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Threshold  Relations  and  Diffraction Loss 
for Injection  Lasers* 

~ Abstract: Mathematical expressions are derived for  the  minimum  current density necessary to cause 
stimulated emission in injection lasers. A new type of diffraction loss for a thin  light-emitting layer 
surrounded by light-absorbing material is calculated. 

Introduction 

This  paper?  presents  some  threshold  relations relevant 
to the recent achievement of stimulated emission in 
gallium arsenide  diodes by M. I. Nathan  et a ~ " ~  
These devices differ from previously existing lasers in 
that they are excited by the flow  of an electric current 
across  a p-n  junction, which causes  the emission of 
light in a  thin layer adjacent to the  junction. We give 
formulas  for  the  minimum  current necessary to obtain 
coherent light emission in terms of the  dimensions 
of the  resonant  structure and measurable physical 
characteristics of injection light sources.  Included is 
a new calculation of diffraction loss which will apply 
when the  light-emitting layer is surrounded by light- 
absorbing  material. 

Figure 1 is a  diagrammatic  sketch  of  the  sort of 
structure we discuss. It is a  rectangular  semiconducting 
crystal with holes and electrons being injected into 
opposite faces. Within  the  crystal  there is an active 
layer of thickness d which emits light when a  current is 
passed through  the device. The  top  and  bottom sur- 
faces, separated by a  distance, I ,  have reflecting strips 
of width w. For analytic  purposes  the  dimension t is 
assumed to be sufficiently great that we may neglect 
diffraction loss in  this  direction. 

When the device is excited by passing a  current 
through  it,  there will  be a  gain per unit  length  for  a 
light wave in the active region because of stimulated 
emission.  This gain will be proportional to the  rate 
of spontaneous  emission.  The light wave  will sim- 
ultaneously suffer a loss that is due to reabsorption 
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or scattering by the  crystal plus losses that  are  due  to 
transmission  through  the reflecting strips and diffrac- 
tion  towards  the sides of the  crystal.  When  the gain 
is sufficient to make up for all of these losses, the 
device will  be at  threshold. 

Gain from stimulated emission 

The gain per unit  length is proportional to the  rate of 
spontaneous emission because the  probability of 
stimulated emission into  a single electromagnetic 

Figure I Diagrammatic sketch  of injection laser. 
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Figure 2 Absorption coefficient  due to diffraction 
vs absorption coefficient in surrounding 
material. 

mode equals  the  probability of spontaneous emission 
into  that  mode times the  number of quanta  in  the mode. 
When we use the  usual  formula  for  the  number of 
modes per unit volume per  unit frequency interval 
we find the gain per unit  length, g, is given by4 

A2 
g = - R ,  

8nn2 (1) 

where 
R is the  number of quanta  spontaneously emitted 

per unit time per unit volume per  unit frequency 
interval (assumed to be equal  for all directions of 
propagation  and  both  polarizations) 

lb is the vacuum wavelength of the  radiation 
n is the index of refraction of the  material. 

The  rate of spontaneous  radiation, R, can be  ex- 
pressed as 

where 
j is the  current density in the device 
tI is the  quantum efficiency (average number of 

e is the electronic charge 
d is the thickness of active region 
Av is the linewidth of the  spontaneously emitted 

radiation  quanta per injected carrier) 

radiation whose exact definition is implied by 

gmaxAv = j g ( v ) d ~  = 1 , (3) 

where g(v) is the normalized line shape function and 
gmax is its maximum value. 

Losses of the system 

The  threshold  condition is obtained by setting the gain 
of Eq. (1) equal to the  sum of all losses of the  radia- 
tion wave. One such loss is the  absorption or scattering 
of light by the  material. If the lower state of the  optical 

transition is populated  it will lead to  an absorption 
due to the inverse of the emission process. Of course 
other impurities, crystal defects and free carriers  can 
give additional  absorption or scattering. 

In  addition  to this bulk absorption  there is an effec- 
tive absorption per unit  length, which is due  to  the 
imperfect resonant  structure. The finite transmission 
through  the reflecting coatings is equivalent to  an 
absorption of C I ~  = T/l, where T is the transmission 
of the  coatings and I, as above, is the  distance between 
reflectors. 

Because of diffraction,  all of the light reflected from 
one  strip is not incident upon  the  other one. The loss 
due  to this effect for the  most  favorable  mode  has been 
calculated by Fox  and Li under  the  assumption that 
active layer thickness, d, and reflector width, w, are 
equaL5 Their result for small values of the  parameter, 
IA/nd2, is : 

ClDiff = - - 
0.35[ 1 nd2 lA  I” ‘ (4) 

The most efficient injection light source at present 
is a  GaAs  diode, which probably  has  a very small 
thickness, d, of its light-emitting layer. It is therefore 
of interest to consider how this diffraction loss may 
be decreased. One remedy which works in principle 
is to use confocal reflectors which could, if necessary, 
be separate  from  the  crystal. The modes for such a 
structure have been obtained analytically by Boyd 
and  Gordon.6 They show the field strength of the  cen- 
tral mode varies with transverse distance roughly as 
a  Gaussian with a width of and may have 
negligible diffraction loss. To obtain modes undis- 
torted by absorption  in  the  surrounding material this 
mode width should not be much larger than d, the 
thickness of the active region,  and  this may require 
unrealistically small values of the length 1. 

For thin, actively emitting  layers  and  broad reflect- 
ing strips,  it is quite  probable  that  the  transverse 
extent of the lowest loss mode would  be determined 
by the light absorption of the  non-emitting  material 
surrounding  the active layer. The diffraction loss for 
this case is determined in the Appendix. The result 
is insensitive to  the  absorption if the extinction coef- 
ficient in the inactive material is of the  order of 
10A/2nnd2. For this case our result is 

X D i f f  = 0.421/nd2 . ( 5 )  

Figure 2 gives aniff  as  a  function of the  absorption 
coefficient in  the  surrounding material, a,. The 
applicability of this calculation depends upon the 
amplitude of the  mode being small at  the edge of the 
reflecting strips which will  be the case if u’ % d and 
the  absorption coefficient  is not too small. The final 
paragraph of the Appendix explains how one may find 
the  amplitude of the wave at  the edge of the reflecting 
strips  and  thereby  determine whether this theory of 
diffraction loss applies  to  any  particular case. 59 
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The threshold relation 

By equating  the gain due to stimulated emission, 
Eqs. (1) and (2 ) ,  to  the  sum of all losses we find an 
expression for  the  threshold  current  density: 

In  a  convenient set of units, this becomes 

j(amp/cm2) = 6.3 x lo4 

(7) 
where 

E is energy of radiation  in  electron volts 
AE is linewidth of spontaneous emission in electron 

volts (the Av of Eq. (3) in energy units) 
d is thickness of the light-emitting layer 
v] is the  quantum efficiency 
n is the index of refraction 
a,, is absorption coefficient in the light-emitting layer 
T i s  fraction of light  transmitted  through  the reflect- 

I is the  distance between the reflecting coatings 
aDiff is the effective absorption coefficient due  to 

ing  coatings 

diffraction of light. 

For large d (i.e., d 2  % U/n) and reflecting strips of 
width d, Eq. (4) applies;  for reflecting strips  much 
wider than d and light absorption in the  material 
surrounding  the light emitting layer, the  theory of the 
Appendix applies, the values of aDiff are given in 
Fig. 2, and  Eq. ( 5 )  gives an upper bound  for aDiff 
in  this case. 

Application to gallium arsenide injection lasers 

At the  present time the values of many of the  quantities 
which enter  the expression for  threshold  current  are 
unknown. We can, however, assume some values for 
the  sake of illustration.  At  normal incidence an un- 
coated gallium arsenide crystal has  a reflectivity of 
30%.  A  distance of one mm between reflecting surfaces 
then implies an effective absorption coefficient of 7cm- ’. 
We now ask  what  thickness of light emitting layer will 
yield an  equal absorption coefficient due to diffraction, 
assuming that  the conditions  for validity of Eq. (5) 
are met. The result is d = 1.1 x cm.  For emit- 

that  our assumptions  are not completely wide of the 
mark. 

Alternatively one  can  ask what thickness of light- 
emitting layer would give a sufficiently large diffrac- 
tion loss to  account  for  the threshold  reported in Ref. 2. 
This value is 

d z 0.6 x cm. 

It is more likely, however, that  other losses, particu- 
larly  absorption  due  to incomplete inversion, are 
important  in  present devices at liquid nitrogen tem- 
perature. 
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Appendix 

We assume an infinite slab of light-emitting material 
with boundaries at x = +d/2  surrounded by light- 
absorbing  material having an extinction coefficient a,. 
The real  part of the index of refraction, n,  is assumed 
to be equal  in both materials. We  seek to  determine  the 
minimum value of gain per unit  length, g, in the light- 
emitting  material necessary to  support a uniformly 
propagating light wave  in this structure.  This wave  will 
have a large amplitude  in  the light-emitting material 
and  an exponentially damped  amplitude  in the  ab- 
sorbing  material.  Its  propagation vector will  lie in  the 
plane of the  slab  and we can take  it to be of the 
form 

@(x, z ,  2 )  = 4(x)exp[i(kz - ut)] , (1A) 

where k and o are real  numbers.  This  function must 
satisfy the wave equation 

[$$- v 2 + - g -  c at @ = O  

for 1x1 < d/2 and the same equation with g replaced by 
-as for 1x1 > d/2.  Hence 4 ( x )  satisfies 

ting layers thicker than  this  the reflection loss will  be n2w2 i n o g  a2 
more  important  and conversely thinner layers will ( 3 4  
make  the diffraction loss  dominate. Very little is known 
about bulk absorption  and scattering  that is due  to  The solutions of this  equation which are even in x 
incomplete inversion of energy level populations or  and vanish for large X are 
crystal imperfections. If we assume a diffraction loss 
equal to  the reflection loss the  computed  threshold is cos ax for 1x1 < d /2  
j = 830 amp/cm2, where we have used the values *(x) = (4A) 
d = 1.1 x cm, IZ = 4, E = 1.47 ev, AE = 0.025 4de-blXI for 1x1 > d /2  

and q = 1  in Eq. (7). This  threshold is only  a  factor where a and b are complex numbers. By substituting 
60 of about 10 less than  that observed in Ref. 2, showing into  Eq. (3A) we find 
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(5A) as a, a3 the  amplitude of  the solution in the absor- 
bing material goes to  zero.  The  asymptotic expressions 
for large and small CY, are 

i The  condition that  the logarithmic derivative of 
~ 4 ( x )  be  continuous at x = +d/2  is that  as a,/go +Po ; g/go -, 2n2@ 

a tan(ad/2) = b . ( 6 A )  
as 4 9 0  3 0 ;  g /go  -, 2;iJ.. (12N 

The difference of the  two  equations (5A) gives 290 

inw Finally, we discuss the  conditions  for  the validity 

arises from  a low frequency cutoff as  in  a waveguide 
By eliminating b between the  last two equations, which occurs when k2  in Eq. (5A) has  a negative value. 

From  the first equation of (5A) we find that this re- 

U' + b2 = - (9  + a,). 
C (7A) of the  above  theory of diffraction loss. One  condition 

a 2  = ( 9  + C Y , ) C O S ~ ( U ~ / ~ )  . i n o  (8A) quires that 

~ The coiplex phase of this  equation  depends only on 
ad, and we use this fact to derive a relation between the 
real and imaginary parts of ad:* 

i 
I u - v  

u + v  
" - tan u tanh v , 

where 
u = 1/2d Re a 
v = 1/2d Im a . 
Solutions of (9A) with u in the  range 0 < a1 < n / 2  

correspond to nodeless solutions of the wave equation 
(3A) and therefore give  us the  solutions of least loss. 
Pairs of numbers, (u,  v) ,  satisfying (9A) are easily 
obtained by successive approximation,  and  from each 
such pair we find corresponding values of g and ct, from 

g = 8uug0 

g + a , = 2 [  
cos u cosh v ] ' g o ,  where 

''+' 

The gain, g ,  is the effective absorption coefficient due to 
diffraction, aDiff, discussed in the  text.  It  turns  out to be 
slowly varying with a,, and we therefore present our 
results in Fig. 2 by plotting g/go  versus ",/go on a 
logarithmic scale. The maximum value of g/g, is 2.66, 

n 2 0 2  
C 2  
" R e a 2  > 0 .  

For  the variable u in  the  range (0, n/2)Re a2 cannot 
exceed n2/d2 and  thus we get the simpler sufficient 
but not  the necessary condition d > /2/2n. In  an actual 
device we must also require that  the wave not  be 
limited in  the x-direction by the finite extent of the 
reflectors, and  this  requires  that  the reflector width, d, 
be  much greater than l/b. 
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