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Synthesis of Transfer Admittance Functions

Using Active Components

Abstract: A formal synthesis procedure is developed for active networks. The transfer admittance function

is realized in parallel RC subnetworks, one of which contains a current-reversal negative impedance con-

verter. This procedure offers several advantages over existing methods.

Introduction

A procedure for synthesizing a network, terminated
in a one-ohm impedance, from any real, stable, rational
transfer admittance function is formulated in this
paper. The network is realized in terms of the y para-
meters of two subnetworks and consists of one current-
reversal negative impedance converter (NIC) and two
ladder-type subnetworks.

This procedure offers several distinct advantages:
1) at most two ladder networks and an NIC are re-
quired; 2) the decomposition process allows identifica-
tion of the y parameters of the two ladder subnetworks
in a relatively simple manner; and 3) the designer may
select the form of the network structure to improve
reliability, reduce sensitivity, and /or reduce compo-
nent count.

The influence of the NIC can easily be extended to
the source or load impedance connected to the net-
work. This paper also suggests a method for compen-
sating unwanted shunt admittance in the load as seen
by the network.

Of the many synthesis procedures for active net-
works (containing NIC’s) described in the literature,
that developed by T. Yanagisawa!l for voltage transfer
functions stands out by virtue of its simplicity; it uses
two paralleled subnetworks, one containing a current
reversal NIC. However, the voltage transfer functions
must always be realized by inverse L subnetworks in
conjunction with the curtent reversal NIC. The pro-
cedure described herein does not have this restriction.
Further, it can be shown that Yanagisawa’s method
may be regarded as a special case of the procedure
developed here.

Partial fraction expansion theorem

The following theorem is of paramount importance
in the development of this procedure.
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e Theorem

Given a polynomial P(s) with real coefficients and any
polynomial D(s) with real, negative, simple roots only
and with the degree of D(s) equal to or greater than
one less than the degree of P(s), the ratio P(s) / D(s) may
be expanded in admittance partial fractions such that

P(s)/D(s) = [P1(s)/D1(s)]—[P2(s) /D(5)}, M

where both P(s)/Di(s) and Py(s)/Dy(s) are RC
driving-point admittance functions.

® Proof

Expand P(s)/D(s) in admittance partial fractions.
Since P(s) has real coefficients and the roots of D(s) are
negative and real, each residue in the poles of P(s) /D(s)
will be real and positive or real and negative. Thus in
admittance partial fraction form:
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Equation (2) is recognized as the difference between
two RC driving-point admittance functions. In general
k™ k' = 0, i.e., only one factor in the product can
be non-zero. k©® is always positive, provided the
proper convention is used.2

Synthesis of Yy, functions

The terminated transfer admittance, Y;,(s), of Fig. 1a
may be written in terms of the y parameters as

Ey[Ey = LIEy = =Y12(5) = —y12/(I4+y22).  (3)




Two subnetworks A4 and B, connected in parallel, form
the network of Fig. 1a. The y;, and y,, parameters of
Fig. la are related to the y parameters of subnetworks
A and B by

Y22 = Y22aty2mm 4)
and

Y12 = Y12e Y1285

Figure 1  a) Basic form of the network. b) Internal struc-
ture of the network in (a). ¢) Internal structure
of the B subnetwork.
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Figure 2 Complete network with A and B’ subnetworks.
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where the lower case subscripts refer to the network
parameters of the 4, B, and B’ networks.

Subnetwork B (Fig. 1c) is composed of two net-
works, a negative impedance converter (current re-
versal) and a network B’. The relationship between
parameters of subnetwork B and B’ are

Yiw = — Y1
Yoo = —Ya'. %)

Under these conditions, the Y;,(s) function may be
written in terms of the y parameters of networks 4 and
B’ as

- a+ /
—Yyo(s) = 217N (6)

1+y220—Y2ow

The complete network is shown in Fig. 2.

It will be useful to expand the Y,(s) function such
that the numerator will appear as the difference be-
tweentwo RC transfer admittances and the denomina-
tor will appear as the difference between two RC driv-
ing point admittances as required by Eq. (6). More-
over, the synthesis procedure will be simplified con-
siderably if the RC transfer admittance parameters can
bé identified with a particular network structure.

To guarantee that the above expansion and identifi-
cation can always be performed, the following justifi-
cation is offered. Given a real, stable, rational function
in s,

s+As14---+4  Pls)
stbstl4- - +b_y Q(s)

having no poles at infinity, choose a polynomial
N

D(s) = [] (s+a2), such that all roots are real and
i=1

negative and such that P(s.)/Q(s;)>0, for all i, and

N>it—1. (That this step can always be taken is shown

in the following paragraph.) Divide numerator and

denominator of P(s)/Q(s) by D(s), obtaining

P(s) /D(s)
Q(s)/ D(s)’

Under the conditions stated above, if Q(s)/D(s) and
P(s) are expanded in admittance partial fractions, it is
readily seen that except for the pole at s = «, the
residue in each particular finite pole of P(s)/D(s) and
Q(s)/D(s) will be real and have the same sign. To
clarify this point, note that the ratio of the two resi-
dues is P(s) / O(s), evaluated at the corresponding pole.
The term y,,, is identified as the sum of all terms in
the admittance partial fraction expansion of P(s)/D(s)
having positive residues. The sum of the remaining
terms is —yyz. Thus, the residues of both y;,, and
V12 are positive. This in turn implies that the zeros of
Y124 and y1,, will all be on the negative real axis. Net-
works 4 and B may now be realized without resorting

—Yis) = (7
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Figure 3 An L section.
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Figure 4 General primitive ladder realization.
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Figure 5 Primitive ladder realization.

to complex zero producing sections. In fact, the sub-
networks will be simple ladders. The result, after
expansion and multiplication by s will have the form
—Yia(s) =

N k/l
k<0>-|—k(°°>s—|—2 + kg4 E s+j'
- L =4 ®
N h',‘S
h(°)+h(°°)s+2 + B 5L E o,
gi i=L+1 ¢

where (k) (k'®) = (h‘°°>) (=) = 0.
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By adding (1 —1) to the denominator of (8) and refer-
ring to (6), the following parameter identifications are
obtained:

— — J (04 ()
Vi2a = kO +k s+1_21 sto,

V220 = hO s+ E
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From (9) it can be seen that y;,,, y12' and y,5 have
the form of RC driving point admittances.

In the case of non-minimum phase functions with
an odd number of right-plane zeros, y5' or y1;, may
contain a term ks while y,5’ or y;;, does not. To
satisfy the residue condition for this case add to
Y224—Y22¢ a term of the form, k*s—k*s, such that
the residue condition is satisfied at the infinite pole. The
addition of such a term to the y;5.—y;2 function
will not adversely affect the synthesis of either net-
work. This is true because the residue conditions will
not be violated for the pole at infinity, even if k), =
0 or A, = 0 since k™ ; X k™, —0 > 0 and
A By —0 > 0.

General realization of Y;,(s) in a primitive ladder

To demonstrate that it is always possible to synthesize
Y12(s) by means of a pair of ladder networks, consider
the parameter identifications of (9), and assume that
the appropriate terms have been added to y,,, and
225 such that the residue condition is satisfied at every
pole.

The simplest ladder network is a single L section. A
general method for synthesizing the two networks,
whose parameters are given by (9) with two L sections
is now shown. This realization does not result in a
minimum number of components, but it does demon-
strate that subnetworks of (9) may always be realized
as a pair of primitive ladders. The equations of an L
section are given in Fig, 3.

Realization of y;,, and y,,, in an L section requires
that each residue of y,;, be no smaller than the corre-
sponding residue of ... If this condition is not satis-
fied, add a term of the form k* s /(s+0.)—k* |5 /(s+02)
to y224—y22' such that the residue in every pole of
Y224 1 €qual to or greater than the residue in the cor-
responding pole in y1,,. This introduces new poles in
V2. A similar operation is performed with y;,,’ and
yaa'. The — Y ,(s) function takes the form

. Yi2a— Y12
14y*220—ya'™



New parameter identifications are made by separating

the denominator function into the appropriate form

in the following way:

e = Yia F =Yy
Yi2 1 Vi 1 . (10)
= y*22s~Y1a Yo' = y*on — Y

The final network is shown in Fig. 4.

It has been demonstrated that any real, stable,
rational voltage transfer function in s may be realized
by two primitive ladder networks and one NIC of the
current inversion type. However, the primitive ladder
often results in more elements than necessary.

In general, it is more convenient and economical to
realize the 124, V224, and y;2, ya2' functions by
means of general ladder networks, and to use a zero
shifting technique to obtain the real zeros of the yq,
parameters which are not coincident with the zeros of
the y,, parameters.

Selection of (—g;)

If the roots of D(s) are selected from the segments of
the —¢ axis for which the function P(s)/Q(s) is posi-
tive, then the sign of the residues will, in each finite
pole, be the same for corresponding poles of P(s) /sD(s)
and Q(s) /sD(s).

By proper use of the reference convention? for the
voltage, roots for D(s) can always be chosen from con-
venient segments of the —¢ axis such that P(s)/Q(s)
is positive for each chosen root. This not only guaran-
tees that the desired expansion can be obtained but
also permits some control over element values.

N

H (5402
i=1

also influences pole-zero sensitivity? as well as the
spread of element values. These three constraints on
the location of the roots of D(s) have a rather signifi-
cant effect when dealing with practical networks.

The location of the roots of D(s) =

Example

In order to clarify the above procedure one example
will be considered.

- 2_
Given: —Y,(s) = (s—1) (s2—s+1) (all pass

(s+1) (s24s41) function).

Choose: D(s) = (s+2) (s+3), since — Y1,(s)>0 for
s<—1.

Then:
1
(s—1) (s2—s54+1) %s ] %s
(+D 6+ e
—Y1a(s) = = 3 rul

(s-+1) (s24s+1) 1 —2—5 ER
(s+2) (s-+3) 6+s+s+2 513

To satisfy the residue condition in the B network at
s = 0 and to put the denominator in the proper form,
add (5/6—5/6) to the denominator of Yy,(s):

1w
2 1 3
St 276 543
—YIZ(S) = 3 14
s s
Ifst 2 _é_ 3
+2 6 s+3

After adding and subtracting the appropriate terms
necessary to obtain a realization in canonical L sec-
tions, the parameter identifications are:

2 23
2 1.3
—V12s = S+s+2, ~yi = 6+s+3’
3, 18 38
2 2 3
V224 = +s+2+s+—2+s+3’
o183
s 3° 2% 3¢

y = teatin Tt
Yias Y24, Y1y’ and Y, are obtained as in (10) and
Fig. 3. The final network is shown in Fig. 5.

Load compensation

Under certain circumstances it will be useful to cancel
the undesirable effect of some RC load admittance,
Y1, associated with the network. For example, it might
be required that the effective shunt capacitance meas-
ured at the input terminals to a vacuum tube circuit or
a transmission line be removed; in this case the un-
wanted admittance can be removed by regarding it as
part of the A subnetwork and compensating its effect
in the B subnetwork.
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