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Magnetization of Uniaxial  Cylindrical  Thin  Films 

Abstract:  An  analysis is given of  the magnetization of a cylindrical  thin  film exhibiting a uniaxial anisotropy 

in the  circumferential  direction.  The magnetization and demagnetizing fields are derived for the  cylinder 
where the magnetization is not  uniform. The derivation is accomplished by dividing up the  cylinder  into a 

large number  of uniformly magnetized, coaxial cylindrical  regions  in  superposition and by integrating their 

individual contributions.  Some applications of the derivation are shown for several  specified field geom- 
etries.  The  technique  of  superposition may be applied to  other  film  geometries. 

Introduction 

In  order to properly  understand the performance of a 
magnetic device it is often necessary to be able to describe 
in detail the magnetization and demagnetizing fields in 
the magnetic medium. We certainly cannot hope to de- 
scribe all fields and variations in  the magnetization; how- 
ever, certain fields important to the  operation of the device 
may be derived. One of these is the field resulting from 
the shape anisotropy, that is, the demagnetizing field. 

We will consider here a uniaxial1 cylindrical thin film, 
i.e., a cylindrical sheet in which a uniaxial anisotropy 
exists in the circumferential direction. The  “hard” direc- 
tion of magnetization then will lie parallel to the cylinder 
axis. The film, in general, is switched so that  the entire 
film  is aligned in one direction. Actually, this is true only 
from  the macroscopic viewpoint since the microscopic 
magnetization will vary appreciably with variations  in the 
film  structure.2 In  that this is in a circumferential direc- 
tion, no poles will exist (other than stray poles*), since 
the magnetization closes on itself. To reverse the mag- 
netization of the film, the magnetization is driven into  the 
hard direction, thereby forming poles at  the ends of the 
cylinder. These poles result in a demagnetizing field which, 
in turn, reduces the magnetization in  that direction. It 
is these demagnetizing fields in which we are primarily 
interested and which we shall derive. 

While the accurate  solution of demagnetizing fields of 
ellipsoidal geometries may  be found  in  the literature, the 
accurate  solutions of other geometries are virtually un- 
known. It is often  customary in  the solution of nonuni- 
form magnetization problems, involving shape  anisotropy, 

may be shown  to be negligible for  practical  memory  applications. 
W e  ignore  any  contribution  from  the  exchange  coupling,  which 

to assume the magnetic medium to be uniformly magne- 
tized and to argue that  the result in  the central region will 
be reasonably accurate. The edges are expected to be very 
inaccurate. Some authors3 reduce the edge inaccuracies 
by treating  them separately. However, where the length- 
to-thickness ratio of the magnetized material is small, 
serious errors may result in the central region as well. 

Since we desire an accurate derivation of the magneti- 
zation and  the demagnetizing fields everywhere, a solution 
must  be  found  in which the accuracy is independent of 
the position. In  our method of solution, the magnetized 
cylinder is replaced by a large number of uniformly mag- 
netized coaxial cylindrical sheets of different lengths in 
superposition. The contributions from all the cylindrical 
sheets are integrated to give the demagnetizing fields, and 
consequently the magnetization, everywhere over the 
magnetized cylinder. The accuracy of the solution is seen 
to be dependent only on  the number of coaxial cylinders 
chosen and  the  rate of change of the magnetization 
through  the point, and is independent of the position of 
the point on  the cylinder in reference to an edge. 

As a demonstration of the usefulness of the derivation 
several practical cylindrical geometries and driving fields 
are treated  in the section entitled “Applications.” 

Theory 

We shall assume, initially, that  the cylinder is uniformly 
magnetized in the  hard direction and  the resulting poles 
concentrated at  the edges of the  thin films at either end of 
the cylinder (Fig. 1). The elemental pole may be given by: 

d m  = X(R)RdRdB, (1) 
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Figure 1 Uniformly magnetized cylinder. 
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Figure 2 Concept of superposed  cylinders adopted 
for the  analysis. 

where X(R) is the magnetic  charge surface density and R 
and 0 are  as shown in Fig. 1. 

Assuming the film to be infinitesimally thin, the field 
associated with the elemental  pole at some distance r from 
the pole is 

dH = - d e r , ,  mo 
2ar2 

where mo is the  total pole strength of the uniformly  mag- 
netized  cylinder and ra is the unit vector  in the r direction. 
Taking only the component of the field parallel to the 
cylinder  axis and adding the contributions over 2a for 
both ends of the cylinder, we  have 

where 

~ r12 = ( 1  - P ) ~ ( L / ~ ) ~  + 2R2(1 - cos 0) 

r2’ = (1 + p)*(L/2)’ + 2R2(1 - cos 0) 

and p is the decimal part of the half-length of the cylinder, 
L/2. The value p denotes the position of the cylinder at 
which H s  is determined. The pole strength, mo, at the 

ends of the cylinder may  be expressed as 

mo = ZatRAM,  (4) 

where t is the film  thickness and AM is (for the single 
cylinder) the difference in magnetization between the 
magnetic  cylinder and air. Combining (4) with (3) and 
carrying out the integration over 0, we have 

where 

k12 = 4R2 

[$ ( 1  - p ) r  + 4R2 

and 

and E(k) is the complete elliptic integral of the first kind. 
(The foregoing result was obtained in a different manner 
by T. H. O’Dell.3) 

Now if  we replace the single  cylindrical  shell  of  Fig. 1 
by N coaxial  cylindrical  shells in superposition (Fig. 2), 
each of a different length (n /N) /L and with  different  uni- 
form magnetization, we may add their contributions 
vectorially to obtain the total demagnetizing  field: 

N 

where 

(the choice of  sign  in Hs(n) is that of the term ( n / N  - p )  
in kl),  where 

k,’ = 
4R2 

[ L  2 N  - p ) ] ’  + 4R2 ’ 

4 R2 

[$’ (% + P ) ]  + 4R2 

kZ2 = 

and 

AM,, = M,, - M,,+l. 

The value for M, may  be found from basic  magnetics, 
since 4aM = pH. The permeability, p, for a uniaxial  film 
to saturation, in  the  hard direction, is approximately 
M,/H, and unity beyond saturation.’ The magnetizing 
field, H ,  is  given as  the sum of the applied field, Ha, and 
the demagnetizing  field, HD. We have 131 
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We may, if  we wish, express (6) succinctly in the  form of 
an integral : 

where 

and 

x 3 -  n 
N' 

where x is now the dummy variable for p and represents 
the pole position. It is immediately seen from (6) and (8) 
that  as  the pole position, x, nears the observer position, p ,  
a singularity exists in the expressions. However, it is evi- 
dent (in the  true physical picture) that such a singularity 
does not occur, since the sum of the components of the 
demagnetization factor  cannot exceed 47r. 

The singularity is removed by invoking the Cauchy 
Principal Value Theorem: 

where P is the Cauchy principal value. If we consider the 
region within some arbitrary  radius of the observer, the 
principal value of the contribution from  that region is 
seen, from  Eq. (4), to depend on the second derivative 
change of the magnetization through the region, P a 
d2Mx/C3x2 since a  contribution to H,, from  the region, 
can occur only if the pole  strength on  one side of the 
singularity differs from that  on the  other side. The second 
derivative, in general, will be quite small and  the contri- 
bution to the demagnetization may be ignored. 

The singularity is avoided in our solution by adopting 
an observer position between the concentric ring charges 
and ignoring any contribution to the field that may have 
resulted by the material in  that region. 

Applications 

Equation (6) was applied to typical problems involving 
uniaxial cylindrical shells. Only the results of the com- 
puter solution to (6) will  be discussed here. A discussion 
concerning the method of computation  is found in the 
Appendix. 

The driving fields applied to the cylinders are either 
uniform or  are those arising from a current  through one 
or more line-current drives in  the  form of wire loops. The 
equation  for uniform drive is adjusted so as  to saturate 
only the center of the cylinder: 

132 Ha = H D  + HK. (9) 
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Figure 3 Uniform drive field. A cylindrical uni- 
axial thin film is driven  by a uniform  drive 
field so as to saturate  only the central region 
of the cylinder ( E q .  9 ) .  The demagnetizing 

fields are shown as calculated by assuming 
the film to be  uniformly magnetized and 
by the method of superposed cylindrical 
sheets. The resulting magnetization, H .  + 
H D ,  is also shown.  The parameters are L = 
50 mils, D = 20 mils, t = 0.02 mils, M ,  
= 640  gauss/4~,  H,G X 3.5 oe, H .  = HD 
( p  = 0 )  + H,.  

HD is at  the point p = 0. 
The equation  for the wire loop drive is4 

where K and E are elliptic integrals of the first and second 
kinds, respectively, and 

k2 = 4aR 

(a  + R)2 + ( p  $r' 
Also Z is the driving current and a the distance from the 
surface of the cylinder to the wire loop. 

A  comparison is made in Fig. 3 between the demag- 
netizing fields calculated from (6) and the  equation for a 
uniformly magnetized model, in order to show the large 
error  that may exist over the entire cylinder due  to  the 
simple model. The calculated demagnetizing field from (6) 
is found to approach an asymptotic value rapidly with 50 
superposed cylinders and is given here for  a model com- 
posed of 70 superposed cylinders. It is, of course, not 
surprising that a very large error is found at  the ends of 
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Figure  4 One-wire loop drive. A cylindrical uni- 
axial thin film is  driven  by a  single wire 
loop located mid way between  the  ends and 
the  demagnetizing  field and magnetization 
calculated by the  method o f  superposed cy- 
lindrical sheets. The parameters  are L = 
100 mils, D = 50 mils, t = 0.024 mils, 
a = 5 mils, M ,  = 800 gauss /4~ ,  HIS = 
3.5 oe, I = 1.2 amp and  b = 0. 

the cylinder. The 60% error found at  the center of the 
cylinder may, however, be unexpected, and is due to the 
distribution of the poles toward the center from  both ends. 
That  the poles are distributed is easily seen from the 
magnetization curve (Ha + HD), calculated from the 
demagnetizing field derived from (6). That  the magnetiza- 
tion is zero at the very ends of the cylinder may not be 
factual and represents only the change in magnetization 
between the 70th cylinder and  the region of nonmagnetic 
material beyond. 

It is apparent  from (7) and (8) that  the shape of the 
demagnetizing field  is as much a function of the geometry 
of the applied field as of the geometry of the magnetic 
cylinder. For  that matter, if the cylinder is very long, the 
shape of the demagnetizing field is a function of the ap- 
plied  field geometry only. This is demonstrated in Figs. 4 
through 6, where the applied field is derived from one 
or more wire loops expressed  by Eq. (10). A line-current 
drive in the  form of a single-wire loop positioned at the 
center of the cylinder is shown in Fig. 4. The driving 
field at the ends of the cylinder is not sufficient to cause 
saturation. As a consequence, the peak of the demag- 
netizing field occurs towards  the center, where the mag- 
netization deviates from  saturation. In Fig. 3, where the 
driving field was uniform, the peak occurred at the ends 
of the cylinder, even though the cylinder was saturated 
only at  the center. The dotted curve in the Figures indi- 
cates the applied field needed to saturate, in that region, 
for the magnetization configuration shown. All energy 
used in creating the fields beyond this  point is, of course, 
of no avail. 

A two-wire drive is shown in Fig. 5 ,  where the wires 
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Figure 5 Two-wire loop drive. A cylindrical uni- 
axial thin film is  driven  by  two  wire  loops 
located midway on either side of center  and 
the  demagnetizing field and magnetization 
calculated  by the  method of superposed cy- 
lindrical sheets. Parameters  are  the  same 
as   for  Fig. 4, except I = 0.3 amp  and b = 
k0.2.5 L inch. 
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Figure 6 Three-wire loop drive. A cylindrical uni- 
axial thin film is  driven by  a single wire loop 
at  the  center  and  two wire loops  midway 
on either side (all  with  equal  currents) and 
the  demagnetizing field and magnetization 
calculated  by the  method of superposed cy- 
lindical  sheets. Parameters are the  same as 
for  Fig. 4 except I = 0.4  amp  and b = 
k0.75 L. 0. 

are placed at the midpoint on either side of the center. 
The driving current is intentionally low in  order to demon- 
strate  the usefulness of Eq. (6). The “unpredictable” 
nature of demagnetizing fields is now readily seen, while 
the configuration of the resulting magnetization curve is 
as expected. 133 
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Finally, a three-wire loop drive  is  shown in Fig. 6,  
where the magnetization now approaches that of uniform 
magnetization, and the demagnetizing  fields approach that 
of the simple  model  of Eq. (5). 

Summary 

The demagnetization of a nonuniformly  magnetized  uni- 
axial  cylindrical  sheet can be found everywhere on the 
cylinder by the use  of  Eq. (6). It is  of  interest to note that 
the accuracy of the solution is not dependent on the dis- 
tance from the ends of the cylinder, but rather on the 
spacing between the superposed  cylinders of the model 
and the slope of the magnetization. It was also  shown that 
the configurations of the demagnetization  over the length 
of the cylinder  was as strongly  influenced by the con- 
figuration of the applied field as the geometry  of the 
cylinder  (exclusive  of the thickness). The foregoing  method 
may  be  applied to other film  geometries. 

Appendix. Solution of the nonlinear integral 
equation 

The integral equation for the demagnetization (Eq. 8) is 
nonlinear in form, and may  be  complicated  still further 
where the applied  field, Ha, is  allowed to vary  with the 
demagnetization, HD. This may  be  expressed in general 
form  as 

A solution to the nonlinear  integral equation can be 
found by standard numerical  methods. The “direct  iter- 
ative” approach (where the solution of y(p)  is  successively 
fed  back into the integral)  converges, but onto a loop 
where the spread in y (p )  is  much too large to be  considered 
a solution. Rather than reduce the loop of convergence, 
it was  deemed advisable to try other methods of solution. 

A solution by “matrix methods”  is not possible  where 
the set of equations is  homogeneous,  because the determi- 
nant of the set of equations does not vanish. A solution 
to the nonlinear  integral equation can be found through 
the use  of  “direct  search”.6 In direct search, a point  (in 
this case the slope at the point) is  varied and a compari- 
son  is  made between the input curve and the generated 
curve. If the change in the point is such so as to reduce 
the area between the curves, the change  is  stored and the 
succeeding points are tested.  Finally, all the changes are 
inserted into the function. A pattern has now  been estab- 
lished and is  repeated until the area between the input 
curve and generated  curve is no longer  reduced. A new 
pattern is  now  found and the procedure  is  repeated. In 

order to apply the method of direct  search, the integral 
(1  1) is put into a set of simultaneous equations : 

This set of simultaneous equations may  be  reduced to 
the equivalent  set : 

Y(P)  = Y*(P> = R(P) + 2 K(P,  x - :) 
z = ( a + A z )  

X [Z(x) + Y ( X >  - Z(x - Ax) - Y ( X  - Ax)], (1 3) 
where R(p) is the residue at any  point. In each of the 
simultaneous equations, the kernel, K, is evaluated at the 
center of each  segment  (avoiding the singularities),  whereas 
the boundary conditions of each  segment  determines the 
slope of the function at the center of each  segment.  In 
that the function Z + y represents the magnetization of 
the cylinder, it must  be  bounded by H,; that is, the mag- 
netic  material  is  permitted to saturate. 

A solution to the set  of equations is  obtained when 
y(p)  = y*(p)  that is,  when the residues R(p) vanish.  The 
residues are, therefore,  used to determine the degree of 
fit  between the assumed  curve and the generated curve. 
The residues are summed as their  squares, and the sum  is 
reduced to zero: 

N 

S = R i 2  

in the manner  already  described. 

% = 1  
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