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C. M. Melas
E. Gorog

A Note on Extending Certain Codes
to Correct Error Bursts in Longer Messages

Given a burst-correcting code for short messages, it would
seem practical and would be desirable to derive efficient
codes for correcting the same types of bursts in longer
messages. This note presents a simple method of con-
structing such codes, and supplies a geometric interpreta-
tion of the method. The Fire burst correcting codes! are a
special case of the class of codes presented here.

Description of method

Let E(x) be an error polynomial as defined by Peterson
and Brown.? We will define the error pattern polynomial
as P(x) = E(x)/xr, where xr is a term of E(x) chosen to
minimize the degree of P(x). This definition in effect
normalizes the error polynomial with respect to block
length. Thus, for single errors, P(x) = 1; for double
adjacent errors, P(x) = 1 + x; etc. The set of all error
patterns corresponding to a burst of length 5 is composed
of all polynomials of degree » — 1 with a constant “1”
term.

For the cyclic code defined by a generating polynomial
G(x) to correct a set, S, of error pattern polynomials in a
message of length »n, a necessary and sufficient condition
is that, for any two polynomials P;(x) and P;(x) in S,

Pi(x) + x*P;(x) £ 0 mod G(x), (1)
and
Pi(x) + x"P.(x) = 0 mod G(x), @)

where P,(x) # 0 and k and ) are arbitrary integers.

Condition (1) follows immediately from the fact (stated
in Ref. 2) that each correctable error polynomial must
give a different remainder when divided by G(x). Thus
the condition for any two error polynomials,

E.(x) + E;(x) £ 0 mod G(x), (3)
becomes
xPi(x) + x7*P;(x) # 0 mod G(x); 4

and (1) is derived by dividing Eq. (4) by x"*. Equation (2)
expresses the fact that the code is cyclic of period », for
any error pattern polynomial P;(x).

Consider now the generating polynomial F(x) of a code
correcting any one of the error patterns in S, in a message
of length d. Since this is a single-pattern correcting code,
inequality (1) does not apply, and Eq. (2) becomes

P.(x) + x*P,(x) = 0 mod F(x), (5)

where P,(x) % 0 and u = 1, 2, ---. The product poly-
nomial G(x) F(x) will generate a code correcting the set,
S, of error patterns. Clearly, (1) implies that

P.(x) + x*P;(x) £ 0 mod G(x)F(x). (6)

Furthermore, if d and n are relatively prime, we can write,
from Egs. (2) and (5),

P,(x) + x**"P,(x) = 0 mod G(x)F(x), Q)
where u = 1, 2, --- , in which
P,(x) # 0 mod G(x) and mod F(x). (8)

Thus, (6), (7), and (8) define a code correcting the set, S,
of error patterns in a message of length nd generated
by G(x) F(x).

The following theorem can then be stated: If G(x) is
the generating polynomial of a code correcting a set, S,
of error patterns in a message of length n; and if F(x) is
the generating polynomial of a code correcting an arbitrary
pattern of that set, and only that pattern, in a message of
length d, prime with respect to n, then the polynomial
G(x) F(x) generates a code correcting the set, S, in a
message of length nd.

For example:

Gx) = +x+ D +x+1)

generates a code correcting a 3-bit burst in a 15-bit
message.?
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Figure 1 Geometric interpretation of the method
for constructing the codes.
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GRFx) = +x+ Dx*+x+ DE* + x4+ 1)

generates a code correcting the same burst in a 105-bit
message.
In Fire codes, a special case of these codes,

Gix) =1+ x>

generates a polynomial correcting a burst of length 5.
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To correct bursts of length b, F(x) must be of degree b or
greater. It cannot be equal to any of the burst pattern
polynomials of degree » — 1, and G(x) should be at
least of degree 2b — 1: otherwise there can always be two
pattern polynomials P,(x) and P;(x) which will not satisfy
(1). The degree of G(x) F(x), and thus the number of
parity bits, must always equal at least 36 — 1.

Geometric interpretation

Consider an array of dn bits, making up a code word of
a cyclic burst-correcting code of normal length ». If the
bits are arranged in d columns of »n bits each, the code
will determine the type of burst, and its location within
a horizontal band (see Fig. 1). If a;, is the first bit of the
array in error, its y coordinate—i.e., the distance to the
first bit of the n-cycle,—is determined by the code.

Assume now that the same array is also a code word
of a single pattern-correcting code normally of length d.
The array is composed of n cycles of this code. The
position of the burst within d bits can now be determined.
If » and d are relatively prime, the j coordinate of the
first bit in error, a;,, can also be determined. Let z be the
distance of the first bit in error from any first bit of the d
cycle. Obviously if g = z mod d, j = 0, because the first
bits of the d and the » cycles coincide in the first column.
In the next column (j = 1), the start of the n cycle occurs
x bits after that of the d cycle where £k = n mod d. Thus,
for that value of x, only g = (z — k) mod d.

In general, we have y = z — nj, orj= (z — y/k) mod d.
In the example given in the Figure, d = 7, n = 15, and
k= 15mod 7 = 1. Thus j = (z — y) mod 7, and the
shaded squares in the figure indicate the first bit of each
of the d cycles, always shifted by 1 bit. Example: If a
1 4 x error occurs in the message, on the squares marked
x in the Figure, then the polynomial G(x) will determine
the type and y position. In this example, y = 8§; the
F(x) polynomial will yield z = 3; and the corresponding j
coordinate will be j = (3 — 8) mod 7 = 2.
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