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Nonlinear Wave Propagation

in a Transmission Line

Loaded with Thin Permalloy Films

Abstract: This paper considers the propagation of waves in a transmission line loaded with thin permalloy

films. Since the films are driven to saturation, the transmission line equations which are derived to describe

the wave propagation are nonlinear. The nonlinearity requires the use of shock wave analyses, and a deriva-

tion of the appropriate shock relations is included. The problems of a line loaded with a single film and a

line loaded with a periodic array of films are both treated. The saturation front moving along a string of

films is shown to be the shock front. The shock speed, which is determined in terms of the parameters of

the cireuit, is then the operational speed limit of a thin film memory.

1. Introduction

The purpose of the present paper is to study the propaga-
tion of an electric pulse along a transmission line with a
nonlinear relationship between current and magnetic flux.
Such a nonlinearity can be realized by inserting a layer
of ferromagnetic material between the two conductors of
the line. The main feature is the saturation of the ferro-
magnetic material at high currents; this causes the specific
inductance L of the transmission line to drop for currents
above some critical value I, to the value that is charac-
teristic of the line without the ferromagnetic material.

The ferromagnetic layer is assumed to be an insulator
or a metal strip thin enough to carry only negligible cur-
rents. The specific capacitance C is then independent of
current. The propagation speed 1/ \/ Z—C—' is large above
the critical current 7, so that shock waves will form. The
high currents which have started later will tend to over-
take the lower currents which have had an earlier start
at the generator. In the ideal case (without losses) a con-
tinuously rising current at the generator is deformed into
a discontinuously rising pulse by being propagated through
this transmission line. The occurrence of shock waves in
transmission lines has been observed by others. See, for
example, the paper by R. Landaver* and its bibliography.
Landauer considered the possibility of a nonlinear specific
capacity giving rise to parametric amplification. Addition-
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ally, he discussed a number of questions dealing with
electromagnetic shock waves in general.

The equations of the transmission line are derived in
Section 2 under the assumption of no losses. It is possible
to replace the one continuous permalloy film by a sequence
of small permalloy thin film bits. If the length of each bit
along the transmission line together with the distance of
separation between bits does not exceed, say 1 mm, it
is reasonable to expect that a pulse with a nanosecond
rise time does not “‘see” this periodic structure, but only
a smeared-out effect. The Appendix has the purpose of
showing the equivalence between the transmission line
with a continuous layer of ferromagnetic material and the
transmission line with a large sequence of small bits.

The derivations in Sections 2 and the Appendix are
made assuming currents and voltages that have a suffi-
ciently continuous behavior to allow an arbitrary num-
ber of differentiations, both with respect to time and
with respect to the spatial coordinate. Since the nonlinear
inductance is expected to yield discontinuities in current
and voltage, the differential equations of the transmission
lines are supplemented in Section 3 by special conditions
which have to be satisfied across the shock (discontinuity).
These shock conditions follow from the physical require-
ments of conservation of electric charge and magnetic




flux. The derivation of these relations by Landauer,' on
the other hand, employed the transmission line equations
as a starting point.

The consequences of the shock conditions and, in
particular, the motion of the shock over the transmission
line are analyzed in Section 4. In this Section a functional
equation of motion for the shock is obtained. After
this equation is appropriately specialized, situations which
lead to straight-line shocks are discussed. Finally, the
solution of the problem of saturating and then unsaturat-
ing the line is obtained for this case of a straight-line shock.

A brief discussion of the loss mechanisms is now given
for the interested reader.

The various loss mechanisms limit a successful investi-
gation of the nonlinear transmission line. In the present
case of a thin permalloy film between two conducting
metal strips, three important types of losses must be
neglected:

1. Ohmic resistance in the conductors. This can be over-
come by choosing a large enough cross-sectional area.

2. Eddy-current losses in the conductors increase with
frequency, but they can be reduced if it is possible to
divide the conductors into thin threads, so that currents
are capable of flowing only in one direction.

3. The rotation of the magnetization in the thin permalloy
films is damped by various mechanisms, such as spin wave
excitation, which cannot easily be shifted to higher and
higher frequencies. In the present setup, these losses start
to be noticeable if the magnetization is turned by 90°
in less than a nanosecond. Practically, this means that it
is not possible with present-day techniques to sharpen
the rise time of a pulse along the nonlinear transmission
line discussed in this report beyond the nanosecond,
while keeping the simplifying assumptions made through-
out the report. On the other hand, 1 nanosecond corre-
sponds to 30 cm (1 ft) at the speed of light in vacuo,
and this distance is halved by the dielectric constant
(~4) of the insulator between the two conductors. The
effects predicted by this theory can therefore be realized
in physical models of reasonable size.

2. Equations of the transmission line

In this Section the nonlinear transmission line equations
are derived. The derivation utilizes the laws of Faraday
and Ampere, i.e. Maxwell’s equation, and a special rela-
tion for the magnetic energy of a thin film. The reader
who is not interested in the details of the derivation may
consult Egs. (2.9) to (2.11) as a summary of this Section.

The transmission line is described in a Cartesian co-
ordinate system. The plane of the thin permalloy film is
the xy plane. The conductors allow the current to flow
in the x direction only. The magnetization in the film,
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Figure 1 Schematic of strip line loaded with thin

magnetic film.
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as well as the current distribution in the conductors, is
assumed to be independent of the y coordinate. This
hypothesis is reasonable as long as the width of the
permalloy film and of the conductors (in the y direction)
is large compared to their thickness (in the z direction),
as indicated in Fig. 1. The following formula for the
voltage V across the line may be obtained from Faraday’s
law of induction in a standard manner.
%f = é % (aH, + 4ruM,). (2.1)
To obtain this formula, ohmic resistance in the con-
ductor is neglected and it is supposed that neither the
magnetic field H between the conductors nor the magnet-
ization M inside the thin film depends on the coordinate z.
C’ is the velocity of light, since cgs units are being used.
The relation between voltage and current density j, is
given by
edvV dj.

- — = —4gb —, 2.2
a gt dx @2)

where ¢ is the dielectric constant of the medium between
the conductors.

If we assume that H has only a nonvanishing compo-
nent in the y direction between the two conductors, it
follows from Ampere’s law that
H, = 2‘—7: bj,. (2.3)

In both (2.2) and (2.3) j. was assumed independent of
z in order to integrate j, over the thickness b of the con-
ductor. This assumption is not necessary, and it would
be legitimate to replace in both (2.2) and (2.3) the product
bj, by the integral [j.dz over the conductor. The only
reason for j, to depend on z would be the skin-effect,
which has a complicated frequency dependence. But since
the voltage drop along the conductor due to ohmic
resistance is neglected anyway, the skin effect can also be
neglected. The integral [i,dz is all that occurs in the
present theory.

A fourth relation is necessary in order to eliminate H,
and M, altogether from the transmission line equation.
This last relation expresses the physical characteristics
of the thin film. These are not determined by general laws,
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to be satisfied in any case, such as Maxwell’s equations. The
physical properties of the thin permalloy film have to be
obtained from experiment.

The magnetization M has at each point in the film the
same absolute value, constant in time. Because div (H +
A7M) = 0, this magnetization can be assumed to lie in
the plane of the film. If this were not true, large magnetic
poles would be generated on either surface of the film;
these would create a magnetic field which would tend to
turn the magnetization into the plane of the film. It is then
sufficient to describe the state of magnetization at each
point by an angle ¢. The energy density F due to magnet-
ization of the film is composed of two parts: the uniaxial
anisotropy which tends to turn the vector M into one of
the two ““easy” directions, and the energy of M in the mag-
netic field H, which is simply given by their scalar product.
If the easy axis coincides with the x axis, and if ¢ is the
angle of M with the x axis, F is given by

F = Ksin" ¢ — |M|-(H, cos¢ + H,sin¢), (2.4)

where K is a material constant.” For a given magnetic
field H the angle ¢ is found from the minimum of F with
respect to variations in ¢, i.e. from dF/d¢ = 0. In the
transmission line described in this paper, H, is assumed to
vanish. It follows that

2
|M| sin¢ = LM H,, for H, < 2K _ H,;
2K | M|
M, =
+ |M|, for H,,>g or H,,<——2£-
| M| | M|
(2.5)

The equations express the “saturation” of the magnetiza-

Figure 2 Relation between magnetization and
magnetic field in the hard direction of a
saturable thin film.
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tion at magnetic fields in the y direction above the absolute
value 2K/| M |. The resulting nonlinear relation between
M, and H, is shown in Fig. 2. Moreover, it is of practical
importance to realize the steepness of the M, versus H,
slope in the center part. Indeed, the coefficient in (2.5) has
generally a value in the order of 200.

The physical processes which govern the relation be-
tween M, and H, are not reversible in the simple case of
just one field component H,, which was outlined above.
If one starts at t = 0 with ¢ = 0 and H, = 0, and then
lets H, increase monotonically beyond H,, M, runs along
the curve of Fig. 2, But if H, is then allowed to decrease
below H_, without the presence of a small field H, (much
smaller in absolute value than H,) the magnetization does
not “know” where to turn, to ¢ = O or to ¢ = 7. In
general, the thin film will break up into domains, some
tending to ¢ = 0, others to ¢ = 7. Hence, there is the
necessity of a small field component H,, called the “word”
field in opposition to the large <“bit” field H,, to guarantee
the reversibility of the curve of Fig. 2. The word field will
be neglected in the future, because it does not influence
the propagation of pulses along the transmission line.
Equation (2.1) now becomes, with the help of (2.3) and
2.5),

d = al
ox - _L(I)at > (26)

with

2
4L£<1+2WIM| g)

c’?h

- Kh

L(I) =+ for |I| = |bhj,| < = 1
4t a
i h for |I| > I;

and Eq. (2.2) is now written in terms of the total current
I = bhj,, where h is the width of the conductor, as
al oV € h

of _ n9¥ . = =0 2.8
o I‘at with T ymin (2.8)

Instead of electrostatic cgs units used so far, the voltage
is now expressed in volts, the current in amperes, the
magnetization M and the critical field H, = 2K/| M | in
gauss. With the permeability given by

14+ 47|--I——l-E Jfor [I| < I, = m'th;
W) = H, 4 o

(2.9)




With the capacity C per cm and the inductance L per
cm given by

¢h

- _¢h az,
aZOC'

, L) = WD

(2.10)
where Z, is the impedance of the vacuum, 370 ohms,
the equations of the transmission line reduce to

or _ —Ca—V R v _ —L(I) oI, (2.11)
ox at ax ot

This last form will be used henceforth. In the remainder
of this paper, since only scalar quantities are employed,
the simple subscript notation for partial derivatives will
be employed.

3. Shock equations

The mathematical problem at hand is to solve the trans-
mission line equations with a nonlinear inductance. Since
the speed of the waves arising as solutions of these equa-
tions is 1/ \/CL(I), there will be waves of differing speeds
propagating in the same line. Since the faster waves will
tend to overtake slower waves and since the solution to
the differential equations cannot be multiple-valued, there
must be a mechanism for keeping separate the waves of
differing speeds. In the parlance of mechanics this mecha-
nism is known as a shock wave. If the existence of a
shock is admitted into our problem, the laws of interaction
of waves on opposite sides of the shock must be known.

Figure 3 Section of strip-line containing shock
front indicated by dotted line.
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Figure 4 Relation of flux versus current in satur-
able film (cf. Figure 2).
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This information is supplied by relations valid across a
shock, the so-called shock relations. In mechanical prob-
lems these relations are expressions of the conservation
of mass, momentum, energy, and possibly entropy across
the shock wave (see Ref. 3). In the present case of electrical
waves there are only two independent shock relations.
These are expressions of the principles of conservation
of charge and magnetic flux. These relations are derived
in the following paragraphs.

The net current flow into the length a8 of the line
(Fig. 3) is

dag

8
i) — 1) = % =§tf CV dx

- <f:— + f:) fd(ca,#c —fcvl. (.1)

Here the brackets [ ] refer to the jump in the indicated
quantity across £(¢), and a dot indicates time differentia-
tion. Now let o — ¢ and 8 — £*. The integrals will
vanish, and there remains the first shock relation

[1] = gCv]. (3.2)

Let B = H + 4xM and let A(J) be the flux through
unit length of line. Then

fj A(l) dx = f B dS. (3.3)

Here the integral of B is taken over the area of the line
contained between a and 8. Now

d
4 f BdS = Vi) — V(B) (3.4)
while

{—j;fj I'(J) dx = <f:_ + f:) ‘;—I; dx — [T (D). (3.5)

Letting « — £ and 8 — &, these equations yield the
second shock relation

[V] = £T)]. (3.6)

For a thin magnetic strip in a line, a typical A(J) curve
is as indicated in Fig. 4, where I, is the critical current
at which the film saturates. If the specific inductance is
defined to be the slope of the A(J) curve, then the specific
inductance will be

L(1) = {L 1< 1] 3.7)
L, 1] > |1.]
with L > L,.
In this case an easy computation gives
(T(D] = [(1 = 1)L(D)]. 3.8)
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Thus (3.7) becomes
(V] =& — 1)L(D). 3.9)

For future reference note the following: If ahead of
the shock (x > &), £ > 0), I < I, so that L) = L
there, while behind the shock (x < £®), I > I, so that
L) = L,,and if V., I, and V_, I_ denote the values of
V and I at the shock (ahead and behind, respectively)
as indicated in Fig. 5, then the shock relations (3.3)
and (3.10) may be solved for V_ and I_,

I- = a1, + B@I.

(3.10)
Vo=V, —~v®U. — I.)
where
1 — CLE
“® =1 CL#
o _ CE(L — L))
[E63) | — CL#
v@) = HL— L) (3.11)
1 — CL#

4. Analysis of the mathematical model

o The equation of motion of the shock front in a semi-
infinite line.

At time ¢t = 0 the transmission line is at rest, i.e., I = V= 0.
Then the generator ¢(7) is switched on causing voltage
and current waves to propagate down the line. The solu-
tion to the transmission line equations is then easily seen
to be

Jo , t < \/Z—éx

00 =let = Vien o o @
R+ V%

Vix, ) = \E I(x, ). (4.2)

(4.1) and (4.2) represent waves of speed 1/4/ E (the
slow waves) moving down the transmission line.

At a certain time ¢, the generator reaches and then
exceeds a value of voltage [¢ = R+ V', /C)I ], which
causes I(x, ?), as given in (4.1), to exceed the critical cur-
rent I.. Now waves of speed 1/+/ le' propagate down
the line, catching up to the slow waves which are ahead.
Between the two groups of waves there is a shock wave
whose equation of motion will now be derived.

Figure 6 contains a sketch of the shock and two charac-
teristics 4 Pand A—Q representing waves of speed 1/ vV LI_C
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Figure 5 Values assigned to electrical parameters
on opposite sides of shock front.

x =0

Figure 6 Configuration showing relation between
shock wave and electromagnetic waves
of different speeds.

At the point A4 there is an impedance boundary condition

V(4) + RI(4) = ¢(A4). (4.3)

At P and Q the shock relations (written in the form (3.11))
are respectively

1(P) = «P)I(P") + B(P)I. 4.4)
v(PT) = V(P") — v(P)U(P) — L) (4.5)
107) = «0)1(Q") + BO)I. (4.6)
V") = V@) — v@Uu@") — L). 4.7)

Here a(P), for example, is «(£ (the f coordinate of P)),
and P~ and P", for example, refer respectively to the
point P behind and ahead of the shock. To these five
equations are adjoined two more, which relate ¥V and I
at Ato Vand I at P~ and Q7, respectively,

I(P7) — I(4) = *\/_%: (V(P7) — V(4)) (4.8)

107) — 104) = —\/%w(g-) — V), (49




(These equations, which are referred to as the character-
istic equations, are an expression of Ohm’s law in a trans-
mission line.)

The seven equations (4.3) to (4.9) involve the six un-
knowns ¥V and I at 4, P~, and Q~ in a linear fashion,
as well as the unknown £ in a nonlinear fashion. The
coefficients of these equations depend on ¥ and I at P*
and Q" (i.e., ahead of the shock). ¥ and I ahead of the
shock are given in (4.1) and (4.2). However, the x and ¢
coordinates of P and Q are dependent on £ itself. Solving
(4.9) to (4.9) for V(A4) and I(4) and then inserting these
expressions into (4.3) gives an equation for £.

sa04) = 10| (& + Lot
~(1+ R\/g v(P)] + e )[1 + R\F]
+ 107 (k= Lo - (1 - &S hio
+ v 1 = 2yfS |+ 2] (= + B
+ (1 + R\f )7(P) + < \E)B(Q)
+(1- R\E)V(Q)] (4.10)

o The case of matching the generator

The equation of shock motion (4.10) simplifies if the
generator is matched to the saturated line, i.e.

= V'L,/c. (4.11)

This will cause waves which arrive at the left end of the
line to be absorbed, thus simplifying the analysis. This
choice of R will be adhered to in the remainder of this
report. In this case, (4.10) becomes, upon using the values
of a, 8, and v as given in (3.11),

R(1 — CLE) — &L — L))

#(4) = L= CcLE I(P") + V(P")
1[ L)) £+ RCE ] (4.12)
1 — CL&

o Legitimacy of the derivation

In deriving the equation of motion (4.12) use was made
of Fig. 6, which employs several tacit assumptions. One
of these assumptions is that the two characteristics
emanating from A strike the shock at P~ and Q. Ad-
ditionally, it is supposed that I(P*) and ¥(P") are known
functions of x and ¢ obtained from (4.1) and (4.2), (i.e.,
obtained from the state ahead of the shock). This amounts

to assuming that the characteristics of the type C in Fig. 6
leave the ¢ axis and also strike the shock. Both of these
assumptions are valid if the shock speed £ lies between
the wave speeds ahead and behind the shock, ie., if

\/— <E< \/L C (4.13)

It will now be shown that this is the case, at least in the
beginning of the development of the shock, by demon-
strating that £(P) obeys (4.13). If the point P has the
coordinates (¢(T), T), then, using (4.1) and (4.2), along
with

#(1) = ¢(0) + ¢’(0)z,

with  ¢(0) = (R + \/%,)1 (4.14)

(where we suppose that the initial point of the shock cor-
responds to 1 = 0 in (4.12)) and letting ¢ — 0 yields, after
some manipulation, the following cubic in £(0),

0 = £O(V'L + VLY)C VL, £(0)
— VC (VL — VDO — 2].  (4.15)

The positive root of (4.15) is found to be

. 1

O VeavViT Vi) 419
This root is seen to lie between 1/ VA ZE and 1/ V4 LI—C
The equations (4.15) and (4.16) exhibit the interesting
fact that the initial slope of the shock is independent
of ¢(f). In fact, the initial shock speed is apparently a
curious kind of average of the speeds that are possible.

o Straight-line shock

A straight-line shock (£ = 0) occurs in at least two ways:
(a) ¢(?) is piecewise constant, (b) ¢(¢) is linear. These two
cases will now be considered.

(a) Piecewise constant ¢(¢)

Consider the case where ¢(7) is a step function.

S0 — [001 < LR+ Vi), <0,

1011 > LR+ Vi), >0,

where + = 0 is the time when the shock first appears.
(The inequalities here guarantee that the applied voltage
is less than critical for ¢ < 0 and greater than critical for
t > 0.) Now the shock equation (4.12) becomes a quadratic
in £

0= ¢ 0,V L, + 6CL + (L — L)V LC|

1)<1 &V

+ §L — L m)‘f‘ o — 6,. (4.17)
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Thus £ is a constant equal to the positive root of this
quadratic, and the shock is a straight line. The argument
concerning inequality (4.13) is now no longer valid since
¢ was assumed to be differentiable for that argument.
However, one may show that the positive root of (4.17)
obeys inequality (4.13) as well.

In this situation of a straight-line shock the current and
voltage in the region behind the shock are easily computed.
Using Fig. 6, but allowing 4 to be anywhere in the region
behind the shock, the equations (4.4) to (4.9) are solved
for I(4) and V(A4). The observations that ¥ and I ahead
of the shock (as given in (4.1) and (4.2)) are now constants
(because ¢ is piecewise constant), and that a(£), B(£),
and y(§€), as given in (3.12), are also constants, enable the
following simple expression for I(A4) to be obtained:

() =o L= 4 o — L)

L
R+JE

From this and (4.13) one can easily show that I(4) > I..
In a similar manner we obtain

L 20 .
\/;(1 — CL§) — &L — L)

L
R+JE

+ E(L - Ll)

S PR
1 — CcL§

(4.18)

V(Ad) = | 6,

Ic

e el 4.19
1 — CL§ (4.19)

Notice that while ahead of the shock the waves move
only to the right, they move in both directions behind
the shock. Thus, behind the shock we have reflected
voltage and current waves, ¥, and 1,, given by

V, — _I./___—\;L‘_/i{ (4'20)
IL,=—Vc¢/L Ve (4.21)

The situation when ¢ is reduced from its larger value
0.1, back to its lesser value 6,1, will now be considered.
Figure 7 anticipates the resulting situation. (Recall that
R=1,/c)

At the point on the ¢ axis where ¢ is decreased, there
emanates a fast wave, but above this fast wave (speed
1/v L,C) there are only slow waves (speed 1/4/ LO).
If this is the case, the line must unsaturate with the speed
of the fast wave, leaving a line with specific inductance L.
The current I above the last fast wave 4B must be de-
termined, and it must be verified that its value is not
greater than I.. It will be seen that the region ABC in
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Fig. 7 is actually somewhat indeterminate in the sense
that in this region I = 1I..

To determine I in the region above BA, consider two
cases: Case (i), the point in question lies below BC;
Case (ii), above BC. The method of computation of 7
in these two cases is illustrated in Fig. 8, where a portion
of Fig. 7 is reproduced. Using the shock relations and
characteristic equations pertinent to these diagrams we
obtain for cases (i) and (ii), respectively:

Case (i)
I(P) = I, (4.22)
v(P) = [00 Vije( = CLE) — KL — L)
R+ VL
) L
+ &L — Ll)] TZ cLE (4.23)
Case (ii)
I(P) = 10[00 + VU—C' - 1 — C,Ls-z
,(00 Ve (1 = CL§) + &L — L)

R+ Vic
+ &L — L1)>:|/[R + \/jc:] (4.24)

Figure 7 Configuration showing relation between
fast and slow waves (cf. Figure 5).
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& INCREASED




Figure 8 Configuration of points vtilized in the
computation of current behind shock
wave,

Figure 9 Rarification wave behind shock.

Vijc (1 — CLE) + L — L)
R+ Vi

v(P) = 10[00

+ &L — Ll)}/(l — CL.&). (4.25)

A computation shows that the I(P) as given in (4.24) is
not greater than I,.

The existence of the region ABC in Fig. 7 where
I = I, is due to the jump discontinuity in inductance
from L, to L. If in the vicinity of I = I,, L changed
smoothly from L to L,, then the region 4BC would exhibit
a gradual desaturation and be covered by a fan of charac-
teristics of speeds varying from 1/V 7o to 1/ V4 L—IC as
accompanies a typical rarifaction wave (see Fig. 9).

This situation yields a slower desaturation rate. Thus,
while the analysis here shows a desaturation which moves
with the speed 1/4/ L.C, since I = I, in the region ABC,
the line does not desaturate at this rate. It certainly de-
saturates with the slower speed 1/+/ Lc. However, a

more careful approximation to the inductance L = L)
would give an intermediate rate.

(b) Linear ¢(1)

A straight-line shock occurs also when ¢(¢) is linear. If
a linear ¢(?) is inserted into the equation of shock motion
(4.12), where ¢+ = 0 is the time at which ¢(7) becomes
critical, the following nonlinear ordinary differential equa-
tion for £ is found to prevail:

Ve €t — VO (VL — VD)
+ e — Vierg +E=0.  (4.26)

Notice that the solution £(f) of this equation is independent
of the slope of ¢(r). The solution of this differential
equation is

2
&r) = VeIt Vi) ‘. (4.27)

This is the same solution as (4.16).

Appendix. Large array of films

In this Appendix a transmission line loaded with a periodi-
cally spaced set of films, as in Fig. 10, is considered.

By making certain approximations it will be shown
that waves of long length in this line (compared to the
length s of a strip) obey a set of transmission line equations,
exactly as the case of a single film, with an appropriately
adjusted value of specific inductance and specific capacity.
The approximations make tacit use of the assumption
that the TEM#* character of the wave propagation is es-
sentially preserved throughout the process. Thus, the
analysis of the periodic array described here is absorbed
into the analysis of the model of the single film, which is
carried out in Section 4. The results are that waves that
are long compared to s and d obey a set of transmission
line equations with specific capacity and inductance given
respectively by

Cy = (1 +§)C
Ly = L+f_1L(I)-

L and C are the specific inductance and capacity of the
line in a section where the film is not present, and L(I)
is the specific inductance of the line in a section where
the film is present.

* Transverse electromagnetic.

Figure 10 Configuration of a line loaded with «
periodic array of films.

A
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As s — 0 in these relations, Cy and Lz tend to C and L
of a transmission line which does not contain magnetic
strips. However, as d — 0 Cg and Ly do not tend to C
and L(I). Both of these occurrences are to be expected
since, as a starting point for the derivation, the trans-
mission line equations (A.1) and (A.2) were used in
regions without films, and the four-pole equations (A.7)
and (A.) in regions with films. The four-pole equations
are recoverable (in a sense) as d— 0. The nonlinear trans-
mission line equations, in regions with films, are not re-
coverable from the four-pole equations. A fortiori these
transmission line equations are not recoverable from the
derived equivalent line equations.

The details of the derivation now follow.

In sections of the line where the film is not present, the
transmission line equations are

I, = —CV, (A.1)
V, = —LI,. (A.2)

In the remaining parts of the line the equations (2.20),
written as

I, = —CV, (A.3)
V, = —L(DI, (A.4)

will prevail.
Let x~ and x* denote the coordinates of the end points
of a typical film, and let

[Y]=VY — Y = Y, 1) — Y(x7, 1) (A.5)

7 = Y—;LL , (A.6)

where Y(x, f) is any function of x and 7. Now integrating
(A.3) and (A.4) over the strip yields approximately

[Il = —sCP, (A.7)
[V] = —sL(D]I,. (A.8)

The strip has therefore been replaced by a four-pole
since the current and voltage on one end is directly related
to the current and voltage on the other end by (A.7)
and (A.8).

Equations (A.3) and (A.4) may be combined by dif-
ferentiation into

which, by integration over the strip, gives approximately

[L.] = sC(L(D)1.).. (A.10)
Now Eq. (A.2) gives

(V.= —L[1]=—L f I, dx, (A.11)

where again integration is over a strip. Computing I,

M. C. GUTZWILLER AND W. L. MIRANKER

(x,7+4d)

(b)

(x - 4,7)

(x + d,T)

(x, 7-d)
Figure 11 (a) Rhombus of characteristics of wave

equation. (b) Coordinates for rhombus of
characteristics.

from (A.3) enables (A.11) to be written in the form

[V.] = CLsV,,. (A.12)
Introducing a new time coordinate

VL =t (A.13)

Egs. (A.1), (A.2), (A.7), (A.8), (A.10), and (A.12) may be
rewritten as

Ia:a: =1 T
} outside of film regions and (A.14)
VZZ = VTT
= (20 1)
L .
[Vz] =S I_/-rr
- across film strips. (A.15)

{

[V]

LD

The strips are considered to be collapsed, each to a
single point, and the equations (A.15) which relate ¥
and I and their derivatives at the opposite ends of a strip
have replaced the transmission line equations (A.3)
and (A.4).

Now Gauss’ theorem for a solution of the wave equation,

o=[[ .-

E]g (V, cos (n, x) — V, cos (n, 1)) ds, (A.16)

V..) dx dr

Il

is applied to ¥ and I in the domains AP,P and PBP,
of Fig. 11.

In this Figure P and P, lie on the line x = constant (to
which a strip has been collapsed). The remaining lines
have slope =1 (i.e., are portions of characteristics of the
wave equation). This application of Gauss’ theorem gives




0= — i ID dr + I(P7) — 21(4) + KPY) (A.17)

Py

and

0= ’ I7 dr + I(PY) — 21(B) + I(PY}). (A.18)

Py

Adding these equations gives
P

0= f (1] dr + 2I(P) — 21( 4)
Py

— 2K(B) + 2I(P). (A.19)

Inserting the value of [I.], as given in (A.15), into this
equation yields, upon integration,

0= LLD 1" I(P) — I(A4)
2 L P,
— I(B) + I(P). (A.20)
Here F(I);, - =- F(I(P)) — F(I(P,)).
In a similar manner
0=3"p1 + P(P)— V(4
2 P,
— V(B) + V(P) (A.21)

is obtained.

Now consider Fig. 11b, which is the same as Fig. 10
except that the lengths of the line segments are fixed so
that 4 and B lie on strips.

For these domains (A.20) becomes

o=%[%’_)i,<x,r+d)—LL’)i,(x,T~d)]
+ Ix, 7+ d) + Ix, r — d)
— Ix —d,r)— Ilx + d, 7). (A.22)
Now
Ix —d, 7) + Ix + d, 7)
=Ix—d 1+ Ix+d, 7
(x—ad)"' 7)) — I((x — d), 7)
2
et A ) = ) ),
2

If the third equation in (A.15) is inserted into (A.23), it
becomes

Ix —d, 7))+ I(x + d, 7)
=Ix —d,r)+ Ix +d, 1)

e _ _
-2 %[V,(x —d, 1) — Pux 4 d, 1)]. (A.24)

_+_

(A.23)

Inserting this into (A.22) and dividing the resulting equa-
tion by d” gives

0=5 [L(T)i,(x, r+d) — L(DIL(x, r — d):|
d 2 dL

Kx, 7+ d) + Hx, 7 — d)

+ :
d
_ Ix+d, )+ Ix —d, 7
d2
s e[ rc+d ) = Pux — 4, T)]
d\/;[ oy (A.25)
Now let
. s
6 = sl{ir_{lt) rh (A.26)

Then taking the limit as s, d — 0, (5.25) becomes

0= G[L—(l)‘ i-r] + i-rf - ixx - 0\/§ I7'I'a:' (A27)
L . L

In a similar manner the equation

0=Q0+06P, — V., — e\/% (1‘-%) 1) (A.28)

is obtained using (5.21) as a starting point.
The following two first-order differential equations

L+0+6Cc7 =0 (A.29)
7,4+ (L+ 6L(D)I, =0 (A.30)

give rise, by differentiation, to the original second-order
equations (A.27) and (A.28).

Now the class of solutions of (A.27) and (A.28) contains
the solution of the transmission line equations (A.29)
and (A.30). However, if (A.29) and (A.30) are used instead
of (A.27) and (A.28), at least some of the solutions of the
latter will be characterized. Thus, a periodic array of
strips in a line behaves (for wave lengths long compared
to s and d) like an equivalent line loaded with a single
long strip where the effective specific capacity and specific
inductance of the equivalent line are

Cz = (1 + 6)C = (1 + j)c (A.31)
Ly =L+ 0L(I) = L + 5 (D). (A.32)
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