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Synthesis of Transfer Admittance  Functions 
Using  Active  Components 

Abstract: A  formal synthesis  procedure i s  developed for active networks. The transfer admittance function 

i s  realized  in  parallel RC subnetworks, one of which contains a current-reversal negative impedance con- 

verter.  This  procedure  offers several advantages over existing methods. 

Introduction 

A procedure  for synthesizing a network,  terminated 
in  a  one-ohm  impedance,  from any real,  stable,  rational 
transfer  admittance  function is formulated  in  this 
paper.  The network is realized in  terms of they para- 
meters of two  subnetworks  and  consists of one  current- 
reversal negative impedance  converter (NIC)  and two 
ladder-type  subnetworks. 

This  procedure offers several distinct  advantages: 
1) at most  two  ladder  networks  and  an NIC  are re- 
quired; 2) the decomposition process allows identifica- 
tion of they parameters of the two  ladder  subnetworks 
in  a relatively simple  manner;  and 3) the designer may 
select the  form of the network  structure to improve 
reliability, reduce sensitivity, and  /or reduce  compo- 
nent  count. 

The influence of the  NIC  can easily be  extended to 
the source or  load impedance  connected to  the net- 
work.  This  paper  also suggests a  method  for  compen- 
sating  unwanted shunt  admittance in the  load  as seen 
by the network. 

Of the many synthesis procedures  for  active  net- 
works  (containing  NIC's) described in the literature, 
that developed by T.  Yanagisawal for voltage  transfer 
functions  stands out by virtue of its simplicity; it uses 
two  paralleled  subnetworks,  one  containing  a  current 
reversal NIC. However, the voltage  transfer  functions 
must always be realized by inverse L subnetworks  in 
conjunction with the curi-ent reversal NIC.  The  pro- 
cedure described herein  does not have this  restriction. 
Further,  it  can  be  shown  that Yanagisawa's method 
may be  regarded  as  a  special  case of the  procedure 
developed here. 

Partial fraction expansion theorem 

The following theorem is of paramount  importance 
40 in  the  development of this  procedure. 

e Theorem 
Given a polynomial P(s) with  real coefficients and  any 
polynomial D(s) with  real, negative, simple roots only 
and with the degree of D(s) equal  to  or greater than 
one less than  the degree of P(s), the  ratio P(s) /D(s)  may 
be  expanded  in  admittance  partial  fractions  such that 

P(s)/D(s) = P1@)/D16)1- [P2(s)lD2(s)1, (1) 

where both  Pl(s)  /Dl(s)  and  P2(s)/D2(s)  are RC 
driving-point  admittance  functions. 

e Proof 
Expand P(s) /D(s) in  admittance  partial  fractions. 
Since P(s)  has  real coefficients and  the  roots of D(s) are 
negative and  real,  each residue in the poles of P(s) /D(s)  
will be  real and positive or real and negative. Thus in 
admittance  partial  fraction  form: 

Equation (2) is recognized as  the difference between 
two RC driving-point  admittance  functions. In general 
k(-)  kt(") = 0, i.e., only one  factor  in the  product  can 
be  non-zero. k(0) is always positive, provided the 
proper  convention is used.2 

Synthesis  of V I ,  functions 

The  terminated transfer  admittance, Y12(s), of Fig. l a  
may be  written in terms of the y parameters  as 

E 2 P 1  = 12/E1 = - Y126) = -y12/(1+y22). (3) 
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Two  subnetworks A and B, connected  in  parallel,  form 
the network of Fig. la.  The y 1 2  and y22 parameters of 
Fig. l a  are related to  they parameters of subnetworks 
A and B by 

y22 = Y 2 2 a + Y 2 2 b  (4) 

and 

y12 = Y 1 2 a + y l 2 b ,  

Figure 1 a) Basic form of the network. b) Internal struc- 
ture of the network  in  (a). c) Internal structure 
of the 6 subnetwork. 
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Figure 2 Complete network  with A and B' subnetworks. 

where the lower case SL lbscripts re fer to  the network 
parameters of the A ,  B, and B' networks. 

Subnetwork B (Fig.  IC) is composed of two net- 
works,  a negative impedance  converter  (current re- 
versal) and a  network B'. The relationship between 
parameters of subnetwork B and B' are 

Under these  conditions,  the Y12(s)  function  may be 
written in terms of they parameters of networks A and 
Bt as 

The complete  network is shown  in  Fig. 2. 
I t  will be useful to  expand  the Y12(s) function  such 

that  the  numerator will appear  as  the difference be- 
tween.two RC transfer  admittances  and  the  denomina- 
tor will appear  as  the difference between two RC driv- 
ing  point  admittances  as  required by Eq. (6) .  More- 
over, the synthesis procedure will be simplified con- 
siderably if the RC transfer  admittance  parameters  can 
b t  identified with  a  particular  network  structure. 

To guarantee  that  the  above  expansion  and identifi- 
cation  can always be  performed,  the following justifi- 
cation is offered. Given  a  real,  stable,  rational  function 
in s, 

having no poles at infinity, choose a polynomial 

D(s) = n   sf^;), such that all  roots  are real and 

negative and  such that P(u i ) /Q(u t )>0 ,  for  all i, and 
N >  t - 1. (That this  step can always be  taken is  shown 
in the following paragraph.)  Divide  numerator  and 
denominator of P(s) / Q ( s )  by D(s), obtaining 

N 

i=1  

Under  the  conditions  stated  above, if Q(s) /D(s )  and 
P(s) are expanded in admittance  partial  fractions,  it is 
readily seen that except  for the pole at s = CQ, the 
residue in each  particular finite pole of P(s) /D(s)  and 
Q(s)/D(s)  will be real and  have  the  same sign. To 
clarify this point,  note  that  the  ratio of the two resi- 
dues is P(s) /Q(s) ,  evaluated at  the corresponding  pole. 
The term y 1 2 a  is identified as  the sum of all  terms in 
the  admittance  partial  fraction  expansion of P(s)  /D(s) 
having positive residues. The sum of the  remaining 
terms is - Y 1 2 b .  Thus,  the residues of both y12a and 
y12b are positive. This in turn implies that  the zeros of 
y l z a  and y 1 2 b  will all be on  the negative real  axis.  Net- 
works A and B may now be realized without  resorting 41 
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Figure 3 An L section. 

-y12 = Yl .  y22 = Y1+Y2 = (-y12)+Y2. 
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Figure 4 General  primitive  ladder  realization. 
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Figure 5 Primitive ladder  realization. 

to complex  zero  producing  sections. In fact, the sub- 
networks will  be simple ladders. The result,  after 
expansion  and  multiplication by s will have the  form 

- Y 1 2 ( S )  = 

By adding (1 - 1) to the  denominator of (8) and refer- 
ring to (6) ,  the following parameter  identifications are 
obtained: 

From (9) it  can  be seen that y12a,  Y12b' and y22b' have 
the  form of RC driving  point  admittances. 

In  the case of non-minimum  phase  functions  with 
an  odd  number of  right-plane zeros, Y l 2 b '  or J I ~ ~ ~  may 
contain  a  term k@)s while Y22b' or y22a does not.  To 
satisfy the residue  condition  for this case  add  to 
Y 2 2 a - Y 2 2 b f  a  term of the  form, k*ls-k*ls,  such that 
the residue condition is satisfied at  the infinite pole. The 
addition of such  a  term to  the Y 2 2 a - Y 2 2 b '  function 
will not adversely affect the synthesis of either net- 
work.  This is true  because the residue  conditions will 
not be violated for  the pole at infinity, even ifk(m) 1 2  = 
0 or h ( 0 0 ) 1 2  = 0 since k (m) l l  x k ( m ) 2 2  -0 > 0 and 
h ( m ) 1 1  h ( 4 2 2  -0 > 0. 

General  realization of in a  primitive  ladder 

To demonstrate  that it is always possible to synthesize 
Y 1 2 ( s )  by means of a pair of ladder  networks,  consider 
the  parameter identifications of (9), and assume that 
the  appropriate terms  have been added to J I ~ ~ ~  and 
Y 2 2 b  such that  the residue  condition is satisfied at every 
pole. 

The simplest ladder  network is a single L section. A 
general  method  for synthesizing the two  networks, 
whose  parameters  are given by (9) with two L sections 
is now  shown.  This  realization  does not result in a 
minimum  number of components,  but  it  does  demon- 
strate  that  subnetworks of (9) may always be realized 
as  a  pair of primitive  ladders. The  equations of an L 
section are given in Fig. 3. 

Realization O f y l z a  and ~ 2 2 ~  in an L section  requires 
that each residue of ~ 2 2 ~  be  no smaller than  the corre- 
sponding residue Ofylza.  If this  condition is not satis- 
fied, add a  term of the  form k* l s / ( s+a i ) -k*Is / ( s+a i )  
to Y22a"Y22b' such that  the residue in every pole of 
y22a is equal  to  or greater than  the residue in the cor- 
responding  pole in ~ 1 2 ~ .  This  introduces new poles in 
Y22b' .  A similar operation is performed with y l 2 b '  and 
Y22b' .  The - Y 1 2 ( s )  function  takes  the  form 

- Y 1 2 a - Y l 2 b '  
1 +Y*22a-Y22b'* 

* 
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New parameter identifications are  made by separating 
the  denominator  function  into  the  appropriate  form 
in  the following way: 

Y 1 2 a  = y 1 a  Y l 2 d  = Ylbl 
* (10) 

y 2 u  = Y * 2 2 a - Y l a  y2b’ = y*22b”Ylb‘  

The final network is shown in Fig. 4. 

It has been demonstrated  that  any real,  stable, 
rational  voltage  transfer  function  in s may be realized 
by two primitive ladder  networks and  one  NIC of the 
current inversion type. However, the primitive ladder 
often results in  more elements than necessary. 

In general,  it is more  convenient and economical to 
realize the y12u, y22u, and y12b’ ,  y22d functions by 
means of general  ladder  networks, and  to use a  zero 
shifting technique to obtain  the real zeros of the y I 2  
parameters which are  not coincident  with the zeros of 
the y22  parameters. 

Selection of (-a;) 

If the  roots of D(s) are selected from  the segments of 
the -a axis  for which the function P(s)/Q(s) is posi- 
tive, then  the sign of the residues will, in  each finite 
pole,  be the same  for  corresponding  poles of P(s) /sD(s) 
and Q(s)  /sD(s). 

By proper use of the reference convention2 for  the 
voltage, roots  for D(s) can always be  chosen  from  con- 
venient segments of the - a axis such that P(s) /Q(s)  
is positive for  each  chosen  root.  This not only guaran- 
tees that  the desired expansion  can  be  obtained but 
also  permits  some control over element values. 

N 

The  location of the  roots of D(s) = n (s+ai) 

also influences pole-zero sensitivity3 as well as  the 
spread of element values. These  three  constraints on 
the  location of the  roots of D(s) have  a  rather signifi- 
cant effect when dealing  with  practical  networks. 

i=l  

Example 

In order to clarify the  above  procedure  one example 
will be considered. 

Choose: D(s) = (s+2) (s+3), since - Y12(s)>O for 
s<-1 .  

I Then: 

- Y l 2 ( S )  = 

(s- 1) (S2”Sfl) 
(s+3) 

21 52 
zs 1 TS 
s t 2  6 s+3 

3 14 

s+2 s+3 
1 ZS 7 
g+s+-- - 

To satisfy the residue  condition  in the B network at 
s = 0 and  to  put  the  denominator in the  proper  form, 
add (5 /6 -  5 /6 )  to  the  denominator of YI2(s):  

21 52 
TS 1 -Ts ~~ 

- Y12(4 = 
s+2 6 s+3 

3 14 
-. 

zs 5 -Ts 
l+s+“”- 

s+2 6 s+3 

After  adding  and  subtracting  the  appropriate  terms 
necessary to  obtain a  realization  in  canonical L sec- 
tions, the  parameter identifications are: 

21 
TS 

-Y120 = s+-- s+2’ 

3 18 38 
5s 5 s  7 s  

y 2 2 a  = s+-+-+- s+2 s+2 s+3’ 
14 18 38 

5 TS TS - T S  y22b’ = -+-+-+“. 
6 s+3 s+2 s+3 

~~ 

Yl,, Y,,, Ylb’ and Y2b’ are  obtained  as in (10) and 
Fig. 3. The final network is shown  in Fig. 5. 

load compensation 

Under  certain circumstances it will be useful to cancel 
the undesirable effect of some RC load  admittance, 
YL,  associated with the network. For example,  it  might 
be required that  the effective shunt  capacitance meas- 
ured at  the  input terminals to a  vacuum tube circuit or 
a  transmission  line be removed; in this  case the un- 
wanted  admittance  can  be removed by regarding it  as 
part of the A subnetwork and compensating  its effect 
in  the B subnetwork. 
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