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E. Goroy

Some New Classes of Cyclic Codes
Used for Burst-Error Correction

Abstract: A general theory of cyclic codes correcting a set of given types of errors is presented. Codes pub-

lished by Abramson, Fire, Melas and others are accounted for in this theory, which also offers several new

classes of codes. These new codes are competitive with existing ones. In burst-error correction, for certain

message lengths they may be better since they may need fewer parity check bits.

Introduction

A class of error-correcting codes is defined by a relationship
existing among the symbols of a message. When this
relationship can be expressed as a part of a mathematical
theory the specific class of code becomes of direct interest.

For a cyclic code the relationship may be represented
in a purely algebraic form. The main purpose of this
paper is to study this model and the useful applications
which can be derived from it.

We shall first give some definitions, particularly on
cyclic codes correcting different given types of error. A
type of error is an error pattern which may occur anywhere
inside the message.

The construction of such codes rests essentially on the
cyclic structure of their generator polynomials. Therefore
a theorem relates the cyclic structure of any polynomial to
the correction properties of the corresponding cyclic code.

Many new classes of codes, then, can be constructed.
These have good burst-error correction properties when
certain specific conditions are satisfied. Fach new class of
codes presented is described by means of an example.
Applications to codes which correct several separated
errors or several bursts inside the message are not included
here.

The table of the best cyclic codes which correct given
bursts in given message lengths for limited values of these
parameters is presented elsewhere.! The present paper,
however, is an exposition of mathematical research leading
to the development of some new efficient classes of codes.

Definitions

e Representation of a cyclic code

A linear (L, K) code may be defined by means of a parity-
check (L, K) matrix of rank K (L columns, K rows). The
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message length is L. There are K check bits and L — K
information bits.?

Cyclic codes are systematically constructed by feedback
shift registers.s-+

If x¢ represents the state of a K-element shift register at
the instant i, the parity-check matrix of the corresponding
code will be represented® by A = (x° x' x* -+~ x¥7N).

\ is formed by the L terms x¢ which satisfy F(x) = 0.

A is therefore defined as modulo F(x). We may write

[F(x)].

F(x) and L completely define the cyclic code. We shall
often denote this cyclic code simply by F(x). Note that
F(x) is such that F(0) = 1 and its degree, K, is equal to
the number of check bits within the message. The cyclic
code F(x) corrects always 2% — 1 different error-patterns.

If it corrects « different types of error in a message of
length L such that: oL = 2 — 1 this code will be, by
definition, a perfect cyclic code in correction of error types.

The period of any polynomial F(x), with coefficients in
GF(2), is the least integer N such that

xtV = xt [F(x)].

)\ = (x0x1x2 . xL—l)

o Structure of a polynomial F(x)

Every polynomial with coefficients in GF(2) is equivalent,
modulo F(x), to an element of a finite set .S which has
2% elements:

E(x)Es(x) - -+ Esx(x).

Let us realize a partition of S into subclasses such that
if E,(x) is an element of any subclass and E;(x) is an
element of any other subclass, the following inequivalence
is always verified:




x"E.(x) # x"E/(x) [F()].

The values i and 4 are any integers.
This partition will give, for instance,

a first subset of n, elements

a second subset of #. elements
L]
[ )

a bt subset of n, elements and no other subset.

We obtain b values n; 1 < j < b and there are 2¥
elements in §: X ;n; = 2%,
Let us arrange these values in nonascending order:

1<j<b

and denote by B;(x) any element of the jt subclass.
We have

j# 1  Bix) # x'Bi(x) [F(x)]
B;(x) = x" B;(x) [F(x)],

where n; divides N.

For any specific B;(x) there corresponds one and only
one cycle.

By definition we shall call this B;(x) which may charac-
terize its cycle the jt characteristic of F(x), and n; the
order of B;(x).

Two “different characteristics’ will generate two differ-
ent cycles.

n; > M

o Definition of structure of F(x)

The cyclic structure of a polynomial F(x), defined only if
F(0) = 1, will be the sequence of the b values »; and
of b corresponding characteristics. We shall denote this
sequence by

{ni, B;(x)}

with  n; 2 nj.,.

1<j<b

Remark

The work of B. Elspas® is concerned only with the
length n; of each cycle (or cycle set). Our definition of a
polynomial structure includes the knowledge of the cycle
length n; as well as of one element B;(x) which charac-
terizes its cycle. The choice of this element will be specified
later; it is a polynomial taken in one of the n; classes
defined as modulo F(x).

Fundamental theorem on error-correction
properties of any cyclic code

Let us consider the structure F(x):

{ni, Bi(x)} 1 <j< b

In this ensemble the value of »; may be repeated c;
times. We shall define a new index r; by

=n7.

for every j which satisfies
ri—e;i+1<j<r,
ey > Ny for 7, > r,.

The index r; is the largest value of j among equal #;’s.

Theorem

1) The cyclic code F(x) corrects necessarily at least r;
different types of error if the message length is n;. Each
corrected type of error is any characteristic of each of
the first r; cycles.

2) If the message length is n;, we shall have, for any
n, > R,

1<t

The cyclic code F(x) never corrects more than 2.d,
different types of error, and is a shortened cyclic code if
d. > 1.

We shall now apply the theory to cyclic codes correcting
one burst of errors.

n, = d,n; + v, with y: < n;.

o Demonstration

According to the definition of r;, the r;t cycle, in the
structure of F(x), is the last cycle of length equal to n;.
The length of the (r; 4+ 1 cycle is shorter than n;.
B;(x) is the characteristic of the j» cycle.

1) Let us form the r; sequences x° B;(x) x* B;(x) --- x*™

B;(x) corresponding to the first r; characteristic with
L = n;. By construction, each element of each sequence
appears only one time: the code F(x) corrects at least r;
different types of error if the message length is »;.

2) Let us consider now the f cycle of length n, with
1 < r < r;. We may form d, sequences of length L = n;
from this cycle if
n, = dn; + y,

The characteristics of these sequences are

Y. < ;.

B,(x), x*B,(x), -+ , x* V" B,(x),

and each element of each sequence appears only one
time. Then 4, is the maximum number of sequences which
are obtained from the 72 cycle, and the code F(x) never
corrects more than 2, d, different types of error.

Burst-error correction codes

A burst of d errors, or fewer than d errors defined for
d > 1is a type of error T(x) of the following form:

T(x) = 1 + ax + -+ + ax’ + agx"1.

There exist 241 different polynomials T(x).

A code which corrects any burst of d errors in a certain
message is a code which corrects necessarily the 2¢-t
different possible types of error T(x) in this message.

This definition of a burst of d errors includes bursts of
fewer than d errors. If we consider a real burst of d errors,
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thatis, 1 4+ aix 4+ -+ -+ ay_» x72 4+ xd-1 (the width is
d), we shall always specify this.

Group S: Systematic codes

o Proposition 1

Let Pi(x) be a polynomial of period N, and degree K,
with a structure such that:

1) the 2¢-1 polynomials 7(x) form different characteristics.
2) L is the length of the shortest cycle.

(Py(x) may represent a cyclic code which corrects a burst
of d errors in a message of length L).

Let Py(x) be a primitive polynomial of degree K, which
does not divide Py(x):

If K, is superior or equal to  and if 2%2 — 1 is relatively
prime to N,, the cyclic code represented by P,(x)Pi(x)
corrects any burst of d errors in a message of length
% — 1L

The above is applicable even if L is less than K;. Melas
and Gorog? consider the case where L is greater than
the degree of Pi(x).

Demonstration

To prove this proposition we need to apply Lemma 3(c)
of the Appendix.

The order of any characteristic T(x) of P,(x) is n > L.

T(x) is relatively prime to Pi(x): the degree of P.(x),
which is irreducible, is greater than the degree of T(x).

n is relatively prime to 22 — 1 since » divides Ny, and
N, is relatively prime to 2%2 — 1. The least common
multiple of # and 2%2 — 1 is n(2"> — 1). T(x) is therefore
a characteristic of P,(x)P«(x) and its order is n(2%: — 1)
with n > L.

Let us apply now the fundamental theorem: the shortest
cycle is L(2¥2 — 1) and the code P:(x)Ps(x) corrects any
burst of d errors in a message of length L(2%2 — 1).

& Proposition 2

We shall give now some simple polynomials F(x), G(x),
H(x), I(x), J(x), K(x), A(x) which have the properties
of Pi(x).

In their structures the 2¢-! polynomials 7'(x) form
different characteristics. We shall denote the length of
the shortest cycle for each structure by Ly, Lg, Ly, L,
Ly, Lg, Ly.

The results are:

Flx) = ¥+ 1
Gx) = x*7+1 Lg=d— 1

Ly =2d — 1

Hx) = 5™+ 4 -+x+1 Ly =d
Ix) =5 +x*+1 L, = 3d

Jx) =+ o x 1 Ly =24+ 1

Kx) = x4+ x4+ X4+ 1|Lg = 2d + 2
ifdis even
LK = d+ 1
if not.
Alx) = x+ 1 L, = 1.

The last polynomial A(x) is a special case for d = 2.

Demonstration
Any element of the finite set .S, defined by Pi(x) = 0,
may be represented by
Ex) = 14+ X o
h
withl1 < K< K,

XTx) =1+ ;.Z o (i)x". [Py(x)].

Every selected polynomial is shown such that there
always exists, for any T'(x), when i varies from 0 to L — 1,
at least one nonzero o;(i) with d < & < K.

Then two different types T(x) are never in the same
cycle. The structure of G(x) — 1 + x¢, for instance, is:

(6, 1) (6,1+x) (6,1 +x) (6,1 + x4+ x°)
6,1 +x+x) 6,1+ x +x°

(6, 1+ x+ "+ (6, 1+ x4 x4+ x)
6,1 +x+x+x+xH 3,1+

G, 1+x+x+xH 2,1+ x+xH
L1+ x4+ 2"+ 5+ 44 (1,144,

The 2° underlined polynomials form different charac-
teristics: (burst of 4) Ly = 3.

For any polynomial P,(x) of degree Ki, corresponding
values of 4 and L exist, but it appears that for simple
generator polynomials the most interesting ones are
constructed as follows.

Let a be a divisor of K;

Pix) =14+ 2 x* with 1 <k<r.
k

ar = K,

o Consequence

Proposition 1 may be applied systematically to these
different polynomials in the correction of a burst of d
€rrors.

We may call them systematic burst-error correction codes
and they will be denoted by S:
SF, S(;, SH, SI, SJ, SK, SA (See Example 1).
The following conclusions can be drawn:

1) If we select the best code, with minimum redundancy,
for any message length, S and S, are, in general, better
than the others.

2) For some message lengths we might choose among




several systematic codes which are equivalent and take
the simplest implementation.

3) If we accept correction of any burst of d — 1 errors
(or fewer) and any real burst of d errors except one
S¢ and Sy are better than the others. In these cases
Li=2d— 1) Lg=24d.

4) There exist other cyclic systematic codes.

Remark

The first class Sr was found by Philip Fires and the last
one by Norman Abramson.? The other classes are new,
and these codes which are able to correct large bursts of
errors have a good efficiency if the messages are very long.

From practical point of view, it seems interesting to
develop codes correcting relatively long bursts in shorter
message lengths with a high coding efficiency. Such codes
are presented in the next group.

Group P: “Perfect codes”

“Perfect codes” which correct the maximum number of
types of error in messages of length N, if N is the period
of F(x), may be used in burst-error correction. (Their
generating polynomials are given by irreducible polyno-
mials of same period).

Let us suppose that there are s cycles of length N:
sN=25—1.

The code F(x) will correct a burst of d errors in a
message of length N if:

1) s > 241

2) the 24! types T(x) form different characteristics of
F(x).

The best “perfect codes” which correct a burst of d
errors satisfy: 29-1 < s < 24, We shall denote them by P,.

Remark

The class of code which is generated simply by a non-
primitive polynomial was found independently by Zetter-
berg.10

e Class Pg

Most interesting codes will be given by the product of
different irreducible nonprimitive polynomials of same
period. (See Example 2).

e Class P,

“Perfect codes” which correct any burst of d errors in a
message of length N may correct any burst of 4 |+ 1
errors in a message shorter than N.

If two bursts of d 4 1 errors are in the same cycle, we
have necessarily L < (N — 1)/2. (See Example 3.)

The Reiger code!! is in the class P,. In this case, F(x)
is given simply by one primitive polynomial.

o Class Py

Good codes may be constructed as follows. Take a perfect

cyclic code which corrects many different types of errors
in a message of length, N;, multiply the corresponding
polynomial by a new primitive polynomial of period N,
relatively prime to N, (the different types are still cor-
rected in N;N:) and shorten the message such that bursts
are corrected. (See Example 4).

Group E: Some efficacious codes

e Proposition 3

Let P,(x) be a polynomial of degree K;, period N, with the
structure

{”5, B;(x)}

Let P.(x) be a polynomial of degree K,, period N,
with the structure

{ my, Cl(x)}

m, = N, for

1<j<b.

1<1<c¢,and
1<I1<t<ec.

We shall denote by §;, the intersection of the jt: cycle
of Py(x) and the /® cycle of Py(x) and by E(x) any element
of § ile

E(x) = x'B;(x)
E(x) = x*Cy(x)

[P.(x)]
[Pz(x)]-

The cyclic code Pi(x) Pix) corrects any burst of
K, + 1 errors in a message of length N, if the following
conditions are satisfied:

(@) N, divides N,.

(8) For ! < tin every subset S, the value £ — i modulo
n; is different for each element E(x).

(v) For [ > t, every subset S;; is either empty or contains
only one element of order N..

(6) Pi(x) and P.(x) are relatively prime.

Demonstration

Conditions () and () state that there are at least s2°
cycles of length N,. [See Lemma 4(b)].

Each burst 7(x) of K, 4 1 errors may be in a different
cycle s2° > 2%,

Conditions (8) and (y) state that any two different
bursts T(x) are two different characteristics of order N,
in the structure of F(x).

If two different types T(x) are in the same cycle they
belong to the same subset S ;.

When two types Ei(x) and E:(x) belong to different
subsets they are already in different cycles with respect
to at least one of the two structures of Pi(x) and Pi(x).

If two different types Ei(x) and E.(x) are in the same
cycle we have

ki — i =k — iz [n;].

ki, Iy, k2, i are defined by
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Ei(x) = x"B;(x), Ex(x) = x"B;(x) [Py(x)]
E(x) = x"C (%), Ex(x) = x*Cy(x) [Py(x)].
The proof is in the demonstration of Lemma 1.

g1 = n; for 1<t

In the case of [ > ¢, if S$;; contains only one element,
this element is a characteristic of its independent cycle,
but Proposition 3 is true if and only if the length of this
cycle is No.

We shall denote these general classes of codes by E.
(See Example 5.)

& Class E,

When Py(x) is primitive, with K, > K, the precedent
conditions become:

() N divides N..
(8) In every subset S;, the value kK — i modulo n; is
different for each element E(x).

If conditions (a) and (8) are both satisfied, the code
Pi(x) Px(x) is in the class E,.

The structure of these codes is such that:

1) There are 2%1 cycles of length N..

2) The length of the other cycles is less than N..
Remark

1) The Melas code® is in the class E,.

2) This class corresponds to the codes presented inde-
pendently by Elspas and Short.13

Table 1 Codes for d = 5.

, Message
Check Cyelic code length (L)
bits (K)
SF' SG S}[ S[ SJ
13 X <124
X X X <155
14 X X <252
x <279
X X X <315
X X X <341
15
X X <465
X <508
X X X X <615
16
X X X <693

o Classes Ep E¢ Ep

These classes are relative to cyclic codes of the form
P(x) Py(x), with Py(x) primitive where conditions (c)
and () are not both satisfied. These codes are new.

(@) Condition («) is satisfied and (B) is not.

1) It may happen that this code corrects a burst of K,
errors, instead of K; + 1, in a message of length N..
Class Ep. (See Example 6.)

2) The code always corrects any burst of K, + 1 errors
but in a message shorter than N.. Class E,. (See
Example 7.)

(b) Condition (B) is satisfied and () is not.

It is still possible for the cyclic code Pi(x) Ps(x) to correct
any burst of K; 4+ 1 errors in a message shorter than N..
Class Ey. (See Example 8.)

This particular example is, in fact, a description of a
very efficacious code with an odd number of check bits,
correcting a burst of three errors.

Example 1

In Table 1 the systematic codes presented correct a burst
of five errors. If the message length is 330, for instance,
we need 15 check bits and we may use Sg, S;, or even S ;.
However, the most interesting one is S, which is valid
for a message length of 508,

In the left half of Table 2 we selected the polynomials
of least degree codes with minimum redundancy as a
function of message length.

An interesting case is the correction of a burst of eight

Table 2 Best codes for d — 5 and d — 8 as func-
tions of message length.

d=5 d=8
Check | Cyclic | Message || Check | Cyclic | Message
bits (K) | codes |length (L) || bits (K) | codes |length (L)
13 S¢ < 124 22 S¢ < 1785
14 Sr < 279 23 Sy | £ 2040
15 Se < 508 24 Sr < 7665
16 Sy < 1143 25 S¢ < 14323
17 Sa < 2044 26 Sp < 30705
18 Sr < 4533 27 Se < 57337
19 Se < 8188 28 Sr <122865
20 Sr <18423 29 Sr <136584




errors (right half of Table 2) where, for different message
lengths, the best cyclic systematic codes are first S¢, then
S, then Sy and even S;. This is due to the fact that, when
one of the values Ly, Lg, Ly, Ly - - - is not relatively prime
to 2%2 — 1, the corresponding class is eliminated.

Example 2

Number of check bits (K) 16
Message length (L) 51

Class of cyclic code | Pp
Burst corrected (d) | 7

Codes with minimum possible check bits, taken in the
class Pg, are given by polynomials of degree 16. They are
the product of two different polynomials of degree 8
taken in one of the following sets (the conjugate poly-
nomials belong also to these sets.) Petersons gives a table
of irreducible polynomials.

B o i A PR S e
B i i T SE I S T |
P s ol A HEE S S |
L+ 41
D N i IE A P P SR T |
P o i e i 2 o |
P A S S S S
PR ML S I |

with period 85

}with period 51

}with period 17.

The code is given, in this example, by the product of
the two irreducible nonprimitive polynomials of period 51:
F(x) = Pi(x) P:(x), where

Px)=(04+x+x"+xX4+x+x + %5
Po(x) = (1 4+ x + &° + x* + x°).
Their structures are:

(51, 1) (51, 14+x) (51, 1+x° (51, 1+x+x"+ x%)
(51,1 + x* (1, P(x)) and
GL,DGLTEX)GLT+X)GL T+ x4+ %)
(51, 1 + %% (1, Py(x)).

If we apply Lemma 1 of the Appendix to find the
structure of F(x), we see that the 2° polynomials T(x),
form different characteristics H,;*(x).

Remark

The greatest burst of errors which could be corrected by
16 check bits correspond to d = 8.

Example 3

Number of check bits (K) 9
Message length (L) 23

Class of cyclic code | Pe
Burst corrected (d) | 4

The code is given, in this example, by F(x) = 1 4+ x +
x2 4+ x* -} x%, which is a nonprimitive irreducible poly-
nomial. Its period is 73.

The complete structure is:

(73, 1) (73,1 +x) (73, 1 + %) (73, L + x + x7)
(73, 1 4+ x* (73, 1 + x* + %%
(73,1 + x + x> + x*) (1, F(x)).

The code F(x) corrects in a message of length 73 any
burst of four except one: 1 4+ x 4 x3, which is in the
cycle of 1 4+ x.

This cycle may be represented by the illustration.

M Mﬂt

(F(x)]

1+ x+ 2 =x""1+x)
1+ x = x( + x + %% [F(x)].

If the message length is L = min (50, 73 — 50) = 23
the two error patterns 1 + x and 1 4+ x 4 x? are both
corrected F(x) corrects a burst of four in a message of
length 23. The cross-hatched area corresponds to error
patterns which are not used. In this cycle (50 — 23),
27 elements are lost instead of 50 in the otLers (73 — 23).

Example 4

Number of check bits (K) 14
Message length (L) 1045

Class of cyclic code | Pp
Burst corrected (d) | 4

The code is given, in this example, by the product 107
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F(x) = PI(X)'Pg(X),

where

P(x) =14+ x4+ x4+ x4 x°
Py(x) = 1+ x* 4+ .

Py(x) corrects any burst of three in a message of length
73, N1 = 73. (See Example 3.)

Py(x) is a primitive polynomial N, = 31.

F(x) corrects any burst of three in a message of length
NiN: = 73 x 31 = 2263. (See Proposition 3.)

In the structures of Pi(x) and Pi(x) we have, respectively,

Lt x+ 2 =x"1+2 [PE)] }(D

1+x+82=x"U0+2% [Pa(x)]

(I) implies (II) and (III)
1 4+ xand 1 + x 4+ x* will belong still to the same
cycle, in the structure of F(x):

1+ x+x*=x0+x [ F(x)] (17)

t= 50 [73]} (1D
t=9 [31]
The solution of ¢ is given by ¢ = 1218. [2263].

We may apply now the same method as in the Example 3
to correct a burst of four errors.

L = min (1218, 2263 — 1218) = 1045,

F(x) of degree 14 corrects a burst of four in a message
of length 1045.

Example 5
Class of cycliccode | E || Number of check bits (K) | 10
Burst corrected (d) | 5 || Message length (L) 15

The code is given, in this example, by the product:
F(x) = Pi(x) Py(),
where
P(x) =14+x+x+x*+x* K,=4and N, = 5.
P(x) =14+ x+x"+x*+x°; K, = 6and N, = 15
Their structures are:
1</j<4
(5.1 5.1+ 5,1+ (1, AW)
and1 <1< 6
(15,1 (15,1+x) (A5, 14+x5) (15 14+ x+x°)
G, 14+ 2+ x) (1, P(x) t = 4.

All the conditions are verified:

(@) 5 divides 15.

(¥) In each set S;; which contains more than one element
the values k — i modulo n; are different for 1 < / < 4,
For instance, S1: contains two elements: 1 and 1 4 x -}-
x? - x3. As a matter of fact in this case (the simplest one)
we have: B(x) = land C(x) = 1

{lzxm) [Pr(x)]}k_,-=0-0=0
1=x"(1)

[P(x)]
{1+x+x2—l—x35x4(1) [Pl(x)]}k—i=6—4=2
I+x+x"+x"=x"(1)  [P(x)]

and 20 [5].

(v) S;s is empty except Sy which contains 1 4 x3 4 xt
but the order of 1 4 x3 - xtis 3 X 5 = 15. S;, is empty.
(8) Py(x)and Px(x) are relatively prime. The decomposition

of P, gives: (1 + x + x) (1 4 x34 x9).
Example 6

Number of check bits (K) 12
Message length (L) 255

Class of cyclic code | Ep
Burst corrected (d) | 4

F(x) = Pi(x) Py(x), where
P(x) =14 x4+ x4+ £+ x*

Pyx) =14+ x+ 2+ x*+ .
Their structures are: (5, 1) (5,1 +x) (5,1 + x) (1, Py)

and (255,1) (1, P,).

(@) 51255
K):
E(x) k—i {51
1 0
T4+ x+ x4 x 2
14+ x4+ x2x4 xt 0
S 14 x24 x84 x¢ 3
14+ x4+ x4 x¢ 1
14 x 2
14 x4 x2 0
14 x4 xt 1
S21 1+x3+x4 1
14 xt 4
14 x° 4
S“_ 1+_x3 2
14+ x4+ x2 0
14+ x24 x3 3
1+ x?4 x4 0




In each set S;, the values k¥ — 7 modulo 5 are not all
different but, if we consider only polynomials of degree 3
or less, the corresponding values are different.

F(x) does not correct a burst of 5 but a burst of 4 in a
message of length 255.

Example 7

Number of check bits (K) 9
Message length (L) 26

Class of cyclic code | Eg
Burst corrected (d) | 4

The code is given, in this example, by the product
F(x) = Py(x)Py(x) where

P(x) =14 x4 4

Pyx) =14 x + x°.

Their structures are:

(7, 1) (4, Py(x)) and (63, 1) (1, Px(x))
(@ 7]63

B):

E(x) 14+ x+x 14 x4+ x2 bk— i 71

1 x° X0 0
14+ x4 x2 X2 X5 0
14 x ol X3 3
14+ x3 X% xt 3
14 x2 x12 X6 6
14 x2 -4 x3 x4 Xt 2
14 x4+ x2+4 x3 x1 x? 2

The condition (8) is not satisfied.

The types 1 and 1 - x -+ x2, are in the same cycle (same
value of ¥k — i modulo 7) as well as 1 + x and 1 4+ x3,
14 x2+ xtand 1 4 x4+ x2 4 x% All these patterns will
be corrected by F(x) if the message length is L = min (26,
63 — 26,32~ 6,63 — 324 6,48 — 18, 63 — 48 -} 18).
L = 26.

Example 8

Class of cyclic code E,
Burst corrected (d) 3
Number of check bits (K) 7 9 15
Message length (L) 25 119 8177

The code is given, in this example, by the product
F(x) = Py(x)Pyx), where

Px) =1+ x° N, =2
1=K,

P,(x) = Z x—x N, = 2% — 1 K, is odd.
=0

The properties of the polynomials, which are easy to
be verified, are

14 x4+ 2= x'(1) [Pi(x)]
1+ x4+ %= x5*(1) [Py(x)].

14 x 4 x2and 1 are in the same cycle for each of the
two structures

() 2 does not divide 22 — 1.

(ﬁ) in S
Table 1
E(X) P 2(X) P 1(x) k—1i [2]
1 X0 X0 0
14+ x4 x 41 x! 1

In Table 1 the 2 values of &k — i modulo 2 are different.
Since () is not satisfied, the problem is to find the values
of j such that Table 2 be valid (Table 1 is not sufficient).

Table 2

E'(x) k— i [2]

xi(1) 0
X1+ x4+ x?) 1

The first value of j which does not satisfy Table 2 is:
j=2"— K, — 2.

As a matter of fact, for this value of j

YU+ x4+ =5 [PX)]
XA+ x4+ 5= [Py(x)].

Furthermore, Table 2 will not be valid for 2%z — K, —
2 < j < 2% — 2 since, having regard to polynomials
xi(l + x + x?), k — [ is equivalent to zero modulo 2.
(The error pattern 1 4+ x -+ x* which occurs on the
(2%2 — K, — 2)*® bit of the message is confounded with the
error pattern 1 which occurs on the 1°* bit of the message).

Table 2 being valid only for 0 < j < 2%z — K, — 1,
the message length Lis: L = 2%z — K, — 2

Remark

1) If K, = 9 for instance, it appears that the polynomial 109
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Py(x) is not primitive: N, 5 252 — 1,

In this case we shall take for Pi(x) a primitive poly-
nomial which has not the precedent form but such that

1+x+x=x" [Py(x)],

where 4 is the smallest possible value.
The message length will be then L = 2% — | — A

Example: P(x) = 1 + x* + x5+ x84 x°
h =26 L = 511 — 26 = 485,

2) The particular codes of E; presented in this example
are very efficient.

These codes are, in fact, optimum in the sense that,
if the message length is L = 2% — K, — 2, and if a burst
of three errors has to be corrected, the minimum possible
number of check bits is K, 4+ 2 for K, > 3.

If it were possible to correct a burst of three errors,
(i.e., four different types of errors) in a message of length
2%z — K, — 2 with K, + 1 check bits, the following in-
equality would be valid: 252+ — 1 > 4(2% — K, — 2).

This is not the case for K, superior to three or for
message lengths greater than five.

The following table compares these new codes of Ej
with Melas codes of E, which correct both bursts of three.

Number Classes Message
check Cyclic codes length (L)
bits (K)
EO ER

6 X < 15

7 X < 25

8 X < 63

9 X <119

10 X <255

11 X <485

Conclusion

The efficiency of a code is usually defined by its redundancy.
Since we desire to compare the different classes of burst-
error-correction codes presented, we shall give a sharper
definition of the efficiency of a cyclic code.

Let n;, be the number of error patterns consisting of
bursts of 4 or fewer errors which are effectively corrected
by the code F(x) in a certain message of length L:
n = 2d_1 L.

Let n, be the number of error patterns which can be
corrected by this code in this message. If K is the degree
of F(x), then n, = 25 — 1,

The efficiency e will be e = n,/n..

1) The optimal structure does not exist: e cannot be equal
tol: 0<e<l (n: is even and n, is odd).

2) If we compare the efficiency of the different systematic
codes presented we find immediately that

e(Sy) < e(S;) < e(S) < e(Se) < e(Sr).

3) If we would like to have a general efficiency com-
parison, we may compare only those codes with fixed
message length L. It is easy to verify that for codes
S, P4, E,, Ep we obtain:

d d ) _d_
2d<1 L+d <e(S) < g

1<eP) <1

1
l—z<e(Eo)<1

1 1
5(1 - z) < e(Ep) < 3.

The final general result for these codes is:

e(8) < e(Ep) < e(Py) < e(Ep) ifd > 4.

The class E, is optimal but it is often empty. If this is
the case and if there exist codes in the class P,, then P,
becomes the best class, et cetera.

4) This notion of optimality in burst-error correction codes
rests essentially on the size of the burst d and on certain
appropriate message lengths L given by the codes them-
selves.

These lengths do not coincide generally with practical
message lengths, so that any cyclic code, taken in one of
the different classes presented here, may be chosen for its
best “practical efficiency.”

5) The following table gives the different efficiencies
corresponding to the described examples.

Burst New
corrected (d) class Example Efficiency (e)

3 E; 8 78 93 .99
Py 4 51

4 E» 6 .49
E, 7 .40
P 3 .36

5 S¢ 1 24
E 5 .23

7 Py 2 .05
Se 1

8 S[ 1
Su 1




One has to be careful in the interpretation of this table
because other values of e may be found with other codes
(that is, other examples) taken in each of the new classes
Se, S, S1, Pg, Po, Pp, Ep, Eg, Eg.

6) In the same way we could construct other classes of
codes in studying the structure of other families of gen-
erating polynomials, but the most interesting burst-error-
correction codes seem to be in groups S, P and E.

Appendix

In this Appendix we give the four lemmas to which we
refer in the text. These are useful not only for constructing
the above mentioned classes of codes but also for other
burst-error-correction codes as well as for codes correcting
other error types.

They are concerned with the structure of F(x) = P,(x)-
Py(x) when:
1. The respective structures of P,(x) and P.(x) are known.
2. The polynomials Pi(x) of degree K, and period N,
and P,(x) of degree K, and period N, are relatively prime.

Let {n;, B,(x)} 1 < j< b
and {m, G} 1 <1< ¢

be the structure of Pi(x)
be the structure of Py(x).

p;; will be the least common multiple of »n; and ny; q,,
will be the greatest common divisor of n; and m;.
The structure of F(x) is:

IA
IA

j b
Dji, Hj'cz(x) 1 <1

1 kSQil’

IN

c

IN

where £ is an index which varies between 1 and g,
q;; 1s defined for each pair (j, /).

There are g,, different characteristics H;; of same order
Pir.

Llemma 1

Let G,(x) and Go(x) satisfy:
Py(x)- Gy(x) = 1 [Pi(x)]
Pl(x)-Gl(x) =1 [Po(x)].

Then each characteristic H;;*(x) is given by
H?z(x) = Py(x)Ga(x) B;(x)

+ PNGETICx)  [F)].
Remark

In the computation of the different characteristics H;;*(x)
the polynomials Gi(x) and G,(x) need to be calculated
only once. The structure will be compatible with the
definition if we arrange this sequence such that the p;;
appear in descending order.

Lemma 2

Among the g;; cycles of p;, elements each, one cycle may
be generated by B,(x) C,(x) if and only if B;(x) is relatively

Lemma 3
(a) If the two following conditions are satisfied,

1. N; and N, are relatively prime, and

2. B{(x) and C,(x) are relatively prime to Pi(x) and
P,(x) respectively, whatever the characteristics B;(x) of
P.(x) and C'(x) of Py(x) may be,

then all possible products B;(x) C’(x) form all the charac-
teristics of F(x), providing that all these B,(x) C,(x) are
different.

(b) In the structure of F(x), B;(x) is a characteristic of a
cycle of p;; elements if and only if B;(x) is relatively prime
to P g(x).

(©) If N, and N, are relatively prime, and if B;(x) and
Py(x) are relatively prime, then B;(x), the characteristic
of a cycle of P (x) with n; elements is a characteristic of a
cycle of F(x) with n; N, elements.

Lemma 4

(a) If N, divides N,, there are necessarily, in the structure
of F(x), 2%* cycles of length N-.

(b) If N, divides N, and if, in the structure of Pai(x),
there are s cycles of N, elements, there are necessarily,
in the structure of F(x), s2%* cycles of length N.
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