027 0.58333 1.1217 1.1217 2.7040  3.2449
9 04 —0.25 3.2082 1.4971 0.068027 0.58333 1.9429 1.9429 4.6835 5.6202

10 0.4 —0.25 2.1388 0.47344 0.068027 0.58333 1.5864 1.5864 3.8241 4.5889
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of the translational and rotational motions in all cases.
Figure 2 shows that the transient response of the typical
system is aperiodical and that a disturbance of the type
described by (71) dies out within about 2 milliseconds.
As shown in Fig. 3, a considerable change in behavior

Figure 2 The typical case. Parameters are as given

on page 312,
B
1.9 € a4
171
4.0
S g g, ©
x 1.5k 36 %
v I S N N Y A S N N S U N B S Y | T
0 02 04 06 08 1.0 1.2 1.4 1.6 1.8 2.0 22 24
TIME SCALE, 7

Figure 3 Case with pivot moved 0.2 inch toward
trailing edge.
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7.4 -18.2
- 4 %
< =
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Figure 4 Case with center of gravity moved to-
ward trailing edge.
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Figure 5 Case with load decreased by 50 per cent.
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occurs when the pivot point is moved towards the trailing
edge. The system damping is greatly reduced, the response
becomes oscillatory, and superharmonics become appar-
ent. The fundamental period of oscillation in this case is
about 3.4 milliseconds. Note that the equilibrium coordi-
nates 3, and ¢, are much greater than those for the typical
case and that the ratio ¢/B, = X, has also increased.
This explains to some extent the decrease of system damp-
ing and stiffness involved in moving the pivot point
towards the trailing edge. From the equations of motion,
(29) and (30) and from the data of Appendix 1, it follows
that the terms representing damping and stiffness of the
lubricating film are inversely proportional, respectively,
to factors of the form X738} and of the form X383,
with m > 0 and n > 0; hence, with both X, and 8, in-
creasing, both the damping and the stiffness of the film
must decrease rapidly. If X, were to remain constant, the
effective damping of the lubricating film would decrease
or increase, relative to the effective stiffness, according to
whether the thickness would increase or decrease.

In the example of Fig. 3 the pivot point is moved a
distance of 0.2 inch toward the trailing edge. Figure 4
shows that when the center of gravity is moved an equal
distance toward the trailing edge, while keeping the pivot
point in the same position as for the typical case, the
effect is then much smaller. The response is similar to
that of the typical system, even though the damping is
somewhat reduced and some oscillatory motion becomes
apparent. The reduction in system damping and stiffness
here involved can now not be ascribed to a change in the
values of X, and 3, since it is clear from Figs. 2 and 4
that the equilibrium positions 8, and ¢, are not altered.
This also follows for these positions from (39) and (40)
and from the fact that they do not contain the parameter §;
this parameter is the only one affected, while in the previ-
ous example both « and § were involved. Since the other
parameters occurring in the damping and stiffness terms
of the equations of motion are similarly unaltered, the
change in film damping and stiffness for varying values
of & can be explained only by considering the behavior
and relative magnitudes of the coefficient functions
ca, X), de, X), e(a, X) and f(o, X) listed in Appendix 1.
These functions are, however, too involved for detailed
consideration here.

Figures 5, 6, and 7 show the motion trajectories of the
slider for, respectively, a 509, decrease, a 909, decrease
and a 1009} increase in load compared with the typical
system. In Fig. 5 the response is still aperiodic although
the motion appears to be on the verge of oscillation.
This implies, of course, that reducing the load has re-
duced both the film damping and film stiffness as one
would expect. Figure 6 makes this trend abundantly clear,
while Fig. 7 illustrates the fact that the opposite effect
occurs if the load is increased. It will be observed that
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the values of 8, and ¢, are different in all three cases
(greater than those for the typical case if the load is re-
duced and vice versa) but that the ratio ¢/8, = X, re-
mains constant. That this should be the case follows
directly from (39) for the equilibrium positions; for the
case under consideration here, where ® = 0, this equation
becomes simply e(a, X;) = 0. If @ remains unchanged,
so does the ratio €,/8,. From (40), the second equation
for the equilibrium positions, it is clear that, for a fixed
value of «, 82 is inversely proportional to II. Moreover,
with A also kept constant, it follows from (29) and (30),
the two equations of motion, that the film damping in
this case is proportional to II*? and the film thickness
is proportional to II. Thus, for a 509, reduction in load, as
shown in Fig. 5, the film damping is reduced by a multi-
plication factor of (1/ 2)*? = 0.354, and the stiffness by
a factor of 0.5. For a 909 reduction in load (Fig. 6) these
factors are 0.0316 and 0.1 respectively, while for a 1009,
increase in load (Fig. 7) damping and stiffness should be
increased by factors of 2.83 and 2.0, respectively. The
Figures bear out these observations, at least qualitatively.
Note that the fundamental period in the example of Fig. 6
is about 12 milliseconds.

Figures 8 and 9 show the effect of variations in speed
of the driving surface. These figures apply respectively
to a 509, decrease and a 509, increase in the magnitude
of the driving surface speed U, that is, of the parameter «.
Note that X, also remains constant in this case and, from
Eq. (40), that 82 is proportional to «. It follows from the
equations of motion, (29) and (30), that the stiffness of
the lubricating film is not affected but that the damping
is varied by a factor proportional to & */>. Compared
with the typical case of Fig. 2 the system damping in
Fig. 8 is thus increased by the factor 2°/ (i.e., 2.83), while
in Fig. 9 the damping is decreased by the factor (2/3)*"*
(i.e., 0.545). These observations are borne out by the
Figures. Note also the similarity between the trajectories
of Figs. 5 and 9, and that between the trajectories of
Figs. 7 and 8. The latter two Figures represent, respec-
tively, the effect of doubling the load and halving the
driving speed; hence the value of the parameter II is
doubled and the value of the parameter x is halved. It
follows from Eq. (40) that the effect of these changes
on B, is identical, so that the film damping is increased
an equal amount in both cases. In the case of Figs. S
and 9, the former shows the effect of halving the value
of TI, hence doubling 42, while the latter shows the effect
of multiplying «, hence 82, by a factor of 1.5. Compared
with the typical case of Fig. 2 the film damping is thus
reduced by a factor of about one-third in the first case,
and about one-half in the second. These observations agree
quite well with the trajectories shown in Figs. 5 and 9.

The effect of changing the mass of the slider is illus-
trated in Fig. 10. The only parameter affected in this case
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Figure 6 Case with load decreased by 90 per cent.
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Figure 7 Case with load increased by 100 per cent.
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Figure 8 Case with driving surface velocity de-
creased by 50 per cent.
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2! p 748 system behavior is thus solely due to the change in M.
44  Consequently, the stiffness of the film remains the same
Tao and, for an increase in mass by a factor of 10, the damping
€ V; Bo 2 is reduced to about one-third its original value (see Fig. 2).
’ + It follows from Fig. 10 that the fundamental period in
S S T S N . O S S 2 this case is about 7 milliseconds; it may be noted that the

o 02 04 06 0.8 1.0 1.2 1.4 16 1.8 2.0 2.2 2.4 . L
relation » = 221.36¢ applies in this case.

I

e x103
&
{

TIME SCALE, 7

Figure 10 Case with mass increased by a factor
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Appendix 1 Definitions of the functions c(«, X), d(e, X), e¢(a, X), and f(a, X).

—2 X
cle, X) = a[2e + (1 — 22) X] * [1 + ol — X)]'
el X) = — Sa-}—(1—2a)X +3a+2(1—2a)X—(1—a)X2_lnl:1 X ]
202 + (1 — 20) X] aX2a + (1 — 20) X) a(l — X)
Defining

ZX—a[(l—X)Zln(l——X)——<1+1_aX>21n<1+1;aX>]

2, a

Qola, X) = « (1 — X)2_<1+1;-aX)z

Qx(a,X)=<1 IaaX)Z[(—3—|-4X)—2(1__X)21n(1_X)]
+(1—X)2[<3+41a_aX>—|—2< >21n<1+%gx>].

(1_X)2_<1+1;ax)2

Then

o X = 1 | xloge, x) — 2 — — Qe H) + 1

d(a, X) MXSJ'XQ( X)) —2 (1_X)<1+1;aX)

_Za[@—X)ln(l—X)—<3+1;aX>ln<1+1;a X>]
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1

And fle, X) =

X3

—%[(1—X)z—(l-l-l;a-X)z:,-i-ale:ln(l— )()—(1;"‘>21n<1+1

— [0y, X) + 6][ln (1 - X)— In (1 +

;2‘1.)(2,Q0(a’ X) _

(O, X) +1]X
(1~ X)(l 41 ;“-X>

~ )]

1;aX>:|

Appendix 2 Definitions of the coefficient functions
in Eqs. (43) and (44).*

°- [“("‘;(f") e, 0]
R = ég--}l—o-e'(a, Xo)

*In all cases primes indicate differentiation with respect to Xo.
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