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Some  New  Classes  of  Cyclic  Codes 
Used  for  Burst-Error  Correction 

Abstract:  A general theory  of  cyclic  codes  correcting a set of given types of errors is presented. Codes pub- 

lished by Abramson,  Fire, Melas  and others are accounted for in this  theory, which also  offers several new 

classes of codes.  These new codes are competitive with existing ones. In burst-error correction, for certain 

message  lengths  they may  be better since they may need fewer  parity check  bits. 

Introduction 
A class of error-correcting codes is defined  by a relationship 
existing among the symbols of a message. When this 
relationship can be expressed as a part of a mathematical 
theory the specific class of code becomes of direct interest. 

For a cyclic code the relationship may be represented 
in a purely algebraic form. The main purpose of this 
paper is to study this model and  the useful applications 
which can be derived from it. 

We shall first give some definitions, particularly on 
cyclic codes correcting different given types of error. A 
type of error is an error  pattern which  may occur anywhere 
inside the message. 

The construction of such codes rests essentially on  the 
cyclic structure of their generator polynomials. Therefore 
a theorem relates the cyclic structure of any polynomial to 
the correction properties of the corresponding cyclic code. 

Many new  classes  of codes, then, can be constructed. 
These have good burst-error correction properties when 
certain specific conditions are satisfied. Each new class of 
codes presented is described by means of an example. 
Applications to codes which correct several separated 
errors or several bursts inside the message are not included 
here. 

The table of the best  cyclic codes which correct given 
bursts in given  message lengths for limited values of these 
parameters is presented elsewhere.' The present paper, 
however, is an exposition of mathematical research leading 
to the development of some new  efficient  classes  of codes. 

Definitions 

Representation o f a  cyclic code 

A linear (L ,  K )  code may be  defined by means of a parity- 
102 check (L ,  K )  matrix of rank K (L  columns, K rows). The 

message length is L. There are K check bits and L - K 
information bits.2 

Cyclic codes are systematically constructed by feedback 
shift registers.3-4 

If x i  represents the  state of a K-element shift register at 
the instant i, the parity-check matrix of the corresponding 
code will  be represented5 by X = (x" x'  x' . . xL"l).  

X is formed by the L terms x i  which satisfy F(x) = 0. 
X is therefore defined as modulo F(x). We may write 

x E (x*x'x' . . . X"") [ F(x)l* 

F(x) and L completely define the cyclic code. We shall 
often  denote  this cyclic code simply by F(x). Note  that 
F(x) is such that F(0) = 1 and its degree, K, is equal to 
the number of check bits within the message. The cyclic 
code F(x) corrects always 2 K  - 1 different error-patterns. 

If it corrects a different types of error in a message of 
length L such that: aL = 2K - 1 this code will be, by 
definition, a perject cyclic code in correction of error types. 

The period of any polynomial F(x), with coefficients in 
GF(2), is the least integer N such that 
X : + N  = - X f  [ F W l .  

Structure of a polynomial F(x) 

Every polynomial with coefficients in GF(2) is equivalent, 
modulo F(x), to  an element of a finite set S which has 
2K elements: 

E,(x)E,(x)  . &(X). 

Let us realize a partition of S into subclasses such that 
if E,(x) is an element of any subclass and E,(x) is an 
element of any other subclass, the following inequivalence 
is always verified: 
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The values i and h are any integers. 
This partition will  give, for instance, 

a first subset of nl elements 
a second subset of nz elements 

rn 
rn 

rn 

a bth subset of nb elements and  no other  subset. 

We obtain b values ni 1 5 j 5 b and there are 2" 

Let  us arrange these values in nonascending order : 
elements in S :  C,ni = 2 . K 

ni 2 ni+ l  I < j < b  

and denote by &(x) any element of the j t h  subclass. 
We have 

where ni divides N.  
For  any specific &(x) there  corresponds one  and only 

one cycle. 
By definition we shall call this B,(x) which may  charac- 

terize its cycle the j t h  characteristic of F(x), and ni the 
order of &(x). 

Two "different characteristics" will generate two differ- 
ent cycles. 

rn Definition of structure of F(x) 

The cyclic structure of a polynomial F(x), defined only if 
F(0) = 1, will be the sequence of the b values ni and 
of b corresponding characteristics. We shall  denote  this 
sequence by 

ni 9 Bi ( x )  1 l < j _ < b  

with ni 2 ni+l .  

Remark 
The work of B. Elspas6 is concerned only with the 

length ni of each cycle (or cycle set). Our definition of a 
polynomial structure includes the knowledge of the cycle 
length ni as well as of one element &(x) which charac- 
terizes its cycle. The choice of this element will be specified 
later;  it is a polynomial taken  in one of the n j  classes 
defined as modulo F(x). 

Fundamental theorem on error-correction 
properties of any cyclic  code 

Let us consider the  structure F(x):  

B ; ( x ) )  15 j _ <  b. 
In this ensemble the value of ni may be repeated ci 

times. We shall define a new index r j  by 

n,i = ni 

for every j which satisfies 

r j  - ci + 1 5 j 5 r j ,  

n,, > n , , , ,  for ri3 > r,. 
The index ri is the largest value of j among equal ni's. 

Theorem 
1) The cyclic code F(x) corrects necessarily at least ri 
different types of error if the message length is ni. Each 
corrected type of error is any characteristic of each of 
the first ri cycles. 

2)  If the message length is n j ,  we shall have, for any 
n, > nj, 
n ,  = d,ni + y t  with 1 5 t _< ri y ,  < n i .  

The cyclic code F(x) never corrects more  than c , d l  
different types of error, and is a shortened cyclic code if 

We shall now apply the theory to cyclic codes correcting 
dt > 1. 

one  burst of errors. 

Demonstration 

According to the definition of ri, the rith cycle, in the 
structure of F(x), is the last cycle of length  equal to ni. 
The length of the (ri  + l ) t h  cycle is shorter than ni. 
&(x) is the characteristic of the j t h  cycle. 

1) Let us form  the ri sequences x' &(x)  x1  Bi(x) . . . xL"l 
&(x) corresponding to the first ri characteristic with 
L = ni. By construction,  each element of each sequence 
appears only one time: the code F(x) corrects at least ri 
different types of error if the message length is ni. 

2 )  Let us consider now the tth cycle  of length nl with 
1 5 t 5 r j .  We may form d, sequences of length L = ni 
from this cycle if 

n ,  = dtni Y ,  yt < n ; .  

The characteristics of these sequences are 

B, ( x ) ,  x"'& ( x ) ,  * . f , X ( d r - l ) n t  
Bi ( X )  9 

and each element of each sequence appears only one 
time. Then d, is the maximum number of sequences which 
are obtained from  the t t h  cycle, and  the code F(x) never 
corrects  more than x, dl different types of error. 

Burst-error  correction  codes 

A burst of d errors, or fewer than d errors defined for 
d > 1 is a  type of error T ( x )  of the following form: 

T(x)  = 1 + a,x + . . . + aixi + ad_lXd-l .  

There exist 2d-l different polynomials T(x). 
A code which corrects  any  burst of d errors  in a certain 

message is a code which corrects necessarily the 2 d - 1  

different possible types of error T(x)  in  this message. 
This definition of a  burst of d errors includes bursts of 

fewer than d errors. If we consider a real burst of d errors, 103 
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that is, 1 + ai x + + ad-2 xd-2 + xd-1 (the width is 
d), we shall always specify this. 

Group S: Systematic codes 

Proposition I 

Let Pl(x)  be a polynomial of period N l  and degree K 1  
with a structure such that: 

1) the 2+1 polynomials T(x)  form different characteristics. 

2) L is the length of the shortest cycle. 

(Pl(x)  may represent a cyclic code which corrects a burst 
of d errors in a message of length L). 

Let Pz(x) be a primitive polynomial of degree K z  which 
does not divide Pl(x):  

If K z  is superior or equal to d and if 2K2 - 1 is relatively 
prime to N1, the cyclic code represented by Pl(x)Pz(x) 
corrects any burst of d errors in a message of length 

The above is applicable even if L is less than Kl. Melas 
and Gorog7 consider the case where L is greater than 
the degree of Pl(x) .  

Demonstration 

To prove this  proposition we need to apply Lemma 3(c) 
of the Appendix. 

The  order of any  characteristic T(x)  of Pl(x)  is n 2 L. 
T(x)  is relatively prime to P2(x): the degree of Pz(x), 

which is irreducible, is greater than  the degree of T(x). 
n is relatively prime to 2 K 2  - 1 since n divides N1, and 

N1 is relatively prime to 2K2 - 1. The least common 
multiple of n and 2 K 2  - 1 is - 1). T(x)  is therefore 
a characteristic of Pl(x)P2(x) and its order is n(2K2 - 1) 
with n >_ L. 

Let us apply now the fundamental  theorem: the shortest 
cycle is L(2K2 - 1) and  the code Pl(x)P2(x) corrects any 
burst of d errors in a message of length L(2K2 - 1). 

Proposition 2 

We shall give now some simple polynomials F(x), G(x), 
H(x), Z(x), J(x), K(x),  A(x) which have the properties 
of P,(x). 

In their  structures the 2d-1 polynomials T(x)  form 
different characteristics. We shall denote  the length of 
the shortest cycle for each structure by LF, La, LH, L,, 
L J ,   L K ,  LA. 

(2K2 - 1) L. 

The results are: 

F(x) = + 1 LF = 2d - 1 

G(x)  = + 1 L a = d - l  

H(x) = + + * * + X + 1 LE = d 

I (x)  = X Z d  + xd + 1 LI = 3d 

104 J(x) = +xzd-' + . + X  f 1 LJ = 2d + 1 

K(x)  = + + * * * + x2 + 1 L K  = 2d + 2 i if d is even 
L ~ = d + l  

if not. 

A(x)  = x + 1 LA = 1 .  

The last polynomial A(x) is a special case for d = 2. 

Demonstration 

Any element of the finite set S ,  defined by Pl(x)  = 0, 
may be represented by 

E(x) = 1 + q,xh 
h 

with 1 5 h 1. K 1  

x"(x) = 1 + CYh(i)Xh. [Pl (X) l .  
h 

Every selected polynomial is shown  such that  there 
always exists, for any T(x), when i varies from 0 to L - 1, 
at least one nonzero ah(i) with d 5 h 5 ZG. 

Then  two different types T(x)  are never in the  same 
cycle. The structure of C(x)  - 1 + x6,  for instance, is: 

a (6, 1 + x )  (6, 1 + x?) (6, 1 + x + x') 

( 6 ,  1 + x + x3)  <6, 1 + x' + x3)  

( 6 ,  1 + x + x' + x3) (6, 1 + x + x2 + x4)  

(6, 1 + x + x' + x3 + x4)  (3, 1 + x3) 

(3 ,  1 + x + x3 + x 4 )   ( 2 ,  1 + x2 + x4) 
(1, 1 + x + x2 + x3 + x* + x5)  (1, 1 + x". 

The Z3 underlined polynomials form different charac- 
teristics: (burst of 4) La = 3. 

For any polynomial Pl(x) of degree K 1 ,  corresponding 
values of d and L exist, but it appears that  for simple 
generator polynomials the most interesting ones are 
constructed  as follows. 

Let a be a divisor of K1 ar = K1 

P l ( x )  = 1 + xkn with 1 5 k 5 r.  

Consequence 

Proposition 1 may be applied systematically to these 
different polynomials in  the correction of a burst of d 
errors. 

We may call them systematic burst-error correction codes 
and they will be  denoted by S :  

k 

SF, S G ,  SH, SI, SJY S K ,  SA (See Example 1). 
The following conclusions can  be drawn: 

1) If we select the best code, with minimum redundancy, 
for any message length, SF and Sa are,  in general, better 
than  the others. 

2)  For some message lengths we might choose among 



several systematic codes which are equivalent and  take 
the simplest implementation. 

3) If we accept  correction of any burst of d - 1 errors 
(or fewer) and any real burst of d errors except one 
So and SH are better than  the others. In these cases 
La = 2(d - 1) L,  = 2 d. 

4) There exist other cyclic systematic codes. 

Remark 

The first class S, was found by Philip Fires and  the last 
one by Norman Abramson.0 The  other classes are new, 
and these codes which are able to correct  large  bursts of 
errors have a good efficiency if the messages are very long. 

From practical point of  view, it seems interesting to 
develop codes correcting relatively long  bursts in shorter 
message lengths with a high coding efficiency. Such codes 
are presented in the next group. 

Group P: ”Perfect  codes” 

“Perfect codes” which correct the maximum number of 
types of error  in messages of length N, if N is the period 
of F(x), may be used in burst-error correction. (Their 
generating polynomials are given by irreducible polyno- 
mials of same period). 

Let us suppose that there are s cycles  of length N :  

The  code F(x) will correct a burst of d errors in a 
SN = 2K - 1. 

message of length N if: 

1) s > 2d-1; 

2) the 2d-1 types T(x)  form different characteristics of 
F W .  

The best “perfect codes” which correct a burst of d 
errors satisfy: 2d-1 < s < 2d. We shall  denote  them by PA. 

Remark 

The class of code which is generated simply by a non- 
primitive polynomial was found  independently by  Zetter- 
berg. 10 

Class PB 
Most interesting codes will be given by the product of 
different irreducible nonprimitive polynomials of same 
period. (See Example 2). 

Class PC 
“Perfect codes” which correct any burst of d errors in a 
message of length N may  correct any burst of d 4- 1 
errors in a message shorter  than N. 

If two  bursts of d + 1 errors  are  in  the same cycle, we 
have necessarily L 5 ( N  - 1)/2. (See Example 3.) 

The Reiger code11 is in  the class PC. In this case, F(x) 
is given simply by one primitive polynomial. 

Class Po 
Good codes may be constructed as follows. Take a perfect 

cyclic code which corrects  many different types of errors 
in a message of length, Nl ,  multiply the corresponding 
polynomial by a new primitive polynomial of period N z  
relatively prime to Nl (the different types are still cor- 
rected in N1N2)  and  shorten  the message such that bursts 
are corrected. (See Example 4). 

Group E: Some  efficacious  codes 

Proposition 3 

Let Pl(x)  be a polynomial of degree K1, period Nl with the 
structure 

{ni, Bi(x) 1 l s j l b .  

Let P2(x) be a polynomial of degree K 2 ,  period N Z  
with the  structure 

{ ml,  CdX))  1 5 I <: c ,  and 

m,  = N2 for l _ < l < t < c .  

We shall  denote by Sj t  the intersection of the j t h  cycle 
of Pl(x)  and  the lth cycle of P2(x)  and by E(x) any element 
of Sjl .  

E(x) = xiB,(x)  [Pl(X)l 

E(.) = XkC1(X)  [P&)l* 

The cyclic code Pl(x)   Pz(x)  corrects  any  burst of 
K1 + 1 errors in a message of length N z  if the following 
conditions are satisfied: 

(a) N 1  divides N 2 .  

(/I) For l 5 t in every subset S,l the value k - i modulo 
ni is different for each element E(x). 

(7) For l > t ,  every subset Siz is either empty or contains 
only one element of order N2.  

(6) Pl(x)  and P2(x) are relatively prime. 

Demonstration 

Conditions (a) and (6) state  that there are at least ~ 2 ~ ’  
cycles of length N z .  [See Lemma 4(b)]. 

Each burst T(x) of Kl + 1 errors may be in a different 
cycle ~ 2 ~ ’  2 2K’. 

Conditions @) and (7) state  that  any two different 
bursts T(x)  are  two different characteristics of order N 2  
in the structure of F(x). 

If two different types T(x)  are  in  the  same cycle they 
belong to the same subset Siz. 

When two types &(x) and E2(x) belong to different 
subsets they are already  in different cycles with respect 
to at least one of the two  structures of P,(x) and P2(x>. 

If two different types El(x) and E2(x) are  in  the same 
cycle we have 

kl  - i, E k2 - iz [nil 

kl ,   i l ,   kz ,   i z  are defined by 105 
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&(x) 3 Xi’Bi(X),  &(x) = X”Bi(X)  [Pl(X)] 

E, (x)   xk’CZ(x) ,  E2(x) = xk’Cl(x)  [ P 2 ( x ) ] .  

The proof is in the demonstration of Lemma 1. 

qil = ni for I 5 t .  

In  the case of 1 > t, if Siz  contains  only one element, 
this element is a characteristic of its independent cycle, 
but  Proposition 3 is true if and only if the length of this 
cycle is N 2 .  

We shall denote these general classes of codes by E. 
(See Example 5.) 

Class Eo 

When P2(x) is primitive, with K2 > K 1  the precedent 
conditions become : 

(a) N1 divides N P .  
@) In every subset Si, the value k - i modulo n j  is 
different for each element E(x). 

If  conditions (a) and @) are  both satisfied, the code 
P,(x)  P2(x) is in the class Eo. 

The structure of these codes is such that : 

1) There are 2K1 cycles of length Nz.  

2) The length of the  other cycles  is  less than  N,. 

Remark 

1) The Melas code12 is in the class Eo. 

2) This class corresponds to  the codes presented inde- 
pendently by Elspas and  Short.’3 

Table I Codes for d = 5. 

Check 
bits ( K )  

13 

14 

15 

16 

Cyclic code 

SF S G  SN SI SJ 

X 

x x x  

x x  

x 

X x x  

x x x  

x x 

x 

x x x  x 

x x  X 

Message 
length ( L )  

5 124 

5 155 

- < 252 

5 279 

5 3 1 5  

5 341 

5 465 

5 508 

5 615 

5 693 

Classes Ep Ea ER 
These classes are relative to cyclic codes of the  form 
Pl(x)  Pz(x), with P2(x)  primitive where conditions (a) 
and @) are  not  both satisfied. These codes are new. 

(a) Condition (a) is satisfied and @) is not. 

1) It may happen that this  code  corrects a burst of K1 
errors, instead of Kl  + 1, in a message of length N?. 
Class Ep.  (See Example 6.) 

2) The code always corrects any burst of Kl  + 1 errors 
but  in a message shorter than Nz. Class Ea. (See 
Example 7.) 

(b) Condition @) is satisfied and (a) is not. 

It is still possible for  the cyclic code Pl(x)  Pz(x)  to correct 
any  burst of K ,  + 1 errors in a message shorter than  Nz. 
Class ER. (See Example 8.) 

This  particular example is, in fact, a description of a 
very  efficacious code  with an  odd number of check bits, 
correcting a burst of three  errors. 

Example 1 
In Table 1 the systematic codes presented correct a burst 
of  five errors.  If the message length is 330, for instance, 
we need 15 check bits and we may use SG,   SI ,  or even S J .  
However, the most interesting one is SG,  which is valid 
for a message length of 508. 

In  the left half of Table 2 we selected the polynomials 
of least degree codes with minimum redundancy as a 
function of message length. 

An interesting case is the correction of a burst of eight 

Table 2 Best codes for d = 5 and d r 8 as  func- 
tions of message length. 

d =  5 

Check Cyclic 
bits ( K )  codes 
” 

13 S G  

14 SF 

15 S G  

16 S F  

17 S G  

18 S F  

19 S G  

20 SF 

” 

” 

” 

” 

” 

” 

” 

Message 
ength (L )  

5 124 

5 279 

5 508 

5 1143 

5 2044 

5 4533 

5 8188 

5 18423 

d =  8 

Check CycIic 
bits ( K )  codes 

22 S G  

23 S H  

24 SF 

25 S G  

26 SF 

27 SG 

28 S F  

29 S I  

” 

” 

” 

” 

” 

” 

” 

” 

I 

Message 
length (L)  

5 1785 

5 2040 

5 7665 

5 14323 

5 30705 

<_ 57337 

- < 122865 

5 136584 



errors (right half of Table 2) where, for different message 
lengths, the best cyclic systematic codes are first So,  then 
S H ,  then SF and even S I .  This is due to the fact that, when 
one of the values LF,  Lo, LH, LI . . . is not relatively prime 
to 2K2 - 1,  the corresponding class is eliminated. 

Example 2 

Class of cyclic code 
Burst corrected (d) 

Number of check bits ( K )  
Message length (L) 

Codes with minimum possible check bits, taken  in  the 
class Ps, are given by polynomials of degree 16. They are 
the product of two different polynomials of degree 8 
taken in one of the following sets (the  conjugate poly- 
nomials belong also to these sets.) Peterson3 gives a  table 
of irreducible polynomials. 

x8 + xi + x5 + x4 + x3 + x' + 11 

i with period 85 
x 8 + x 5 + x 4 + x 3 + x 2 + x +  1 

x 8 + x 7 + x 3 + x +  1 1 
x * + x 7 + x 6 + x 5 + x 4 + x + 1  

x 8 + x 4 + x 3 + x +  1 
with period 51 

x8 + x7 + x6 + x+ + x2  + x + 1 

xs + x5 + x4 + x3 + 1 
with period 17. 

Pl (X)  = (1 + x + x4 + x5 + xB + xi + x8)  

P2(x )  = (1 + x + x3 + x4 + x".  

Their structures are : 

(51, 1 )  ( 51 ,  l + x )  (51 ,  1+x2) (51 ,  1 + x + x 2 f  x3)  

If we apply Lemma 1 of the Appendix to find the 
structure of F(x), we see that  the 26 polynomials T(x), 
form different characteristics H,,k(x) .  

Remark 

The greatest burst of errors which could be corrected by 
16 check bits  correspond to d = 8. 

Example 3 

Class of cyclic code PC Number of check bits ( K )  9 
Burst corrected (d) 4 Message length ( L )  I ll I 23 

The code is  given, in  this example, by F(x) = 1 + x f 
x2 + x4 + x9, which is a  nonprimitive irreducible poly- 
nomial. Its period is 73. 

The complete structure is: 

(73, 1) (73, 1 + x )  (73, 1 + x') (73, 1 + x + x') 

(73, 1 + 2 )  (73, 1 + x2  + x3) 

(73, 1 + x + x2 + 2 )  (1, F(x) ) .  

The code F(x) corrects  in a message of length 73 any 
burst of four except one: 1 + x + x3, which is in  the 
cycle of 1 + x. 

This cycle may be represented by the illustration. 

1 + x + x3 = X " ( [  + x )  [ F(41 

1 + x  = x23(1 + x + x3) [F(.)I. 
If the message length is L = min (50, 73 - 50) = 23 

the two  error  patterns 1 + x and 1 + x 4- x3 are  both 
corrected F(x) corrects a burst of four in a message of 
length 23. The cross-hatched area corresponds to  error 
patterns which are  not used. In this cycle (50 - 23), 
27 elements are lost instead of 50 in the others (73 - 23). 

Example 4 

Class ofcyclic code 
Burst corrected (d) 

Number of check bits ( K )  14 
Message length ( L )  I 1045 

The code is  given, in  this example, by the product 107 
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F(x) = Pl(4 * Pz(x> I 

PI(,) = 1 + x + x2 + x4 + xg  

P2(x)  = 1 + x' + x5. 

where 

Pl(x)  corrects  any burst of three in a message  of length 

Pz(x) is a primitive  polynomial N z  = 31. 
F(x) corrects  any burst of three in a message  of  length 

NlN2 = 73 x 31 = 2263. (See Proposition 3.) 
In the structures of Pl(x)  and Pz(x)  we have,  respectively, 

73, Nl = 73. (See  Example 3.) 

1 + x + x3 _= 2 0 ( 1  + 
1 + x + x3 = x g  (1 + x)  [P2(x)] [P1(x)l 
(I) implies (11) and (III) 

cycle,  in the structure of F(x): 
1 + x and 1 + x + x3 will  belong  still to the same 

1 + x + xQ = x"1 + x )  [F(x)]  (11) 

t = 50 [73] 

t = 9 [31] 

The solution of t is  given  by t = 1218. [2263]. 
We  may apply now the same  method as in the Example 3 

to correct a burst of four errors. 

L = min (1218,  2263 - 1218) = 1045. 

F(x) of  degree 14 corrects a burst of four in a message 
of length 1045. 

Example 5 
~~ 

Class of cyclic code Number ofcheck bits ( K )  
Burst corrected (d) Message length (L)  

The code  is  given,  in this example, by the product: 

F(x) = P1 (x) P'(X), 

where 

Pl(x) = 1 + x   + x 2  + x3 + x4; K ,  = 4 and Nl = 5. 

P2(x)  = 1 + x $ - x 2  + x 3  $- x6; K2 = 6 and Nz = 15 

Their structures are: 

lsjs4 

(5s 1) ( 5 ,  1 + 4 ( 5 ,  1 + x9  (1, PI(,>) 

and1 5 I _ <  6 

(15, 1) (15, 1 + x) (15, 1 + x') (15, 1 + x  + x2) 

(3, 1 + x3 + x4) (1, P2(x)) t = 4. 
All the conditions are verified: 

108 (a) 5 divides 15. 

@) In each  set Sil  which contains more than one  element 
the values k - i modulo nj are different for 1 5 1 5 4. 
For instance, SI1 contains two dements: 1 and 1 + x + 
x2 + xa. As a matter of fact in this case (the simplest  one) 
we have: B(x) = 1 and C(x) = 1 

i 1 4 1 )  [ P 1 ~ x ~ l ~ ~ i = O O = O  

i 1+x+x2+x3=x4(1) [P1(x )1b- i=6-4=2  

1 =xO(l) [&(x)]  

1  +x+x2+x3=x6( 1) [P,(X)] 

and 2 # 0 PI. 
(7) Sj6 is  empty  except Sz5 which contains 1 + x3 + x4 
but the order of 1 + x3 f x4 is 3 X 5 = 15. Sic is  empty. 
(6) P,(x) and Pz(x)  are relatively  prime. The decomposition 
of P e  gives: (1 + x + x*) (1 + x3 + x4). 

Example 6 

Class of cyclic code 
Burst corrected (d) 

F(x) = P,(x) Pz(x), where 

&(x)  = 1 + x + x' + x3 + x4 

&(x) = 1 + x + x5 + x6 + 2 .  
Their structures are: (5 ,  1) (5 ,  1 + x) (5 ,  1 + xZ) (1, PI) 

and (255,  1) (1, P2). 

(a) 5 1 255 

(6): 

E(x) 

1 
1 + ~ + ~ 2 + ~ 3  

1 + x +  x3x+ x4 
s;1 1 + x2 + X* + x4 

1 + x +  x2+ x4 

l + X  
l + X + X Z  

1 + ~ + ~ 4  
SZ, 1 + x3 + x4 

1 + x4 
1 + x2 

s; I 1 + x3 
1 + ~ + ~ 3  

1 + x2 + x3 

1 + x2 + x4 

"""""" 

"""""" 

"""""" 

E. GOROG 



In each set Sil the values k - i modulo 5 are not all 
different but, if  we consider  only  polynomials  of  degree 3 
or less, the corresponding values are different. 

F(x) does not correct a burst of 5 but a burst of 4 in a 
message of length 255. 

Example 7 

Class of cyclic code Eo Number of check bits ( K )  9 

Burst corrected (6) 4 Message length (L)  I ll I 26 

The code is given, in  this example, by the product 
F(x) = P,(x)P,(x) where 

Pl(X) = 1 + x + XR 
P2(x) = 1 + x + xfl. 

Their structures are: 

(7,  1)  (1,  Pdx)) and (63, 1) (1, Pz(x)) 

(4 7 I 63 

(PI : 

E(X) 1 + x + x 6   1 + x + x 3  k - i  [7] 

1 

2 X2 X l+X+X2+X3 
2 X' x48 1 + x2 + x3 
6 X6 X I 2  1 + x2 
3 X' X32 1 + x3 3 x3 X@ l + x  
0 X6 X26 l+X+XZ 
0 X0 X 0  

The condition @) is not satisfied. 
The types 1 and 1 + x + x2, are in the same cycle  (same 

value  of k - i modulo 7) as well as 1 + x and 1 + x3, 

1 + x2 + x3 and 1 + x + x2 + x3. All these patterns will 
be corrected by F(x) if the message length is L = min (26, 

L = 26. 
63 - 26, 32 - 6, 63 - 32 + 6,48 - 18,63 - 48 + 18). 

Example 8 

E K  

3 
9 

8177 119 
15 

Class of cyclic code 

Burst corrected (d) 
Number of check bits ( K )  
Message  length (L)  

- 

7 
25 
- 

The code is  given, in this example,  by the product 
F(x) = PI(x)Pp(x), where 

Pl(X) = 1 + x2 Nl = 2 
1 =x. 

P2(x) = x' - x N2 = 2K' - 1 K2 is odd. 

The properties of the polynomials,  which are easy to 
1-0 

be verified, are 

1 + x + x2 = x'(1) [PI (.dl 
1 + x + x2 = XK*+I(1) [P,(X)]. 

1 + x + x2 and 1 are in the same cycle for each of the 
two structures 

(a) 2 does not divide 2K2 - 1. 

@) in S,I 

Table I 

- 

1 
1 + x + x 2  

I I 

In Table 1 the 2 values of k - i modulo 2 are different. 
Since (a) is not satisfied, the problem is to find the values 

of j such that Table 2 be  valid (Table 1 is not sufficient). 

Table 2 

E'W k - i [2] 

The first value  of j which does not satisfy Table 2 is: 

j = 2Ka - K2 - 2. 

As a matter of fact, for this value  of j 

xi(l + x + x2) = xo [P,(x)] 

x'(1 + x + x2) = xo [ & ( X ) ] .  

Furthermore, Table 2 will not be valid for 2K2 - K 2  - 
2 5 j 5 zK2 - 2 since,  having  regard to polynomials 
xj(1 -I- x -I- x2),  k - i is equivalent to zero modulo 2. 
(The error pattern 1 + x 4- x2 which occurs on the 
( zK2 - Kz - 2)th bit of the message is confounded with the 
error pattern 1 which occurs on the la t  bit  of the message). 

Table 2 being  valid  only for 0 5 j 5 2 K z  - K I  - 1, 
the message  length L is: L = 2K2 - K z  - 2 

Remark 
1) If K 2  = 9 for instance, it appears that  the polynomial 109 
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In this case we shall take for P2(x) a primitive poly- 
nomial which has not  the precedent form  but such that 

1 + X + X 2 = - X X h  [PdX) l ,  

where h is the smallest possible value. 
The message length will be then L = 2K2 - 1 - 11. 

Example: P,(x) = 1 + x4 + x5 + x8 + x9 
h = 26 L = 511 - 26 = 485. 

2) The particular codes of ER presented in this example 
are very  efficient. 

These codes are, in fact, optimum in  the sense that, 
if the message length is L = 2K2 - K ,  - 2, and if a burst 
of three errors has to be corrected, the minimum possible 
number of check bits is K 2  + 2 for K 2  > 3. 

If it were possible to correct a burst of three errors, 
(i.e., four different types of errors) in a message  of length 
2K2 - K ,  - 2 with K2 + 1 check bits, the following in- 
equality would be valid: 2KZ+l - 1 > 4(2K2 - Kz  - 2). 

This is not the case for K ,  superior to three or for 
message lengths greater than five. 

The following table compares these new codes of ER 
with Melas codes of Eo which correct both bursts of three. 

Number 
check 

bits ( K )  

6 

Classes 
Cyclic codes 

EO ER 

X 

Message 
length (L)  

5 15 

7 1  x 1 5 2 5  

l x  1 5 63 

9 1  X 

10 1 x 

X 

5 119 

5 255 

5485 

Conclusion 
The efficiency of a code is usually defined by its redundancy. 
Since we desire to compare  the different classes  of burst- 
error-correction codes presented, we shall give a sharper 
definition of the efficiency  of a cyclic code. 

Let nl be the number of error  patterns consisting of 
bursts of d or fewer errors which are effectively corrected 
by the code F(x) in a certain message  of length L :  
nl = zd" L. 

Let n2 be the number of error  patterns which can be 
corrected by this code in this message. If K is the degree 
of F(x), then n, = 2K - 1. 

110 The efficiency e will be e = nl /n2 .  

2) If we compare the efficiency of the different systematic 
codes presented we find immediately that 

e(SH) < e ( S J )  < e(SJ < e(SG) < e(SF).  

3) If we would like to have a general efficiency com- 
parison, we may compare only those codes with fixed 
message length L. It is easy to verify that for codes 
S, PA, E,, Ep we obtain: 

3 < e(PJ < 1 

1 - r, < e(Eo)  < 1 
1 

The final general result for these codes is: 

e ( s )  < e(Ep) < e(PA) < e(Eo) if d > 4. 

The class Eo is optimal  but  it is often empty. If this is 
the case and if there exist codes in the class PA, then PA 
becomes the best class, et cetera. 

4) This notion of optimality in burst-error correction codes 
rests essentially on  the size of the burst d and  on certain 
appropriate message lengths L given by the codes them- 
selves. 

These lengths do  not coincide generally with practical 
message lengths, so that any cyclic code, taken  in one of 
the different classes presented here, may  be chosen for its 
best "practical efficiency." 

5) The following table gives the different efficiencies 
corresponding to the described examples. 

Burst 
corrected (d) 

3 

4 

New 
class Example  Efficiency (e) 

8 .78 .93 .99 

4 .51 
6 .49 
7 .40 
3 .36 



One has to be careful in  the interpretation of this  table 
because other values of e may be found with other codes 
(that is, other examples) taken in each of the new classes 
S O ,  SH, SI, PI39 P C ,  EP, EO, ER* 

6)  In  the same way  we could construct other classes of 
codes in studying the structure of other families of gen- 
erating polynomials, but  the most interesting burst-error- 
correction codes seem to be  in  groups S ,  P and E. 

Appendix 
In this Appendix we give the  four lemmas to which we 
refer in the text. These are useful not only for constructing 
the above mentioned classes of codes but also for  other 
burst-error-correction codes as well as  for codes correcting 
other  error types. 

They are concerned with the structure of F(x) = Pl(x). 
P,(x) when: 
1.  The respective structures of P,(x) and  PP(x)  are known. 
2.  The polynomials Pl(x) of degree K1 and period N1, 
and P,(x) of degree KP and period N z  are relatively prime. 

Let ( n ; ,  B,(x)} 1 5 j 5 b be the structure of Pl(x) 

and ( m , ,  Cz(x)) 1 _< I 5 c be the structure of Pz(x). 

p I l  will be the least common multiple of ni and mZ ; q,, 
will be the greatest common divisor of n; and m,. 

The structure of F(x)  is: 

l l j l b  

P I l .  fcdx) 1 I 2 I c 

1 I k I q i l r  

where k is an index which varies between 1 and q;, 
q j l  is  defined for each pair (j, I). 

PI, .  

lemma 1 

Let C,(x) and C,(x) satisfy: 

There are q j z  different characteristics H,,  of same order 

P2(X).C2(X) = 1 [Pl(X)l 

Pl(x).Gl(x) 3 1 c p2 (x11 . 
Then each characteristic H,,k(x) is  given by 

Hf”z(x) E P,(x)G*(x)Bi(x) 

+ P1(x>~1(x>x“-’~l(x) [F(x)1. 

Remark 

In the  computation of  the different characteristics H,,k(x) 
the polynomials Gl(x) and G,(x) need to be calculated 
only once. The  structure will be compatible with the 
definition if  we arrange  this sequence such that  the pi, 
appear in descending order. 

lemma 2 

Among the qiz cycles  of p j l  elements each, one cycle may 
be generated by &(x) C,(x) if and only if &(x) is relatively 
prime to P2(x)  and Cz(x) is relatively prime to Pl(x). 

lemma 3 
(a) If the two following conditions are satisfied, 

1. N1 and NP are relatively prime, and 
2. B,(x) and Cz(x) are relatively prime to PP(x)  and 
Pl(x) respectively, whatever the characteristics B,(x) of 
Pl(x)  and C‘(x) of PP(x) may be, 

then all possible products &(x) C’(x) form all the charac- 
teristics of F(x), providing that all these &(x)  C,(x) are 
different. 

(b) In  the structure of F(x), &(x) is a  characteristic of a 
cycle of pil  elements if and only if B,(x) is relatively prime 
to PP(X). 

(c) If Nl and N z  are relatively prime, and if B,(x) and 
P,(x) are relatively prime, then B,(x), the characteristic 
of a cycle of Pl(x) with ni elements is a  characteristic of a 
cycle  of F(x) with niNz elements. 

lemma 4 

(a) If N1 divides NP, there are necessarily, in the structure 
of F(x), 2“‘ cycles of length Nz .  

(b) If N 1  divides N z  and if, in  the structure of P2(x), 
there are s cycles of N z  elements, there are necessarily, 
in the structure of F(x), s2“’ cycles  of length NP. 
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