H. M. Sierra

Increased Magnetic Recording Read-back
Resolution by Means of a Linear Passive Network

Abstract: It has been proven that the principle of superposition applies to a magnetic read-back wave-
form. Consequently, each pulse can be treated as an isolated transient, and a linear passive network
can be used to reduce its width. In many cases this effective increase in read-back resolution would
permit an increase in the operating density. The isolated read-back pulse is first approximated by a
Gaussian curve. A second approximation is effected in the frequency domain, and a table of transfer
functions is obtained. A network is designed using one of the transfer functions, and the solution is
given an algebraic form. One particular case is illustrated numerically and the laboratory results are

shown.

Introduction

A method has been proposed to increase the recording
density of a magnetic surface by inserting a network
between the terminals of the read-back head to com-
press the pulses before entering the read amplifier.
The method was proposed by C. E. Schlaepfer who
implemented the network by means of active elements.
G. C. Bacon further clarified the proposal and imple-
mented it with a delay line and three operational
amplifiers.

The present approach is a compromise between the
previous proposals. High compressions are obtained
without active elements; but to obtain equal amplitude
between the input and output pulses, an extra linear
amplification is required.

Read-back signal

In digital magnetic recording the read-back signal
voltage obtained from a magnetic head is given by’

e =CV _a_J‘w D(x)M(x — xq)dx , 1)
ox |_o

where D(x) represents the sensitivity function of the
head and M(x — x,) is the change in surface magneti-
zation (see Fig. 1).

In practice, M(x — x,) is much narrower than
D(x). The sensitivity function D(x) can be considered
as a linear filter which degrades M(x — x,) during the
read-back process. It is desirable to design a com-
pensating filter to be used in conjunction with the head
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to eliminate this undesirable effect, thus obtaining a
narrower read-back pulse. In order to obtain high
reliability and low cost, the filter should consist of
passive elements only.

Degradation caused by the magnetic head is not
harmful if the pulses are separated sufficiently.
Nevertheless, as the recording density increases, the
pulses appear closer together until bit crowding and
bit shifting occur, see Fig. 2.

A nonreturn-to-zero type of recording will be
assumed (although this is not essential). Every time
a ONE occurs, the surface magnetization changes
polarity and an output signal is detected by the head.

When a series of ONES is sensed, the composite read-
back signal (as seen on an oscilloscope) is formed by
the superposition of the individual pulses.

Notice that in the composite waveform of Fig. 2
the peaks of all the pulses, except the first and the last,
are separated by 7, which is constant. But for the

Figure 1 lIsolated read-back signal.
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first and last pulses, because of the absence of a pulse
which would cause symmetry, the distance between
the peak of these pulses and the corresponding
neighboring pulse is 7 + A. In other words, these
pulses appear shifted by the amount A. The effect of
this shift is an out-of-step condition with the clock
signal, which in turn causes reading errors.

Also, due to the overlapping between neighboring
pulses, the amplitude of each pulse is greatly dimin-
ished. This amplitude reduction imposes more rigorous
requirements upon the sensing electronics, that is, in
amplification and noise elimination. These undesirable
effects are magnified as the density is increased.

Let us consider the following: (1) If each read-back
pulse could be treated separately (in a mathematical
way) regardless of whether it is really isolated or in a
sequence with other pulses, and (2) if each pulse thus
isolated could be compressed to the point where its
effect upon neighboring pulses is negligible, then the
recording density could be increased and the pulse
shift 1 eliminated (see Fig. 3).

Pulse isolation

Bacon and Hoagland state’ that the principle of super-
position can be applied to the overall input-output
transfer process with the use of the characteristic step-
function output response. In other words, they justify

Figure 2 Sequence of read-back pulses.
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the magnetic read-back waveform through single-
pulse superposition.

In this case, each pulse can be treated separately
and may be considered as a transient pulse which can
be modified to fit our purposes.

Bacon and Hoagland also state® that during read-
back, the existing magnetic field of the surface is
extremely weak and, hence, the magnetic head will
behave very nearly as a linear element.

Thus it is possible to shape the read-back pulse by
means of a network composed of linear elements.
It must be pointed out that this network is not a
filter in the usual sense; it is not a network to discri-
minate certain specified frequencies (synthesis in the
frequency domain), but rather a network specified by
its transient behavior (synthesis in the time domain).

Let us call fi(¢) the isolated signal from the read-back
head, and fy(r) the desired narrower pulse. The
problem can be stated: Given f(7), find a network
with a transfer function H(s) such that an output f,(9)
will result (see Fig. 4).

input signal

As stated previously, when a ONE is detected, the sur-
face magnetization changes polarity. A typical curve
M(x — x,) and output voltage from the magnetic
head are shown in Figs. 1 and 2. This waveform
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Figure 3 Sequence of read-back signals with narrowed pulses. Density can be increased by a.

resembles the normal (or Gaussian) probability
density function. Indeed, this is the case, since a great
number of experiments have shown that the normal
curve gives the most accurate fit to the read-back
signal.’

Figure 5 shows the input signal f(f) expressed as a
normal curve:

fit) = exp(—&*t*). @

The error at t = a is the value of the Gaussian func-
tionat f = a. It is

& = exp(—&2a?). (3)

Output signal

We require only that the output signal be narrower
than the input signal. A normal curve can be assumed,
but with different parameters. Figure 6 shows the
output signal expressed as a normal curve:

So(t) = exp(—n*#) . @)
The error is
e =exp(—np?). &)

Let us define
K = desired compression ratio
=2¢/2f, thatis, K=a/f. 6)

If we assume the same tolerable degree of error at

Figure 4 System diagram.
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both input and output pulse edges, then Egs. (3) and
(5) give

ba=np
or
¢m=1/K. )

Transfer function

The transfer function of the network is given by

H(s) = Fo(s)/F(s) . ®)
Let us obtain the two-sided Laplace transform of

the input pulse:

F(s) = LU = f " exp(—ExP)exp(— st)dt

= (Jn/E)exp(s/45%). ®
Similarly
Fo(s) = (Vr/n)exp(s*[4n®) . (10)
Substituting (9) and (10) in (8),
H(s) = (&/mexpl(1/n®) — (1/E*)]1s%/4 . (11)
Substituting (7) in (11),
H(s) = (1/K)exp[(1/K?) — 1]s*/4£* . 12)

Equation (12) still contains the parameter £. For
convenience, let us normalize the input pulse by
making ¢ = 1. Equation (12) reduces to

H(s) = (1/K)exp[(1/K?) — 1]s%/4 . 13)
In this case, for r = 2 seconds

f(2) = e = exp(—2%) = 0.018,

since Max [f;(1)] = f;(0) = 1, the error ¢ is only 1.8,




Figure 5 Input signal as a normal curve, fi(t) =
exp(—&22),

of the maximum value of f(#). Therefore, the normal-
ized input pulse has a half-width (to be adjusted later)

o, = 2 seconds .

Let us call

¢* = (K* — 1)/4K?, (14)

that is

6=JK - 1)K . (15)
Substituting (14) in (13),

H(s) = (1/K)exp(—¢?s”) . (16)

Since the transfer function given by Eq. (16) is
transcendental, it must be approximated by a ratio
of polynomials in 5. Nevertheless such approximations
give non-Hurwitz polynomials in the denominator
because the polynomials are even, and the roots of
such polynomials have quadrantal symmetry. Instead
of the transfer function, another function must be
approximated. In this particular case it is possible to
approximate the magnitude function and still obtain
accurate results in the time domain.

For s = jw, Eq. (16) becomes

H(jo) = (1/K)exp(¢’w?) , )

and since the imaginary component is zero, (17) is
also the magnitude function

|H(jow)| = (1/K)exp(¢*w?) , (18)
and by the same reason the phase is
Arg H(jw) = 0° . (19)

The magnitude functions of the input and output
pulses are, by (9) and (10),

|Fi(jw)| = /n exp(— w?/4) (20)
|Fo(jw)| = (Vn/K)exp(—w?/4K?) . 1)

Figure 6 Output signal as a normal curve,
fo(t) = exp(—y™t?).

VT /K

IF(ja)l—=

1/K

[H(jw)] —=

o—

Figure 7 Curves of the magnitude functions.

Curves of Egs. (18), (20) and (21) are given in Fig. 7.
To obtain the frequency w, at which |F(jw)| =
| Fo( jw)|, we must solve the equation

V7 exp(— w,2[4) = (Vr/K)exp(— w,2[4K?) ,
which gives
w, = 2K[In K/(K? - 1)]%. (22)

To obtain realizable transfer functions, the approxi-
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mations to | H( jw)| must be bandwidth limited; that is,
every approximation will hold only up to a frequency
w,. If the network is going to be realized with passive
elements only, and with the same impedance level, for
w,; > w, it will be necessary to introduce some

Table I Approximations to H(s)H(—s).

attenuation factor 4.
From (18) we can obtain the magnitude squared
function, which is

[H(jo)|? = (1/K?)exp(2¢*w?) .

@3)

N H(s)H(—5s) Zeros Poles
5 (_1_)_1___ 10+ jo70710678)  *
2 1 + 2¢2s2 ¢ T Ju.
1\1 — ¢3s? 1 . 1 .
3| ()—2% et 40 1oz .
(K2)1+¢2s2 5 (E1+/0) 50D
Py 1
* (kl?)s = f¢+s2¢4 : = (£122474487 + jo) | g (£0.3352200067
+ 4¢%s s ¢ + j1.054690705)
s ( 1 )3 — 3425 + ts* :15(11.271229882 —(15(10.340625032
2 2.2 4 4
K*/3 + 3¢%" + 4% + j0.340625032) + j1.271229882)
%(o + j1.34867233) *
] ( 1 ) 15 — 12¢%s% + 3¢*s* - é(¢1.45534667
72 2.2 3.4 6.6 1
K*]15 + 18¢%s* + 9¢%s* + 2¢°s + j0.343560805) E (+0.587391538

+ j1.29829514)

+ 70.252045949)

%(11.52387182 + j0) é(o + j1.52387182)
. (_1_)15 — 15¢25% + 6¢*s* — ¢°s°
K2J15 + 15¢%s* + 6¢*s* + ¢°° (—L(il.47994076 %(10.5927200616
+ j0.5927200616) + j1.47994076) *
] L (+0.79700116
E(i1.680548372 +j0) | T
g ( 1 ) 105 — 90¢2s + 30¢*s* — 4¢5s® | + j1.497202089)
K2]105 + 12003%5% + 60¢*s* + 16¢)°s® + 2488 | -
é ¢ ¢ ¢ ¢(i1.64112335 %(i0‘250044024
+ j0.596160249) + 71.56720106)
% (41.6572801 % (40.801741003
9 ( 1 )105 — 105¢%5% + 45¢*s* — 10¢°5° + ¢5s® 1 j0.801741003) + j1.6572801)
K2J105 + 105¢2s2 + 45¢*s* + 10455 + ¢%% | 1 1
7 (41.72038868 3 (40.252045949

+ j1.72038868)

* These expressions have poles in the imaginary axis, cannot be decomposed and, therefore, cannot be implemented in realizable networks.
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To approximate (23) by a ratio of polynomials in w,
we have chosen the approximation by means of a
continued fraction expansion because it offers very
fast convergence. Let us call

z =2¢%w?. (24)
Substituting in (23),
[H(2)|* = (1/K*)exp(z) . (25)

The continued fraction expansion of exp(z) is given®
by

1
exp(z) = 1>

-z
10
+z
10
1-2z
14
14+ -- (26)

If N = number of terms taken in the expansion, we
obtain the following approximations to exp(z):

For N=1:

For N =2:
or 1

1 _2+z
T2-z’

For N =3: etc.

z 2z

1- 1—
24z

z
1 -
+3

Substituting z = 2¢>w?, we obtain

For N = 1: |[H(jo)|*

Substituting s = jwo we obtain approximations to
H(s)H(—s):
1

For N=1: H()H(—5) ~ (EIE)I

1
1 4 2¢%s?

1)1—d)2s2
K21+ ¢%s2°

For N = 2: H(s)H(—s) ~ (%)

For N =3: H(s)H(—s) ~ ( etc.

A more complete list is given in Table 1. The
corresponding poles and zeros are also included. The
approximations given in Table 1 are the diagonal
entries (or stair-case entries) of the Padé table for
H(s)H(—ys).

From the entries of Table 1 we can take the left-half
plane poles, and they will constitute the poles of H(s).
In this fashion we can construct the approximate
transfer functions.

(1 (s—z)(s—25) - (s—2,)
H(S)~(E)(S_Pl)(s_Pz)"'(S—Pm)'

Computer simulation

To determine the degree of approximation to the out-
put pulse which was achieved by the entries in the
table, a FORTRAN program was written to carry
out the convolution of f;(¢) and the inverse transform
of H(s).

Numerical example

Let us choose K = 2. Since the normalized input
pulse is 2o = 4 seconds, the desired normalized output
pulse will be

20/K = 4/2 = 2 seconds wide .
Substituting X = 2 in Eq. (16),
¢ =K*—1/2K = /3/4 = 0.433012701 . 27

In Table 1 let us choose the entry N = 9. Substi-
tuting the value of ¢ calculated above, we obtain the
following poles and zeros for H(s)H(—s).

Poles:
+1.85154154 + j3.82732446
+0.582075188 £ j3.97306747

Zeros:
+3.82732446 1 j1.85154154
+3.97306747 + jO.582075188

Disregarding the right-half plane poles and the left-
half plane zeros,* we obtain for H(s)

® The choice of right-half plane zeros assures a more linear phase response
than would be possible with the other alternative.
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Since we have right-half plane zeros, our transfer
function is nonminimum-phase. The output pulse f(#)

Poles:
will be delayed with respect to fi(f). This delay is quite

—1.85154154 + j3.82732446

—0.582075188 + j3.97306747

Zeros:
+3.82732446 + j1.185154154

+3.97306747 + j0.582075188

1

tolerable since all the read-back pulses will be delayed
by the same amount, but the relative distance between
adjacent pulses will remain unchanged.

With the poles and zeros calculated above, we obtain

the transfer function

[(s — 3.82732446)% + (1.85154154)2][(s — 3.97306747)* + (0.582075188)*]

H =1= k)
() (2) [(s + 1.85154154)% + (3.82732446)X][(s + 0.582075188)2 + (3.97306747)]

that is

s* — 15.60078386s> + 95.02556847s% — 267.0633964s + 291.4687835 (28)

1
H(s) ={= .
©) (2) s* + 4.867233456s° + 38.51164079s% + 80.7526977s + 291.4687835

The empirical input signal f,(f) convolved with the
inverse Laplace transform of (28) gives an output
pulse of fy(¢). The result obtained from the computer
is shown in Fig. 8. The maximum value of fy(f) has
been normalized to 1. It is seen that the delay is 1.26
seconds. The width of the output pulse is 2 seconds, as
expected.

In a similar fashion it is possible to calculate from
Table 1 approximate transfer functions with either left-

necessary to calculate the magnitude and phase of
the transfer function to verify our approximation
to the magnitude function. Also, we must observe
the phase very carefully since it has been ignored up

to this point.
In Eq. (28) let us make s = jw. We obtain

Figure 9 Magnitude vs frequency.

plane or right-half plane locations for the zeros.
This was done, and every possible transfer function 12 p
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illustrated above, offered the best accuracy with a nk
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(w* — 95.02556847w* + 291.4687835) + j(15.60078386w> — 267.0633964w)

. 1
H(_](l)) = (5) ) > - 3 .
(0" — 38.511640790° + 291.4687835) + j(—4.867233456w> + 80.75269772w)

The magnitude function is

\H(jo) = (1) [(w“ — 95.02556847w? + 291.4687835)% + (15.600783860> — 267.0633964w)?] "
TN =\2) | (@ — 38.51164079w7 + 291.4687835)° + (4.867233450° — 80.75269772w)°

Evaluating |H( jw), for values of w from zero to 8
radians/sec, we obtain Fig. 9. Our approximation
is good only up to w,; = 4.03356 radians/sec. At this
frequency we have

Max|H(jw)| = 7.01232595 . 29
The phase is given by
Arg H(jw)

15.60078386ww° — 267.0633964w
w* — 95.02556847w* + 291.4687835

—4.8672334560° + 80.75269772w
w* — 38.51164079w2 + 291.4687835

= arctan

—arctan

Evaluating Arg H(jw) for values of w from zero to
8 radians/sec, we obtain Fig. 10. It is observed that
up to the frequency of approximation, w,, the phase
can be considered linear to an acceptable degree of
accuracy.

Network synthesis

Given a particular transfer function which fulfills
well-known realizability requirements, there are in
general many possible networks; only one will be
illustrated.

The magnetic head is connected directly to an
amplifier. The network must be inserted in a desirable
location. Suppose that as far as input and output
terminals are concerned, the network appears as in
Fig. 11. That is, the network is connected between a
voltage generator and a purely resistive load. Since
the insertion of the network must disturb the previous
configuration as little as possible, we have chosen a
constant-R configuration.

In the practical case under consideration the net-
work is connected to a critically balanced push-pull
amplifier. Consequently, it is desirable to load both
lines by the same amount. Instead of a common-node
network, a symmetrical lattice network will be re-
alized (see Fig. 12).

In terms of the transfer function the branch impe-
dances of the symmetrical lattice network are®

_1—H(s)
“" 1+ H(s) (30)
Z, = % . (31)

For Z, and Z, to be positive real, the requirements’

Figure 10 Phase vs frequency.
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Figure 11 Input-output to the network.
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Figure 12 Symmetrical lattice network.
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Figure 13 Denormalized network.
are that (1) H(s) has no poles in the right-half plane 1 32)

or on the imaginary axis and (2) |H(jw)| <1 for
0L ws w.

The transfer function H(s) given by Eq. (28) fulfills
the first requirement since all the poles are in the left-
half plane.

To fulfill the second requirement, it is necessary to
multiply H(s) by

0.0713030175s* — 1.112382964s> + 6.775609772s> — 19.04242602s + 20.78260377

AL —7——.

= Max|H(jw)|
Substituting (29) in (32), let us choose
A = 1/7.01232595, (33)

which gives an attenuation of 20 log(1/A) = 16.917db.
Multiplying (28) by (33),

H(s) =

Substituting (34) in (30) and (31), we obtain the
normalized network.

The normalized input pulse was considered 4
seconds wide. Nevertheless, this normalized width was
chosen quite arbitrarily. By truncating a Gaussian
approximation, we have used a pulse which starts
with a step function whose height is 1.8 per cent. In
practice, the pulses coming from the magnetic head
do not have these step functions, that is, they approach

30 the base line more rapidly than a Gaussian curve. This
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(34)

s* + 4.8672334565> + 38.51164079s> + 80.75269772s + 291.4687835

discrepancy causes the output pulse to have overshoots
as shown in Fig. 8, when an empirical input pulse is
convolved with the impulse response. An adjustment
of the width of the normalized input pulse is necessary.

By varying the width of the input pulse in com-
puter simulation and in laboratory testing, it was
found that these overshoots are greatly minimized,
without detriment to the compression factor, by
using a pulse 10 per cent wider than originally
assumed.
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Figure 14 Network for W =4, R = 4 x 103,

For a pulse W microseconds wide, the frequency
scaling factor is then

_ 4.4 x10°
R

If R,, L, and C, are normalized resistors, inductors and
capacitors, the actual values will be

6 (35)

Ract = RRn (36)
WRL,
L =
4.4 %108 37
wc,
G =X 10 xR 9

Applying (36), (37) and (38), we obtain the denor-
malized network shown in Fig. 13.

Laboratory results

Let us consider a pulse 4 microseconds wide. This
pulse is fed to a linear amplifier whose input impedance
is a resistance of 4 kohms. Substituting W = 4 and
R =4 x 10* in Fig. 13, we obtain the network
shown in Fig. 14.

Figure 15 shows the laboratory results obtained
with this network using a dual-beam oscilloscope.
The magnetic head used in these experiments was
originally designed for a density of 450 bits per inch.

Figure 15(a) shows the 4 microsecond input pulse,
and superimposed upon it the narrowed pulse obtained
from the network. The peaks of the pulses have been
made to coincide on the oscilloscope.

Figure 15(b) shows a series of pulses written at 450
bpi on a disk. The narrower pulses obtained from the
network are superimposed.

Figure 15(c) shows a series of pulses written at 900
bpi. The upper trace is the output from the head,
and it is seen that due to pulse crowding the amplitude
of adjacent pulses varies considerably. The lower
trace is the output from the network, and the ampli-
tude variation of the pulses is considerably reduced.

Figure 15(d) shows two adjacent pulses at 900
bpi. The outputs from the head and from the network
are superimposed. The peaks of the pulses obtained
at the head are seen to be more widely separated than
the ones obtained from the network; consequently at
this density the network reduces the bit-shift of the
head signal.

INCREASING RECORDING DENSITY
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Figure 15 Oscillograms of a pulse-compression ratio of 2 to 1.
(a) Horizontal scale: 2 psecflarge division. Vertical scale: Input (wide) pulse—20 mv/large division. Qutput
(narrow) pulse—5 mv/large division. Delay from input to.putput: 1.25 psec. (b) Horizontal scale: 2 psec/
large division. Recording density: 450 bpi. (¢) Horizontal scale: 5 psec/large division. Recording density:
900 bpi. Upper trace: Network input. Lower trace: Network output. (d) Horizontal scale: 2 upsec/large
division. Recording density: 900 bpi. Wide pulse: Network input. Narrow pulse: Network output.

Figure 15 offers only a qualitative, pictorial account
of the network behavior. A quantitative evaluation is
shown in Fig. 16. The relative amplitude of the pulses
and their bit-shift are offered at several recording
densities. It is seen that the amplitude obtained from
the head decays after 450 bits per inch, as originally
designed. Also at this density the bit-shift starts to
increase. Nevertheless, with the same head, the output
from the network shows that the relative amplitude
of the pulses starts to decay at 900 bpi, and also at
this density the bit-shift starts to increase.

Conclusions

Again it has been confirmed that the principle of
superposition applies to the read-back waveform in a
magnetic recording system. For our purposes the read-
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back process can be considered linear.

Proper linear filtering of the signal read from a
magnetic surface reduces the interference of adjacent
read-back pulses, and in some cases permits an increase
in recording density. A practical case has been illus-
trated, and the laboratory results have indicated a
twofold increase in the recording density.

For this purpose a network has been designed in
general form such that a network can be easily
obtained for every particular application.
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