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Propagation of Torsional Disturbances
in a Homogeneous Elastic Sphere

Abstract: Localized torsional stress is applied on the surface of a homogeneous elastic sphere for a short
duration of time. The propagation of the disturbance caused by this stress is calculated numerically by
superposing the normal mode solutions. The phases of the body waves and surface waves are obtained.

Symbols

a radius of the sphere

r, 0,0 radial distance, colatitudinal angle and azi-
muthal angle

u, v, w radial, colatitudinal and azimuthal com-

ponents of the displacement
f(H), ®(6, ¢) time and space distributions of the source

function
i,n mode number and order of harmonics
P frequency
Ve, Vs velocity of P and S waves
k = plVs
J. Bessel function
A i Lamé constants

1. Introduction

A basic problem in the field of theoretical seismology
is to prescribe a localized stress within or on the surface
of an elastic medium and to determine the propagation
of disturbances transmitted from this source. Such a
problem for a half-space bounded by a plane, free sur-
face is an historically famous one, which was solved by
H. Lamb? in 1904. Since then many similar papers have
been published, most of them being concerned with the
case of one or more parallel plane boundaries.

In this paper, a localized shear stress on the surface of
a homogeneous elastic sphere is prescribed. If a similar
kind of stress is prescribed in a region with plane bound-
aries, the surface waves may be viewed as the contribution
from the poles of an integral representation of the solution,
while the body waves may be represented as the contribu-
tion from the branch points. In our present problem,
however, the integral representation of the solution does
not have any branch points. Consequently, all the dis-
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turbances satisfying the boundary conditions are super-
positions of normal mode solutions. Thus the displace-
ments of points on the surface are obtained by calculation
of the residues. The ray paths and notations for the
various waves are shown in Fig. 1. Subsequent Figures
give numerical results for the surface displacements.

2. Propagation of the torsional disturbance

The solution of the equation of motion of a homogeneous

Figure 1 Ray paths and the notations of various
phases of § waves.
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elastic solid is given by

D = 0® + 1@ + 2@
= grad ® + rot (r-,¥, 0, 0)
-+ rot rot (r-,¥, 0, 0),

where © implies the displacement vector. ®, ¥ and ¥
are the functions satisfying the wave equations

Ve = V77 9"/ o8
V¥ = vyt ol w/or (i=1,2).

oD = grad & gives the dilatational wave, ;9 = rot-
(r-¥, 0, 0) the rotational wave of the first kind and
2D = rot rot (r- ¥, 0, 0) that of the second kind.

The problem we discuss is as follows: Without employ-
ing the dilatational wave, satisfy the boundary conditions

/r-r\=>\diV@+2p.Q
or

= ﬁ(tz) 19u
’0"‘{rar r +r30}

— 1
- dtst e 2

r sin 0 O
= ®(0,0)-f(t) at r = a. (2.1)

This is a special case of Problem S given in our previous
study.? If we confine attention to axisymmetric boundary
data, then

(8, ¢) = ®°(cos 6), (2.2)
and we have the simplified formulae
7 =0,
u =0,
v=20,
wip) = — ; B,,O-g,,-a%9 P,(cos 6), (2.3)
where
B, = §'/E
E;, = urd(g./r)/dr

0 P R P 0
¢, = K, T {sin 6-®°(cos 6)}

X (P,/sin 8)d(cos 6)

K = (2n+ 1)/{2n(n + 1))

g = (kr) " Juykr), k = p/Vs. 2.4

In order to satisfy the boundary condition (2.1), we
integrate the expression given in (2.3), namely

w = [ i w(p)f*(p) exp (jpr)dp, (2.5)

—0

where f*(p) is the Fourier transform of the function
f(H),andj= vV —1.

Since there are no branch points in the integrand of (2.5),
this integral can be evaluated by contour integration and
is given by the expression

2
Il

— X b L peos ) [ (/BN
X exp (jpr)dp

Vs (z)""’ o d
e PIER 10 P,

r n

Jn+=}(kr)
X IZ l:%]m»%(ka)'l"{(”_1)(”+%)(ka)_l‘ka} Jn+%(ka)

X f*(p) exp (jpt):l (2.6)

P=1iDPn

in which 7 is the mode number. (When f*(p) has any poles
the residues which come from those singularities should
be taken care of.) The roots .p, of the characteristic
equation,

E2=0’

were previously obtained by the present authors.?
The real part of the above expression is used for the
numerical computation.

(2.7)

3. Numerical computation

In carrying out the numerical computation, we put

®°(cos §) = 1 6, < 6< 8,

0 6<6, 6, <8 (3.1)
10 =102 —-n<t<n

0 < —t, 4 <t (3.2)

For the function of time f(¥) given above, we have

[*(p) = (sin pt1)/p (3.3)

and, in the numerical work, the following values for the
parameters in (3.1)-(3.2) were assumed:

6, = 0.02,
t, = 0.015. (3.4

In the last expression, the unit of time is taken to be
2walVs = (circumference of the sphere/shear wave
velocity).

The azimuthal displacement ,w, on the surface, which
is the contribution of the ,T, mode, is computed as a
function of time. The total displacement w = (,w,) is
obtained by summing the contributions from all the modes
up to and including ;T,.

The computation was carried out for 300 modes, with
i=5and n= 60, i.e, sweo= 2 2., 2.8, ;w,. In Fig. 2,
however, we show not only (swe) (solid line), but also
(1weo) (broken line) and (;wyo) (chain line). The disturbance
for very small values of time is not accurate.

02 = 0.04,
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Figure 3 Azimuthal displacement on the equator
(8 = 90°).
w = (We). Unit of time is (2ma/Vs).

Figure 4 Ray path of waves passing the very deep
part of the spherical medium.

Arrows show the arrival times of various body waves
calculated by means of geometrical optics. The notation
nSm denotes the S wave which has reflected (n — 1)
times at the surface and which has arrived at a point
having epicentral distances 2mx + 6 or Cm + Dmr — 6
after the wave has traveled along the minor (—) or major
(+) arc (see Fig. 1). Comparing (:we) and (swe) in Fig. 2,
we notice that the body waves appear more strongly in
the latter than in the former. This means that, in general,
higher modes of free oscillation give rise mostly to body
waves and lower modes to surface waves. This can be also
inferred from the Figure in our previous work,¢ which
shows that higher modes have a larger amplitude in the
interior of a sphere than lower modes. It may also be
observed from Fig. 2 that the wave S at 6§ = 150°, 165°
and the wave SS-+ at 15°, 30° can hardly be distinguished.
If we draw the rays of these waves which deeply penetrate
the sphere, the above observation indicates that our
computation, taking into account only the modes ;T, up
to i = 5, n = 60, is not sufficiently accurate to determine
the nature of a deep body wave (See Fig. 1).

Within certain limitations, our model for the elastic
sphere might be applied to seismological problems. In
this respect, it is worth mentioning that, for certain points,
the curves G1 and G3, G2 and G4 have similar features
except for their signs. (See Fig. 3, which is the disturbance
for 6 = 90°, w = (1wg).) This similarity is caused by the
polar phase shift discovered by Brune, Nafe, and Alsop.?
(See Fig. 4.)

Figure 5 is a three-dimensional figure of (;wy,) showing
how the wave is propagated on the surface of a sphere.
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Figure 5 Three-dimensional Figure of (iws).
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