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Magnetization of Uniaxial Cylindrical Thin Films

Abstract: An analysis is given of the magnetization of a eylindrical thin film exhibiting a uniaxial anisotropy

in the circumferential direction. The magnetization and demagnetizing fields are derived for the cylinder

where the magnetization is not uniform. The derivation is accomplished by dividing up the cylinder into a

large number of uniformly magnetized, coaxial cylindrical regions in superposition and by integrating their

individual contributions. Some applications of the derivation are shown for several specified field geom-

etries. The technique of superposition may be applied to other film geometries.

Introduction

In order to properly understand the performance of a
magnetic device it is often necessary to be able to describe
in detail the magnetization and demagnetizing fields in
the magnetic medium. We certainly cannot hope to de-
scribe all fields and variations in the magnetization; how-
ever, certain fields important to the operation of the device
may be derived. One of these is the field resulting from
the shape anisotropy, that is, the demagnetizing field.

We will consider here a uniaxial! cylindrical thin film,
i.e., a cylindrical sheet in which a uniaxial anisotropy
exists in the circumferential direction. The “hard” direc-
tion of magnetization then will lie parallel to the cylinder
axis. The film, in general, is switched so that the entire
film is aligned in one direction. Actually, this is true only
from the macroscopic viewpoint since the microscopic
magnetization will vary appreciably with variations in the
film structure.? In that this is in a circumferential direc-
tion, no poles will exist (other than stray poles*), since
the magnetization closes on itself. To reverse the mag-
netization of the film, the magnetization is driven into the
hard direction, thereby forming poles at the ends of the
cylinder. These poles result in a demagnetizing field which,
in turn, reduces the magnetization in that direction. It
is these demagnetizing fields in which we are primarily
interested and which we shall derive.

While the accurate solution of demagnetizing fields of
ellipsoidal geometries may be found in the literature, the
accurate solutions of other geometries are virtually un-
known. It is often customary in the solution of nonuni-
form magnetization problems, involving shape anisotropy,

%We ignore any contribution from the exchange coupling, which
may be shown to be negligible for practical memory applications.
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to assume the magnetic medium to be uniformly magne-
tized and to argue that the result in the central region will
be reasonably accurate. The edges are expected to be very
inaccurate. Some authors® reduce the edge inaccuracies
by treating them separately. However, where the length-
to-thickness ratio of the magnetized material is small,
serious errors may result in the central region as well.

Since we desire an accurate derivation of the magneti-
zation and the demagnetizing fields everywhere, a solution
must be found in which the accuracy is independent of
the position. In our method of solution, the magnetized
cylinder is replaced by a large number of uniformly mag-
netized coaxial cylindrical sheets of different lengths in
superposition. The contributions from all the cylindrical
sheets are integrated to give the demagnetizing fields, and
consequently the magnetization, everywhere over the
magnetized cylinder. The accuracy of the solution is seen
to be dependent only on the number of coaxial cylinders
chosen and the rate of change of the magnetization
through the point, and is independent of the position of
the point on the cylinder in reference to an edge.

As a demonstration of the usefulness of the derivation
several practical cylindrical geometries and driving fields
are treated in the section entitled *“Applications.”

Theory

We shall assume, initially, that the cylinder is uniformly
magnetized in the hard direction and the resulting poles
concentrated at the edges of the thin films at either end of
the cylinder (Fig. 1). The elemental pole may be given by:

dm = N(R)RARdS, (1)
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Figure 1 Uniformly magnetized cylinder.
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Figure 2 Concept of superposed cylinders adopted
for the analysis,

where A(R) is the magnetic charge surface density and R
and 6 are as shown in Fig. 1.

Assuming the film to be infinitesimally thin, the field
associated with the elemental pole at some distance r from
the pole is

dH = " dfr, , ©)
2xr

where m, is the total pole strength of the uniformly mag-
netized cylinder and r, is the unit vector in the r direction.
Taking only the component of the field parallel to the
cylinder axis and adding the contributions over 27 for
both ends of the cylinder, we have

moL [°” (1 —p 14 ,,)
H = —= B T B
s(p) o fo i + o de, (3)
where
n® = (1 — p)*(L/2)" + 2R*(1 — cos 6)

r® = (1 + p)%(L/2)* + 2R*(1 — cos 6)

and p is the decimal part of the half-length of the cylinder,
L/2. The value p denotes the position of the cylinder at
which H; is determined. The pole strength, m,, at the

ends of the cylinder may be expressed as

me = 2mtRAM, 0)

where ¢ is the film thickness and AM is (for the single
cylinder) the difference in magnetization between the
magnetic cylinder and air. Combining (4) with (3) and
carrying out the integration over 6, we have

_tAM|  K°Ek) ko E(k,)
H; = 2y1/2 2n1/2 |?
R LU -k (1 — k%)

i [§ (1 + ,,)]2 +oart ®

and E(k) is the complete elliptic integral of the first kind.
(The foregoing result was obtained in a different manner
by T. H. O’Dell.®)

Now if we replace the single cylindrical shell of Fig. 1
by N coaxial cylindrical shells in superposition (Fig. 2),
each of a different length (n/N)/L and with different uni-
form magnetization, we may add their contributions
vectorially to obtain the total demagnetizing field:

Hp(p) = X; H;(n), (6)
where

_ 1AM, k2E(K,) ks E(ks) ]
H;(n) R [:b(l — k12)1/2 a- k22)1/2

(the choice of sign in H,(n) is that of the term (n/N — p)
in k,), where

4R’
o = Li{n 2 ’
[5 (% - P)] + 4R
4R?
k22 - Li{n ?
[5 (5 + Pﬂ + 4R’
and

AMﬂ = Mn - Mn+1'

The value for M, may be found from basic magnetics,
since 4rM = uH. The permeability, u, for a uniaxial film
to saturation, in the hard direction, is approximately
M,/H, and unity beyond saturation.! The magnetizing
field, H, is given as the sum of the applied field, H,, and
the demagnetizing field, Hp. We have
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Mn = HK

[Hap) + Hp(p)] for Ho+ Hp < He

M, for H,+ H, > Hg

We may, if we wish, express (6) succinctly in the form of
an integral:

Hy(p) = ]; K(p, x) % [M(x)] dx (8)
where
ool ki (k) ks’ E(ks) }
K(P’ ) R |:Z|:(1 . klz)l/z (1 _ k22)1/2
and
= N
x =0

where x is now the dummy variable for p and represents
the pole position. It is immediately seen from (6) and (8)
that as the pole position, x, nears the observer position, p,
a singularity exists in the expressions. However, it is evi-
dent (in the true physical picture) that such a singularity
does not occur, since the sum of the components of the
demagnetization factor cannot exceed 4.

The singularity is removed by invoking the Cauchy
Principal Value Theorem:

! oM
Hp(p) = Pf K(p, x) — dx,
0 ox

where P is the Cauchy principal value. If we consider the
region within some arbitrary radius of the observer, the
principal value of the contribution from that region is
seen, from Eq. (4), to depend on the second derivative
change of the magnetization through the region, P «
9°Mx/dx" since a contribution to Hp, from the region,
can occur only if the pole strength on one side of the
singularity differs from that on the other side. The second
derivative, in general, will be quite small and the contri-
bution to the demagnetization may be ignored.

The singularity is avoided in our solution by adopting
an observer position between the concentric ring charges
and ignoring any contribution to the field that may have
resulted by the material in that region.

Applications

Equation (6) was applied to typical problems involving
uniaxial cylindrical shells. Only the results of the com-
puter solution to (6) will be discussed here. A discussion
concerning the method of computation is found in the
Appendix.

The driving fields applied to the cylinders are either
uniform or are those arising from a current through one
or more line-current drives in the form of wire loops. The
equation for uniform drive is adjusted so as to saturate
only the center of the cylinder:

132 Ha = HD + HK-
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Figure 3 Uniform drive field. A cylindrical uni-
axial thin film is driven by a uniform drive
field so as to saturate only the central region
of the cylinder (Eq. 9). The demagnetizing
fields are shown as calculated by assuming
the film to be uniformly magnetized and
by the method of superposed cylindrical
sheets. The resulting magnetization, H, -+
H,, is also shown. The parameters are L —
50 mils, D = 20 mils, t = 0.02 mils, M,
= 640 gauss/4=w, H, — 3.5 oe, H, — H,
(P = 0) 4 H.

H), is at the point p = 0.
The equation for the wire loop drive is*

4 1

o @t rr+ (s Lyl
rely

K+(a—R>2+<p§>2E W

where K and E are elliptic integrals of the first and second
kinds, respectively, and

H, =

kg _ 4aR

R+ (o %)

Also I is the driving current and a the distance from the
surface of the cylinder to the wire loop.

A comparison is made in Fig. 3 between the demag-
netizing fields calculated from (6) and the equation for a
uniformly magnetized model, in order to show the large
error that may exist over the entire cylinder due to the
simple model. The calculated demagnetizing field from (6)
is found to approach an asymptotic value rapidly with 50
superposed cylinders and is given here for a model com-
posed of 70 superposed cylinders. It is, of course, not
surprising that a very large error is found at the ends of
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Figure 4 One-wire loop drive. 4 cylindrical uni-
axial thin film is driven by a single wire
loop located mid way between the ends and
the demagnetizing field and magnetization
calculated by the method of superposed cy-
lindrical sheets. The parameters are L —
100 mils, D — 50 mils, t — 0.024 mils,
a = 5 mils, M, = 800 gauss/4w, H, —
3.50e, 1 =12 ampand b — 0.

the cylinder. The 609, error found at the center of the
cylinder may, however, be unexpected, and is due to the
distribution of the poles toward the center from both ends.
That the poles are distributed is easily seen from the
magnetization curve (H, + H)p), calculated from the
demagnetizing field derived from (6). That the magnetiza-
tion is zero at the very ends of the cylinder may not be
factual and represents only the change in magnetization
between the 70th cylinder and the region of nonmagnetic
material beyond.

1t is apparent from (7) and (8) that the shape of the
demagnetizing field is as much a function of the geometry
of the applied field as of the geometry of the magnetic
cylinder. For that matter, if the cylinder is very long, the
shape of the demagnetizing field is a function of the ap-
plied field geometry only. This is demonstrated in Figs. 4
through 6, where the applied field is derived from one

Figure 5 Two-wire loop drive. A cylindrical uni-
axial thin film is driven by two wire loops
located midway on either side of center and
the demagnetizing field and magnetization
calculated by the method of superposed cy-

lindrical sheets.

Parameters are the same

as for Fig. 4, except I —= 0.3 amp and b —

+0.25 L inch.
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Figure 6 Three-wire loop drive. A cylindrical uni-
axial thin film is driven by a single wire loop
at the center and two wire loops midway
on either side (all with equal currents) and
the demagnetizing field and magnetization
calculated by the method of superposed cy-
lindical sheets. Parameters are the same as
for Fig. 4 except I = 0.4 amp and b =
+=0.75L, 0.

or more wire loops expressed by Eq. (10). A line-current
drive in the form of a single-wire loop positioned at the
center of the cylinder is shown in Fig. 4. The driving
field at the ends of the cylinder is not sufficient to cause
saturation. As a consequence, the peak of the demag-
netizing field occurs towards the center, where the mag-
netization deviates from saturation. In Fig. 3, where the
driving field was uniform, the peak occurred at the ends
of the cylinder, even though the cylinder was saturated
only at the center. The dotted curve in the Figures indi-
cates the applied field needed to saturate, in that region,
for the magnetization configuration shown. All energy
used in creating the fields beyond this point is, of course,
of no avail.

are placed at the midpoint on either side of the center.
The driving current is intentionally low in order to demon-
strate the usefulness of Eq. (6). The ‘“unpredictable”
nature of demagnetizing fields is now readily seen, while
the configuration of the resulting magnetization curve is

A two-wire drive is shown in Fig. 5, where the wires

as expected.

MAGNETIZATION
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Finally, a three-wire loop drive is shown in Fig. 6,
where the magnetization now approaches that of uniform
magnetization, and the demagnetizing fields approach that
of the simple model of Eq. (5).

Summary

The demagnetization of a nonuniformly magnetized uni-
axial cylindrical sheet can be found everywhere on the
cylinder by the use of Eq. (6). It is of interest to note that
the accuracy of the solution is not dependent on the dis-
tance from the ends of the cylinder, but rather on the
spacing between the superposed cylinders of the model
and the slope of the magnetization. It was also shown that
the configurations of the demagnetization over the length
of the cylinder was as strongly influenced by the con-
figuration of the applied field as the geometry of the
cylinder (exclusive of the thickness). The foregoing method
may be applied to other film geometries.

Appendix. Solution of the nonlinear integral
equation

The integral equation for the demagnetization (Eq. 8) is
nonlinear in form, and may be complicated still further
where the applied field, H,, is allowed to vary with the
demagnetization, Hp. This may be expressed in general
form as

oF dy

o = [ " Ko, x)[g + a—x] ix. (11)

A solution to the nonlinear integral equation can be
found by standard numerical methods. The “direct iter-
ative” approach (where the solution of y(p) is successively
fed back into the integral) converges, but onto a loop
where the spread in y(p) is much too large to be considered
a solution. Rather than reduce the loop of convergence,
it was deemed advisable to try other methods of solution.

A solution by “matrix methods” is not possible where
the set of equations is homogeneous, because the determi-
nant of the set of equations does not vanish. A solution
to the nonlinear integral equation can be found through
the use of “direct search™.s In direct search, a point (in
this case the slope at the point) is varied and a compari-
son is made between the input curve and the generated
curve. If the change in the point is such so as to reduce
the area between the curves, the change is stored and the
succeeding points are tested. Finally, all the changes are
inserted into the function. A pattern has now been estab-
lished and is repeated until the area between the input
curve and generated curve is no longer reduced. A new
pattern is now found and the procedure is repeated. In
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order to apply the method of direct search, the integral
(11) is put into a set of simultaneous equations:

¥(p) = bZ K<p, x — %)

z=(a+Axzx)

Z(x) — Z(x — Ax) | y(x) — y(x — Ax)
X [ Ax * Ax ]Ax' (12

This set of simultaneous equations may be reduced to
the equivalent set:

o) = 0) = R+ > K{pox - S‘f)

z=(a+Axz)

X [Z2(x) + »(x) — Z(x — Ax) — y(x — Ax)], (13)

where R(p) is the residue at any point. In each of the
simultaneous equations, the kernel, K, is evaluated at the
center of each segment (avoiding the singularities), whereas
the boundary conditions of each segment determines the
slope of the function at the center of each segment. In
that the function Z - y represents the magnetization of
the cylinder, it must be bounded by H,; that is, the mag-
netic material is permitted to saturate.

A solution to the set of equations is obtained when
¥(p) = y*(p) that is, when the residues R(p) vanish. The
residues are, therefore, used to determine the degree of
fit between the assumed curve and the generated curve.
The residues are summed as their squares, and the sum is
reduced to zero:

N
S = > R}
i=1

in the manner already described.
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