
Yasuo  Sat6 * 

Propagation of Torsional Disturbances 
in  a  Homogeneous Elastic Sphere 

Abstract: localized torsional stress is applied on  the  surface of a homogeneous  elastic  sphere for a short 

duration of time. The propagation of  the  disturbance  caused by this  stress is calculated numerically by 

superposing  the normal mode solutions.  The  phases of the body waves and surface waves are obtained. 

Symbols 

a radius of the sphere 
r,  4 cp radial distance, colatitudinal angle and azi- 

4 v, w radial,  colatitudinal and azimuthal com- 
muthal angle 

ponents of the displacement 

function 
f(t), a( 0, cp) time and space distributions of the source 

i, n mode  number and  order of harmonics 
P frequency 
Vp , Vs velocity of P and S waves 
k = PiVS 
J" Bessel function 
1, P Lam6 constants 

1. Introduction 

A basic problem in the field of theoretical seismology 
is to prescribe a localized stress within or  on  the surface 
of an elastic medium and to determine the propagation 
of disturbances  transmitted from this source. Such a 
problem  for a half-space bounded by a plane, free  sur- 
face is an historically famous  one, which was solved by 
H. Lamb1 in 1904. Since then many similar papers have 
been published, most of them being concerned with the 
case of one  or more parallel plane boundaries. 

In this  paper, a localized shear stress on the surface of 
a homogeneous elastic sphere is prescribed. If a similar 
kind of stress is prescribed in a region with plane  bound- 
aries, the surface waves may be viewed as  the contribution 
from  the poles of an integral  representation of the solution, 
while the body waves may be  represented as  the contribu- 
tion  from  the branch points. In  our present problem, 
however, the integral representation of the solution  does 
not have any branch  points. Consequently, all the dis- 
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turbances satisfying the  boundary conditions are super- 
positions of normal  mode solutions. Thus  the displace- 
ments of points on  the surface are obtained by calculation 
of the residues. The  ray  paths  and  notations  for  the 
various waves are shown  in Fig. 1. Subsequent  Figures 
give numerical results for  the surface displacements. 

2. Propagation of the  torsional  disturbance 

The solution of the equation of motion of a homogeneous 

I 
Figure 1 Ray paths and the notations of various 
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elastic  solid is  given  by 

29 = 0% + 1% + 2% 

= grad @ + rot ( r * l q ,  0 ,  0) 

+ rot  rot (r-2*, 0 ,  0), 
where 29 implies the displacement  vector. @, l@ and # 
are the functions satisfying the wave equations 

V2@ = vp-2 a%/at2 

v2i* = vs-2 dZi*/dt2 ( i  = 1, 2 ) .  

= grad @ gives the dilatational wave, = rot- 
(re #, 0, 0) the rotational wave  of the first  kind and 
&D = rot  rot (re #, 0,O) that of the second  kind. 

The problem we discuss is as follows:  Without  employ- 
ing the dilatational wave,  satisfy the boundary  conditions 

'? = X d i v a  + 2 p z  

Z= p { r $ t )  + +%} 
au 

- rQ = p - -  { r s ~ ~ ~ ~ + r ~  a (9) r 

= @(e, q ) . f ( t )  at r = a. (2 .1)  

This  is a special  case  of Problem S given  in our previous 
study.% If we confine attention to axisymmetric  boundary 
data, then 

+(e, = @"(COS e), (2 .2)  

and we  have the simplified formulae 

rr = 0 ,  

u = 0 ,  

D = 0, 

m 

X (Pn/sin O)d( cos 0) 

K:' = (2n  + 1 ) / ( 2 n ( n  + I ) }  

g, = (kr)-' Jn+&r), k = p /  V,. ( 2 . 4 )  

In order to satisfy the boundary  condition (2.1), we 
integrate the expression  given  in (2.3), namely 

where f * ( p )  is the Fourier transform of the function 
f ( t ) ,  and j = 6. 

Since there are  no branch points in the integrand of (2.5), 
this integral can be evaluated by contour integration and 
is  given  by the expression 

in which i is the mode  number. (When f * ( p )  has  any  poles 
the residues  which  come from those  singularities  should 
be taken care  of.) The roots ipn of the characteristic 
equation, 

were  previously obtained by the present authors.2 

numerical computation. 
The real part of the above  expression  is  used for the 

3. Numerical computation 

In carrying out the numerical computation, we put 

@o(cos e) = 1 el < e < e2 

J ( t )  = 1/(2t , )  " t l  < t < tl 
0 t < -t1, tl < t .  ( 3  .2) 

For the function of time f ( t )  given above, we  have 

and, in the numerical  work, the following  values for the 
parameters in (3.1)-(3.2) were assumed: 

e, = 0.02, e2 = 0.04, 

tl = 0.015. ( 3  -4)  

In the last expression, the unit of time is taken to be 
2sa/Vs = (circumference  of the spherelshear wave 
velocity). 

The azimuthal  displacement iwn on the surface, which 
is the contribution of the {Tn mode,  is  computed as a 
function of time. The total displacement w = (iwn) is 
obtained by summing the contributions from all the modes 
up to and including iTn. 

The computation was carried out for 300 modes,  with 
i = 5 and n = 60, i.e., 6W6o = ~ ~ p l ~ ~ ~ l  iw,. In Fig. 2, 
however,  we show not only (6~60) (solid  line), but also 
(1w60) (broken line) and (lwlo) (chain  line). The disturbance 
for very  small  values  of  time  is not accurate. 
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Figure 3 Azimuthal displacement on the equator 
(e  = 90” ) .  
w = (Iw,). Unit of time is (27ru/V8). 

calculated by means  of  geometrical  optics. The notation 
nSm denotes the S wave  which has  reflected (n - 1) 
times at the surface and which has  arrived at a point 
having  epicentral  distances 2m3r + 0 or (2m + 1)n - B 
after the wave has  traveled  along the minor (-) or major (+) arc (see Fig. 1). Comparing (lw60) and (&w6J in Fig. 2, 
we notice that the body  waves appear more  strongly  in 
the latter than in the former.  This  means that, in general, 
higher  modes of free  oscillation give  rise  mostly to body 
waves and  lower  modes to surface waves. This can be  also 
inferred  from the Figure in our previous  work,*  which 
shows that higher  modes  have a larger amplitude in  the 
interior of a sphere than lower  modes. It may also be 
observed  from  Fig. 2 that the wave S at B = 150”, 165” 
and the wave SS+ at 15”, 30” can hardly be distinguished. 
If we draw the rays  of  these  waves  which  deeply  penetrate 
the sphere, the above  observation  indicates that our 
computation, taking into account only the modes ;T,, up 
to i = 5, n = 60, is not sufficiently accurate to determine 
the nature of a deep  body  wave  (See  Fig. 1). 

Within certain limitations, our model  for the elastic 
sphere  might be applied to seismological  problems. In 
this  respect, it is  worth  mentioning that, for certain points, 
the curves G1 and G3,  G2 and G4 have  similar features 
except for their signs.  (See  Fig. 3, which  is the disturbance 
for B = go”, w = (1w60).) This  similarity  is  caused by the 
polar  phase  shift  discovered by Brune, Nafe, and Alsop.5 
(See  Fig. 4.) 

Figure 5 is a three-dimensional  figure of (lwlo) showing 
how the wave is  propagated on the surface of a sphere. 
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Figure 4 Ray path of waves passing  the very deep 
part of the spherical medium. Received July 2,  1962 119 
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