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The  Lightly  Loaded Foil Bearing 
at Zero  Angle of Wrap 

Abstract: A method is developed for determining, to the first order,  the  deflection from a  straight path of a 

perfectly flexible tape moving near a rigid cylinder. The  case  of a parabolic cylinder is considered. 

Introduction 

In most applications of  fluid-film lubrication,  the  lubricant 
is contained between two rigid, or nearly rigid, surfaces. 
A notable exception is the foil bearing, in which the lubri- 
cant is entrained between a rigid surface and a membrane. 
Such a bearing is generated, for example, when a record- 
ing tape moves rapidly over a read-write head. For a more 
familiar example, we may cite the slipperiness and back- 
lash of a roll of photographic film  which is rapidly wound 
or unwound. 

This paper treats the foil-bearing problem in two- 
dimensions, i.e., an infinitely wide membrane moving over 
a rigid cylinder. In the mathematical formulation,  as set 
out in Section 1, the dynamical equations of the moving 
foil are coupled to  the Reynolds equation  for  the pressure 
in the lubricant. 

In Section 2 ,  a first integral of the lubrication  equation 
is considered. It is shown that there is a region where the 
pressure under the foil is subambient; in this region the 
foil is concave away from the cylinder. 

The special case of incompressible lubricant and negli- 
gible drag is treated in Section 3. The dynamical equation 
of the foil is combined with the Reynolds equation, yield- 
ing a single, fourth-order,  ordinary differential equation 
for  the fluid  film thickness. 

In Section 4, we derive the approximate  equations which 
apply when the bearing effect  is small, causing the foil 
to deflect only slightly from a straight-line path. In Sec- 
tion 5 ,  these equations are applied to the case of a foil 
moving near a parabolic cylinder, and the deflected profile 
is calculated explicitly. 

1. The general problem  of  the  inelastic foil bearing 

Previous authors1.2,3 have considered the problem of a 
flexible tape moving in proximity to a rigid cylinder, with 
a thin film of fluid entrained. The dynamical equations 

governing the  motion of the foil are coupled to  the lubri- 
cation  equation relating the fluid pressure to thezfilm 
thickness. 

The  tape is customarily assumed to be a perfectly flex- 
ible, completely inextensible membrane. A further as- 
sumption, that the center line of the  tape lies in a plane 
and  that the tape itself  is perpendicular to this plane, rules 
out cases in which the  tape is twisted or bowed across its 
width. With these assumptions, the equations governing 
the motion of the  tape  are exactly those governing the 
motion of an inextensible string constrained to move in a 
plane. 

Referring to Fig. 2, let T be the tension in the  tape  and 
let F denote the external force per unit area acting on the 

Figure I The foil bearing. 
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tape. Denote by X the vector from the origin of reference 
to a  point on  the tape. Since the  tape is in  motion, 

x = X(s, t ) ,  ( 1  

where t is time and s is arc length along  the  tape measured 
from  some reference point. The unit  tangent vector a: is 
given  by 

a = ax/&. (1.2) 

The  total force per unit width acting on a segment of 
length As is 

-aT + (a + Aa)(T  + A T )  + F As. (1.3) 

Passing to  the limit of infinitesimal As andIusing (1.2), 
we obtain 

[ d / d s ( T  ax/&) 4- F] ds. ( 1  -4) 

If u denotes the mass per unit  area of the tape, Newton’s 
second law then requires that 

a / a s ( T  aX/as) + F = uA, ( 1  3 )  

where A denotes the acceleration of the infinitesimal seg- 
ment of tape. 

The normal and tangential  components of (1.5) can be 
distinguished by using the relation 

d2 X / a s 2  1 - K @ ,  (1 .6) 

where @ is the unit  normal,  drawn to  the right  as we pro- 
ceed in the direction of increasing s, and K is the curvature 
with the sign so chosen that, as we move in the direction 
of increasing s, K is positive when the  tape is concave to 
the left. With (1.2) and (1.6), (1.5) becomes 

a(dT/ds)  - @ K T  + F 1 uA. (1.7) 

This paper is restricted to  the case of a tape in  steady 
motion parallel to itself with speed U. Thus, the velocity 
V of a  point on the tape is  given  by 

v = ua, (1.8) 

and its acceleration A is  given by 

A = ( d V / d s ) i  = U2 da/ds = - K Uz@, ( 1  -9) 

a purely centripetal acceleration. 

arising from  the lubricating film. Thus, 
We neglect all forces acting on the  tape except those 

F =  - TQI + (P, - P a > @ ,  (1.10) 

where T is the viscous drag  on the tape, p ,  is the pressure 
at any point in the lubricating film, and pa is the ambient 
pressure. The minus signs in (1.10) are  appropriate for  a 
configuration similar to  that illustrated in Fig. 3. 

Substituting (1.9) and (1.10) into (1.7), yields the  tan- 
gential and normal  equations of motion for  the tape: 

dT/ds  = r ,  ( 1 . 1  1) 

( p ,  - pa) K(T - u U 2 ) .  (1.12) 

Figure 2 Forces  on a segment. 

Figure 3 Tape  configuration. 

With the usual assumptions of steady-state  lubrication 
theory, the pressure in the fluid film  is governed by the 
Reynolds  equation 

(d/ds)(ph3 dp,/dS) 6~ u d(ph)/ds, (1.13) 

where p and p denote, respectively, the density and vis- 
cosity of the lubricant, and h is the thickness of the fluid 
film. 

In addition to Eqs. ( l . l l ) ,  (1.12), and (1.13), some as- 
sumption  must be made about  the relationship between 
pf and p. In all of the references cited, it is assumed that 
the lubricant is incompressible, so that p is constant. In 
certain cases, it may be more realistic to assume that  the 
lubricant is an isothermal gas, so that p is proportional 
to PI. 

2. A first integral of the lubrication equation 

The Reynolds equation (1.13) can be integrated once, 
yielding 

dp,/ds = 6p U(ph  - c ) / p h 3 ,  (2.1) 113 
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where c is a  constant of integration. Since 

lim h = m , lim p = pa, (2.2) 

where pa is the ambient density of the lubricant,  (2.1) re- 
quires that for I s I sufficiently large, dp/ds > 0. Because 

lim P /  = P., (2.3) 

s-+m S’*W 

s-AW 

the film pressure is subambient for s large and positive. 
Provided the tension T never falls below uU2, (1.12) then 
requires that  the foil  be concave away from  the cylinder 
in the  distant  portion of the exit region. 

This conclusion is based on  the assumption that  the 
Reynolds equation  can be applied with negligible error, 
even where h is large. Strictly speaking, this is invalid, but 
where h is large, the pressure change is slight. The signifi- 
cant variation of pressure occurs where the Reynolds 
equation  can validly be applied. 

3. The  incompressible foil bearing with negligible 

The viscous drag  on  the  tape is negligible compared with 
the lubricating pressure whenever p U  is small compared 
with the minimum value of T - uU2. This is usually the 
case in practice.* Equation (1.11) then  stipulates that  the 
tape tension is constant. We shall henceforth assume that 
this is the case. 

We assume  further that  the compressibility of the lubri- 
cant  can be neglected. The fluid density and  the ambient 
pressure then cease to be relevant quantities, so that (1.12) 
and (1.13) become, respectively, 

drag 

p = K ( T  - u U 2 )  (3.1) 

(d/ds)(h3 dp/ds)  = 6p U dh/ds,  (3.2) 

where p is the gage pressure of the fluid, i.e., 

P = Pf - P a .  (3 .3)  

The pressure can be eliminated from (3.1) and (3.2): 

( T  - u U2)(d /ds) (h3   dK/ds)  = 6p U(dh/ds) .  (3.4) 

First  integrals of (3.2) and (3.4), respectively, are given 
by 

dp/ds  = 6p U(h - h*) /h3  (3 .5)  

and 
( T  - u U’) d K / d s  = 6p U(h - h*) /h3 ,  (3.6) 

where h* is a  constant of integration. 

4. Approximate solution for slight  deflection 

Let us now assume that  the presence of the rigid cylinder 
causes the  tape  to deflect only slightly from a straight line. 
Thus, we assume that  the angle of wrap is zero and  that 
the pressure loading of the  tape is small, in a sense best 
defined a posteriori. We specify that  the undeflected tape 

* Conceivably T - oU2 could he negative.  This  would  mean,  however, 
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would move along the y = 0 axis of the x-y plane and 
that  the actual path followed by the  tape is the curve 

y = 6(x ) .  (4.1) 

If the boundary of the rigid cylinder is the curve 

y = -hn(x) < 0, (4.2) 

the film thickness is given  by 

h(x) 1 hn(x) + 6 ( x ) .  (4.3) 

We require that, for all x ,  

(4.4) 

I S ’ ( X ) l  << 1. (4.5) 

If the  arc length s is measured from the  point x = 0, 
y = 6(0), then 

s = l= d l  + [S’(X)]’ d x .  (4.6) 

Since, by the requirement (4.4), &‘(x) is small compared 
with unity, s can  be  approximated by x .  Furthermore, 

K N” - S ” ( X ) ,  (4.7) 

so that  the foil bearing equation (3.4) becomes 

+ 6pu (” + 2) = 0. (4.8) 
T - u U’ dx 

We have not yet used the requirement  (4.4); EQ. (4.8) has 
been established on  the basis of (4.5) only. It is evident 
that (4.4) can  hold  only if the coefficient 6pU/(T - uU2)  
in (4.8) is at least of the same order of smallness as 6 /ho .  
To appreciate the physical significance of this, consider 
a hypothetical experiment. Let the  tape be constrained to 
move along y = 0. A bearing force will be generated be- 

Figure 4 The slightly  deflected foil. 



tween the surfaces y = 0 and y = "h,(x) .  Now remove 
the constraints. The bearing force will tend to deflect the 
tape away from y = 0. This tendency will  be resisted by 
the straightening effect  of the tension in  the tape. Thus, 
the deflection will be slight only if the tension is high. 

Neglecting second-order terms in (4.Q we find that 
the deflection is determined by 

( T - u U2)(d/dx)(ho3 d36/dx3) 

+ ( 6 p U )  dho/dx = 0, (4.9) 

subject to  appropriate boundary conditions, which must 
include the vanishing of the  tape  curvature  at each end 
of the lubricating film. Alternatively, we can determine 
a pressure field po(x)  by integrating the equation 

(d/dx)(ho3 dpo/dx)  = 6 p  U dho/dx, (4.10) 

subject to  the vanishing of p o  at each end of the film, and 
then determine the deflection from 

(d26/dx2) + p o / ( T  - u U') = 0. (4.1 I) 

With h,(x) specified, neither of these approaches presents 
any conceptual difficulty. 

5. An illustration:  the  deflection of a foil by a 

Consider now the specific case in  which 

ho(x) = G + x 2 / 2 R ,  ( 5 -  0 
where G and R are constants.  Integration of (4.10) then 
yields 

parabolic cylinder 

( 1  + X2)' 

where A and B are  constants of integration and X is a 
"stretched" coordinate defined by 

Figure 5 Location of the tape guides. 

We assume for simplicity that the  parabola (5.1) ex- 
tends to & m and, as discussed in Section 2, we ignore the 
inappropriateness of the lubrication  equation where the 
film thickness is large. 

We note in passing that  the form  for ha(x) specified by 
(5.1) provides a useful approximation for the case in which 
the undeflected path of the foil lies a distance G from a 
circular cylinder of radius R. 

The pressure p o  vanishes at fa if  we set A = B = 0 
in (5.2). Thus 

,- 

Po = - 22/2 lLU J; (1 + x2)2 
. X 

G 

Integration of (4.1 1) then yields 

6 =  2 d 2  ' uR JR (a + bX - arctan X). (5.4) 
T - u U '  G 

where a and b are  constants of integration. 
Let us  now assume that  the  tape is constrained by tape 

guides at X = - L f ,   L ,  as illustrated in Fig. 5. Thus,  the 
constants of integration in (5.4) are determined by setting 

6(- L') = 6(L) = 0, (5.51 

so that 

L f  arctan L - L arctan L' 
a =  

L + L' 
, (5.6) 

b =  

and 

arctan L + arctan L' 

L + L' 
, (5.7) 

Consider now a limiting case in which one of the  tape 
guides is moved infinitely far from X = 0, e.g., let us 
assume that L' + - a. With (5.6), 

lim a = arctan L 
L"-m 

and, with (5.7), 

lim b = 0. 
L"" 

Thus, when the only tape guide is at X = L, 

(5.10) 

so that there  is a finite deflection at minus infinity. Simi- 
larly, when the only tape guide is at X = - L', 

.(arctan L' + arctan X), (5.12) 

and there is a finite  deflection at plus infinity. 



If the guides are symmetrically placed at x = =tL, then 

a = 0 ,  (5 .9 )  

b = L“ arctan L ,  (5.10) 

and 

. (X arctan L - L arctan x). (5.1 1) 

As L + m , b ”+ 0, so that 

We have proceeded on the assumption that  the method 
outlined in Section 4 leads to a valid approximation. By 
comparing (5.1) and (5.12),  we see that  the criterion (4.4) 
is satisfied if 
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Differentiating (5.12), we see that (4.5) is satisfied if 

2 p U  R 
T - u U 2 G  

- << 1 .  

(5.13) 

(5.14) 

Since the lubrication  approximation requires that G be 
small  compared with R,  the criterion (5.14) is satisfied 
whenever (5.13) is satisfied. 

By way of example, if the  tape moves at a speed of 100 
in/sec through air (viscosity 2.7 X 1 0 - 9  Ib sec/in2), and 
if RIG = 1000, then (5.13)  is satisfied if (T  - uU*) greatly 
exceeds 2.4 X 1 0 - 2  Ib/in. 
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