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Analysis  and  Numerical  Calculations 
of the Dynamic  Behavior of 
Plane  Pivoted  Slider  Bearings? 

Abstract:  The dynamic behavior of plane, self-acting,  pivoted  slider bearings of infinite  length is exam- 

ined for the case of an incompressible lubricating film.  The  equations of  motion for the  slider are derived, 

with the  lubricant  force  expressed  in  terms  of  the  motion-coordinates and their derivatives and of  the pa- 

rameters that characterize  the system. Equilibrium positions of the  system are determined  numerioally and 

the stability of  small motions in the  neighborhood  of these  positions is examined. The nature of large mo- 

tions is investigated by numerical integration of  the  equations of  motion, and the transient behavior of the 

system is shown and discussed for some  specific  cases. 

Introduction 

In the past few decades  numerous  investigators  have 
studied the problems of stability and motion of bearing 
systems supported by a fluid  film. Most of the published 
work  in  this  field  relates to  the behavior of cylindrical jour- 
nal  bearings,l”  presumably  because of their  importance 
in  practical applications; in comparison, the dynamic 
behavior of pivoted  slider  bearings  has  received  scant 
attention except for extensive  studies of the dynamic 
properties of the fluid  film  for a prescribed  clearance  be- 
tween the bearing  surface^.^'^'^ The purpose of the present 
paper  is to describe an attempt to begin to fill this  gap and 
to contribute to further work, both analytical and numeri- 
cal, on the problems of motion of slider  bearings. 

Although the bearing  system  considered in this paper 
is a considerably  simplified  model of actual configura- 
tions, the results of the work are believed to be  of more 
than academic  interest. The main  simplifications it in- 
volves derive  from the assumptions of infinite  length of 
the slider and incompressibility of the lubricant. For  an 
arbitrary kinematic condition of the slider,  these  assump- 
tions allow  us to perform  analytical integration of the 
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Reynolds equation for the pressure distribution in the 
lubricant and to calculate the corresponding  force and 
moment  exerted upon the slider. The mathematical for- 
mulation of the problem of motion  is  thereby  reduced 
to a set of two  simultaneous ordinary differential equa- 
tions of second order in the motion coordinates of the 
slider.  These  equations contain the reactions of both 
the lubricant and the bearing  suspension  system, the 
former  being  represented by highly  nonlinear  damping 
and restoring functions of the motion coordinates and 
their derivatives.  The equations are used for the determi- 
nation of equilibrium  positions of the slider for various 
values of the system  parameters, for the investigation of 
the stability of small motions near these positions, and 
for the numerical  calculation of some  specific motion 
trajectories. 

It is  believed that the results of this study will con- 
tribute to a further understanding of the dynamic be- 
behavior of actual sliders, and in particular to knowledge 
of their response to disturbances from equilibrium and 
the effects  of modifications  in  system  configuration. The 
results can also  serve as a check and, perhaps, a point 
of departure for computer programs for the solution of 
the much  more  complex  problem of motion of slider  bear- 
ings  with a compressible lubricant. 303 
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Notation Part 1: Analysis of the dynamical problem 

Referent 

Breadth of slider 
Lubricant  friction force per unit length on slider 
Moment of inertia of slider per unit length 
around center of mass 
Spring force per unit length on slider 
Lubricant pressure moment per unit length on 
slider around pivot point 
Rotational spring moment per unit length on 
slider around pivot  point 
Speed of driving surface 
Lubricant pressure force per unit  length on slider 
Distance  along slider from pivot point  to trail- 
ing edge 
Distance  along slider from pivot point to center 
of mass 
Distance  in direction of driving surface motion 
Clearance between slider and driving surface 
Clearance at pivot point 
Mass per unit length of slider 
Lubricant pressure 
Ambient pressure 

PlP. 
Time 

d P , l M  

wt  

hJb 

POb 
x l b  

P at equilibrium 

Angle of slider with respect to driving surface 
E at equilibrium 

EIP  
E O I P O  

P -  P o  

h(x)/b 
€ - -  €0 

K’(ho)/’Pa 
Q’( eo)/B2Pa 
Viscosity of lubricant 

b l B  
d l / b  
(6cl W B P ,  (= a2PiN 
(12Pw)/Pa (= a”:a 
(Z+ mdq)/mbz = (1/12a2) + 6’ 
[K(bo) - boK’(ho)l/B~a 
- [ Q ( d  - €~Q’(eo>l /B’~a 

Equations of motion for the slider 

We are here concerned with the model of an infinitely 
long  plane slider which is loaded by a linear  spring  as 
shown  in Fig. 1. The spring is connected to the slider sur- 
face at a pivot point whose movement is constrained to 
a vertical path.  Motion of the slider around  the pivot 
point is restrained by a rotary spring that is also assumed 
to be linear. The assumption of linearity of both system 
springs is technically justified since their force-displace- 
ment curves are  smooth enough to be replaced by linear 
approximations over the relatively minute  range of bear- 
ing motion  that is involved. On  the  other  hand, since the 
speeds of the bearing motion components are  not neces- 
sarily small and  the damping  in the mechanical suspension 
system cannot be correspondingly simplified, we neglect 
the influences of damping in the suspension system to 
maintain a rigorous model and achieve simplicity. 

The driving surface of the bearing is assumed to move 
horizontally  with constant speed U ,  and  to have no verti- 
cal velocity component. While not essential, this assump- 
tion of constant velocity of the driving  surface will permit 
mathematical convenience. By restricting the analysis to 
plane  bearing surfaces we are  able to express the dynami- 
cal problem simply in  terms of the  motion coordinates 
and  the parameters that characterize the system. 

In  the model the  action of the lubricant upon  the slider 
can be represented by W, the resultant of the pressure 
acting normal to the face of the slider, and F, the resultant 
of the shearing stresses acting  along the slider surface. 
It is not necessary to consider the  latter force because it 
can  be shown4 to be of order of E ,  where E is the inclination 
angle of the slider; hence, the vertical component of F is 

Figure I Geometry of the bearing configuration. 

c 

P = Po 
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a quantity of the  order of E’. Furthermore, we assume 
that  the center of gravity (CG) is located along  the face 
of the slider so that there is no moment-component around 
this  point due  to F. 

As seen in Fig. 1, the coordinate z of CG is given by 

z = hl - d l  sin E ,  (1) 

where h,  is the  coordinate of the pivot. Neglecting terms 
of order E and smaller and letting K be the spring force, 
M be the moment about  the pivot  point due to the film 
pressure, and Q be the loading moment about  the pivot 
point, we derive the two equations of motion 

m[h, + dl(Ei2 - 2) ]  = W - K ,  (2) 

expressing force-equilibrium along the translation direc- 
tion of the pivot point,  and 

I2 = “M - Q + ( W  - K)d1, (3) 

expressing moment-equilibrium around  the center of 
gravity. (In  both expressions, dots indicate differentiation 
with respect to t . )  Henceforth, we assume linearity of 
the springs, i.e., 

K = K(hn) + K’(hn). (h l  - ho) 

[ K(ho) - ho K’(h0)l + K’(ho)hl, (4) 

where ha is the coordinate of the pivot at equilibrium, and 

Q = Q(Eo) + Q’(Eo)(E - €01 
= [Q(eo) - EOQ’(EO)] + Q’(Eo)E, ( 5 )  

where E, is the equilibrium  angle, and primes indicate 
differentiation with respect to  the argument. In  addi- 
tion we assume that  the term E;’ in (2) may be neglected 
in  comparison with 2. 

For purposes of convenience, we transform the equa- 
tions of motion (2) and (3) into dimensionless form. We 
define w = qm and 7 = ut. The  motion  coordinate 
hl and dl are normalized with respect to b by h, = ob 
and dl = 6b. The  equations of motion then become 

(g - 6’);. = ~ +-+, “M W6 @ - *E 

a’ B’p, a Bp, a 

- 6(: + 70) .  

In Eqs. (6), and (7) and hereafter, dots indicate differ- 
entiation with respect to 7. Multiplying Eq. (6) by 6 and 
subtracting (7) yields 

@-o;=”- M @ , - * E  

a2 B2pa 2 .  a 

Henceforth we shall deal with Eqs. (6) and (8). 

Lubricant  action upon the slider 

The effect of the lubricant on  the motion of the slider is 
represented by the factors W / a  Bp,  and M/a2B2p,  in (6) 
and (8). These factors represent the resultant film force 
and moment around  the pivot point due to the pressure 
distribution in  the lubricant.  This pressure distribution 
is governed by the well-known Reynolds equation 

(h3pZ)% = 6~ Uh, + 12pht. (99 

Note  that (9) is obtained from  the equations of con- 
servation of mass and momentum of the lubricant, using 
an order-of-magnitude analysis of the individual  terms 
in  the expression for momentum to show that  the fluid 
inertia forces are negligible. Detailed  derivations of (9) 
can  be  found in Reference 5 and elsewhere in the literature. 

With the substitutions 

h = Ob, P = +Pa ,  x = { b ,  (10) 

we can write (9) in dimensionless form 

.1(e’44, = K O (  + xe,a, (1 1) 

where parameters K and X are defined as 

6P u K = -  x = -. 12pw 

BP, P a  
(1 2) 

These parameters are related to  the bearing and squeeze 
numbers A and 2, often used in gas lubrication analyses, 
by the equations 

where h, = P,b. The film thickness is  given by 

h = h, - x tan E .  (14) 

By using the substitutions of (10) and 

hl = p b ,  E = @ X  (1 5 )  

and recalling that higher order  terms in E are neglected 
in our approach, we obtain  the normalized expression for 
film thickness 

e = p - tE = p(1 - E X ) .  (1 6) 

Now (11) can  be written as 

4 p 3 ( 1  - t x ) ~ + ~ ] ~  = - K E  + ~ ( 8  - {;)a (1 7) 

and we find directly by integration over {, 

where Co represents a constant of integration. We shall 
use (18) for deriving the normalized pressure (b as a func- 305 
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1 
tion of the independent  variable 5,  the motion coordi- above the slider  is ambient, we  have 
nates p, e and their  derivatives 8, e ,  and the parameters 
that characterize our model. The expressions for the film w = (P - P a )  dx 
force W, and moment M around the pivot point then 
follow  immediately by integration over 5. 

The pressure, +, may  be  expressed as a function of 5 = aBp,  1' (4 - 1) d[ (25) 
-(l-Lx)/* 

(19) 

where Eo = "(1 - CY)/CY; hence we have the expression 

- + 2[(KE - f f X b ) X  + .Xi][i}/(l - $X)' 

- CY& In ( I  - $X)], (20) 

with X = e/@. 

The integration constants Co and +o are obtained from 
the condition that  the pressure  must  be  ambient at the 
bearing  ends. In view  of our definitions,  these boundary 
conditions  assume the form 

-- = 1 = +(1). ( ,iff) 
The calculation of the constants C, and do from (20) and 
(21) is a laborious procedure which  need not be  given. 
It is necessary  only to mention that substitution in (20) of 
the resulting  expressions for these constants, which are 
functions of the motion coordinates and their derivatives, 
yields for + an expression of the form 

and 

= TB+* (P - P a > X  dx 

= a2B2p, /' (4 - I)[ d[. (26) 

Substitution of the expression (24) in (25) and (26) yields 
the force, W, and the moment, M, around the pivot point 
as functions of the motion coordinates, @ and E, and their 
derivatives, b and i, and the parameters CY, K and X. We 
omit the details of this calculation and present  only the 
final  expressions for force and moment,  respectively, 

-(l-Lx)/* 

and 

The symbol X represents the ratio E/@, and the functions 
c(a, X), d(a, X), e(a, X) and f(a, X) are given in Appendix 1. 
The expressions for the functions c(a, X) and e(a, X) were 
verified  by comparison  with  expressions obtained inde- 
pendently  for  pressure  force and moment for the station- 
ary ~ l ider .~  For the functions d(a, X )  and f(a, X )  such 
verification  was not possible. 

where 4, is a complicated function which  is  strongly  de- 

be  easily  verified from the geometry  of the model of Fig. 1 
that all possible  motions of the slider are those  in the This study of the dynamic  behavior of the slider  is  based 
region on the differential equations of motion obtained from (6) 

and (8) using  force and moment equations of (27) and 

pendent On the factor x, that is, On the ratio €/@. It may . Positions of equilibrium and the stability of small motions 

CY 
" - < x <  1, (23) (28). The equations of motion  assume the form 

1 -CY 

c(&- x) j d ( a  X )  i 

xL p3 x P3 where the end-values  represent contact between the slider p - 13' -k ' * -  - x ' A '- 
and the driving  surface at the bearing  ends. It follows 
from (22) that the pressure distribution along the face  of 
the slider  is  given  by 

c(CY, x) 1 n 
- K"*- + - + ?@ = 0 (29) x p' CY 

P = P a [  1 + a(;; 0, € 9  8, i; f f ,  K ,  x (24) and 

sp - gij + CYx.-.- - x.;.- e(a ,  X) p  CY X) i 
and is a function, of course, of the kinematic condition x3 p3 x' p3 
of the slider. 

The force and moment  exerted upon the slider by the 
306 lubricant follow  directly from (24). Since the pressure 

- 
CY 
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The terms [ K / / ~ ’ ] * [ C ( C X ,  X)/a and [ ~ / ~ ‘ ] . [ e ( a ,  x)/x’] 
may be interpreted as the “spring” reaction of the lubri- 
cant against, respectively, the vertical translation and 
rotation of the slider. Furthermore, the terms [X/@]. 
[a.c(a, X ) / X 2 ] .  b and [X/P3].[d(a, X)/Xl. i in (29), and 
[X/@]. [ae(a, X ) / X 3 ] .  b and [X/p3I* u(a, X)/X’] i in (30) 
may  be interpreted as  the “damping” reaction of the 
lubricant that is due to translation and  rotational motion 
of the slider against its vertical motion and rotation 
around  the pivot point, respectively. 

The functions d(a, X ) / X  and f(a, X)/X’, not hitherto 
given  in the literature, can be checked for small values of 
X .  From (18) we find  directly for X = O(E), 

Hence 

The integration constants Co and 4, are again obtained 
from the boundary conditions (21). The corresponding 
lubricant force, W, and lubricant moment, M, exerted 
upon the slider for smaller values of X follow  directly 
from resulting expressions 4( t )  by the integrations (25) 
and (26). Giving only the results of these calculations, we 
have 

(3 3) 

+ [l + 15(1 - 2a)’]Xi 
720a5P3 }. (34) 

To make these expressions  agree  with (27) and (28) we 
must have, of course, the relations 

(3 5 )  

and 

These limits agree  well  with numerical evaluations of the 
functions c(a, X)/X’, e(a, * / X 3 ,  d(a,X)/X, and f(a, x>/Xz 
near  zero. 

Since (29) and (30) are  too involved for analysis  of 
the dynamical problem, we first apply the simplifica- 
tions of the theory of small motions and examine the 
stability of these motions near the equilibrium posi- 
tions of the slider; thereafter, we shall investigate the 
nature of large motions by means of numerical techniques. 
The numerical integration procedure is discussed further 
in Part 2 and some typical results are presented there. 

Let us denote the state of motion of the slider by the 
vector ((3, E, by i) in phase-space S. The rest positions in 
this space are given  by the vectors (Po, E,, 0, 0), the equi- 
librium-coordinates Po and eo being functions of the 
parameters that characterize the system.  These func- 
tions follow  directly from (29) and (30) as the solutions 
P,(K, a, IT, y, @, J.) and E,(K,  a, IT, y, a,#) of  the algebraic 
equations 

and 

In many applications the incremental external spring 
force 70, and moment $E, are small compared with the 
“bias” force II and moment @. It is reasonable, then, to 
consider the special  case y = + = 0. We combine (37) 
and (38) obtaining 

for the equilibrium value X ,  as  a function of the param- 
eters a, II and @. Either (37) or (38) may then be  used 
for the determination of Po and eo. From (37) we  find 

In this case, therefore, the dependence  of the equilibrium- 
coordinates Po and e, upon the physical properties of the 
system  is a function of the parameter ratios K / I T  and @/a. 
Again, it should be noticed that these results are valid 
only for the special  case y = J .  = 0; more general re- 
sults can be obtained in a similar way directly from (37) 
and (38). 

The criteria for the stability of small motions in the 
neighborhood of the equilibrium positions are obtained 
by linearizing the equations of motion with respect to 
the perturbation variables p = ,8 - Po and q = E - E,,. 
Linearized forms of (29) and (30) are thus obtained by 
means of the substitutions /3 = Po + cy e = e, + 7 and 
omission of all terms of order two and higher  in {, q and 
their derivatives; furthermore, the relations (37) and (38) 307 

PLANE PIVOTED SLIDER  BEARINGS 



308 

are utilized. The final forms of the linearized equations 
of motion are given  below. (In (41) and (42) and here- 
after, primes are used to indicate differentiation with  re- 
spect to X,.) 

and 

using the definition a = (1/12a2) + 62. The imaginary 
parts of the roots v of this equation represent the oscil- 
latory character of  small motions near the positions of 
equilibrium, and  the real parts indicate growth or decay. 
The conditions for stability of these motions' are 

a,  > 0 ,  g = ala' - a3 > 0 ,  

a,g - a:a4 > 0 ,  a, > 0 (47) 
or 

a,  > 0 ,  a1aza3 - a: - a:a4 > 0 ,  

a3 > 0 ,  a4 > 0. (48) 

Equations (41) and (42) describe the motion of the slider 
near its positions of equilibrium (Po, e,, 0, 0). The criteria 
for the stability of such motions follow  directly from well- 
known theorems of the theory of linear differential 
equations. 

With the four expressions of (46) and those given in Ap- 
pendix 2, the conditions of (47) and (48) can be written 
in terms of the equilibrium coordinates @,, eo and the 
parameters that characterize the system. Their final 
form is considerably involved. By  way  of example we 
present here only the form they assume for the case y = 0 
and $ = 0. In this case the stability conditions are 

Let us write Eqs. (41) and (42) as 

Sf - ~; i  + A(Pf - Qq) 

+ K(R{ - ST) - -2 = 0.  90 
(44) 

CY 

Here, the coefficients A ,  B,  C, D and P,  Q, R ,  S are func- 
tions of the coordinates Po,  eo (through X, = eO//3,) and 
the parameter a; the expressions for these functions are 
given  in Appendix 2. After substitution of the  trial solu- 
tion { = r o e Y r ,  q = T o e Y r  we derive the characteristic 
equation 

v4 + a1v3 + a2v2 + a3v + a, = o (45) 

with 

a, = 12ff2X[Q + Aa - ( B  + P)8] (464 

U2 = 12ff2{K[S + CU - ( D  f R)6] 
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+ X o C ’ ( f f ,  X0)l. + 6&, x,) 
- xo[c’(ff9 X,> + e’@, xo>ll 

and a = ( X 2 ~ ) / ( ~ P ~ X ~ ) .  (50) 

The expressions of (50) were evaluated by means of (39) 
and (40), and  the stability of small  motions was investi- 
gated numerically for a number of cases. In all these cases 
the conditions of (49) were found to be satisfied so that 
the equilibrium  positions of  (39) appear  to be inherently 
stable  in the presence of small disturbances. 

Part 2: Numerical calculations and results 

Numerical calculations for this  study have two parts: 
(1) the calculation of equilibrium positions and  the 
testing of each for stability; (2) the numerical  inte- 
gration of the two  second-order  ordinary differential 
equations of motion in  order  to investigate types of 
motion and stability in the large. The following section 
discusses the method used in (l), and  the next discusses 
the methods used in (2) along  with the  errors involved 
in  the calculations. In  the concluding section typical re- 
sults are presented and their implications discussed. 

Equilibrium positions and stability in the small 

As shown in  the concluding section of Part 1, equi- 
librium  positions for  the slider are  found by solving (37) 
and (38), which are repeated below, 

K f f  ~ = + ffybo 4% x,> 
€,Po 

(3 7) 

and 

for Po and e,, where X ,  = e o / &  
In most cases of physical interest, the terms -yPo and 

#eO are negligible. Consequently, the computations were 
performed  only for  the case where y = # = 0. Under 
this  assumption, the problem reduces to  that of solving 

for X,, and  then finding Po and E ,  from  the relations 

and 

€0 = XOPO. (53) 

Once an equilibrium  position  has been found  it is a 
simple matter to calculate A,, A,, Az,  AS,  A, and a as 
defined in (50) and  then check the inequalities in (49) to 
determine stability. (Note  that  the conditions  in (49) also 
assume y and # to be zero). 

By writing (51) in the  form 

solutions may be obtained using the well-known Newton- 
Raphson iteration, 

This  method was found  to be quite  satisfactory; with 
an initial  approximation of X ,  which differed from  the 
true value by 209;’, or less the iteration usually converged 
to  an accuracy of  five significant figures in five or fewer 
iterations. However, there were some cases (usually where 
the slider was less stable) where an initial approximation 
of less than 20yo from  the solution was required to achieve 
convergence. As stated  in Part 1, all equilibrium posi- 
tions calculated were stable. 

In some cases where the initial  approximation was too 
far  from  the solution, a value of X ,  outside the interval 
[0, 11 was reached during the iteration. Such values are 
physically meaningless and in these cases the iterations 
were stopped. When rerun,  these cases were always found 
to converge to values of X,, in the interval [0, 11 when 
sufficiently close starting values were used. 

Zntegration of the differential equations of motion 

To carry out  the numerical  integration of the equations 
of motion we first reduce the  two second-order  equa- 
tions of (29) and (30) into  the following system of four 
first-order equations. 

j = 12a2(uy - 6z) (56) 

€ = 12a2(6y - z )  (5  7) 

- 6z) - fe) X 2  (6y - z ) ] .  (59) 

Two main  considerations helped in choosing a nurneri- 
cal integration  procedure for this system: First, because 
of the large amount of computation  required for  the 309 
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derivative  evaluations, high order  formulas  permitting 
large  time  increments AT were  desirable. In addition to re- 
ducing  computing  time,  large  time  steps  reduce the possi- 
bility of  excessive  round-off error. Second,  since it is not 
possible to predict the behavior of the solutions, a built-in 
check on local truncation error is required  so that the 
optimum step size can be  determined by the program. 
This  is the most  practical way to minimize truncation 
and propagated error because no a priori choice for the 
step size can be  made.  Thus, AT is  decreased  when trunca- 
tion error becomes too large and increased  when the 
local error becomes  very small,  resulting  in an efficient 
utilization of computer  time. 

Both Runge-Kutta and Predictor-Corrector methods 
were considered. R-K methods are desirable  because  they 
are self-starting and inherently  stable.  (The  simple  Euler 
P-C method is self-starting but is  ruled out by the first 
consideration above.)  However, a P-C  method can be 
more  easily and satisfactorily  programmed to include 
automatic determination of the step size. (For one  method 
of including error control with Runge-Kutta methods see 
pp. 238-239  of  Reference 7.) The main  objection to meth- 
ods of the R-K type  is that they  require too many  deriva- 
tive  evaluations. It was  decided that a fourth-order method 
would  be  necessary to comply  with the first  consideration 
sited  above. The standard fourth-order R-K formula  re- 
quires  four  sets of derivative  evaluations at each  step. On 
the other hand, a fourth-order P-C  method  with the cor- 
rector  applied  only once requires  two  sets of  derivative 
evaluations at each  step.  Experience  has  shown that apply- 
ing the corrector  only  once  is  generally quite adequate and 
requires no significant  decrease in step size. It was de- 
cided that a Predictor-Corrector  method  with the cor- 
rector  applied  only  once,  along  with a Runge-Kutta 
method for starting, and restarting after a change in step 
size,  would  give the most  satisfactory  results. 

It is desirable to choose a pair of P-C formulas which 
have error terms of opposite sign. For example,  suppose 
that the calculated solution up through the value tn  of 
the independent  variable  is  exactly  correct. Then, if the 
error terms are of opposite sign,  one  knows that  the true 
solution at tn+l lies  between the predicted and corrected 
values.  Consequently, if the program  selects a step size 
such that the predicted and corrected  values differ  by 
less than some 6, one can be  sure that the corrected  value 
dfffers from the true solution by less than 6. Of course, 
in an actual calculation the previous solution is not 
exactly  correct and we are thus controlling only  local 
truncation error with the hope of minimizing propagated 
error. The fourth-order Adams  formulas  have error terms 
of opposite sign and these were  selected.  All  of the fore- 
going  requirements are met by a SHARE program (RW INT). 
(This  sap-coded FORTRAN sub-routine was written  in 1958 
for Adams-Moulton, Runge-Kutta integration by R. 310 
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Causey and W. L. Frank of Space  Technology  Labo- 
ratories.) 

Let a general  system of first-order equations be  given 
in the form 

J;i = f d t ,  Y l ,  Y 2 ,  * -  , Y N ) ,  
. dY Y = Z' (60) 

with initial conditions of y,( to)  = yio,  (61) 

where i = 1, 2, - .  . , N .  

If yin equals yi at t = t,, f i n  equals the derivative of 
yi at t = t , ,  and h is the step size of the independent 
variable t ,  the standard fourth-order Runge-Kutta for- 
mulas are 

Yi,n+l = Y n  + Q(ki1 4- 2ki2 

+ 2ki3 + kiJ  + O(h5) (62)  

kil = h fi(tn, Y l n ,  y z n ,  * * Y N ~ )  (63)  

kiz = h-L ( 2  t n  4- - , Yln  $kll> Yzn 
h 

+ % z 1 ,  * * e  9 YNm *knl)   (64)  

ki3 = h f i ( t n  + 5, Y I ~  + ' k  2 1 2 ,  Y2n %22,  
h 

* * * 9 Y N n  4- $a,) (65)  

kia = hfi(tn + h ,  Y1n k13, Yzm 

k23, * * * , Y N n  + kN3). (66)  

In the SHARE computer  program  these formulas are modi- 
fied as proposed by  Blum' to control the growth of round- 
off errors. 

The Adams  Predictor-Corrector formulas are 

(D) h Y,,n+l = Yin  24 (55fin - 59fi,n-1 

+ 37fi,,-z - 9fi.n-3) + O(h5) (67)  

( C )  h 
Y i , n + l  = ~ t n  + 24 (gfi,n+l + 1gfim 

- ~ f i . ~ - 1  + fi.n-z) - 0 ( h 5 ) .  (68) 

Double precision arithmetic is  used in evaluating the 
Adams formulas since it reduces round-off error with a 
very  small  increase in computing  time. 

Examining (58) and (59)  we  see that  to obtain an ac- 
curate solution, the functions c(a, X), d(a, X), e(a, X )  and 
f (a ,  X )  must be evaluated  accurately  before  each  set of 
derivative  evaluations. We recall that physical  consider- 
ations require -a/(l - a) < X < 1. Examining the 



four  functions above it is clear that we need to  look care- 
fully at evaluations in  the neighborhood of X = 0. From 
(35) and (36) one sees thatc(a,X)/X', d(a, X ) / X ,  e(a, X ) / X 3  
and f(a, X)/X'  have finite limits as X - +  0. Hence, 

lim c(a, X) = lim d ( a ,  X) 
x-0 x-, 

= lim e(a,  X )  = lim f ( a ,  X) = 0. (69) 

It is clear, however, that these four functions, as they are 
written in Appendix 1, cannot be evaluated numerically 
for X = 0. Also, as X approaches zero some of the indi- 
vidual terms of the  functions do  not approach zero. These 
terms  then cancel each other resulting in small values for 
the functions, and consequently in large losses in signifi- 
cant figures. The absolute  error is even greater if c(a, X ) ,  
d(a, X ) ,  e(a, X )  and f(a, K) are calculated and stored and 
then the functions c(a, X ) / X ,  c(a, X ) / X z ,  d(a, X ) / X ,  
e(a, * / X z ,  e(a, X ) / X 3  and /(a, X ) / X 2 ,  which appear in 
(58) and (59), are calculated by dividing by the appropriate 
powers of X .  

Two approaches  can be taken to avoid these difficulties 
as X + 0. The first approach and  the most  laborious 
requires expanding the logarithmic terms in power series 
and then writing the expressions for 

x-,  x-, 

c(a, x), c(0, X) /" ,  c(a, X ) / X 2 ,  

4% X) 9 4% X>/  X, 
e b ,  X), e@,  x>/x', e(a, x ) / x ~ ,  

f(a, X ) ,  /(a, X ) / X 2 ,  (70) 

so that they can be evaluated numerically for X near or 
equal to zero, without dividing by small numbers or 
causing the subtraction of  very nearly equal terms. The 
second simply requires a determination of Z such that 
for I X I 2 5 the loss of accuracy is tolerable. Physically, 
this means not being able to study slider motions very 
close to  or passing through the parallel position. 

The second approach was taken because sufficient in- 
formation  could be obtained without considering motions 
close to  the parallel position. The functions c(a, X ) ,  
d(a, X ) ,  e(a, X )  and f(a, X )  were programmed very much 
as they appear in Appendix 1. The four functions are 
calculated and stored and then the necessary divisions 
by powers of X are made as needed. Some tabulations 
were made of the ten functions in (70). The results showed 
that X can get close to zero before loss of accuracy be- 
comes excessive. After examining c(a, X ) ,  d(a, X ) ,  e(a, X )  
and f(a, X) and  the tabulations of (70), it was decided 
that for I X I 2 0.1 , the losses of accuracy in calculating 
the functions of (70) are two significant figures or less. 
(In  the computer used, floating point  arithmetic gives 
eight significant digits). 

It should be noted that in the Newton-Raphson iter- 

ation discussed in the previous section on equilibrium con- 
ditions the same difficulties with loss  of accuracy are 
present because (54) involves c(a, X,) and e(a, X,). With 
only c(a, X,) and e(a, X,) involved, however, the loss of 
accuracy is two significant figures or less for X,  2 0.05. 
In  the equilibrium positions calculated, X, was always 
much greater than 0.05. 

The integration program was designed to  stop when 
any of the following three conditions occur: I X I < Z; 
X 2. 1 ; or X < - a/(l  - a). None of these conditions 
were encountered in the trajectories computed. 

Even if the functions c(a, X ) ,  d(a, X ) ,  e(a, X )  and 
f(a, X )  were evaluated with no error,  there would still be 
error as a result of the integration  procedure itself.  As 
stated above, the integration  program  has a built-in error 
control which operates as follows: At each  time step, if 
6 equals the maximum of the absolute values of the dif- 
ferences between the predicted and corrected values for p, 
E ,  y ,  and z,  then the step size is suitably chosen so that 
e 5 6 < d where _e and d are  input parameters. For all 
the trajectories computed d = and e = lo-'. The 
accuracy yielded  by these bounds was investigated by 
computing a trajectory several times using a smaller and 
smaller fixed step size and comparing the results with 
those  obtained using the variable step size. 

The trajectory studied is shown as Fig. 2, page 313. 
The greatest motion occurs near r = 0 and then di- 
minishes as r increases. Therefore, near r = 0 truncation 
error is dominant, whereas as r increases, it is propa- 
gated error  due to round-off that becomes more signifi- 
cant.  Table 1 shows tabulations of E and /3 at r = 0.125, 
0.25, and 1.0 for several fixed step sizes and for the vari- 
able step mode, in which AT ranges from 0.015625 to 
0.0625. One will notice that for the largest step size, 0.125, 
there are  no entries for r = 1.0. This is because 0.125 
is too large for  the  motion near r = 0 and, consequently, 
the  truncation error became so great that X exceeded 
its upper  bound causing the program to stop at T = 0.5. 

Examining Table 1 we see that all the variable step 
entries for E and /3 agree to  at least five significant figures 
with the entries for the smallest three  step sizes. Thus, it 
appears that b = l op6  assures at least five figures  of 
accuracy for this trajectory. Trajectories with larger 
motions than those in Fig. 2 generally used somewhat 
fewer time steps (meaning that truncation  error becomes 
more  important), while the trajectories showing over- 
damping required more time steps (meaning that propa- 
gated error becomes more significant). However, the  two 
most extreme cases required, on  the one  hand,  more than 
two-thirds as many and,  on  the other, fewer than three 
times as many time steps as did  the case illustrated in 
Fig. 2. Consequently, it  appears that E = lo-' ensures 
sufficient accuracy for all the trajectories since no more 
than three significant figures are required. 31 1 
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Table 1 Values  of 6 and /? for  fixed step  sizes and 
the variable step  mode. 

At r = 0.125: 
0.125 
0.0625 
0.03125 
0.015625 
0.0078125 
0.00390625 
Variable 

At r = 0.25: 
0.125 
0.0625 
0.03125 
0.015625 
0.0078125 
0.00390625 
Variable 

At r = 1.0: 
0.125 
0.0625 
0.03125 
0.015625 
0.0078125 
0.00390625 
Variable 

1.7658884 
1.7414479 
1.7399853 
1.7400383 
1.7400369 
1.7400362 
1.7400383 

1 23539759 
1 3274397 
1.8236381 
1 X237691 
1 3237747 
1 3237742 
1 A237691 

4.2506446 
4.3083826 
4.3113894 
4.3112939 
4.3112913 
4.3112913 
4.3112939 

4.0761222 
4.1167538 
4.1187019 
4.1182705 
4.1182519 
4.1182510 
4.1182705 

1 3348905 
1 344493 
1 3344424 
1.5844413 
1.5844411 
1 344628 

3.8453113 
3.8449128 
3.8449055 
3 23449051 
3 3449054 
3.8449122 

Results and comments 

The computer  programs we have  mentioned can be  used 
for the determination of equilibrium  positions and motion 
trajectories of the slider  for  various  combinations of the 
parameters a, 6 ,  K ,  X, 11, @ and arbitrary initial conditions 
pi, ei, bi, ii. A number of runs has been completed and 
a set of typical  results  is  presented in Figs. 2-10. The 
parameter  values and initial conditions used in the cor- 
responding  calculations are set forth in Table 2. The initial 
conditions chosen  were the same  for all cases,  i.e., 

pi = 12/30, € 4  = e o ,  pi = 0 = ii. (7 1) 

Note that  the results  apply to a bearing  without rotary 
stiffness in the suspension  system so that  the parameter 9 
has the value  zero. The parameter-values  used  in the 
example of Fig. 2 describe a bearing  with  physical  param- 
eters B = 1.0 in., b = 0.4 in., p a  = 14.7 psi, U = 2000 ips, 
p = 2.62 X lopg lb sec/in2, rn = 3.0 X lb sec2/in2, 
K = 1.0 lb/in and Q = 0. From the definition r = ut = 
t dpTrn  the time-scale  in  Fig. 2 is thus given  by the re- 
lation T = 700 t ,  where t is  expressed in seconds. 

The system of Fig. 2 is arbitrarily identified as  the 
typical  system and succeeding  examples are obtained by 
making one single  change in the values of the physical 
parameters for the typical case. The same  time  scale, 

= 700 t ,  thus applies to all examples  except that repre- 
sented by Fig. 10, which  is  obtained by increasing the 
mass of the typical  slider by a factor of ten. It follows 
that the time-scale in Fig. 10 is  defined  by the relation 

= 221.36 t where t is  expressed in seconds. 
Figures 2-10 present the equilibrium  positions (Po, eo) 

and the motion  trajectories (p(r), ~ ( 7 ) )  for the cases  con- 
sidered. The trajectories  show an instantaneous coupling 

Table 2 Parameters and initial conditions for calculation  of  motion  trajectories in Figs. 2-10. (For all Figures 
= 0.) 

~~ 

and  initial  conditions: 
K x 10' k x lo6 II U eo x io3 ei x io3 po X io3 pi X lo3 

I 

2 
3 
4 

0.4 -0.25 2.1388 1.4971 0.068027 0.58333 1.5864 1.5864 3 3241 4 3 8 9  
0.2 -1.5 2.1388 1.4971 0.068027 4.3333 7 S901 7 S901 8 S140 10.217 
0.4 0.25 2.1388 1.4971 0.068027 0 3 3 3 3  1 S864 1.5864 3.8241 4 3 8 9  

5 0.4 "0.25 2.1388 1.4971 0.034014 0.58333 2.2434 2.2434 5.4080 6.4896 
6 0.4 -0.25 2.1388 1.4971 0.0068027 0 3 3 3 3  5.0165 5.0165 12.093 14.511 
7 0.4 -0.25 2.1388 1.4971 0.13605 0.58333 1 A217 1.1217 2.7040 3.2449 

8 0.4 -0.25 1.0694 1.4971 0.068027 0.58333 1.1217 1.1217 2.7040 3 2449 
9 0.4 -0.25 3.2082 1.4971 0.068027 0.58333 1.9429 1.9429 4.6835 5.6202 

0.4 -0.25 2.1388 0.47344 0.068027 0.58333 1.5864 1.5864 3 3241 4 3 8 9  312 10 
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of the translational and rotational motions in all cases. 
Figure 2 shows that the transient response of the typical 
system  is  aperiodical and that a disturbance of the type 
described by (71) dies out within about 2 milliseconds. 
As shown  in  Fig. 3, a considerable  change  in  behavior 

Figure 2 The typical case. Parameters are as given 
on page 312. 

I - 9 l - Y  L 1 4 . 4  

x 1.5- 
w I l 1 1 1 1 1 1 1 1 1 l l : l I   l , ! ' l ' I )  

. I  

3.6 < 
0 0.2  0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  2.2 2.4 

IT IME S C A L E ,  7 

Figure 3 Case with pivot moved 0.2 inch toward 
trailing edge. 

8.4b llo.o 

w l l l l l l l l l l l  I j 

0 0.2 0.4 0.6 0.8 1.0 1.2 1 4  1.6 1.8 2.0 2.2 2.4 

IT IME S C A L E ,  r 

occurs when the pivot point is  moved  towards the trailing 
edge. The system damping  is  greatly  reduced, the response 
becomes oscillatory, and superharmonics  become appar- 
ent. The fundamental  period of oscillation in this case  is 
about 3.4 milliseconds. Note that the equilibrium coordi- 
nates Po and e, are much greater than those for the typical 
case and that the ratio e o / @ ,  = X, has  also  increased. 
This  explains to some  extent the decrease  of  system  damp- 
ing and stiffness  involved in moving the pivot point 
towards the trailing edge. From the equations of motion, 
(29) and (30) and from the data of Appendix 1, it follows 
that the terms  representing  damping and stiffness of the 
lubricating film are inversely proportional, respectively, 
to factors of the form X:& and of the form 
with rn > 0 and n > 0; hence,  with both X, and Po in- 
creasing, both the damping and the stiffness of the film 
must  decrease  rapidly. If X, were to remain constant, the 
effective damping of the lubricating film  would  decrease 
or increase,  relative to the effective  stiffness,  according to 
whether the thickness  would  increase or decrease. 

In the example of Fig. 3 the pivot point is  moved a 
distance of 0.2 inch  toward the trailing edge. Figure 4 
shows that when the center of gravity  is  moved an equal 
distance  toward the trailing  edge, while  keeping the pivot 
point in the same  position as for the typical  case, the 
effect  is  then  much  smaller. The response  is  similar to 
that of the typical  system,  even though the damping  is 
somewhat  reduced and some  oscillatory  motion becomes 
apparent. The reduction  in  system  damping and stiffness 
here  involved  can  now not be ascribed to a change  in the 
values of X ,  and Po, since it is  clear  from  Figs. 2 and 4 
that  the equilibrium  positions Po and eo are not altered. 
This  also  follows for these  positions  from (39) and (40) 
and from the fact that they do not contain the parameter 6; 
this parameter is the only one aKected,  while in the previ- 

Case with center Of gravity moved to- ous example both (Y and 6 were  involved.  Since the other ward trailing edge. 
parameters  occurring  in the damping and stiffness  terms 
of the equations of motion are similarly  unaltered, the 
change in film damping and stiffness for varying  values 

e of 6 can be  explained  only  by  considering the behavior 

c(a, X ) ,  d(a, X), &, X )  and j(a, X )  listed  in  Appendix 1. 

consideration  here. 

Figure 

1.5 

0 0 2  0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 20 2 1  2 4  

TIME S C A L E ,  r These  functions are, however, too involved for  detailed 

, . ,  and relative  magnitudes of the coefficient functions 

Figures 5, 6, and 7 show the motion trajectories of the 

Figure 5 Case with load decreased by 50 per cent. slider for, respectively, a 50% decrease, a 90% decrease 
and a 100% increase  in load compared with the typical 

" 

- 6  4 system. In Fig. 5 the response  is  still aperiodic although 

-6.0 the motion appears to be on the verge  of oscillation. 
This  implies, of course, that reducing the load has  re- 

$0 - duced both the film damping and film  stiffness as one 
- 5.6 

x 2.1 - 
w - 5 . 2  4 would  expect.  Figure 6 makes this trend abundantly clear, 

l , I 1 I I I I I I I , l I I I I I , 
0 0.2 0.4 0.6 0.8 1.0 1.2 1 4  1.6 1.8 2.0 2 2  2.4 while Fig. 7 illustrates the fact that  the opposite effect 
T I M E   S C A L E ,  r occurs if the load is  increased. It will  be observed that 313 
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the values of Po and to are different in all three cases 
(greater than those for the typical  case if the load is  re- 
duced and vice  versa) but that the ratio tO/PO = X ,  re- 
mains constant. That this should  be the case  follows 
directly  from (39) for the equilibrium positions; for the 
case  under  consideration  here, where = 0, this equation 
becomes  simply e(oc, X,)  = 0. If a remains  unchanged, 
so does the ratio e,/P,. From (40), the second equation 
for the equilibrium  positions, it is  clear that, for a fixed 
value of K, is  inversely proportional to II. Moreover, 
with X also  kept constant, it follows from (29) and (30), 
the two equations of motion, that the film damping in 
this case is proportional to 11312 and the film thickness 
is proportional to TI. Thus, for a 50% reduction in load, as 
shown in Fig. 5, the film damping  is  reduced by a multi- 
plication factor of (l/2)”/” = 0.354, and the stiffness by 
a factor of 0.5. For a 90% reduction in load (Fig. 6) these 
factors are 0.0316 and 0.1 respectively,  while for a 100% 
increase in load (Fig. 7) damping and stiffness  should be 
increased by factors of 2.83 and 2.0, respectively. The 
Figures  bear out these  observations, at least  qualitatively. 
Note that the fundamental period in the example of Fig. 6 
is about 12 milliseconds. 

Figures 8 and 9 show the effect  of variations in speed 
of the driving  surface.  These figures apply  respectively 
to a 50% decrease and a 5070 increase in the magnitude 
of the driving  surface  speed U, that is, of the parameter K. 

Note that X ,  also  remains constant in this case and, from 
Eq. (40), that is proportional to K. It follows from the 
equations of motion, (29) and (30), that  the stiffness of 
the lubricating film  is not affected but that the damping 
is  varied by a factor proportional to K - ~ ” .  Compared 
with the typical  case of Fig. 2 the system  damping  in 
Fig. 8 is thus increased by the factor 23/2 (i.e., 2.83), while 
in Fig. 9 the damping  is  decreased by the factor (2/3)3’2 
(i.e., 0.545). These  observations are borne out by the 
Figures. Note also the similarity between the trajectories 
of  Figs. 5 and 9, and that between the trajectories of 
Figs. 7 and 8. The latter two  Figures  represent,  respec- 
tively, the effect  of doubling the load and halving the 
driving speed; hence the value of the parameter  I1 is 
doubled and the value of the parameter K is  halved. It 
follows  from E q .  (40) that the effect  of these  changes 
on Po is  identical, so that the film damping  is  increased 

Figure 6 Case with load decreased by 90 per cent. 

5.8 

5.6 

14.4 

14.0 

13.6 

13.2 

- 12.8 

- 11.4 
- 

- 
0 2 4.4- 
Y / 1 1 1 ’ l 1 1 1 1 1 l l 1 1 1 1 1 1 1 1 1 l 1  

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
- Q l  

TIME S C A L E ,  7 

- l l . O ~  - - 
x -  x 

Figure 7 Case with load increased by 100 per  cent. 

3.4 
1.4 a 
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Figure 8 Case with driving surface  velocity de- 
creused by 50 per cent. 

x 1.0 
W 2.4 Q 

0 0.2 0.4  0.6  0.8 1.0 1.2 1.4  1.6 1.8 2.0 2.2  2.4 

TIME S C A L E ,  r 

an equal amount in  both cases. In  the case of Figs. 5 
and 9, the former  shows the effect  of  halving the value 
of TI, hence  doubling P:, while the latter shows the effect 
of multiplying K, hence &, by a factor of 1.5. Compared 
with the typical  case of Fig. 2 the film damping  is thus - 

-5b 

Ql 1 l l I I I l I I I I l I I I I I I I I I I I l  quite well with the trajectories  shown in Figs. 5 and 9. w x 1 8 -  

3: : and about one-half  in the second.  These  observations  agree “0 - €0 .~ 

reduced by a factor of about one-third in the first  case, 
5.2 

Figure 9 Case with driving surface  velocity in- 
creased by 50 per cent. 

- 

-4.4 x 

The effect  of changing the mass  of the slider  is  illus- 0 0.2  0.4 0.6 0.8 1.0 1.2 1.4 !.6 1.8 2.0 2.2 2 4  

314 trated in  Fig. 10. The  only  parameter  affected  in this case T I M E  S C A L E ,  7 
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4.8 system behavior is thus solely due to the change in X. 
4.4 Consequently, the stiffness  of the film remains the same 

and, for an increase in mass by a factor of 10, the damping 

3.6 2 It follows from Fig. 10 that  the fundamental period in 

4.0 
0 EO po "o is reduced to  about one-third its original value (see Fig. 2). 

0 0.2  0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  2.2  2.4 

TIME S C A L E , T  

this case is about 7 milliseconds; it may  be noted that  the 
relation T = 221.36t applies in this case. 

Figure 10 Case with mass  increased by a factor Acknowledgmenk 
of 10. 

The  authors  are indebted to W. A. Michael for pointing 
is X, which  is  inversely proportional to &. Equations (39) out  an error in the original manuscript, and gratefully 
and (40) show that  the equilibrium positions Po and eo acknowledge valuable suggestions, support, and com- 
are  not affected, hence X ,  is unaffected, and  the change in ments received from him and from W. A. Gross. 

Appendix 1 Definitions  of  the  functions c(a, X ) ,  d(a, X ) ,  e ( a ,  X ) ,  and f ( a ,  X ) .  

c(a, x) = 
- 2  +r 1 n [ 1 +  

a[2a + ( 1  - 2 4 x 1  ax a(1 - " 1  x) 
e(a,  X) = - 

& + (1 - 2a)X I 3a + 2(1 - 2 a ) x  - ( 1  - a ) X 2  
.In [ I +  

2a2[2a + ( 1  - 2a) X] a X[2a + (1 - 2a) X] a(1 - " 1  x) 

Defining 

[ ( -3  + 4 ~ )  - 2(1 - In (1 - X)] 
a 

+ CY a x)] 
- 

( 1  - x)? - ( 1  + L2 x)2  
a 

Then 
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Appendix 2 Definitions of the  coefficient  functions 
in Eqs. (43) and (44).* 
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