
M. C. Gutzwiller 

W. 1. Miranker 

Nonlinear  Wave  Propagation 
in  a  Transmission Line 
Loaded  with  Thin  Permalloy  Films 

Abstract: This paper considers the propagation of waves in a  transmission line loaded with thin permalloy 

films.  Since the  films are driven to saturation, the transmission line equations which are derived to  describe 

the wave propagation are nonlinear. The nonlinearity requires  the use of shock wave analyses, and a deriva- 

tion of the appropriate shock relations is included. The problems of a line loaded with a  single film and a 

line loaded with a periodic array of films are both treated. The saturation front moving along a  string of 

films is shown to be the shock front. The  shock  speed, which is determined in terms of the parameters of 

the circuit, is then the operational speed limit of a thin film memory. 

1. Introduction 

The purpose of the present paper is to study the propaga- 
tion of an electric pulse along a transmission line with a 
nonlinear relationship between current  and magnetic flux. 
Such a nonlinearity can be realized  by inserting a layer 
of ferromagnetic material between the two conductors of 
the line. The main feature is the saturation of the ferro- 
magnetic material at high currents; this causes the specific 
inductance L of the transmission line to  drop  for currents 
above some critical value I ,  to  the value that is charac- 
teristic of the line without the ferromagnetic material. 

The ferromagnetic layer is assumed to be an insulator 
or a metal strip thin enough to carry only negligible cur- 
rents. The specific capacitance C is then independent of 
current. The propagation speed 1/ dz is large above 
the critical current I , ,  so that shock waves  will form. The 
high currents which have started later will tend to over- 
take the lower currents which have had an earlier start 
at  the generator. In the ideal case (without losses) a con- 
tinuously rising current at the generator is deformed into 
a discontinuously rising pulse  by  being propagated through 
this transmission line. The occurrence of shock waves in 

ally, he discussed a number of questions dealing with 
electromagnetic shock waves in general. 

The equations of the transmission line are derived in 
Section 2 under the assumption of no losses. It is possible 
to replace the one continuous permalloy film  by a sequence 
of small permalloy thin film  bits. If the length of each bit 
along the transmission line together with the distance of 
separation between bits does not exceed, say 1 mm, it 
is reasonable to expect that a pulse with a nanosecond 
rise time does not “see” this periodic structure, but only 
a smeared-out effect. The Appendix has the purpose of 
showing the equivalence between the transmission line 
with a continuous layer of ferromagnetic material and the 
transmission line with a large sequence of small bits. 

The derivations in Sections 2 and  the Appendix are 
made assuming currents and voltages that have a suffi- 
ciently continuous behavior to allow an arbitrary num- 
ber of differentiations, both with respect to time and 
with  respect to the spatial coordinate. Since the nonlinear 
inductance is expected to yield discontinuities in  current 
and voltage, the differential equations of the transmission 

transmission lines has been observed by others. See, for lines are supplemented in Section 3 by special conditions 
example, the paper by R. Landauer’ and its bibliography. which have to be satisfied across the shock (discontinuity). 
Landauer considered the possibility of a nonlinear specific These shock conditions follow from  the physical require- 
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flux. The derivation of these relations by Landauer,' on 
the other hand, employed the transmission line equations 
as a starting point. 

The consequences  of the shock conditions and,  in 
particular, the motion of the shock over the transmission 
line are analyzed in  Section 4. In this Section a functional 
equation of motion for the shock is obtained. After 
this equation is appropriately specialized, situations which 
lead to straight-line shocks are discussed. Finally, the 
solution of the problem of saturating and then unsaturat- 
ing the line is obtained for this case  of a straight-line shock. 

A brief  discussion  of the loss  mechanisms is  now  given 
for the interested reader. 

The various loss  mechanisms limit a successful  investi- 
gation of the nonlinear transmission line. In the present 
case of a thin permalloy film  between two conducting 
metal strips, three important types of  losses  must  be 
neglected : 

1. Ohmic resistance in the conductors. This can be over- 
come by choosing a large enough cross-sectional area. 

2. Eddy-current losses  in the conductors increase with 
frequency, but they can be  reduced if it is  possible to 
divide the conductors into thin threads, so that currents 
are capable of  flowing only in one direction. 

3. The rotation of the magnetization in the thin permalloy 
films  is damped by various mechanisms,  such as spin wave 
excitation, which cannot easily  be shifted to higher and 
higher  frequencies. In the present setup, these  losses start 
to be noticeable if the magnetization is turned by  90' 
in less than a nanosecond. Practically, this means that it 
is not possible  with  present-day techniques to sharpen 
the rise time of a pulse along the nonlinear transmission 
line  discussed in this report beyond the nanosecond, 
while  keeping the simplifying assumptions made through- 
out the report. On the other hand, 1 nanosecond corre- 
sponds to 30  cm (1 ft) at the speed  of  light in vacuo, 
and this distance is  halved by the dielectric constant 
(-4) of the insulator between the two conductors. The 
effects predicted by this theory can therefore be realized 
in physical  models of reasonable size. 

2. Equations of the transmission line 

In this Section the nonlinear transmission line equations 
are derived. The derivation utilizes the laws of Faraday 
and Ampkre,  i.e.  Maxwell's equation, and a special rela- 
tion for the magnetic  energy of a thin film. The reader 
who  is not interested in the details of the derivation may 
consult Eqs. (2.9) to (2.11) as a summary of this Section. 

The transmission line  is  described  in a Cartesian co- 
ordinate system. The plane of the thin permalloy film is 
the xy  plane. The conductors allow the current to flow 
in the x direction only. The magnetization in the film, 
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Figure I Schematic of strip line loaded with thin 
magnetic film. 

as well as  the current distribution in the conductors, is 
assumed to be independent of the y coordinate. This 
hypothesis  is reasonable as long as the width of the 
permalloy  film and of the conductors (in the y direction) 
is large compared to their thickness (in the z direction), 
as indicated in Fig. 1. The following formula for the 
voltage V across the line may  be obtained from Faraday's 
law  of induction in a standard manner. 

To obtain this formula, ohmic resistance in  the con- 
ductor is  neglected and it is supposed that neither the 
magnetic field H between the conductors nor the magnet- 
ization M inside the thin film depends on the coordinate z. 
C' is the velocity  of light, since  cgs units are being  used. 
The relation between  voltage and current density j ,  is 
given  by 

where t is the dielectric constant of the medium  between 
the conductors. 

If  we assume that H has only a nonvanishing compo- 
nent in  the y direction between the two conductors, it 
follows from Ampkre's law that 

47r 
C' 

H ,  = - bj,. 

In both (2.2) and (2.3) j ,  was assumed independent of 
z in order to integrate j ,  over the thickness b of the con- 
ductor. This assumption is not necessary, and it would 
be  legitimate to replace in  both (2.2) and (2.3) the product 
bj, by the integral sj,dz over the conductor. The only 
reason for jz to depend on z would be the skin-effect, 
which has a complicated  frequency  dependence.  But  since 
the voltage drop along the conductor due to ohmic 
resistance  is  neglected  anyway, the skin effect can also be 
neglected. The integral Ji,dz is all that occurs in the 
present theory. 

A fourth relation is necessary  in order to eliminate H, 
and M, altogether from the transmission line equation. 
This last relation expresses the physical characteristics 
of the thin film.  These are  not determined by general laws, 279 
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to be satisfied in any case, such as Maxwell’s equations. The 
physical properties of the thin permalloy film have to be 
obtained  from experiment. 

The magnetization M has at each point in the film the 
same absolute value, constant in time. Because  div (H + 
4sM) = 0, this magnetization can be assumed to lie in 
the plane of the film. If this were not true, large magnetic 
poles would be generated on either surface of the film; 
these would create a magnetic field  which would tend to 
turn  the magnetization into the plane of the film. It is then 
sufficient to describe the  state of magnetization at each 
point by an angle 4. The energy density F due to magnet- 
ization of the film is composed of two parts: the uniaxial 
anisotropy which tends to  turn  the vector M into  one of 
the two “easy” directions, and the energy of M in the mag- 
netic field H, which is simply given  by their scalar product. 
If the easy axis coincides with the x axis, and if + is the 
angle of M with the x axis, F is  given  by 

F = K s i n 2 4  - I M I . ( H ,  cos4  + H u s h + ) ,  (2 .4)  

where K is a material constant.’ For a given magnetic 
field H the angle 4 is found  from  the minimum of F with 
respect to variations in 4, i.e. from aF/a+ = 0. In the 
transmission line described in this paper, H, is assumed to 
vanish. It follows that 

The  equations express the “saturation” of the magnetiza- 

Figure 2 Relation between magnetization and 
magnetic  field in the hard direction of a 
saturable thin  film. 

tion at magnetic fields in they direction above the absolute 
value 2K/I M I. The resulting nonlinear relation between 
M, and H ,  is shown in Fig. 2. Moreover, it is of practical 
importance to realize the steepness of the Mu versus H, 
slope in the center part. Indeed, the coefficient in (2.5) has 
generally a value in the order of 200. 

The physical processes which govern the relation be- 
tween M, and H, are  not reversible in the simple case of 
just  one field component H,, which  was outlined above. 
If one  starts at t = 0 with + = 0 and H, = 0, and then 
lets H, increase monotonically beyond H, ,  Mu runs along 
the curve of Fig. 2. But if H, is then allowed to decrease 
below H , ,  without the presence of a small field H ,  (much 
smaller in absolute value than H,)  the magnetization does 
not “know” where to turn, to 4 = 0 or  to 4 = s. In 
general, the  thin film  will break up into domains, some 
tending to 4 = 0, others to 4 = s. Hence, there is the 
necessity of a small field component H,, called the “word” 
field in opposition to  the large “bit” field H,, to guarantee 
the reversibility of the curve of Fig. 2. The word field  will 
be  neglected in the future, because it does not influence 
the  propagation of  pulses along  the transmission line. 
Equation (2.1) now becomes,  with the help of (2.3) and 
(2.51, 

d V  - az  - = - L ( I ) . -  
ax at ’ 

with 

and Eq. (2.2) is now written in terms of the total current 
I = bhj,, where h is the width of the  conductor, as 

Instead of electrostatic cgs units used so far, the voltage 
is now expressed in volts, the current in amperes, the 
magnetization M and the critical field H ,  = 2K/I M I in 
gauss. With the permeability given  by 

/ 
HY 
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With the capacity C per cm and the inductance L per 
cm  given by 

(2.10) 

where Z, is the impedance of the vacuum, 370 ohms, 
the  equations of the transmission line reduce to 

ar av av d l  
ax  at 

- =  - L(Z) - 1  

ax  at 
- = -c - ,  (2.1 1) 

This last form will be used henceforth. In the remainder 
of this paper, since only scalar quantities  are employed, 
the simple subscript notation for partial derivatives will 
be employed. 

3. Shock equations 

The mathematical problem at hand is to solve the trans- 
mission line equations with a nonlinear inductance. Since 
the speed of the waves arising as solutions of these equa- 
tions is l /  d C L (  I ) ,  there will be  waves  of differing speeds 
propagating in the same line.  Since the faster waves  will 
tend to overtake slower waves and since the  solution to 
the differential equations cannot be multiple-valued, there 
must be a mechanism for keeping separate  the waves  of 
differing speeds. In  the parlance of mechanics this mecha- 
nism is known as a shock waue. If the existence of a 
shock is admitted into our problem, the laws of interaction 
of waves on opposite sides of the shock must be known. 

Figure 3 Section of strip-line  containing shock 
front indicated by dotted  line. 

I- 

V 

Figure 4 Relation  of flux versus  current in satur- 
able film ( 4 .  Figure 2 ) .  

I 
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This information is supplied by relations valid across a 
shock, the so-called shock relations. In mechanical prob- 
lems these relations are expressions of the conservation 
of mass, momentum, energy, and possibly entropy across 
the shock wave  (see Ref. 3). In the present case of electrical 
waves there are only two independent shock relations. 
These are expressions of the principles of conservation 
of charge and magnetic flux. These relations are derived 
in the following paragraphs. 

The net current flow into the length a@ of the line 
(Fig. 3) is 

dQ 
dt  dt 

B 
I(a) - I @ )  = - = C V dx 

- - f[C VI.  ( 3 . 1  
dt 

Here the brackets [ ] refer to  the  jump in the indicate 
quantity across {(t), and a dot indicates time differentia- 
tion. Now let a -+ 4- and p -+ (+. The integrals will 
vanish, and there remains the first shock relation 

[ I ]  = { [ C V ] .  (3 -2) 

Let B = H + 4rM and let A(Z) be the flux through 
unit length of line. Then 

f A ( I )  dx = 11 B d S .  (3  *3) 

Here  the integral of B is taken over the area of the line 
contained between (Y and p. Now 

11 B d S  = V(a)  - V @ )  
dt (3.4) 

while 

if r(Z) dx = ([- + J;:) % dx - f[I’(Z)]. (3.5) 

Letting a -+ 4- and p -+ {+, these equations yield the 
second shock relation 

[ VI = f[r(Z)l. (3 4 
For a thin magnetic strip in a line, a typical A(n curve 

is as indicated in Fig. 4, where I ,  is the critical current 
at which the film saturates. If the specific inductance is 
defined to be the slope of the A(Z) curve, then the specific 
inductance will be 

with L > L,. 
In this case an easy computation gives 

281 
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Thus (3.7) becomes 

c VI = '%I - 1 c ) u m .  (3.9) 

For  future reference note  the following: If ahead of 
the shock (x > [(t), $ > 0), I < I , ,  so that L(Z) = L 
there, while behind the shock (x < [(t)), I > I , ,  so that 
L(Z) = L,, and if V, ,  I ,  and V- ,  I-  denote the values of 
V and I at  the shock  (ahead and behind, respectively) 
as indicated in Fig. 5, then the shock  relations (3.3) 
and (3.10) may be solved for V- and I - ,  

where 

(3 .  lo) 

(3.11) 

v t" = v- v = v, 

I > IC 
L ( I )  = L ,  

L ( 1 )  = L . 
€ ( t )  

Figure 5 Values  assigned  to  electrical parameters 
on  opposite  sides of shock front. 

4. Analysis of the mathematical model 

The equation of motion of the shock front in a semi- 
infinite line. 

At time t = 0 the transmission line is at rest, i.e., I = V= 0. 
Then  the generator +(t) is switched on causing voltage 
and current waves to propagate  down the line. The solu- 
tion to the transmission line equations is then easily seen 
to be 

, t <  d Z X  

I ( x ,  t )  = 
(4.1) 

I R + d E  
L 

V ( x ,  t)  = - I(x, t ) .  4: (4 -2) 

(4.1) and (4.2) represent waves  of speed 1 / 4 &  (the 
slow waves) moving down the transmission line. 

At a certain  time tl the generator reaches and then 
exceeds a value of voltage [4 = (R + G)Zc], which 
causes I(x, t), as given in (4.1), to exceed the critical cur- 
rent I , .  Now waves  of speed 1/4cc propagate down 
the line, catching up  to  the slow waves which are ahead. 
Between the  two groups of waves there is a shock wave 
whose equation of motion will now be derived. 

Figure 6 contains a sketch of the shock and two  charac- 
282 teristics A P  and AQ representing waves of speed 1/ 4~1~. _ _ ~  

/ 
~ 

x = o  

Figure 6 Configuration  showing relation between 
shock wave and electromagnetic waves 
of different speeds. 

At  the point A there is an impedance boundary  condition 

At P and Q the shock relations (written in the form (3.11)) 
are respectively 

qp-1 = a(P>I(P') + P(P)I,  (4 *4) 

V ( P - )  = V(P+)  - Y(P)(Z(P+) - IC) (4.5) 

Here a(P), for example, is a({ (the t coordinate of P)), 
and P- and P', for example, refer respectively to the 
point P behind and ahead of the shock. To these five 
equations are adjoined two more, which relate V and Z 
at A to V and I at P- and Q-, respectively, 

z(P-) - Z ( A )  = -& ( V ( P - )  - V ( A ) )  
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(These equations, which are referred to  as the character- 
istic equations, are  an expression of Ohm's  law in a trans- 
mission line.) 

The seven equations (4.3) to (4.9) involve the six un- 
knowns V and Z at A, P-, and Q- in a linear fashion, 
as well as  the unknown i in a nonlinear fashion. The 
coefficients  of these equations depend on V and Z at P' 
and Q' (i.e., ahead of the shock). V and Z ahead of the 
shock are given in (4.1) and (4.2). However, the x and t 
coordinates of P and Q are dependent on [ itself. Solving 
(4.4) to (4.9) for V(A) and Z(A) and then inserting these 
expressions into (4.3)  gives an equation  for [. 

(4.10) 

The case of matching the generator 

The  equation of shock motion (4.10)  simplifies if the 
generator is matched to the  saturated line, i.e. 

R = dL,/c. (4.11) 

This will cause waves  which arrive at the left end of the 
line to be absorbed,  thus simplifying the analysis. This 
choice of R will  be adhered to in the remainder of this 

to assuming that  the characteristics of the type C in Fig. 6 
leave the t axis and also strike the shock. Both of these 
assumptions are valid if the shock speed i lies  between 
the wave speeds ahead and behind the shock, i.e.,  if 

(4.13) 

It will now be shown that this is the case, at least in  the 
beginning of the development of the shock, by demon- 
strating that @) obeys (4.13). If the  point P has the 
coordinates ( [ (T) ,  T ) ,  then, using (4.1) and (4.2), along 
with 

4(t> = d o )  + +'(O)tY 

with 4(0) = ( R  + &)Ic ,  (4.14) 

(where we suppose that the initial point of the shock cor- 
responds to t = 0 in (4.12)) and letting t 4 0 yields, after 
some manipulation,  the following cubic in t ( O ) ,  
0 = f (O)[ (dL  + dZ)c  dZ i"0) 

- z/c (dz - dF)$(O) - 21. (4.15) 

The positive root of (4.15) is found to be 

$(O) = 
1 

dC (f( dZ + dZ)). (4.16) 

This root is  seen to lie between l / d r c  and l/dcc. 
The equations (4.15) and (4.16) exhibit the interesting 
fact that the initial slope of the shock is independent 
of +(t). In fact,  the initial shock speed is apparently  a 
curious kind of average of the speeds that  are possible. 

Straight-line shock 

A straight-line shock ($ = 0) occurs in at least two ways: 
(a) d(r) is  piecewise constant, (b) +(t) is linear. These two 
cases  will  now  be considered. 

report. In this case, (4.10) becomes, upon using the values 
of CY, p, and y as given in (3.11), 

(a) Piecewise constant +( t )  

Legitimacy of the derivation 

In deriving the equation of motion (4.12)  use  was made 
of Fig. 6, which employs several tacit assumptions. One 
of these assumptions is that  the two characteristics 
emanating from A strike  the shock at P- and Q-. Ad- 
ditionally, it is supposed that Z(P') and V(P') are known 
functions of x and t obtained from (4.1) and (4.2), (i.e., 
obtained from the  state  ahead of the shock). This amounts 

Consider the case where +(t) is a step function. 

where t = 0 is the time when the shock first appears. 
(The inequalities here guarantee that the applied voltage 
is  less than critical for t < 0 and greater than critical for 
t > 0.) Now the shock equation (4.12) becomes a  quadratic 
in i: 

o = f 2 [ -  e o c d K  + e a l  + ( L  - L J  dG] 

~ 
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Thus & is a constant equal to the positive root c . "IS 

quadratic, and  the shock is a straight line. The argument 
concerning inequality (4.13) is now no longer valid since 
4 was assumed to be differentiable for  that argument. 
However, one may show that  the positive root of (4.17) 
obeys inequality (4.13) as well. 

In this  situation of a straight-line shock the current and 
voltage in the region behind the shock are easily computed. 
Using Fig. 6, but allowing A to be anywhere in  the region 
behind the shock, the equations (4.4) to (4.9) are solved 
for I(A) and V(A). The observations that V and I ahead 
of the shock  (as given in (4.1) and (4.2)) are now constants 
(because 4 is piecewise constant), and  that a(&), /3(&), 
and r(&), as given in (3.12), are also constants,  enable the 
following simple expression for I(A) to be obtained: 

(4.18) 

From this and (4.13) one can easily show that &I) > I , .  
In a similar manner we obtain 

Notice that while ahead of the shock the waves move 
only to the right, they move in both directions behind 
the shock. Thus, behind the shock we have reflected 
voltage and current waves, V ,  and I , ,  given by 

,- v - v L 1 / C  I v, = (4.20) 
2 

I ,  = - dc/L, v,. (4.21) 

The situation when 4 is reduced from its larger value 
O I Z ,  back to its lesser value B o l e  will now  be considered. 
Figure 7 anticipates the resulting situation. (Recall that 
R = dL,/C.) 

At  the  point  on  the t axis where 4 is decreased, there 
emanates a fast wave, but above  this  fast wave  (speed 
1/2/L,c) there are only slow waves (speed 1/ G c ) .  
If  this is the case, the line must unsaturate with the speed 
of the fast wave, leaving a line with specific inductance L. 
The current I above the last  fast wave AB must be de- 
termined, and it must  be verified that  its value is not 

284 greater than I , .  It will be seen that  the region ABC in 

Fig. 7 is actually somewhat indeterminate  in the sense 
that in  this region Z = I , .  

To determine I in the region above BAY consider two 
cases: Case (i), the point  in  question lies below BC; 
Case (ii), above BC. The method of computation of Z 
in these two cases is illustrated in Fig. 8, where a portion 
of Fig. 7 is reproduced. Using the shock  relations and 
characteristic equations  pertinent to these diagrams we 
obtain for cases (i) and (ii), respectively: 

Case ( i )  

Z(P) = I ,  (4.22) 

L R -k V L / C  

+ &(L - L l ) ]  - cLl&2 
IC . (4.23) 

Case (ii) 

r .- I 

Figure 7 Configuration  showing relation between 
fast and slow waves (4. Figure 5 ) .  
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Figure 8 Configuration of points utilized in the 
computation of current behind shock 
wave. 
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Figure 9 Rarification wave behind shock. 

+ $(L  - L 1 ) ] /  ( I  - CLIg2). (4.25) 

A computation shows that the Z(P) as given in (4.24) is 
not greater than I , .  

The existence of the region ABC in Fig. 7 where 
I I ,  is due to the jump discontinuity  in  inductance 
from L, to L .  If in the vicinity  of Z = I , ,  L changed 
smoothly  from L to L,, then the region ABC would  exhibit 
a gradual desaturation and be  covered  by a fan of charac- 
teristics of speeds  varying  from 1/ z/Lc to 1/ z/cc as 
accompanies a typical  rarifaction wave (see Fig. 9). 

This situation yields a slower desaturation rate. Thus, 
while the analysis  here  shows a desaturation which  moves 
with the speed 1/ GC, since Z = I ,  in the region ABC, 
the line  does not desaturate at this rate. It certainly  de- 
saturates with the slower  speed l/z/Lc. However, a 
more  careful approximation to the inductance L = L(Z) 
would  give an intermediate  rate. 

(b) Linear +( t )  

A straight-line  shock  occurs  also when +(r) is  linear. If 
a linear +(t) is inserted into the equation of shock  motion 
(4.12), where t = 0 is the time at which +(t) becomes 
critical, the following  nonlinear ordinary differential equa- 
tion for ,$ is found to prevail: 

Notice that the solution i ( t )  of this equation is  independent 
of the slope of +(t). The solution of this  differential 
equation is 

(4.27) 

This is the same solution as (4.16). 

Appendix. large array of films 

In this  Appendix a transmission  line  loaded  with a periodi- 
cally  spaced  set  of films, as in  Fig. 10, is  considered. 

By making certain approximations it will be shown 
that waves  of long  length  in  this  line  (compared to the 
length s of a strip) obey a set of transmission  line equations, 
exactly  as the case of a single  film,  with an appropriately 
adjusted value  of  specific  inductance and specific  capacity. 
The approximations  make  tacit use  of the assumption 
that  the TEM* character of the wave propagation is es- 
sentially  preserved throughout the process. Thus, the 
analysis of the periodic array described  here  is  absorbed 
into the analysis of the model of the single film, which is 
carried out in Section 4. The results are  that waves that 
are long  compared to s and d obey a set of transmission 
line equations with  specific  capacity  and  inductance  given 
respectively by 

C E  = ( I  + ;)c 

L E  = L + - L ( I ) .  
S 

d 

L and C are the specific inductance and capacity  of the 
line in a section  where the film  is not present, and L(Z) 
is the specific inductance of the line  in a section where 
the film  is  present. 

* Transverse electromagnetic. 

Figure IO Configuration  of  a line loaded with a 
periodic array of films. 

” 
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strips.  However, as d --+ 0 CE and LE do not tend to C 
and L(Z). Both of these  occurrences are to be expected 
since, as a starting point for the derivation, the trans- 
mission  line equations (A.l) and (A.2) were  used in 
regions  without  films, and the four-pole equations (A.7) 
and (A.8) in regions  with  films. The four-pole equations 
are recoverable (in a sense) as d 4  0. The nonlinear trans- 
mission l i e  equations, in regions  with films, are not re- 
coverable from the four-pole equations. A fortiori these 
transmission  line equations are not recoverable from the 
derived  equivalent  line  equations. 

The  details of the derivation now  follow. 
In sections of the line where the film is not present, the 

transmission  line  equations are 

I, = “ C V ,  (A. 1) 

v, = “ L I , .  (A. 2) 

In the remaining parts of the line the equations (2.20), 
written  as 

I, = “c V ,  (A.3) 

V, = -L(Z)Z, (A. 4) 

will  prevail. 

of a typical  film, and let 
Let x- and x+ denote  the coordinates of the end  points 

[ Y ]  = Y +  - Y -  = Y(X+, t )  - Y ( x - ,  t )  (A. 5 )  

(A. 6) 
Y +  + Y -  y =  

2 

where Y(x, t )  is any  function of x and t. Now integrating 
(A.3) and (A.4) over  the strip yields approximately 

[ I ]  = - s c P ,  (A. 7) 

[ V ]  = -sL(Z)I,.  ( A 4  

The strip has  therefore been  replaced  by a four-pole 
since the current and voltage on one  end  is  directly  related 
to the current and voltage on the other end by (A.7) 
and (A.8). 

Equations (A.3) and (A.4) may  be  combined  by  dif- 
ferentiation into 

I,, = C ( L ( I ) f , ) t  (A .9> 

which,  by integration  over the strip, gives approximately 

[ZJ = sC(L(f ) )7 , ) , .  (A.10) 

Now Eq. (A.2) gives 

[ V,] = --L[z,] = - L [ I , ,  dx, (A. 1 1 )  

286 where again  integration  is  over a strip. Computing I , ,  

Figure 11 (a) Rhombus of characteristics of wave 
equation. (b) Coordinates for rhombus of 
characteristics. 

from (A.3) enables (A.ll)  to be  written  in the form 

[ V,] = CLS P, t . (A.12) 

Introducing a new time coordinate 

d,,7 = t ,  (A.13) 

Eqs. (A.l), (A.2), (A.7), (A.8), (A.10), and (A.12) may  be 
rewritten as 

I,, = I,, 

v,, = V,, 
outside of  film  regions and (A.14) 

The strips are considered to be collapsed,  each to a 
single point, and the equations (A.15) which relate V 
and Z and their  derivatives at the opposite  ends of a strip 
have  replaced the transmission  line equations (A.3) 
and (A.4). 

Now  Gauss’  theorem  for a solution of the wave equation, 

= ( V ,  cos (n, x) - V ,  cos (n. t ) )  ds, (A.16) 

is applied to V and Z in the domains A P I P  and PBP, 
of Fig. 11. 

In this Figure P and P,  lie on the line x = constant (to 
which a strip has been  collapsed).  The  remaining  lines 
have  slope &1 (i.e., are portions of characteristics of the 
wave equation).  This  application of Gauss’  theorem gives 
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1; dT + I (P-)  - 21(A) + I (P;)  (A.17) 

and 

O =  l 
O =  L: 

1,’ dT + I (P+)  - 21(B) -/- I (P:) .  (A.18) 

Adding these equations gives 

[Iz] dT + 2P(P) - 2Z(A) 

- 21(B) + 2P(P,).  (A.19) 

Inserting the value of [Zz], as given in (A.15), into this 
equation yields, upon  integration, 

- I ( @  + f P J .  (A. 20) 

Here F(I) ; ,  . = . F(I(P))  - F(i(P,)) .  
In a similar manner 

0 = 5 v71p + P ( P )  - V ( A )  
2 IP, 

- V ( B )  + B(PJ (A .2 1) 

is obtained. 
Now consider Fig. l l b ,  which is the same as Fig. 10 

except that  the lengths of the line segments are fixed so 
that A and B lie on strips. 

For these domains (A.20) becomes 

+ 7(x, T + d )  i- ](x, T - d) 

- I(x - d ,  T )  - I (x  + d,  7 ) .  (A. 22) 

Now 

I(x - d,  T) + I(. + d,  T) 

= i ( x  - d ,  T) + ](x + d ,  T) 

+ I((x - d)’ ,  T) - I((x - d l - ,  T )  

2 

If the third  equation in (A.15) is inserted into (A.231, it 
becomes 

I(x - d ,  T) I(. + d,  7) 

= i ( x  - d ,  T )  + i(x + d,  T) 

Inserting  this into (A.22) and dividing the resulting equa- 
tion by d2 gives 

Now let 

Then  taking  the limit as s, d+ 0, (5.25) becomes 

(A.26) 

In a similar manner  the  equation 

is obtained using (5.21) as a starting point. 
The following two first-order differential equations 

7, + (1 + e)cPt = o (A.29) 

Vz + ( L  + e L ( z ) ) i t  = o (A.30) 

give rise, by differentiation, to  the original second-order 
equations (A.27) and (A.28). 

Now the class of solutions of (A.27) and (A.28) contains 
the solution of the transmission line equations (A.29) 
and (A.30). However, if (A.29) and (A.30) are used instead 
of (A.27) and (A.28), at least some of the solutions of the 
latter will be characterized. Thus, a periodic array of 
strips in a line behaves (for wave lengths long  compared 
to s and d )  like an equivalent line loaded with a single 
long strip where the effective  specific capacity and specific 
inductance of the equivalent line are 

L E  = L + e q t )  = L + 2 ~ ( 7 ) .  
d 

(A.32) 
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