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Digit-by-Digit Methods for Polynomials 

Abstract: This paper presents a general system configuration for an arithmetic unit of a computer, which 

is used  to  solve polynomial problems  efficiently. The technique is based  on a digibby-digit computation of 

the  coefficients of the given polynomial, after the origin has been  displaced  systematically. Compared with 

standard techniques, the new scheme,  closely allied with Horner's method, is similar in efficiency for poly- 

nomial evaluation and is superior for locating roots. The fact that the  computed  coefficients are related to the 

derivatives permits the systematic location of all real roots of a real polynomial. 

Introduction 

This  paper describes some  methods for manipulating 
polynomials and suggests some  computer hardware which 
is very useful for this  purpose. The technique echoes two 
current trends in  computer design. First,  the user is 
provided with a powerful instruction set;  and second, the 
designer wishes to exploit a small high-speed memory in 
his design, this being now technically feasible. Therefore, 
there is a need for simple, efficient algorithms that perform 
powerful operations and make use of a small, high-speed 
store. 

Hitherto  the most complicated macro  operations 
implemented in  hardware have been (with certain excep- 
tions) multiplication and division. To continue to use 
these as  the basic building blocks for  more complex oper- 
ations, however, does not take  advantage of modern 
computer technology. 

Some thought  has already been given to constructing 
novel algorithms for generating the elementary functions.' 
The present paper concerns methods for solving poly- 
nomial problems, the principal one being the extraction 
of roots. For the  future there is work to be done finding 
algorithms for matrix  problems and for linear program- 
ming. 

The ultimate objective is to find a family of algorithms 
for solving a whole range of mathematical problems. 
These algorithms will be more complicated than  the basic 
ones  currently implemented in hardware but  also  more 
efficient. 

The first part of this  paper shows how a function f(x) 
may be evaluated for given x, where f(x) is a polynomial 
specified by its coefficients. This is done in a digit-by-digit 

way and is suitable  for  arithmetic  performed  in  any 
radix R.  This means that if 

x = q i R - i ,  
i = O  

f(x) is evaluated successively for x = 1, 2, . qo; x = 
qo + R-', qo + 2R", , qo + q1 R"; . . Each 
evaluation is made in a simple way from information that 
was generated at the previous step. 

The entire  calculation of f ( x )  involves a set of additions 
with shifts, which, of course, is what is involved if f(x) is 
evaluated conventionally using a multiplier. The only 
difference is the  order in which these  additions are carried 
out. Their number is the same. Hence the digit-by-digit 
method is as efficient as  (but no more efficient than)  the 
conventional one. Its significance lies in  the fact that it 
may be reversed, successive digits of x being found  in 
such a way that f(x) is driven towards zero. In this way 
roots of f(x) are found. If the polynomial is chosen to be 
ax - 6,  then the  method described is no  more  than  the 
long division of b by a; if the polynomial is x' - 6,  then 
this method is the conventional square  root process for 
finding &. 

The method extends to  the case where f(x) and x are 
complex, so that complex polynomials can  be evaluated 
for complex arguments. Furthermore  the method may be 
reversed and complex roots found. The method  also 
enables polynomials in more than one  variable to be 
evaluated. 

The virtue of the method, other  than  its inherent 
simplicity, is the high speed with which roots may be 237 
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found. The amount of computation involved in finding  a 
root is approximately that needed for calculating f i x )  for 
given x ,  and this should be contrasted with the amount of 
work  done,  say, in iterating Newton's  method. 

The second part of the paper  shows  how,  using  in- 
formation that is  generated at each  stage of the calculation 
for no additional cost, all the real roots of a real poly- 
nomial may be found systematically. This  procedure is a 
virtue possessed  by none of the conventional  methods. It 
will transpire that the method of calculating f ( x )  finds not 
only f (x) ,  but all the derivatives  of f ( x )  at each point x 
that is  considered in the digit-by-digit  generation. In 
particular the signs of f ( x )  and of all its  derivatives are 
available, and it is  intuitively  clear that this information 
suffices to specify  where x lies in relation to the roots of 
f (x ) .  It is not surprising,  therefore, that an algorithm exists 
whereby the digits of x can  be  generated  according to the 
signs of f ( x )  and its  derivatives, in such  a way that all the 
real roots of f ( x )  are found successively. 

It is plausible to expect this to extend to the extraction of 
complex roots. Indeed  such an extension  exists and this 
will  be presented  in  a future paper. 

The third section of the paper  shows  how f ( x )  may  be 
calculated  with  ease  where f ( x )  is  a  polynomial function 
specified not by its  coefficients, but by its  differences. The 
algorithm established  is  effective  only  in  binary  arithmetic. 
It is useful  where it is required to fit  a  polynomial  curve 
through a set of  given points. It is another digit-by-digit 
method and may be reversed to find the roots of f (x) .  

Evaluation of f ( x )  for given x 

It is supposed that f ( x )  is  a  polynomial of  degree n and 
that the n + 1 numbers A,(xo) are known,  where 

/ ( X )  E A,(xo)(x - ~ 0 ) ' -  (23 

The first  objective  is to define  a  set  of  simple operations 

n 

r-0 

Ag (xo)  +------- 

A2 ( x o )  *------ A z ( x O + a )  

A ,  ( x o )  ------- AI ( x ~ +  a )  

A o ( x o )  *--"--- & ( x ~ +   a )  

A3 ( x 0  + a )  

Figure l a  Binomial adding tree. 

that produce the numbers A,(xo + a) in terms of the 
A,(xo), where a is an arbitrary power of the radix R in 
which operations are performed; that is, it is  required to 
find the new  coefficients  of the polynomial when the 
origin of x is  moved  a  distance a. This, of course, is what 
is done when Horner's  method  is  used, though the distance 
a is then not in general  restricted to being  a  power  of the 
radix. If this set  of operations is obtained, it may  be  em- 
ployed as follows. Suppose that the n + 1 coefficients 
A,(O) are given initially and that 

x = qiR". (3) 

The origin may then be moved in successive steps from 
0 to 1, 2, , qo, and then to qo 4- R-I, go + 2R", 

. qo f q1 R-' ,  and ultimately to x .  
When this  is  done, it is  clear from (2) that 

i-0 

/ ( X )  = Ao(x). (4) 

Moreover, at each point xo, the numbers A,(xo) are 
proportional to the derivatives  of f ( x )  at that point, and 
so the signs of the numbers A,(xo) are exactly the signs  of 
the derivatives.  This fact will be exploited at a later stage. 

n 

NOW / ( X )  = A,(x,)[(x - x0 - a) + a]' 
r-0 

= 2 2 A,(xo)C,'a""(x - x.  - u ) ~  

= 2 A.(xo + a>(. - x.  - a)" 

r -0  8 - 0  

0 = O  

by definition. 
Thus, equating the coefficients  of ( x  - x. - a)" gives 

A.(xo + a) = Carar-' A,(xo) (5 )  

and this is the required  rule. 
The numbers A,(xo + a) can  be  generated in a very 

simple way from the numbers A,(xo) by means of the 
binomial tree in Fig. la. The symbols @ indicate  word 
adders, and in the Figure it is  assumed that every diagonal 
segment  between  two adders contains a  multiplication by 
a, i.e., a  shift,  since a is  chosen to be  a  power  of the radix. 
The numbers A,(xo) are fed  in on the left, and the numbers 
AJx0 + a) appear on the right.  Figure l b  lists the SUC- 

cessive adder outputs for the case n = 3. 

n 

7 - a  

Figure I b Adder outputs. 

A3  A3  A3  A3 

A2 4- aA3 A2 4- 20-43 A2 -I- 3aAa 

AI  + aA2 -I- a2A3 A ,  + 2 a A 2  4- 3a2A3 

A .  + a A ,  -I- a2A2 i- a3A3 
238 

J. E. MEGGITT 



A way  of exploiting  these  results  is to build in hardware 
a system  consisting of n + 1 registers and a parallel adding 
tree (as  shown in Fig. la) whose output is fed  back into  the 
registers. Initially the registers are loaded  with the n f 1 
given  coefficients A,(O), and x is  assumed to have the 
value in (3). The contents of the registers are cycled 
through the tree qo times  with the shift set at ZERO. After 
this they are cycled q1 times  with the shift  set at ONE (that 
is, a = R-') and so on. After the contents have  been 
cycled Zqj  times, the registers will contain f ( x )  and its 
derivatives ( l / r ! ) f ( r ) ( x ) ,  r = 0, 1, . . , n. 

The tree may  be a parallel  tree as suggested,  consisting 
of n(n + 1)/2 adders  exactly as in Fig. la, or it may be 
serialized  in  any  convenient  way.  This, for example,  may  be 
done by regarding the diagram  in  Fig. l a  as split into n 
separate columns and forming the sums in each  column 
during one add time, there being n adders. 

It may  be  inconvenient to perform  shifts  within the 
tree as  indicated. If this is the case,  these  shifts  may  be 
avoided by replacing the numbers A,(xo) by arA,(xo) so 
that a relation like (5) is obtained but with the factor 
a'- * omitted. It will then be  necessary to shift u'A .(x) r 
digit  places  right  after  each  digit qi of x has been  processed, 
since  when this happens the value  of a is changed from 

, which  implies a multiplication by R-'. 
This  procedure,  therefore,  shows how f ( x )  may be 

calculated. It should be  observed that  the basis of the 
method  is the simple  linear  relationship (5). Multiples of 
the numbers A,(xo) and linear combinations of  them  will 
satisfy other linear  relations. If any of them  have a sim- 
plicity  comparable to that in ( 9 ,  they  may be considered 
as the basis of a method for finding f (x) .  

R - i  to R-i - l  

One  such  scheme  is obtained by writing 

A7(xo) = C,nBn-r(xo) (6)  

B 3 ( x 0 ) z ! E z  

in (3, n being the degree  of the polynomial. 

""_ B 3 ( X O  + 0 )  

82 ( x o )  - 62 ( x 0  + 0 )  

81 (x01 + 81  ( x 0  + a )  

Bo ( x o )  Bo ( x 0  + 0 )  

Figure 2a Alternative binomial adding tree. 

Figure 2b Adder outputs. 

_"" 

_ " " . .  

This  leads at once to 
* 

B.(xo + u) = C,aua-rB,(xo). (7) 

The numbers B,(xo + a) may therefore be obtained 
from the numbers B,(xo) by means of the tree shown in 
Fig.  2a,  which  should  be contrasted with that shown in 
Fig. la. Again a shift  is  assumed  in  each  diagonal  segment. 

Figure 2b lists the successive adder outputs for the 
case n = 3. 

From a practical point of  view there seems little to 
choose  between this scheme and the previous  one. Of 
course  in the second  scheme, the registers  must  initially 
be  loaded  with B,(O). These are defined  by 

!(x) = B,(O)C,"x"", (8) 

and the numbers ( r ! / n ! ) f ( n - r )  (x)  are produced.  Whether 
it is  convenient to work  with the B's or the A's depends on 
how the problem  is  presented. 

Scaling 

It is assumed that x has the form (3)  with qo # 0 so that 
1 5 I x [ < R. The value x can  always  be brought to lie 
in this range by scaling it by a power  of R, which  implies 
scaling the coefficients  of the polynomial by powers of R. 
When this is done, the coefficients should  have  roughly 
equal precisions if the problem  is formulated properly, 
since f ( x )  is formed by adding together the various co- 
efficients  with  roughly equal weights. Therefore, when 
the problem is scaled in this way, it is  sensible to hold 
the coefficients as fixed point  numbers  with their radix 
points aligned,  in  registers all of the same  size. 

If the problem were presented  with the coefficients as 
floating point numbers, then there would  be a preliminary 
scaling and fixing step. 

Error analysis of process for forming f(x) 
For definiteness it will be assumed that the scheme  shown 
in Fig. l a  is  employed  with the shifts  occurring  within the 
binomial  tree. The number f (x)  will  be  obtained  accurately 
if registers are sufficiently long to hold the shifted  numbers. 
If the coefficients in f (x)  are given initially as integers, and 
if x is a p-digit  number of the form (3), then clearly A,(x)  
will be  calculated as a number  with r(p - 1) fractional 
digits,  owing to the shifts.  Normally  such  accuracy is 

r=O 

n 

ID0 
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neither justified nor required and so at each stage the 
fractional digits of A,  are dropped after a rounding. The 
magnitude of the resulting error in the calculated value of 
f ( x )  must  be found in order to justify allowing it. 

The analogue of this occurs if f ( x )  is evaluated by 
repeated multiplication, since products are in general 
truncated so that they may  serve as factors in further 
products. 

The dropping of fractional digits causes errors in the 
A ,  to occur on each cycle through the binomial tree. On 
one such cycle the value of A,  is altered due to r + 1 
rounded additions. Thus the dropping of fractional digits 
will  cause a maximal error in A,  of (r + 1)/2(r = 0, 

rounding. The consequence of each such set of errors is to 
produce a polynomial which  is the sum of the desired 
polynomial and  an additional polynomial bounded by 

1, e . .  , n - l ) ,  the factor 1 / 2  occurring because of 

12-1 c (Y + 1)x*'/2, (9) 
r = O  

where x* is that part of x which remains to be processed 
when this set of errors is introduced. 

Now  when the digit qi of x is processed, the worst case 
value  of x* is ( R  - 1)R-' on the first  cycle; ( R  - 2)R-j on 
the second; . and R-j  on the last, assuming that qi has 
the worst value, R - 1. 

The entire maximal error E in the computed value of 
f ( x )  may therefore be calculated by summing over all the 
maximal errors introduced at different  stages. This gives 

E = 1 / 2  (r + I ) ( ~ R + ) ' .  
p - 1  R - 1  n-1 

i = l  t = O  r=O 

Now 
R - 1  

tr < Rr+l/(r + 1 )  
t = o  

so that 

E < R / 2   R ' l - i ' r  
9-1 n-1 

i = l  r=O 

Hence the bound 

E < R / 2  R-k' 

is obtained. This estimate for E may  be evaluated exactly, 
but it is  clear that E is of the order (R(p + n) /2 .  Such an 
error is entirely reasonable and shows  how  many additional 
digits should be carried in  the calculation to ensure 
accuracy. 

It should be  observed that errors arise predominately 
from the repeated addition of the shifted A ,  to A,.  The 
errors in the other numbers A,  do  not influence f ( x )  
appreciably since, for large p ,  the A I are effectively shifted 

p--2 n-1 

(1 1) 
k = l  r=O 

240 many places  before  being added to form f (x) .  
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Another way  of stating this is to say that as the calcula- 
tion progresses, the A,, for large r, are kept to  an accuracy 
that is more than that required. This suggests that it would 
be possible to ignore the digits of A,  that have small 
significance, or even to ignore the A,  altogether at some 
stage in the calculation, and still to maintain an acceptable 
accuracy. It is attractive to  do this if the hardware is such 
that the time taken to cycle the adding tree depends on  the 
number of additions that need to be done in it, because an 
increase  in  speed  is then possible. 

To be  precise, suppose that A,  is set to ZERO immediately 
after qi has been  processed. This will cause an error in the 
computed value of f ( x )  of 

I A,x*'l, (1 2)  

where x* is again that part of x which  is  left to be pro- 
cessed.  Now if the numbers A ,  are constrained to be 
integers  lying like x in p-digit registers, then I A ,  I < R". 
(The problem is  assumed to be  scaled so that this is so.) 
Furthermore the worst case  value  of x* at the stage when 
qi has been  processed  is R-j.  The dropping of A,, there- 
fore, causes a maximal error of Rp"j7. It is arranged, 
therefore, to omit A ,  from the calculation as soon as 

j 2 P/. (1 3) 

so that the resulting error is less than unity. 
Errors arise from this cause as  the A ,  are dropped 

for r = n, IZ - 1, . , 2 ,  and clearly this gives  rise to  an 
additional maximal error of n - 1, which  is again tolerable. 
The conclusion is that this truncated procedure also has 
an acceptable accuracy. 

Register overflows 

The numbers A ,  are contained in p-digit registers and 
overflow must be avoided. This may  be ensured by a 
suitable initial scaling, for if an upper bound is  placed on 
each coefficient  of f ( x )  and if a bound is  placed on I x I ,  
then it is  possible to place bounds on the derivatives, and 
thus on the numbers Al(x), and thereby to ensure that they 
will fit into p-digit registers. 

This scheme  may result in  the waste of  register space 
because of its pessimism.  An alternative one is to arrange 
for  the contents of all the registers to float together, so 
that they move right whenever one of them overflows and 
move  left  whenever that is  possible. In this way a normal- 
ized floating point calculation is performed. 

Speed of calculation 

The speed of calculation depends on the system  used for 
its implementation. The parallel scheme  is  clearly  very 
fast. However, it is interesting to consider a completely 
serial system,  in  which there is just one adder that is 
shared, and to compare the calculation time with that 
for a conventional repeated-multiplication process. 



If no truncation is employed, each cycle through  the 
binomial tree  takes n(n + 1)/2 add times, and on the 
average the tree will be cycled Rp/2 times. The  total time 
is therefore 

O n ( n  -I- 1)/4. (14) 

If the truncated scheme is used where, for comparison 
purposes, it is assumed 

9 + l  

x = qiR”, 
I = 1  

the r additions used to  form A , - ,  have to be made  only 
until 

j = p / r  (1 6) 

(or for slightly longer if p is not divisible by r) .  This set of 
r additions is made on  the average only (p/r)(R/2) times. 
The  total average calculation  time is obtained by summing 
these times for all r ,  and this gives a total time 

Rpn/2. (1 7) 

If f(x) were evaluated by repeated truncated multiplica- 
tion, there would be n consecutive multiplications, each 
one involving Rp/2 word additions on  the average, which 
would give exactly (17) as the calculation time. Thus  the 
truncated version of this  method  proposed for calculating 
f(x) is as fast as the conventional  one.  This is not surprising 
since f(x) is formed essentially in a series of additions, the 
number of which is determined solely by the accuracy to 
which f(x) is required. 

Example of method 

A typical calculation is shown in  Table 1. In this example 
a cubic function 

J(x) 3 1 2 7 ~ ~  - 3 7 5 9 ~ ’  (1 8 )  

is evaluated at x = 1.203, decimal arithmetic being used. 
No truncation is employed. Each cycle of the tree, which 
is that in Fig. la with n = 3, is put within vertical lines. 
The  outputs of the  adders  are shown explicitly as in Fig. lb. 

Table I Typical  calculation,  showing evaluation of a cubic function. 

f(x) 3 1 2 7 ~ ~  - 3759~’ 

x 0 .000 
-~ 

f”’(x)/6 = A 3  3127 
f ”  (x)/2 = A ,  -3759 
f’ (x) = A ,  0000 
f ( x )  = A,, 0000 

1 .000 

3127  3127  3127  3127 
-0632 2495 5622 

-0632 1863 
- 0632 

1 .lo0 

3127  3127  3127  3127 
5935  6249  6561 

2457 3082 
- 0386 

Shift used I 
~ 

0 1  

1.200 1 
1 1  

1.201 ! 
Continued 3127  3127  3127  3127 3127  3127  3127  3127 

4496 4504 3769 4488 
7503 7506 7509 6874  7187  7500 

- 0009 - 0005 
” 

1 

1.203 1.202 

3 

~ ~~ . . ” 

Continued 3127  3127  3127  3127 3127  3127  3127  3127 

4528 4536 4512 4520 
7521 7524 7527 7512 7515 7518 

0000 

3 3 

+ 0005 
- ~~~ ~ ~” ~~~ 

This crrlculution shows f(1.203) = +0005. 24 1 

SOLVING  POLYNOMIAL  PROBLEMS 



242 

J. E. h 

Complex polynomials;  polynomials in more than one 
variable 

The method of evaluating a real  polynomial function of 
one real variable  generalizes  very  easily. For a complex 
polynomial in a complex  variable z = x + iy, Eq. (2) 
becomes 

where the A, are complex  numbers. 
The origin z, may  be  moved  by a, which  is  now in 

general  complex, and this gives  rise to a set of numbers 
AT(zO + a). These  may  be  calculated by means  of the 
binomial tree shown in Fig. 1, where it is understood that 
all numbers are complex and that diagonal  segments of 
the tree contain a multiplication by a. 

To evaluate f(z) for given x and y ,  the origin is moved 
to z by making  increments which are powers of the radix 
in  magnitude and which lie in the x and y directions. It 
does not matter if the incrementing in the x direction  is 
interleaved  with the incrementing in  the y direction. 

Complex  numbers  within the tree are represented by 
their real and imaginary parts, so that additions in the 
tree are achieved by adding together  these  real and 
imaginary parts separately. 

For  an increment in the x direction, a has the value 
R - k ,  k = 0, 1, 2 - , whereas for an increment in the y 
direction a has the value iR-k. The multiplication by R - k  
is achieved by shifting the real and imaginary parts k 
places. In the latter case the additional multiplication by 
i is  made by interchanging  real and imaginary parts and 
altering a sign. 

With  these  generalizations, the complex  theory is as 
straightforward as the real  theory. 

For a polynomial f(x, y )  in  two  variables, it is  supposed 
that 

n 

Ax, Y )  = A,t(xo, Y 0 ) b  - XO) l (Y  - Yo),. (20) 
7 . 1 - 0  

The polynomial  is defined  by the (n f 1)' numbers 
A ,  t (O ,  0). The origin  is  moved by increments of powers of 
the radix in the x and y directions  independently. When it 
has  been  moved  by amounts x and y ,  

f(x, Y )  = Aoo(x9 Y )  (2 1) 

Now 

This operation is  exactly  like (5) for each t ,  ( t  = 0, 1, 
2 e )  and the updating is  achieved by a set of adding 
trees  in  exactly the same  way. The generalization  is 
therefore  trivial. 
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Roots of polynomials 
The significance  of the method  described  here for evalu- 
ating polynomials  is that  it may  be  reversed and used to 
find roots. This is the analogue of reversing  conventional 
multiplication to obtain conventional  division. 

It will first  be  supposed thatf(x) is a real  polynomial and 
that  it is known there is a distinct  real root near x,,, though 
this restriction will  be dropped in the next  section. It will 
be  supposed for definiteness that f'(x) > 0 near x. and 
that  f(xo) < 0. 

To find that x for which f(x) = 0, a search  procedure  is 
set  up. Unit increments are made and !(x) is evaluated for 
x = x,; x,, + 1; x, + 2, . -, until an x is found for which 
f(x) > 0. At this stage x is  decreased  by  one,  making 
f(x) < 0, and a further set of increments of magnitude R" 
is made.  This  again  continues until !(x) goes  positive,  when 
again there is restoration and scaling. In this way as many 
digits of x are found as are needed.  Alternatively a non- 
restoring procedure may  be  used in which as soon as f(x) 
goes  positive,  scaled  decrements are made until f ( x )  goes 
negative  again. 

There  is, of course, nothing novel about the search 
procedure. The significant point is that each new value of 
f is found from information evaluated  previously, in a very 
simple way, so that there is little computation. Indeed the 
amount of computation made in finding the  root is 
exactly that for finding f(x) for given x, save  for the extra 
steps  caused by the restoration. This mirrors the difference 
between  conventional  division and multiplication. 

The example in Table 1 illustrates the method used  if 
the procedure  shown is regarded  as  being  reversed. The 
value x, may  be taken to be the point x. = 1. Then f ( x )  is 
calculated at x = 2 (which step is not shown), where it is 
found that f ( x )  > 0. Next there is restoration back to the 
point x = 1 , and increments of magnitude 0.1 are made. 
The function f(x) is  calculated successively at x = 1.0, 
1.1, 1.2, 1.3 (which latter step is not shown  in Table 1). At 
the point x = 1.3 it is again found that f(x) > 0, so there 
is restoration to x = 1.2 and a step is  made to x = 1.21 
(not shown).  Again f(x) > 0, so f(x) is  evaluated at x = 
1.200, 1.201, 1.202, which latter value  is found to be a 
root sincef(x) = 0. 

It is  interesting to observe that if f(x) is  close to the 
root, the digits of x = x, are obtained essentially by 
subtracting the numbers A,(xo), with suitable shifts,  from 
A,(xo), and recording the number of subtractions. This 
operation is  clearly the long  division of f(xo) by fl'(xo) and 
so Newton's  method  is  reproduced  automatically. 

To find a complex root of a complex  polynomial f(z), 
the two  dimensional  analogue of this  procedure  is  set  up. 
Unit and scaled  increments and decrements are made  in 
both the x and y directions  with the object of making both 
the real and imaginary parts of f ( z )  zero. 

At any point z near the root,  the signs  of the real and 



imaginary parts of fi(z) and fL(z), which are known, will 
prescribe a unique  direction  (one of + x ,   - x ,  +y, - y), 
in which a small  movement  will  drive  both the real and 
imaginary parts of f(z) simultaneously  towards  zero. 
Initially unit steps are made in the directions  prescribed 
at each  stage and this continues until one of the variables 
overshoots.  This is indicated by that variable  repeating 
one of its former  values.  When this happens the step 
length for that variable is scaled by the radix, and the 
process  is  continued. In this way the digits of x and y are 
generated successively. 

It is clear that in this case, too, the root is found as 
rapidly as f(z) could  be  calculated for given z, except for 
the overshooting. 

Systematic extraction  of all  real roots of a real 
polynomial 

The  methods  described will  find roots efficiently  if reason- 
able approximations to them  have  been  obtained. For the 
real roots of a real  polynomial it is  possible to improve 
upon this and to find all the real roots in a systematic way. 

This  is so because the signs of f ( x )  and of its  derivatives 
combine to locate the position of x precisely in relation to 
the real roots of f ( x ) .  Furthermore the process  produces 
these  signs at every stage, as has  been  remarked  here, and 
so no additional calculation  is  necessary. The essential 
content of this relationship between roots and derivatives 
is expressed  by  Budan's  Theorem?  However,  since this 
theorem  is used  in a different  form from that in  which it is 
stated, all  results will  be  proved. 

Relationships  also  exist between the positions of complex 
roots and the signs of the real and imaginary parts of the 
derivatives  of a complex  function, but they are more 
complicated and so will  be  presented  in a future paper. 

The  method to be  described  shows  how the t th largest 
real root may  be found directly  where tis specified. The " t t h  
largest" has the obvious  meaning  when all the roots are 
real and an extended  one  when  some roots are complex. 
This  selectivity  may  be  exploited if it is  known  beforehand 
which root is  required. All the real roots may  be found by 
making a set of n calculations  with t set successively at 
1, 2, 3, * * . 

For the real roots of a real  polynomial,  consider  first 
the case  where !(x) is of  degree n with n real  roots.  This 
implies that f ' ( x )  has n - r real roots and that they are 
interleaved  with  those of f +' ' ( x )  for r = 0, 1, 2, . e .  

Define k, (x)  to be the "labelling  function" of f ' (x) .  This 
function is  defined to take values 0, 1, 2, . , n - r in the 
n - r + 1 regions into which the x-space  is partitioned by 
the roots of f ( r  ' (x) .  In other words k,(x)  is the number of 
sign variations in f ' ( x )  as x varies  from + to x .  The 
functions /?,(x) and k , + l ( x )  are shown  together  symboli- 
cally  in  Fig. 3, the vertical  lines  indicating the roots of 

k , ( x )  n - r  0 1 2 ....... n - r - 2  n - r - I  

5 ( x )  , 0 1 0 1 0  , " " " .  O l 0  

k , + l ( x )  n - r -  I n - r - 2  _.~.~.. 2 0 1 
f 

x 

Figure 3 labelling functions for f'" ( x )  and f" + "(x) ,  
where ! ( x )  has n real roots. 

f ( r  ' (x)  and f ( r  +' ' (x) .  The  function $,(x) is also  shown  in 
Fig. 3, where s,(x) is  defined to be ZERO if the signs of 
f '"(x) and f ( r  " ' ( x )  are the same, and ONE otherwise (it 
is  assumed that the coefficient  of x" in f(x) is  positive). 
It is  clear from Fig. 3 that 

k ( x )  = k,+l(X) + S 4 X )  (24) 

Hence,  since 

k,(x) = 0 ,  then 

ko(4 = s , (x) .  
n- 1 

(25 )  
r = O  

This  is,  therefore, the rule for calculating the "labelling" 
function for f(x). To find where x lies in relation to the 
roots of f(x), it is merely necessary to count the number of 
sign variations in the sequence f ( ' (x) ,  f ( n-' ' (x) ,  * , f(x). 
For example, if f(x) is a cubic and this  sequence  has the 
signs +, - , +, +, this shows that ko(x) = 2, which 
implies that there are two roots to the right of this x and 
one to the left, as a sketch of f(x) verifies. 

In general the t t h  root of f(x) from the right is found 
by constraining x ,  to be  decreased if ko(x) < t and to be 
increased  otherwise. The function f(x) may  however  have 
fewer real roots than n, and it is necessary to see  what 
action this alogorithm  has in that case,  where the function 
ko(x) is  still  defined by (25). 

If f ( r + l  ' ( x )  has u, real roots, f " ' ( x )  cannot have 
more than u,+' + 1 real roots, and in general  has a 
number 2 u, less than this. It may  be  said  of !(x) that u,  
pairs of real roots are lost at the r derivative.  This  means 
that there exist u, zeros of f("l'(x) at each of  which f"'(x) 
has the opposite  sign from what it would  have if f ' ( x )  
had the maximum  number  of roots, u,  +1 + 1. These  zeros 
are said to occur at the "critical"  points.  Altogether f (x)  
will  have Zu, pairs of roots lost, and there will  be Zu, 
critical points. In order to account for all the roots of 
!(x), n - 2Zu,  zeros and 20, critical points must  be 
found. 

It happens that the algorithm  causes  these critical points 
to be found automatically in those  cases  where  pairs  of 
real roots are lost, and so all the roots of f(x) are accounted 
for. 

First suppose that f ( r + l  ' ( x )  has n - r - 1 real roots, 
but that one  pair of roots is lost at the r t h  derivative. 243 
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Figure 4 shows the labelling of the regions of f ( ' +' ' (x) ,  
the  function s,(x), and  the consequent labelling of f (' '(x) 
in accordance with (24).  (The vertical dotted line indicates 
merely the  separation of  regions.) 

It is  seen that the loss of the pair of real roots from 
f (' ' (x)  causes a region to be missing from k,(x)  and  an 
abrupt  jump of 2 to occur in the labelling at the critical 
point. 

If u ,  pairs of roots are lost  from f ("(x) instead of one, 
then clearly there will  be u ,  abrupt jumps in the labelling 
of f (' ' (x) ,  and these will occur at  the u ,  critical points. 

Now suppose that instead o f f  '(x) having n - r - 1 
real roots,  it  has fewer, and  that the labelling of the regions 
of f (' +' ' ( x )  contains  a number of abrupt jumps itself as  a 
consequence. At any  one such jump, the function s , (x)  will 
not in general alter its value. Therefore since k,(x)  = 
k ,  +'(x) + s,(x),  there will  be a similar abrupt  jump of 2 in 
the labelling of f (' ' ( x ) .  

It is therefore clear that the labelling of !(x) will contain 
Zu, abrupt jumps of 2 and  that they will occur at the 
Zu, critical points. The example in Fig. 5 shows the 
labelling for a typical quintic, where one  pair of roots is 
lost at  the  third derivative and another at the zero deriva- 
tive. 

In general the search algorithm is applied with t set 
successively at 1, 2,  . . . , n. The n values of x so found  are 
either roots of f(x) or critical points. The roots are dis- 
tinguished because at these points f(x) = 0, whereas at the 
critical points f (' ' ( x )  = 0 for some r > 0. In the limiting 
case of repeated roots, critical points and roots may 
coincide but this causes no  trouble. 

In this way all the  real  roots of f(x) are  found system- 
atically. The calculation of the critical points is not 
wasteful, since it is essential that these points should be 
found in order to account  for  all  the  roots. It should be 
observed that in this scheme each root is found using the 
original data. 

If,  instead,  one is prepared to allow the  errors  that 
arise when factors are divided out, the  factorization may 
be achieved trivially. This is because when one root x is 
found, the numbers A 7 ,  r = 1, 2,  . . . n are exactly the 
coefficients of the reduced polynomial referred to x as 
origin. 

It is assumed that the problem is scaled so that  the  root 
that is being found lies in the range 1 5 I x I < R. This 
preliminary scaling can be made automatically, since if 
I x I is not in this range as is shown by the initial stages of 
the search for  the  root, x can be put in this range by 
shifting the coefficients  of the polynomial by appropriate 
amounts. If the coefficients are given as floating point 
numbers, they should be  fixed and a search made to find 
the range of the root.  The original floating coefficients 
should then be scaled by the appropriate  amounts and 
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Figure 4 Segment of labelling where a pair of 
roots is lost. 

k 4  ( x )  1 1 0  

x 

Figure 5 Labelling for typical quintic. (See  text) .  

Polynominals  defined by interpolation 

It has been shown how f(x) may be calculated for given x ,  
where f ( x )  is a polynomial defined  by its coefficients. In 
some problems, such as interpolation, it is required to fit 
a polynomial through certain points, and then to find its 
value for a given x .  It is possible to  do this directly, where 
the differences  of the function are manipulated in a man- 
ner analogous to the way derivatives were manipulated 
in  the previous work. The  hardware is very similar to  that 
used before, but there is a restriction that binary arithmetic 
must be used. 

To be precise, suppose E-' is the unit backwards- 
displacement operator defined  by 

E-'f(x) f ( ~  - 1 )  , (26) 

and suppose that f(x) is an n t h  degree polynomial defined 
by the n + 1 differences at the origin 

( 1  - E- ' ) '~ (o ) ,  r = 0 ,  1 ,  . . . , n  (27) 

and  that it is required to find f(x) at 

x = q i2 - i .  (28) , = o  

It is clear that if the (n + 1) differences for  a difference 
interval of 2-i  are known at x = 2:;: q i  2 - i ,  then the 
corresponding differences at x + 2-% can be calculated 
merely by adding successive  differences together. The value 
q i  is therefore processed either by making these additions 
or  not, depending on whether q i  is ONE or ZERO. 

It is furthermore clear that if the n + 1 differences for 
an interval 2-i" at any  point  can be calculated from  the 
corresponding differences for an interval of 2-' ,  then 
qi can be processed in the same way as q t ,  and so all the 



digits of x may  be  processed  in  a  digit-by-digit  manner. 
The  halving of the difference interval can  be  accom- 

plished  in an adding tree. Defining, 
A,,(x) ~ 2 r i + a ( l  - E - z - i - l ) v ( l  + E - ~ - i - ’  7 1 I 

(29) 

where r = 0, 1, n, s = 0, 1, - r. 
For s = 0, the numbers A,,(x) are  the n + 1 differences 

for an interval of 2- i .  (A factor 2’i is  included in the 
definition  of the r difference, so that this  difference 
tends to the derivative as the interval  gets small.) 

For s = r, the numbers A,,(x)  are the differences for 
an interval of 2-“”. It is therefore  necessary to find the 
numbers A , ,  given the numbers Aye. 

The A, ,  may  be  calculated for successive p ,  by  means of 
an adding tree, since  they  satisfy the recurrence relation- 
ship 

A,,(.> = ArP- l (x)  2”-2 Ar+lp+l(X) 

p = 0, 1, r .  (30) 

This tree is shown in the left part of  Fig. 6, where the 
output of the p” adder in the r row is &(x), it being 
supposed that there is  a  shift  of i + 2 places in each 
diagonal  segment. 

The right part of Fig. 6 shows  how the updated differ- 
ences are used to find the corresponding  differences after 
x has been incremented by 2-i-1, which  is  necessary if 
qi is  one. In this  case there is a  shift of i + 1 places  in 
each  diagonal  segment,  owing to the scale factor in the 
definition of the differences. 

For the case n = 4, with a = 2“-2, the tree makes 

A44 = A40 

A33 = A30 + 3a40 

AZZ = Azo + 2a As0 + 5a2A4,  

All = AIO + a AZO  2a2A30 5U3A40 

and it may  be  verified  directly that this is the correct 
relationship between the differences. 

TO evaluate !(x), the tree in the left part of  Fig. 6 is 
cycled once for each  digit of x, with i set successively at 
0, 1, 2, . a .  The other additions shown on the right are 
performed  for every digit  of x that is ONE. The n + 1 
numbers  ultimately  produced are f(x) and its n derivatives. 

Accuracy and speed  analyses  may  be  made as before. 
It is clear that other scaling  schemes are possible and 
also that difference  intervals  may  be doubled rather than 
halved. 

To find  a root of /(x), the procedure  is  reversed, and a 
binary  search  is  carried out under the control of the sign 
of f (x) .  This  provides  a  simple and rapid way  of finding  a 
zero of a  function  defined by interpolation. 

Figure 6 Adding tree  which  implements Eq. (30). 

Conclusion 

It should be  observed that though this work is concerned 
with  polynomials,  any smooth function may  be  described 
by a  series  of  “best  fit”  polynomials,  different  polynomials 
being  used in different  regions. It may  therefore  be ar- 
ranged that whenever x moves from one  region to another, 
the registers that describe the polynomial are updated 
according to a  table, so that the polynomial  used  is  always 
the best  one. In this way the methods can be  used for any 
function. The only  difference  between an exact  calculation 
for an arbitrary function and a  polynomial  calculation 
of  degree n is that the adding tree is truncated at level 
n instead of  being  infinite. 

The powerful result of this work is that it shows how, at 
least for single  functions of one variable, implicit functions 
can be calculated as easily as  explicit ones. This has many 
applications, one being in the solution of differential 
equations, where the method  enables  “prediction” and 
“correction” to be  merged into one operation without the 
need for iteration. 

There  would  seem to be  applications of these  methods in 
hardware for large,  fast  computers where their speed  could 
be  exploited, and in  small  economical  machines  where their 
simplicity  would  be  advantageous.  These  methods are not 
intended to be programmed in general on existing  ma- 
chines,  though  they  would  have  advantages on certain 
machines  such as those  where  multiplication  is  pro- 
grammed as repeated addition. 

The methods are also  suitable for control computers. 
For example  they  may  be  used to calculate points on a 
contour defined  by an implicit equation, for a  numerical 
machine tool, or to evaluate the expected point of impact 
of a  projectile whose path is  defined  by  some points on 
its trajectory. 
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