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W. E. Langlois

The Lightly Loaded Foil Bearing

at Zero Angle of Wrap

Abstract: A method is developed for determining, to the first order, the deflection from a straight path of a
perfectly flexible tape moving near a rigid cylinder. The case of a parabolic cylinder is considered.

Introduction

In most applications of fluid-film lubrication, the lubricant
is contained between two rigid, or nearly rigid, surfaces.
A notable exception is the foil bearing, in which the lubri-
cant is entrained between a rigid surface and a membrane.
Such a bearing is generated, for example, when a record-
ing tape moves rapidly over a read-write head. For a more
familiar example, we may cite the slipperiness and back-
lash of a roll of photographic film which is rapidly wound
or unwound.

This paper treats the foil-bearing problem in two-
dimensions, i.e., an infinitely wide membrane moving over
a rigid cylinder. In the mathematical formulation, as set
out in Section 1, the dynamical equations of the moving
foil are coupled to the Reynolds equation for the pressure
in the lubricant.

In Section 2, a first integral of the lubrication equation
is considered. It is shown that there is a region where the
pressure under the foil is subambient; in this region the
foil is concave away from the cylinder.

The special case of incompressible lubricant and negli-
gible drag is treated in Section 3. The dynamical equation
of the foil is combined with the Reynolds equation, yield-
ing a single, fourth-order, ordinary differential equation
for the fluid film thickness.

In Section 4, we derive the approximate equations which
apply when the bearing effect is small, causing the foil
to deflect only slightly from a straight-line path. In Sec-
tion 5, these equations are applied to the case of a foil
moving near a parabolic cylinder, and the deflected profile
is calculated explicitly.

1. The general problem of the inelastic foil bearing

Previous authors!:?.3 have considered the problem of a
flexible tape moving in proximity to a rigid cylinder, with
a thin film of fluid entrained. The dynamical equations
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governing the motion of the foil are coupled to the lgbri-
cation equation relating the fluid pressure to thelﬁlm
thickness.

The tape is customarily assumed to be a perfectly flex-
ible, completely inextensible membrane. A further as-
sumption, that the center line of the tape lies in a plane
and that the tape itself is perpendicular to this plane, rules
out cases in which the tape is twisted or bowed across its
width. With these assumptions, the equations governing
the motion of the tape are exactly those governing the
motion of an inextensible string constrained to move in a
plane.

Referring to Fig. 2, let T be the tension in the tape and
let F denote the external force per unit area acting on the

Figure 1 The foil bearing.




tape. Denote by X the vector from the origin of reference
to a point on the tape. Since the tape is in motion,

X = X(s, 1), (1.1)

where ¢ is time and s is arc length along the tape measured
from some reference point. The unit tangent vector « is
given by

a = 9X/ds. (1.2)

The total force per unit width acting on a segment of
length As is

—aT + (o + Aa)(T + AT) -+ F As. (1.3)

Passing to the limit of infinitesimal As and:using 1.2),
we obtain

[0/0s(T 0X/3s) + F] ds. (1.4)

If ¢ denotes the mass per unit area of the tape, Newton’s
second law then requires that

0/9s(T 0X/3s) + F = oA, (1.5)

where A denotes the acceleration of the infinitesimal seg-
ment of tape.

The normal and tangential components of (1.5) can be
distinguished by using the relation

3’ X/3s> = — KB, (1.6)

where § is the unit normal, drawn to the right as we pro-
ceed in the direction of increasing s, and K is the curvature
with the sign so chosen that, as we move in the direction
of increasing s, K is positive when the tape is concave to
the left. With (1.2) and (1.6), (1.5) becomes

«(dT/ds) — BKT + F = oA. (1.7)

This paper is restricted to the case of a tape in steady
motion parallel to itself with speed U. Thus, the velocity
V of a point on the tape is given by

V = U, (1.8)
and its acceleration A is given by
A = (dV/ds)s = U’ da/ds = — KU, (1.9)

a purely centripetal acceleration.
We neglect all forces acting on the tape except those
arising from the lubricating film. Thus,

F= —ra+ (p, — p)8 (1.10)

where 7 is the viscous drag on the tape, p, is the pressure
at any point in the lubricating film, and p, is the ambient
pressure. The minus signs in (1.10) are appropriate for a
configuration similar to that illustrated in Fig. 3.
Substituting (1.9) and (1.10) into (1.7), yields the tan-
gential and normal equations of motion for the tape:

dT/ds = , (1.11)
(p; — po) = K(T — aU%). (1.12)

Figure 2 Forces on a segment.

Figure 3 Tape configuration.

With the usual assumptions of steady-state lubrication
theory, the pressure in the fluid film is governed by the
Reynolds equation

(d/ds)(ph® dp,/ds) = 6uU d(ph)/ds, (1.13)

where p and u denote, respectively, the density and vis-
cosity of the lubricant, and 4 is the thickness of the fluid
film.

In addition to Egs. (1.11), (1.12), and (1.13), some as-
sumption must be made about the relationship between
p; and p. In all of the references cited, it is assumed that
the lubricant is incompressible, so that p is constant. In
certain cases, it may be more realistic to assume that the
lubricant is an isothermal gas, so that p is proportional
to p,.

2. A first integral of the lubrication equation
The Reynolds equation (1.13) can be integrated once,
yielding

dp;/ds = 6uU(ph — ¢)/pht’, (2.1)
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where ¢ is a constant of integration. Since

lim A = o, lim p = p,, (2.2)
where p, is the ambient density of the lubricant, (2.1) re-
quires that for | s | sufficiently large, dp/ds > 0. Because

lim p;, = p,, (2.3)
the film pressure is subambient for s large and positive.
Provided the tension 7 never falls below ¢ U2, (1.12) then
requires that the foil be concave away from the cylinder
in the distant portion of the exit region.

This conclusion is based on the assumption that the
Reynolds equation can be applied with negligible error,
even where 4 is large. Strictly speaking, this is invalid, but
where £ is large, the pressure change is slight. The signifi-
cant variation of pressure occurs where the Reynolds
equation can validly be applied.

3. The incompressible foil bearing with negligible
drag

The viscous drag on the tape is negligible compared with
the lubricating pressure whenever uU is small compared
with the minimum value of T — ¢ U2 This is usually the
case in practice.* Equation (1.11) then stipulates that the
tape tension is constant. We shall henceforth assume that
this is the case.

We assume further that the compressibility of the lubri-
cant can be neglected. The fluid density and the ambient
pressure then cease to be relevant guantities, so that (1.12)
and (1.13) become, respectively,

p= K(T — U (3.1)

(d/ds)(h® dp/ds) = 6uU dh/ds, (3.2)

where p is the gage pressure of the fluid, i.e.,

D = Py — Da. (3.3)
The pressure can be eliminated from (3.1) and (3.2):

(T — o Ud/ds)(K® dK/ds) = 6uU(dh/ds). (3.4)

First integrals of (3.2) and (3.4), respectively, are given
by

dp/ds = 6pUh — B¥)/K (3.5)
and
(T — o U”) dK/ds = 6pU(h — h*)/1°, (3.6)

where h* is a constant of integration.

4. Approximate solution for slight deflection

Let us now assume that the presence of the rigid cylinder
causes the tape to deflect only slightly from a straight line.
Thus, we assume that the angle of wrap is zero and that
the pressure loading of the tape is small, in a sense best
defined a posteriori. We specify that the undeflected tape

* Conceivably T — oU? could be negative. This would mean, however,
that the tape is moving faster than its own sound speed, \/T/¢-
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would move along the y = 0 axis of the x-y plane and
that the actual path followed by the tape is the curve

y = 8(x). (4.1)
If the boundary of the rigid cylinder is the curve

y = —h(x) <0, (4.2)
the film thickness is given by

h(x) = ho(x) + 6(x). (4.3)
We require that, for all x,

[8(x)|/ho(x) < 1 (4.4)
and

[6"(x)| < 1. (4.5)

If the arc length s is measured from the point x = 0,
y = 6(0), then

s = f: V1 + [8'(x)] dx. (4.6)

Since, by the requirement (4.4), é'(x) is small compared
with unity, s can be approximated by x. Furthermore,

K~ —8"(%), (4.7)

so that the foil bearing equation (3.4) becomes

a &
dx [(ko + 6) dx3:|

6uU (dhy, = dé
+——<—+—>=o. 4.8
T — oU \dx dx (4-8)

We have not yet used the requirement (4.4); Eq. (4.8) has
been established on the basis of (4.5) only. It is evident
that (4.4) can hold only if the coefficient 6uU/(T — cU?)
in (4.8) is at least of the same order of smallness as §/A,.
To appreciate the physical significance of this, consider
a hypothetical experiment. Let the tape be constrained to
move along y = 0. A bearing force will be generated be-

Figure 4 The slightly deflected foil.

©=hp(x)




tween the surfaces y = 0 and y = — hy(x). Now remove
the constraints, The bearing force will tend to deflect the
tape away from y = 0. This tendency will be resisted by
the straightening effect of the tension in the tape. Thus,
the deflection will be slight only if the tension is high.

Neglecting second-order terms in (4.8), we find that
the deflection is determined by

(T — o UM(d/dx)(h," d’8/dx")
+ (6uU) dho/dx = 0,  (4.9)

subject to appropriate boundary conditions, which must
include the vanishing of the tape curvature at each end
of the lubricating film. Alternatively, we can determine
a pressure field p(x) by integrating the equation
(d/dx)(h,’ dpo/dx) = 6uU dhy/dx, (4.10)
subject to the vanishing of p, at each end of the film, and
then determine the deflection from

(d*8/dx") + po/(T — o U?) = 0. (4.11)
With /4(x) specified, neither of these approaches presents
any conceptual difficulty.

5. An illustration: the deflection of a foil by a
parabolic cylinder

Consider now the specific case in which

ho(x) = G + x°/2R, (5.1)

where G and R are constants. Integration of (4.10) then

yields

5+ 3x9) X:l

1+ x°?

— 2\/2“U\E L. 62
G G+ x9

where 4 and B are constants of integration and X is a
“stretched” coordinate defined by

po = A+ 3[3 arctan X -+

= X/V/2RG.

Figure 5 Location of the tape guides.

Thus, when the only tape guide isat X = L,

and there is a finite deflection at plus infinity.

We assume for simplicity that the parabola (5.1) ex-
tends to =« and, as discussed in Section 2, we ignore the
inappropriateness of the lubrication equation where the
film thickness is large.

We note in passing that the form for /,(x) specified by
(5.1) provides a useful approximation for the case in which
the undeflected path of the foil lies a distance G from a
circular cylinder of radius R.

The pressure p, vanishes at -« if weset A = B= 0
in (5.2). Thus

R L £ TL N L (5.3)
° G G+ x)° '
Integration of (4.11) then yields

_ 2V2uUR
T — ol

) \/g (a4 bXx — arctan X). (5.4)

where a and b are constants of integration.
Let us now assume that the tape is constrained by tape

guides at X = — L/, L, as illustrated in Fig. 5. Thus, the
constants of integration in (5.4) are determined by setting
8{(—L') = §(L) =0, (5.5)
so that
L’ arctan [ — [ arctan L’/
a= L. (5.6)
L+ L
arctan arctan L’/
b = L+ L s (5.7)
L+ L
and
242 wUR [R [ arctan L
5= 2V2uUR : \/*[——(XJrL’)
T—qoU” YGLL A4 L/
arctan L’
4 Aetan Loy 7y — arctan X] (5.8)
L+ L

Consider now a limiting case in which one of the tape
guides is moved infinitely far from X = 0, e.g., let us
assume that L’ — — «, With (5.6),

lim a = arctan L (5.9)

L’'——c0
and, with (5.7),
lim b = 0.

L'o—w

(5.10)

_ 2V2uUR

5
T—olU

\/—é (arctan I/ — arctan X), (5.11)

so that there is a finite deflection at minus infinity. Simi-
larly, when the only tape guide is at X = — L/,

5 = _2\/5uuz_eﬁ
T —oU* VG

-(arctan L’ 4+ arctan X), (5.12)
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If the guides are symmetrically placed at x = + L, then

a=0, (5.9
b = L' arctan L, (5.10)
and

6= 5
(T — o UL

2V2 uUR \/E

G
-( X arctan [, — L arctan X), (5.11)

As L — =, b — 0, so that

5 IR
5= —2V20UR R arctan x
T~ oU® NG

— _2;\/.2_’J’—UR_ Jg arctan x_ (512)

T — U

We have proceeded on the assumption that the method
outlined in Section 4 leads to a valid approximation. By
comparing (5.1) and (5.12), we see that the criterion (4.4)
is satisfied if
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2vV2uU (RY”
T = U (G) L 1. (5.13)

Differentiating (5.12), we see that (4.5) is satisfied if

2uU R
T—aU2G<<1' (5.14)
Since the lubrication approximation requires that G be
small compared with R, the criterion (5.14) is satisfied
whenever (5.13) is satisfied.

By way of example, if the tape moves at a speed of 100
in/sec through air (viscosity 2.7 X 10-¢ 1b sec/in?), and
if R/G = 1000, then (5.13) is satisfied if (T — o U?) greatly
exceeds 2.4 X 10—21b/in.
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