
J. E. Meggitt

Digit-by-Digit Methods for Polynomials

Abstract: This paper presents a general system configuration for an arithmetic unit of a computer, which

is used to solve polynomial problems efficiently. The technique is based on a digibby-digit computation of

the coefficients of the given polynomial, after the origin has been displaced systematically. Compared with

standard techniques, the new scheme, closely allied with Horner's method, is similar in efficiency for poly-

nomial evaluation and is superior for locating roots. The fact that the computed coefficients are related to the

derivatives permits the systematic location of all real roots of a real polynomial.

Introduction

This paper describes some methods for manipulating
polynomials and suggests some computer hardware which
is very useful for this purpose. The technique echoes two
current trends in computer design. First, the user is
provided with a powerful instruction set; and second, the
designer wishes to exploit a small high-speed memory in
his design, this being now technically feasible. Therefore,
there is a need for simple, efficient algorithms that perform
powerful operations and make use of a small, high-speed
store.

Hitherto the most complicated macro operations
implemented in hardware have been (with certain excep-
tions) multiplication and division. To continue to use
these as the basic building blocks for more complex oper-
ations, however, does not take advantage of modern
computer technology.

Some thought has already been given to constructing
novel algorithms for generating the elementary functions.'
The present paper concerns methods for solving poly-
nomial problems, the principal one being the extraction
of roots. For the future there is work to be done finding
algorithms for matrix problems and for linear program-
ming.

The ultimate objective is to find a family of algorithms
for solving a whole range of mathematical problems.
These algorithms will be more complicated than the basic
ones currently implemented in hardware but also more
efficient.

The first part of this paper shows how a function f(x)
may be evaluated for given x, where f(x) is a polynomial
specified by its coefficients. This is done in a digit-by-digit

way and is suitable for arithmetic performed in any
radix R. This means that if

x = q i R - i ,
i = O

f(x) is evaluated successively for x = 1, 2, . qo; x =
qo + R-', qo + 2R", , qo + q1 R"; . . Each
evaluation is made in a simple way from information that
was generated at the previous step.

The entire calculation of f (x) involves a set of additions
with shifts, which, of course, is what is involved if f(x) is
evaluated conventionally using a multiplier. The only
difference is the order in which these additions are carried
out. Their number is the same. Hence the digit-by-digit
method is as efficient as (but no more efficient than) the
conventional one. Its significance lies in the fact that it
may be reversed, successive digits of x being found in
such a way that f(x) is driven towards zero. In this way
roots of f(x) are found. If the polynomial is chosen to be
ax - 6, then the method described is no more than the
long division of b by a; if the polynomial is x' - 6, then
this method is the conventional square root process for
finding &.

The method extends to the case where f(x) and x are
complex, so that complex polynomials can be evaluated
for complex arguments. Furthermore the method may be
reversed and complex roots found. The method also
enables polynomials in more than one variable to be
evaluated.

The virtue of the method, other than its inherent
simplicity, is the high speed with which roots may be 237

IBM JOURNAL JULY 1963

found. The amount of computation involved in finding a
root is approximately that needed for calculating f i x) for
given x , and this should be contrasted with the amount of
work done, say, in iterating Newton's method.

The second part of the paper shows how, using in-
formation that is generated at each stage of the calculation
for no additional cost, all the real roots of a real poly-
nomial may be found systematically. This procedure is a
virtue possessed by none of the conventional methods. It
will transpire that the method of calculating f (x) finds not
only f (x) , but all the derivatives of f (x) at each point x
that is considered in the digit-by-digit generation. In
particular the signs of f (x) and of all its derivatives are
available, and it is intuitively clear that this information
suffices to specify where x lies in relation to the roots of
f (x) . It is not surprising, therefore, that an algorithm exists
whereby the digits of x can be generated according to the
signs of f (x) and its derivatives, in such a way that all the
real roots of f (x) are found successively.

It is plausible to expect this to extend to the extraction of
complex roots. Indeed such an extension exists and this
will be presented in a future paper.

The third section of the paper shows how f (x) may be
calculated with ease where f (x) is a polynomial function
specified not by its coefficients, but by its differences. The
algorithm established is effective only in binary arithmetic.
It is useful where it is required to fit a polynomial curve
through a set of given points. It is another digit-by-digit
method and may be reversed to find the roots of f (x) .

Evaluation of f (x) for given x

It is supposed that f (x) is a polynomial of degree n and
that the n + 1 numbers A,(xo) are known, where

/ (X) E A,(xo)(x - ~ 0) ' - (23

The first objective is to define a set of simple operations

n

r-0

Ag (xo) +-------

A2 (x o) *------ A z (x O + a)

A , (x o) ------- AI (x ~ + a)

A o (x o) *--"--- & (x ~ + a)

A3 (x 0 + a)

Figure l a Binomial adding tree.

that produce the numbers A,(xo + a) in terms of the
A,(xo), where a is an arbitrary power of the radix R in
which operations are performed; that is, it is required to
find the new coefficients of the polynomial when the
origin of x is moved a distance a. This, of course, is what
is done when Horner's method is used, though the distance
a is then not in general restricted to being a power of the
radix. If this set of operations is obtained, it may be em-
ployed as follows. Suppose that the n + 1 coefficients
A,(O) are given initially and that

x = qiR". (3)

The origin may then be moved in successive steps from
0 to 1, 2, , qo, and then to qo 4- R-I, go + 2R",

. qo f q1 R-' , and ultimately to x .
When this is done, it is clear from (2) that

i-0

/ (X) = Ao(x). (4)

Moreover, at each point xo, the numbers A,(xo) are
proportional to the derivatives of f (x) at that point, and
so the signs of the numbers A,(xo) are exactly the signs of
the derivatives. This fact will be exploited at a later stage.

n

NOW / (X) = A,(x,)[(x - x0 - a) + a]'
r-0

= 2 2 A,(xo)C,'a""(x - x. - u) ~

= 2 A.(xo + a>(. - x. - a)"

r -0 8 - 0

0 = O

by definition.
Thus, equating the coefficients of (x - x. - a)" gives

A.(xo + a) = Carar-' A,(xo) (5)

and this is the required rule.
The numbers A,(xo + a) can be generated in a very

simple way from the numbers A,(xo) by means of the
binomial tree in Fig. la. The symbols @ indicate word
adders, and in the Figure it is assumed that every diagonal
segment between two adders contains a multiplication by
a, i.e., a shift, since a is chosen to be a power of the radix.
The numbers A,(xo) are fed in on the left, and the numbers
AJx0 + a) appear on the right. Figure l b lists the SUC-

cessive adder outputs for the case n = 3.

n

7 - a

Figure I b Adder outputs.

A3 A3 A3 A3

A2 4- aA3 A2 4- 20-43 A2 -I- 3aAa

AI + aA2 -I- a2A3 A , + 2 a A 2 4- 3a2A3

A . + a A , -I- a2A2 i- a3A3
238

J. E. MEGGITT

A way of exploiting these results is to build in hardware
a system consisting of n + 1 registers and a parallel adding
tree (as shown in Fig. la) whose output is fed back into the
registers. Initially the registers are loaded with the n f 1
given coefficients A,(O), and x is assumed to have the
value in (3). The contents of the registers are cycled
through the tree qo times with the shift set at ZERO. After
this they are cycled q1 times with the shift set at ONE (that
is, a = R-') and so on. After the contents have been
cycled Zqj times, the registers will contain f (x) and its
derivatives (l / r !) f (r) (x) , r = 0, 1, . . , n.

The tree may be a parallel tree as suggested, consisting
of n(n + 1)/2 adders exactly as in Fig. la, or it may be
serialized in any convenient way. This, for example, may be
done by regarding the diagram in Fig. l a as split into n
separate columns and forming the sums in each column
during one add time, there being n adders.

It may be inconvenient to perform shifts within the
tree as indicated. If this is the case, these shifts may be
avoided by replacing the numbers A,(xo) by arA,(xo) so
that a relation like (5) is obtained but with the factor
a'- * omitted. It will then be necessary to shift u'A .(x) r
digit places right after each digit qi of x has been processed,
since when this happens the value of a is changed from

, which implies a multiplication by R-'.
This procedure, therefore, shows how f (x) may be

calculated. It should be observed that the basis of the
method is the simple linear relationship (5). Multiples of
the numbers A,(xo) and linear combinations of them will
satisfy other linear relations. If any of them have a sim-
plicity comparable to that in (9 , they may be considered
as the basis of a method for finding f (x) .

R - i to R-i - l

One such scheme is obtained by writing

A7(xo) = C,nBn-r(xo) (6)

B 3 (x 0) z ! E z

in (3, n being the degree of the polynomial.

""_ B 3 (X O + 0)

82 (x o) - 62 (x 0 + 0)

81 (x01 + 81 (x 0 + a)

Bo (x o) Bo (x 0 + 0)

Figure 2a Alternative binomial adding tree.

Figure 2b Adder outputs.

_""

_ " " . .

This leads at once to
*

B.(xo + u) = C,aua-rB,(xo). (7)

The numbers B,(xo + a) may therefore be obtained
from the numbers B,(xo) by means of the tree shown in
Fig. 2a, which should be contrasted with that shown in
Fig. la. Again a shift is assumed in each diagonal segment.

Figure 2b lists the successive adder outputs for the
case n = 3.

From a practical point of view there seems little to
choose between this scheme and the previous one. Of
course in the second scheme, the registers must initially
be loaded with B,(O). These are defined by

!(x) = B,(O)C,"x"", (8)

and the numbers (r ! / n !) f (n - r) (x) are produced. Whether
it is convenient to work with the B's or the A's depends on
how the problem is presented.

Scaling

It is assumed that x has the form (3) with qo # 0 so that
1 5 I x [< R. The value x can always be brought to lie
in this range by scaling it by a power of R, which implies
scaling the coefficients of the polynomial by powers of R.
When this is done, the coefficients should have roughly
equal precisions if the problem is formulated properly,
since f (x) is formed by adding together the various co-
efficients with roughly equal weights. Therefore, when
the problem is scaled in this way, it is sensible to hold
the coefficients as fixed point numbers with their radix
points aligned, in registers all of the same size.

If the problem were presented with the coefficients as
floating point numbers, then there would be a preliminary
scaling and fixing step.

Error analysis of process for forming f(x)
For definiteness it will be assumed that the scheme shown
in Fig. l a is employed with the shifts occurring within the
binomial tree. The number f (x) will be obtained accurately
if registers are sufficiently long to hold the shifted numbers.
If the coefficients in f (x) are given initially as integers, and
if x is a p-digit number of the form (3), then clearly A,(x)
will be calculated as a number with r(p - 1) fractional
digits, owing to the shifts. Normally such accuracy is

r=O

n

ID0

239

SOLVING POLYNOMIAL PROBLEMS

neither justified nor required and so at each stage the
fractional digits of A, are dropped after a rounding. The
magnitude of the resulting error in the calculated value of
f (x) must be found in order to justify allowing it.

The analogue of this occurs if f (x) is evaluated by
repeated multiplication, since products are in general
truncated so that they may serve as factors in further
products.

The dropping of fractional digits causes errors in the
A , to occur on each cycle through the binomial tree. On
one such cycle the value of A, is altered due to r + 1
rounded additions. Thus the dropping of fractional digits
will cause a maximal error in A, of (r + 1)/2(r = 0,

rounding. The consequence of each such set of errors is to
produce a polynomial which is the sum of the desired
polynomial and an additional polynomial bounded by

1, e . . , n - l) , the factor 1 / 2 occurring because of

12-1 c (Y + 1)x*'/2, (9)
r = O

where x* is that part of x which remains to be processed
when this set of errors is introduced.

Now when the digit qi of x is processed, the worst case
value of x* is (R - 1)R-' on the first cycle; (R - 2)R-j on
the second; . and R-j on the last, assuming that qi has
the worst value, R - 1.

The entire maximal error E in the computed value of
f (x) may therefore be calculated by summing over all the
maximal errors introduced at different stages. This gives

E = 1 / 2 (r + I) (~ R +) ' .
p - 1 R - 1 n-1

i = l t = O r=O

Now
R - 1

tr < Rr+l/(r + 1)
t = o

so that

E < R / 2 R ' l - i ' r
9-1 n-1

i = l r=O

Hence the bound

E < R / 2 R-k'

is obtained. This estimate for E may be evaluated exactly,
but it is clear that E is of the order (R(p + n) /2 . Such an
error is entirely reasonable and shows how many additional
digits should be carried in the calculation to ensure
accuracy.

It should be observed that errors arise predominately
from the repeated addition of the shifted A , to A,. The
errors in the other numbers A, do not influence f (x)
appreciably since, for large p , the A I are effectively shifted

p--2 n-1

(1 1)
k = l r=O

240 many places before being added to form f (x) .

J. E. MEGGITT

Another way of stating this is to say that as the calcula-
tion progresses, the A,, for large r, are kept to an accuracy
that is more than that required. This suggests that it would
be possible to ignore the digits of A, that have small
significance, or even to ignore the A, altogether at some
stage in the calculation, and still to maintain an acceptable
accuracy. It is attractive to do this if the hardware is such
that the time taken to cycle the adding tree depends on the
number of additions that need to be done in it, because an
increase in speed is then possible.

To be precise, suppose that A, is set to ZERO immediately
after qi has been processed. This will cause an error in the
computed value of f (x) of

I A,x*'l, (1 2)

where x* is again that part of x which is left to be pro-
cessed. Now if the numbers A , are constrained to be
integers lying like x in p-digit registers, then I A , I < R".
(The problem is assumed to be scaled so that this is so.)
Furthermore the worst case value of x* at the stage when
qi has been processed is R-j. The dropping of A,, there-
fore, causes a maximal error of Rp"j7. It is arranged,
therefore, to omit A , from the calculation as soon as

j 2 P/. (1 3)

so that the resulting error is less than unity.
Errors arise from this cause as the A , are dropped

for r = n, IZ - 1, . , 2 , and clearly this gives rise to an
additional maximal error of n - 1, which is again tolerable.
The conclusion is that this truncated procedure also has
an acceptable accuracy.

Register overflows

The numbers A , are contained in p-digit registers and
overflow must be avoided. This may be ensured by a
suitable initial scaling, for if an upper bound is placed on
each coefficient of f (x) and if a bound is placed on I x I ,
then it is possible to place bounds on the derivatives, and
thus on the numbers Al(x), and thereby to ensure that they
will fit into p-digit registers.

This scheme may result in the waste of register space
because of its pessimism. An alternative one is to arrange
for the contents of all the registers to float together, so
that they move right whenever one of them overflows and
move left whenever that is possible. In this way a normal-
ized floating point calculation is performed.

Speed of calculation

The speed of calculation depends on the system used for
its implementation. The parallel scheme is clearly very
fast. However, it is interesting to consider a completely
serial system, in which there is just one adder that is
shared, and to compare the calculation time with that
for a conventional repeated-multiplication process.

If no truncation is employed, each cycle through the
binomial tree takes n(n + 1)/2 add times, and on the
average the tree will be cycled Rp/2 times. The total time
is therefore

O n (n -I- 1)/4. (14)

If the truncated scheme is used where, for comparison
purposes, it is assumed

9 + l

x = qiR”,
I = 1

the r additions used to form A , - , have to be made only
until

j = p / r (1 6)

(or for slightly longer if p is not divisible by r) . This set of
r additions is made on the average only (p/r)(R/2) times.
The total average calculation time is obtained by summing
these times for all r , and this gives a total time

Rpn/2. (1 7)

If f(x) were evaluated by repeated truncated multiplica-
tion, there would be n consecutive multiplications, each
one involving Rp/2 word additions on the average, which
would give exactly (17) as the calculation time. Thus the
truncated version of this method proposed for calculating
f(x) is as fast as the conventional one. This is not surprising
since f(x) is formed essentially in a series of additions, the
number of which is determined solely by the accuracy to
which f(x) is required.

Example of method

A typical calculation is shown in Table 1. In this example
a cubic function

J(x) 3 1 2 7 ~ ~ - 3 7 5 9 ~ ’ (1 8)

is evaluated at x = 1.203, decimal arithmetic being used.
No truncation is employed. Each cycle of the tree, which
is that in Fig. la with n = 3, is put within vertical lines.
The outputs of the adders are shown explicitly as in Fig. lb.

Table I Typical calculation, showing evaluation of a cubic function.

f(x) 3 1 2 7 ~ ~ - 3759~’

x 0 .000
-~

f”’(x)/6 = A 3 3127
f ” (x)/2 = A , -3759
f’ (x) = A , 0000
f (x) = A,, 0000

1 .000

3127 3127 3127 3127
-0632 2495 5622

-0632 1863
- 0632

1 .lo0

3127 3127 3127 3127
5935 6249 6561

2457 3082
- 0386

Shift used I
~

0 1

1.200 1
1 1

1.201 !
Continued 3127 3127 3127 3127 3127 3127 3127 3127

4496 4504 3769 4488
7503 7506 7509 6874 7187 7500

- 0009 - 0005
”

1

1.203 1.202

3

~ ~~ . . ”

Continued 3127 3127 3127 3127 3127 3127 3127 3127

4528 4536 4512 4520
7521 7524 7527 7512 7515 7518

0000

3 3

+ 0005
- ~~~ ~ ~” ~~~

This crrlculution shows f(1.203) = +0005. 24 1

SOLVING POLYNOMIAL PROBLEMS

242

J. E. h

Complex polynomials; polynomials in more than one
variable

The method of evaluating a real polynomial function of
one real variable generalizes very easily. For a complex
polynomial in a complex variable z = x + iy, Eq. (2)
becomes

where the A, are complex numbers.
The origin z, may be moved by a, which is now in

general complex, and this gives rise to a set of numbers
AT(zO + a). These may be calculated by means of the
binomial tree shown in Fig. 1, where it is understood that
all numbers are complex and that diagonal segments of
the tree contain a multiplication by a.

To evaluate f(z) for given x and y , the origin is moved
to z by making increments which are powers of the radix
in magnitude and which lie in the x and y directions. It
does not matter if the incrementing in the x direction is
interleaved with the incrementing in the y direction.

Complex numbers within the tree are represented by
their real and imaginary parts, so that additions in the
tree are achieved by adding together these real and
imaginary parts separately.

For an increment in the x direction, a has the value
R - k , k = 0, 1, 2 - , whereas for an increment in the y
direction a has the value iR-k. The multiplication by R - k
is achieved by shifting the real and imaginary parts k
places. In the latter case the additional multiplication by
i is made by interchanging real and imaginary parts and
altering a sign.

With these generalizations, the complex theory is as
straightforward as the real theory.

For a polynomial f(x, y) in two variables, it is supposed
that

n

Ax, Y) = A,t(xo, Y 0) b - XO) l (Y - Yo),. (20)
7 . 1 - 0

The polynomial is defined by the (n f 1)' numbers
A , t (O , 0). The origin is moved by increments of powers of
the radix in the x and y directions independently. When it
has been moved by amounts x and y ,

f(x, Y) = Aoo(x9 Y) (2 1)

Now

This operation is exactly like (5) for each t , (t = 0, 1,
2 e) and the updating is achieved by a set of adding
trees in exactly the same way. The generalization is
therefore trivial.

dEGGITT

Roots of polynomials
The significance of the method described here for evalu-
ating polynomials is that it may be reversed and used to
find roots. This is the analogue of reversing conventional
multiplication to obtain conventional division.

It will first be supposed thatf(x) is a real polynomial and
that it is known there is a distinct real root near x,,, though
this restriction will be dropped in the next section. It will
be supposed for definiteness that f'(x) > 0 near x. and
that f(xo) < 0.

To find that x for which f(x) = 0, a search procedure is
set up. Unit increments are made and !(x) is evaluated for
x = x,; x,, + 1; x, + 2, . -, until an x is found for which
f(x) > 0. At this stage x is decreased by one, making
f(x) < 0, and a further set of increments of magnitude R"
is made. This again continues until !(x) goes positive, when
again there is restoration and scaling. In this way as many
digits of x are found as are needed. Alternatively a non-
restoring procedure may be used in which as soon as f(x)
goes positive, scaled decrements are made until f (x) goes
negative again.

There is, of course, nothing novel about the search
procedure. The significant point is that each new value of
f is found from information evaluated previously, in a very
simple way, so that there is little computation. Indeed the
amount of computation made in finding the root is
exactly that for finding f(x) for given x, save for the extra
steps caused by the restoration. This mirrors the difference
between conventional division and multiplication.

The example in Table 1 illustrates the method used if
the procedure shown is regarded as being reversed. The
value x, may be taken to be the point x. = 1. Then f (x) is
calculated at x = 2 (which step is not shown), where it is
found that f (x) > 0. Next there is restoration back to the
point x = 1 , and increments of magnitude 0.1 are made.
The function f(x) is calculated successively at x = 1.0,
1.1, 1.2, 1.3 (which latter step is not shown in Table 1). At
the point x = 1.3 it is again found that f(x) > 0, so there
is restoration to x = 1.2 and a step is made to x = 1.21
(not shown). Again f(x) > 0, so f(x) is evaluated at x =
1.200, 1.201, 1.202, which latter value is found to be a
root sincef(x) = 0.

It is interesting to observe that if f(x) is close to the
root, the digits of x = x, are obtained essentially by
subtracting the numbers A,(xo), with suitable shifts, from
A,(xo), and recording the number of subtractions. This
operation is clearly the long division of f(xo) by fl'(xo) and
so Newton's method is reproduced automatically.

To find a complex root of a complex polynomial f(z),
the two dimensional analogue of this procedure is set up.
Unit and scaled increments and decrements are made in
both the x and y directions with the object of making both
the real and imaginary parts of f (z) zero.

At any point z near the root, the signs of the real and

imaginary parts of fi(z) and fL(z), which are known, will
prescribe a unique direction (one of + x , - x , +y, - y),
in which a small movement will drive both the real and
imaginary parts of f(z) simultaneously towards zero.
Initially unit steps are made in the directions prescribed
at each stage and this continues until one of the variables
overshoots. This is indicated by that variable repeating
one of its former values. When this happens the step
length for that variable is scaled by the radix, and the
process is continued. In this way the digits of x and y are
generated successively.

It is clear that in this case, too, the root is found as
rapidly as f(z) could be calculated for given z, except for
the overshooting.

Systematic extraction of all real roots of a real
polynomial

The methods described will find roots efficiently if reason-
able approximations to them have been obtained. For the
real roots of a real polynomial it is possible to improve
upon this and to find all the real roots in a systematic way.

This is so because the signs of f (x) and of its derivatives
combine to locate the position of x precisely in relation to
the real roots of f (x) . Furthermore the process produces
these signs at every stage, as has been remarked here, and
so no additional calculation is necessary. The essential
content of this relationship between roots and derivatives
is expressed by Budan's Theorem? However, since this
theorem is used in a different form from that in which it is
stated, all results will be proved.

Relationships also exist between the positions of complex
roots and the signs of the real and imaginary parts of the
derivatives of a complex function, but they are more
complicated and so will be presented in a future paper.

The method to be described shows how the t th largest
real root may be found directly where tis specified. The " t t h
largest" has the obvious meaning when all the roots are
real and an extended one when some roots are complex.
This selectivity may be exploited if it is known beforehand
which root is required. All the real roots may be found by
making a set of n calculations with t set successively at
1, 2, 3, * * .

For the real roots of a real polynomial, consider first
the case where !(x) is of degree n with n real roots. This
implies that f ' (x) has n - r real roots and that they are
interleaved with those of f +' ' (x) for r = 0, 1, 2, . e .

Define k, (x) to be the "labelling function" of f ' (x) . This
function is defined to take values 0, 1, 2, . , n - r in the
n - r + 1 regions into which the x-space is partitioned by
the roots of f (r ' (x) . In other words k,(x) is the number of
sign variations in f ' (x) as x varies from + to x . The
functions /?,(x) and k , + l (x) are shown together symboli-
cally in Fig. 3, the vertical lines indicating the roots of

k , (x) n - r 0 1 2 n - r - 2 n - r - I

5 (x) , 0 1 0 1 0 , " " " . O l 0

k , + l (x) n - r - I n - r - 2 _.~.~.. 2 0 1
f

x

Figure 3 labelling functions for f'" (x) and f" + "(x) ,
where ! (x) has n real roots.

f (r ' (x) and f (r +' ' (x) . The function $,(x) is also shown in
Fig. 3, where s,(x) is defined to be ZERO if the signs of
f '"(x) and f (r " ' (x) are the same, and ONE otherwise (it
is assumed that the coefficient of x" in f(x) is positive).
It is clear from Fig. 3 that

k (x) = k,+l(X) + S 4 X) (24)

Hence, since

k,(x) = 0 , then

ko(4 = s , (x) .
n- 1

(25)
r = O

This is, therefore, the rule for calculating the "labelling"
function for f(x). To find where x lies in relation to the
roots of f(x), it is merely necessary to count the number of
sign variations in the sequence f (' (x) , f (n-' ' (x) , * , f(x).
For example, if f(x) is a cubic and this sequence has the
signs +, - , +, +, this shows that ko(x) = 2, which
implies that there are two roots to the right of this x and
one to the left, as a sketch of f(x) verifies.

In general the t t h root of f(x) from the right is found
by constraining x , to be decreased if ko(x) < t and to be
increased otherwise. The function f(x) may however have
fewer real roots than n, and it is necessary to see what
action this alogorithm has in that case, where the function
ko(x) is still defined by (25).

If f (r + l ' (x) has u, real roots, f " ' (x) cannot have
more than u,+' + 1 real roots, and in general has a
number 2 u, less than this. It may be said of !(x) that u,
pairs of real roots are lost at the r derivative. This means
that there exist u, zeros of f("l'(x) at each of which f"'(x)
has the opposite sign from what it would have if f ' (x)
had the maximum number of roots, u, +1 + 1. These zeros
are said to occur at the "critical" points. Altogether f (x)
will have Zu, pairs of roots lost, and there will be Zu,
critical points. In order to account for all the roots of
!(x), n - 2Zu, zeros and 20, critical points must be
found.

It happens that the algorithm causes these critical points
to be found automatically in those cases where pairs of
real roots are lost, and so all the roots of f(x) are accounted
for.

First suppose that f (r + l ' (x) has n - r - 1 real roots,
but that one pair of roots is lost at the r t h derivative. 243

SOLVING POLYNOMIAL PROBLEMS

Figure 4 shows the labelling of the regions of f (' +' ' (x) ,
the function s,(x), and the consequent labelling of f (' '(x)
in accordance with (24). (The vertical dotted line indicates
merely the separation of regions.)

It is seen that the loss of the pair of real roots from
f (' ' (x) causes a region to be missing from k,(x) and an
abrupt jump of 2 to occur in the labelling at the critical
point.

If u , pairs of roots are lost from f ("(x) instead of one,
then clearly there will be u , abrupt jumps in the labelling
of f (' ' (x) , and these will occur at the u , critical points.

Now suppose that instead o f f '(x) having n - r - 1
real roots, it has fewer, and that the labelling of the regions
of f (' +' ' (x) contains a number of abrupt jumps itself as a
consequence. At any one such jump, the function s , (x) will
not in general alter its value. Therefore since k,(x) =
k , +'(x) + s,(x), there will be a similar abrupt jump of 2 in
the labelling of f (' ' (x) .

It is therefore clear that the labelling of !(x) will contain
Zu, abrupt jumps of 2 and that they will occur at the
Zu, critical points. The example in Fig. 5 shows the
labelling for a typical quintic, where one pair of roots is
lost at the third derivative and another at the zero deriva-
tive.

In general the search algorithm is applied with t set
successively at 1, 2, . . . , n. The n values of x so found are
either roots of f(x) or critical points. The roots are dis-
tinguished because at these points f(x) = 0, whereas at the
critical points f (' ' (x) = 0 for some r > 0. In the limiting
case of repeated roots, critical points and roots may
coincide but this causes no trouble.

In this way all the real roots of f(x) are found system-
atically. The calculation of the critical points is not
wasteful, since it is essential that these points should be
found in order to account for all the roots. It should be
observed that in this scheme each root is found using the
original data.

If, instead, one is prepared to allow the errors that
arise when factors are divided out, the factorization may
be achieved trivially. This is because when one root x is
found, the numbers A 7 , r = 1, 2, . . . n are exactly the
coefficients of the reduced polynomial referred to x as
origin.

It is assumed that the problem is scaled so that the root
that is being found lies in the range 1 5 I x I < R. This
preliminary scaling can be made automatically, since if
I x I is not in this range as is shown by the initial stages of
the search for the root, x can be put in this range by
shifting the coefficients of the polynomial by appropriate
amounts. If the coefficients are given as floating point
numbers, they should be fixed and a search made to find
the range of the root. The original floating coefficients
should then be scaled by the appropriate amounts and

244 fixed again.

J. E. MEGGITT

Figure 4 Segment of labelling where a pair of
roots is lost.

k 4 (x) 1 1 0

x

Figure 5 Labelling for typical quintic. (See text) .

Polynominals defined by interpolation

It has been shown how f(x) may be calculated for given x ,
where f (x) is a polynomial defined by its coefficients. In
some problems, such as interpolation, it is required to fit
a polynomial through certain points, and then to find its
value for a given x . It is possible to do this directly, where
the differences of the function are manipulated in a man-
ner analogous to the way derivatives were manipulated
in the previous work. The hardware is very similar to that
used before, but there is a restriction that binary arithmetic
must be used.

To be precise, suppose E-' is the unit backwards-
displacement operator defined by

E-'f(x) f (~ - 1) , (26)

and suppose that f(x) is an n t h degree polynomial defined
by the n + 1 differences at the origin

(1 - E- ') '~ (o) , r = 0 , 1 , . . . , n (27)

and that it is required to find f(x) at

x = q i2 - i . (28) , = o

It is clear that if the (n + 1) differences for a difference
interval of 2-i are known at x = 2:;: q i 2 - i , then the
corresponding differences at x + 2-% can be calculated
merely by adding successive differences together. The value
q i is therefore processed either by making these additions
or not, depending on whether q i is ONE or ZERO.

It is furthermore clear that if the n + 1 differences for
an interval 2-i" at any point can be calculated from the
corresponding differences for an interval of 2-' , then
qi can be processed in the same way as q t , and so all the

digits of x may be processed in a digit-by-digit manner.
The halving of the difference interval can be accom-

plished in an adding tree. Defining,
A,,(x) ~ 2 r i + a (l - E - z - i - l) v (l + E - ~ - i - ’ 7 1 I

(29)

where r = 0, 1, n, s = 0, 1, - r.
For s = 0, the numbers A,,(x) are the n + 1 differences

for an interval of 2- i . (A factor 2’i is included in the
definition of the r difference, so that this difference
tends to the derivative as the interval gets small.)

For s = r, the numbers A,,(x) are the differences for
an interval of 2-“”. It is therefore necessary to find the
numbers A , , given the numbers Aye.

The A, , may be calculated for successive p , by means of
an adding tree, since they satisfy the recurrence relation-
ship

A,,(.> = ArP- l (x) 2”-2 Ar+lp+l(X)

p = 0, 1, r . (30)

This tree is shown in the left part of Fig. 6, where the
output of the p” adder in the r row is &(x), it being
supposed that there is a shift of i + 2 places in each
diagonal segment.

The right part of Fig. 6 shows how the updated differ-
ences are used to find the corresponding differences after
x has been incremented by 2-i-1, which is necessary if
qi is one. In this case there is a shift of i + 1 places in
each diagonal segment, owing to the scale factor in the
definition of the differences.

For the case n = 4, with a = 2“-2, the tree makes

A44 = A40

A33 = A30 + 3a40

AZZ = Azo + 2a As0 + 5a2A4,

All = AIO + a AZO 2a2A30 5U3A40

and it may be verified directly that this is the correct
relationship between the differences.

TO evaluate !(x), the tree in the left part of Fig. 6 is
cycled once for each digit of x, with i set successively at
0, 1, 2, . a . The other additions shown on the right are
performed for every digit of x that is ONE. The n + 1
numbers ultimately produced are f(x) and its n derivatives.

Accuracy and speed analyses may be made as before.
It is clear that other scaling schemes are possible and
also that difference intervals may be doubled rather than
halved.

To find a root of /(x), the procedure is reversed, and a
binary search is carried out under the control of the sign
of f (x) . This provides a simple and rapid way of finding a
zero of a function defined by interpolation.

Figure 6 Adding tree which implements Eq. (30).

Conclusion

It should be observed that though this work is concerned
with polynomials, any smooth function may be described
by a series of “best fit” polynomials, different polynomials
being used in different regions. It may therefore be ar-
ranged that whenever x moves from one region to another,
the registers that describe the polynomial are updated
according to a table, so that the polynomial used is always
the best one. In this way the methods can be used for any
function. The only difference between an exact calculation
for an arbitrary function and a polynomial calculation
of degree n is that the adding tree is truncated at level
n instead of being infinite.

The powerful result of this work is that it shows how, at
least for single functions of one variable, implicit functions
can be calculated as easily as explicit ones. This has many
applications, one being in the solution of differential
equations, where the method enables “prediction” and
“correction” to be merged into one operation without the
need for iteration.

There would seem to be applications of these methods in
hardware for large, fast computers where their speed could
be exploited, and in small economical machines where their
simplicity would be advantageous. These methods are not
intended to be programmed in general on existing ma-
chines, though they would have advantages on certain
machines such as those where multiplication is pro-
grammed as repeated addition.

The methods are also suitable for control computers.
For example they may be used to calculate points on a
contour defined by an implicit equation, for a numerical
machine tool, or to evaluate the expected point of impact
of a projectile whose path is defined by some points on
its trajectory.

References
1. J. E. Meggitt, “Pseudo Division and Pseudo Multiplication

2. S. Borofsky, EIementary Theory of Equations, Macmillan,
Processes,” IBM Journal 6, 210 (1962).

1950, Ch. 6, p. 85.

Received November 2, I962

SOLVING POLYNOMIAL I

245

’ROBLEMS

