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Increased  Magnetic  Recording  Read-back 
Resolution by Means of a  Linear  Passive  Network 

Abstract: It has been proven that  the  principle  of superposition applies to  a magnetic read-back  wave- 
form. Consequently, each pulse can be treated as  an isolated  transient, and a  linear passive network 
can  be  used to  reduce i t s  width. In many cases this effective increase in read-back resolution  would 
permit an  increase in the  operating density. The  isolated read-back  pulse i s  f i r s t  approximated by a 
Gaussian  curve. A second approximation i s  effected in  the frequency domain, and a  table  of  transfer 
functions i s  obtained. A network i s  designed using one of  the  transfer functions, and the  solution i s  
given an algebraic form.  One  particular case i s  illustrated  numerically and the  laboratory results are 
shown. 

Introduction 

A method has been proposed to increase the recording 
density of a magnetic surface by inserting a network 
between the terminals of the read-back head to com- 
press the pulses before entering the read amplifier. 
The method was proposed by C .  E. Schlaepfer who 
implemented the network by means of active elements. 
G. C .  Bacon further clarified the  proposal and imple- 
mented it with a delay line and  three  operational 
amplifiers. 

The present approach is a compromise between the 
previous proposals. High compressions are obtained 
without active elements; but to  obtain equal  amplitude 
between the  input and  output pulses, an extra linear 
amplification is required. 
Read-back signal 

In digital magnetic recording the read-back signal 
voltage obtained from a magnetic head is  given  by' 

e, = CV - D(x)M(x - x,)dx , 

where D(x) represents the sensitivity function of the 
head and M(x - x,,) is the change in surface magneti- 
zation (see Fig. 1). 

In practice, M(x - xo) is much narrower than 
D(x). The sensitivity function D(x) can be considered 
as a linear filter which degrades M ( x  - xo)  during  the 
read-back process. It is desirable to design a com- 

ax a r - m  (1) 

22 pensating filter ts be  used in  conjunction with the head 

to eliminate this undesirable effect, thus obtaining  a 
narrower read-back pulse. In  order to obtain high 
reliability and low cost, the filter should consist of 
passive elements only. 

Degradation caused by the magnetic head is not 
harmful if the pulses are separated sufficiently. 
Nevertheless, as  the recording density increases, the 
pulses appear closer together until bit crowding and 
bit shifting occur, see  Fig. 2. 

A nonreturn-to-zero type of recording will  be 
assumed (although this is not essential). Every time 
a ONE occurs, the surface magnetization changes 
polarity  and an  output signal is detected by the  head. 

When a series  of ONES is sensed, the composite read- 
back signal (as seen on  an oscilloscope) is formed by 
the superposition of the individual pulses. 

Notice that in the composite waveform of Fig. 2 
the peaks of all  the pulses, except the first and  the last, 
are separated by T, which  is constant. But for  the 

Figure I Isolated read-back signal. 
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first and last pulses, because of the absence of a pulse 
which would cause symmetry, the  distance between 
the  peak  of these pulses and the  corresponding 
neighboring pulse is T + 3.. In  other  words, these 
pulses appear shifted by the amount A. The effect of 
this  shift is an out-of-step  condition with the clock 
signal, which in turn causes reading  errors. 

Also, due  to  the overlapping between neighboring 
pulses, the  amplitude of each pulse is greatly dimin- 
ished. This  amplitude  reduction imposes more  rigorous 
requirements  upon  the sensing electronics, that is, in 
amplification and noise elimination. These undesirable 
effects are magnified as  the density is increased. 

Let us consider the following: (1) If  each  read-back 
pulse could be treated  separately (in a  mathematical 
way) regardless of  whether it is really isolated or in  a 
sequence with other pulses, and (2) if each pulse thus 
isolated  could be compressed to  the  point where its 
effect upon  neighboring pulses is negligible, then the 
recording density could be increased  and  the pulse 
shift I eliminated (see Fig. 3). 

Pulse isolation 

Bacon and Hoagland  state'  that  the principle of super- 
position  can be applied to  the overall input-output 
transfer process with the use of the  characteristic  step- 
function output response. In other words, they justify 

Figure 2 Sequence of read-back pulses. 
0 I I I 

the magnetic read-back waveform through single- 
pulse superposition. 

In this case, each pulse can be treated  separately 
and may  be considered  as  a  transient pulse which can 
be modified to fit our purposes. 

Bacon and  Hoagland  also  state2  that  during  read- 
back,  the existing magnetic field  of the  surface is 
extremely weak and, hence, the magnetic head will 
behave very nearly as  a  linear  element. 

Thus it is possible to shape  the  read-back pulse by 
means of a network composed of linear elements. 
It must be pointed out  that this  network is not a 
filter in the usual sense;  it is not  a  network to discri- 
minate  certain specified frequencies (synthesis in the. 
frequency  domain), but  rather a network specified by 
its  transient  behavior (synthesis in the time domain). 

Let us callfi(r)  the isolated signal from  the read-back 
head,  and fo(t) the desired narrower pulse. The 
problem can be stated: Given ,A(t), find a network 
with a  transfer  function H(s) such that  an  outputfo(t) 
will result (see Fig. 4). 

Input signal 

As stated previously, when a ONE is detected,  the  sur- 
face magnetization  changes  polarity. A typical curve 
M ( x  - xo) and  output voltage from  the magnetic 
head are shown in Figs. 1 and 2. This waveform 
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Figure 3 Sequence of read-back signals with narrowed pulses. Density can be increased by a. 

resembles the  normal  (or  Gaussian)  probability 
density function.  Indeed,  this is the case, since a  great 
number of experiments have shown that the  normal 
curve gives the most accurate fit to  the read-back 
signal. 

Figure 5 shows the  input signalf,(t) expressed as a 
normal curve : 

f i ( t )  = exp( - t 2 t 2 ) .  (2) 

The  error  at t = a is the value of the  Gaussian func- 
tion at t = u. It is 

E = exp( - [’a’) . (3) 

Output signal 

We require only that the  output signal be narrower 
than  the  input signal. A normal curve can be assumed, 
but with different parameters.  Figure 6 shows the 
output signal expressed as a  normal  curve: 

fo(t) = exp( - q’t’) . (4) 

The  error is 

E = exp( - #p’) . ( 5 )  

Let us define 

K = desired compression ratio 

= 2a/2P, that is, K = alp . (6 )  

If we assume the same tolerable degree of error at 

Figure 4 System diagram. 
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both  input  and  output pulse edges, then Eqs. (3) and 
( 5 )  give 

5a = rlB 
or 

t/v = 1/K . (7) 

Transfer function 

The  transfer  function of the  network is  given by 

H(s)  = Fo(s)/Fds) . (8) 
Let us obtain  the two-sided Laplace transform of 

the  input pulse: 

F,(s) = Y[fi(t)] = exp( - [’tz)exp( - st)dt s_ 
= (J-/t)exp(s2/4tz). (9) 

Fo(s) = (&/?)exP(s’/4~’) (10) 

w = ( ~ / v ) ~ x P [ ( w )  - (1/t2)1s2/4. (11) 

Similarly 

Substituting (9) and (10) in (8), 

Substituting (7) in ( 1  l ) ,  

H(s)  = (l/K)exp[(l/K’) - l]s’/4[’ . (12) 

Equation (12) still contains  the  parameter 5.  For 
convenience, let us normalize the  input pulse by 
making 5 = 1. Equation (12) reduces to 

H(s)  = (I/K>exp[(l/K’) - l]s2/4. (13) 

In  this case, for t = 2 seconds 

f i(2) = E = exp( - 2’) = 0.018 , 

since Max Lfi(t)] = fi(0) = 1, the  error E is only 1.8 % 
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Figure 5 Input signal as a normal curve, fi(t) = 

I exp( -c2tz). 

of the maximum value ofJ;(t). Therefore,  the  normal- 
ized input pulse has  a half-width (to be adjusted  later) 

a, = 2 seconds . 
Let us call 

4’ = ( K z  - 1)/4KZ, 

that is 

4 = J K 2  - 1/2K. 

Substituting (14) in (13), 

H ( s )  = (l/K)exp( -4%’) . 
Since the  transfer  function given  by Eq. (16)  is 

transcendental, it must be approximated by a  ratio 
of polynomials in s. Nevertheless such approximations 
give non-Hurwitz polynomials in the  denominator 
because the polynomials are even, and  the  roots of 
such polynomials have quadrantal symmetry. Instead 
of the  transfer  function,  another  function  must be 
approximated. In this  particular case it is possible to 
approximate  the  magnitude  function  and still obtain 
accurate results in  the time domain. 

For s = jw ,  Eq. (16) becomes 

N j w )  = (1/K)exp(Pw2), (17) 
and since the imaginary component is zero, (17)  is 
also  the  magnitude  function 

J W w ) J  = (1/K)exP(4zwz) Y (18) 
and by the same reason the phase is 

Arg H(jw) = 0’ . (1 9) 

The  magnitude  functions of the  input  and output 
pulses are, by (9) and (lo), 

I ~ ~ ( j w ) l  = Jii exp(-w2/4) (20) 

IFo(jw)( = (&/K)exp( - 02/4K2) . (21) 

IO‘ 

Figure 7 Curves of the magnitude functions. 

Curves of Eqs. (18), (20) and (21) are given in Fig. 7. 
To obtain  the frequency we at which IFi(jw)l = 

IFo(jw)l, we must solve the  equation 

4; exp( - w,2/4) = (&/K)exp( - w,2/4KZ) , 

which gives 

we = 2K[ln K / ( K 2  - l)]” . (22) 

To obtain realizable transfer  functions,  the  approxi- 25 
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mations to IH(jo)l  must be bandwidth  limited; that is, 
every approximation will hold only up to a frequency 
cod. If the network is going to be realized with passive 
elements only, and with the same impedance level, for 
cod > o, it will  be necessary to introduce some 

Table I Approximations to H(s)H(”s). 

attenuation  factor A .  

function, which  is 

IH(jo)12 = (1/K2)exp(2~’co2) . 

From (18) we can  obtain  the magnitude squared 

3 - 342s2 + 44s4 

3 + 342s2 + 44s4 

15 - 12cP2s2 + 344s4 
(&)15 + 1842s2 + 9d4s4 + 246s6 

15 - 1 5 4 2 ~ 2  + 6 4 4 ~ 4  - 4 6 ~ 6  
15 + 1542s2 + 644s4 + c/fs6 

105 - 9042s2 + 3044s4 - 446s6 
(&)lo5 + 12042s2 + 60q54s4 + 16@s6 + 2@s8 

105 - 10542s2 + 45cj4s4 - 1046s6 + 4’s’ 
105 + 10542s2 + 45j4s4 + 10@s6 + 48s8 

Zeros 

1 - ( f l  + j O )  
4 

- ( f 1.22474487 + j 0 )  1 
4 

- ( f 1.271229882 I 
4 

f j0.340625032) 

- ( f 1.45534667 1 
4 

f j0.343560805) 

-(f1.52387182 + j O )  
1 

- ( f 1.47994076 1 
4 

4 
f j0.5927200616) 

- (f 1.680548372 + j 0 )  
1 

- (f 1.641  12335 1 
4 

4 
f j0.596160249) 

- ( f 1.6572801 1 
4 

f j0.801741003) 

- ( f 1.72038868 1 
4 

f j0.252045949) 

Poles 

(0 f j0.70710678) * 
4 

- (0 f j l )  4 
1 * 

- (&0.3352200067 1 
4 

f jl.054690705) 

- (& 0.340625032 1 
4 

- + j1.271229882) 

- (0 f j1.34867233) * 1 

- (f0.587391538 1 
4 

4 
f j1.29829514) 

- (0 f j1.52387182) 1 

- (f0.5927200616 1 
4 

4 
f j1.47994076) * 

- (f0.79700116 1 
4 

f j1.497202089) 

1 (f0.250044024 
4 

f j1.56720106) 

- (-10.801741003 1 
4 

f j1.6572801) 

- ( f 0.252045949 1 
4 

f j1.72038868) 

26 
* These expressions have poles in the imaginary axis, cannot be decomposed and, therefore, cannot be implemented in realizable networks. 
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To approximate (23) by a ratio of polynomials in w, 
we have chosen the  approximation- by means of a 
continued fraction expansion because  it  offers  very 
fast convergence. Let us call 

2 = 24202 . (24) 

Substituting in (23), 

lH(z)I2 = (1/K2)exp(z). (25) 

The continued fraction expansion of exp(z) is given5 
by 

1 
exp(z) = - 

I - z  
l + z  

2 
- 

1 - z  
6 
l + z  

6 

- 

- 
- 

1 - z  - 
10 
l + z  
- 
- 
10 
1 - z  
- 
- 
14 
1 + * (26) 

If N = number of terms taken in the expansion, we 
obtain  the following approximations to exp(z) : 

1 
F o r N = l : -  

1 

1 
ForN=2: -  

1 - z  

1 1 2 + z  For  N = 3: - - 
I z I 22 2 - 2 ’  

=- etc. 
1” I - -  

Z 2 + z  
1 + 2  

Substituting z = 242w2, we obtain 

For N = 1: IH(jo)12 = (-) 1 1  
K~ i 

1 
For N = 2: IH(jo)12 x 

For  N = 3: IH(jo)I2  x 

Substituting s = jo we obtain  approximations to 
H(s)H( - s) : 

For N = 1: H ( s ) H ( - s )  x - ( 2  
1 

For N = 2: H ( s ) H ( - s )  x 

For N = 3 : H(s)H( - s) R! 

A more complete list is  given in Table 1. The 
corresponding poles and zeros are also included. The 
approximations given in Table 1 are  the  diagonal 
entries (or stair-case entries) of the Pad6 table  for 
H(s)H( -8) .  

From  the entries of Table 1 we can  take  the left-half 
plane poles, and they will constitute  the poles of H(s). 
In this fashion we can  construct  the  approximate 
transfer functions. 

(s - ZJS - z2) * . . (s - Z”) 
(S - P ~ ) ( s  - PZ) * (S - P,) * 

Computer simulation 

To determine the degree of approximation to the  out- 
put pulse which was achieved by the entries in the 
table,  a FORTRAN program was written to carry 
out  the convolution of fi(t) and  the inverse transform 
of H(s). 

Numerical example 

Let us choose K = 2. Since the normalized input 
pulse is 2a = 4 seconds, the desired normalized output 
pulse will be 

2alK = 412 = 2 seconds wide . 
Substituting K = 2  in Eq. (16), 

4 = JK2 - 1/2K = 4x14 = 0.433012701 . (27) 

In Table 1 let us choose the  entry N = 9. Substi- 
tuting  the value of 4 calculated above, we obtain  the 
following poles and zeros for H(s)H( -s). 

Poles : 
f 1.85154154 f j3.82732446 
f0.582075188 f j3.97306747 

Zeros : 
f3.82732446 f j1.85154154 
f.3.97306747 f j0.582075188 

Disregarding the right-half plane poles and  the left- 
half plane zeros,* we obtain  for H(s) 

The  choice of right-half plane zeros assures a more linear phase response 
than would be possible with the other alternative. 27 
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Poles: 
- 1.85154154 f j3.82732446 
-0.582075188 k j3.97306747 

Zeros : 
+3.82732446 f j1.185154154 
+3.97306747 f j0.582075188 

Since we have right-half plane zeros, our  transfer 
function is nonminimum-phase.  The  output pulsef,(t) 
will  be delayed with respect tofi(t). This delay is quite 
tolerable since all the read-back pulses will be delayed 
by the same amount,  but  the relative distance between 
adjacent pulses will remain unchanged. 

With the poles and zeros calculated above, we obtain 
the transfer  function 

H ( s )  = (-) 1 [(s - 3.82732446)' + (1.85154154)'][(s - 3.97306747)' + (0.582075188)2] 
2 [(s + 1.85154154)2 + (3.82732446)'][(s + 0.582075188)' + (3.97306747)'l' 

that is 

s4 - 15.60078386~~ + 95.02556847s' - 267.0633964s + 291.4687835 
s4 + 4.867233456~~ + 38.51164079s' + 80.7526977s + 291.4687835 

* 

The empirical input signal fi(t) convolved with the 
inverse Laplace transform of (28) gives an  output 
pulse off,(r). The result obtained  from  the  computer 
is shown  in  Fig. 8. The maximum value off,(t)  has 
been normalized to 1 .  It is seen that  the delay is 1.26 
seconds. The width of  the output pulse is 2 seconds,  as 
expected. 

In a similar fashion it is possible to calculate from 
Table 1 approximate  transfer  functions with either left- 
plane or right-half plane  locations  for  the zeros. 
This was done, and every possible transfer  function 
was convolved withfi(t). For K = 2 the  entry N = 9, 
illustrated  above, offered the best accuracy with a 
reasonable  number of terms. 

The pole and zero configuration  is: 

Poles : 
- 1.85154154 rtj3.82732446 
-0.582075188 k j3.97306747 

Zeros : 
+3.82732446  kj1.85154154 
+3.97306747  kj0.582075188 

Frequency  response 

Although we are primarily interested in  the time- 
domain behavior of the  transfer  function,  it is 

Figure 8 Computer simulation. 

1 I 
2 

I I i I  I I I I I 
3 4 5 6 

necessary to calculate the  magnitude  and phase of 
the  transfer  function to verify our  approximation 
to the  magnitude  function. Also, we must observe 
the phase very carefully since it  has been ignored up 
to this  point. 

In Eq. (28) let us make s = jo. We obtain 

Figure 9 Magnitude vs frequency. 
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(0“ - 95.025568470’ + 291.4687835) + j(15.600783860~ - 267.06339640) 
(0“ - 38.511640790’ + 291.4687835) + j(-4.8672334560~ + 80.752697720) * 

The magnitude function is 

IH(jw)I = (-) [ 1 (w“ - 95.025568470’ + 291.4687835)2 + (15.600783860~ - 267.06339640)’ ! 

2 (w“ - 38.51 1640790’ + 291.4687835)’ + (4.867233450~ - 80.752697720)’ 1 
Evaluating IH(jw)/ for values  of o from zero to 8 

radians/sec, we obtain Fig. 9. Our approximation 
is good only up to od = 4.03356 radianslsec. At this 
frequency we have 

MaxlH(jw)l = 7.01232595 . (29) 

The phase is  given  by 

Arg H ( j 4  
15.600783860~ - 267.06339640 

w4 - 95.025568470’ + 291.4687835 
= arctan 

-4.8672334560~ + 80.752697720 
o4 - 38.511640790~ + 291.4687835 * 

- arctan 

Evaluating Arg H ( j o )  for values of o from zero to 
8 radians/sec, we obtain Fig.  10. It is observed that 
up to the frequency of approximation, od, the phase 
can be  considered linear to an acceptable degree of 
accuracy. 

Network synthesis 

Given a particular transfer function which  fulfills 
well-known realizability requirements, there are in 
general many possible networks; only one will  be 
illustrated. 

The magnetic head is connected directly to  an 
amplifier. The network  must be inserted in a desirable 
location. Suppose that as far as input and output 
terminals are concerned, the network appears as in 
Fig. 11. That is, the network is connected between a 
voltage generator and a purely  resistive load. Since 
the insertion of the network must disturb the previous 
configuration as little as possible, we have  chosen a 
constant-R configuration. 

In the practical case under consideration the net- 
work is connected to a critically  balanced push-pull 
amplifier. Consequently, it is desirable to load both 
lines by the same amount. Instead of a common-node 
network, a symmetrical lattice network will  be re- 
alized (see Fig. 12). 

In terms of the transfer function the branch impe- 
dances of the symmetrical lattice network are6 

1 - H(s) z, = ~ 

1 + H(s) 

1 
zb = %a* 

For 2, and Z ,  to be positive real, the requirements’ 

h 

Figure 10 Phase vs frequency. 

I d y  IN RADlANS/SEC 

-400° 
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Figure I1 Input-output to  the network. 
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Figure 12 Symmetrical lattice network. 
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INPUT PULSE /n 
prec 

4l"- 
0.02721723 x IC6W/R 

m rn II 
I *" 0.3824813 R 

I-, 0 

II 
0.771073664R 

"111 

L W 4  0.156603:: x I(T%/R 

0.019763627 x 1U6WR 0.02721723 x 10-6WR 0.10866395 x I'?W/R 
m a n  

0.3824813 R 
I 4-1 11 

II 0.771073664R 
L l l "  

0.1566013144 x I d W / R  

2.6145069R 

OUTPUT PULSE n I R :  
I C - w / z J  

prec 

0 1 A l A A  I 0 """A 

0.15660344 X 16%R 0.019763627 x l(r6W/R 
0 mn 

II 0 

0.10866395 x IU6WR 
m 

I .29689295 R 
A111 4, 0 

II 

0.027217j31 x IU%/R 
Figure 13 Denormalized  network. 

are  that (1) H(s) has no poles in the right-half  plane 1 
or on the imaginary axis and (2) IH(jw)l 5 1 for A 6 
O $ o ~ O o .  MaxlH(jw)l 

' 

The transfer  function H(s) given by Eq. (28) fulfills Substituting (29) in (32), let us choose 
the first requirement since all ;he poles are in the left- A = 1/7.01232595 , 
half dane. 

- .  . 

(33) 
To fulfill the  second  requirement,  it is necessary to which gives an attenuation of 20 log(l/A) = 16.917db. 

multiply H(s) by Multiplying (28)  by (33), 

H(s)  = 
0.0713030175~~ - 1.112382964~~ + 6.775609772~~ - 19.04242602s + 20.78260377 

s4 + 4.867233456~~ + 38.51  164079s' + 80.75269772s + 291.4687835 (34) 

Substituting (34) in (30) and (31), we obtain  the 
normalized  network. 

The normalized  input pulse was considered  4 
seconds wide. Nevertheless, this normalized width was 
chosen quite  arbitrarily. By truncating a Gaussian 
approximation, we have used a pulse which starts 
with a  step  function whose height is 1.8 per cent. In 
practice,  the pulses coming  from the magnetic  head 
do not have these step  functions, that is, they  approach 

30 the  base line more rapidly than a Gaussian  curve.  This 

discrepancy causes the  output pulse to have overshoots 
as  shown in Fig. 8, when an empirical  input pulse is 
convolved with the impulse response. An adjustment 
of the width of the  normalized  input pulse is necessary. 

By varying the  width of the  input pulse in com- 
puter  simulation and in laboratory  testing,  it was 
found  that these overshoots are greatly minimized, 
without  detriment to  the compression factor, by 
using a pulse 10 per  cent wider than originally 
assumed. 
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INPUT PULSE 

I 

10.46k 
A A A A  

2:506mh 19.76pf 
0 m I I  0 

1.739mh 

27.22pf 

0.3162mh  0.4355mh 108.7Pf 

1.530 k 
156 6 pf  

I I  3.084  k 

! * > A "  

1 - 4  p s e c - I  

0.3162mh  0.4355mh  108.7Pf 

1.530  k 

156.6pf 

OUTPUT PULSE n I, 2 p r e c J  I 4 k  

10.46 k 
0 A A A 1  *""- 

2.506mh  19.76pf 
1, nn I I  4 ,  

1.739 mll 
farm 

5.188 k 
1 h 4 1  0 ( C  

27.22 pf 
I I  

Figure 14 Network for W = 4, R = 4 x 103. 

For a pulse W microseconds wide, the frequency 
scaling factor is then 

4.4 x lo6 e =  w *  
If R,, L, and C, are normalized resistors, inductors  and 
capacitors,  the  actual values will be 

Ract = RRn (36) 
WRL, 

L a c ,  = 4.4 x lo6 (37) 

W C n  
Cact = 4.4 x lo6 x R 

* 

Applying (36), (37) and (38), we obtain  the  denor- 
malized network shown in Fig. 13. 

Laboratory results 

Let us consider  a pulse 4 microseconds wide. This 
pulse is fed to a  linear amplifier whose input  impedance 
is a resistance of 4 kohms.  Substituting W' = 4 and 
R = 4 x lo3 in Fig. 13, we obtain  the  network 
shown in Fig. 14. 

Figure 15 shows the  laboratory results obtained 
with this network using a  dual-beam oscilloscope. 
The magnetic head used in these experiments was 
originally designed for  a density of 450 bits per inch. 

Figure  I5(a) shows the 4 microsecond input pulse, 
and  superimposed  upon  it  the  narrowed pulse obtained 
from  the  network.  The  peaks of the pulses have been 
made to coincide on the oscilloscope. 

Figure 15(b) shows  a series of pulses written at 450 
bpi on a  disk. The narrower pulses obtained  from the 
network are superimposed. 

Figure 15(c) shows a series of pulses written at 900 
bpi. The  upper  trace is the  output from the head, 
and it is seen that  due  to pulse crowding  the  amplitude 
of adjacent pulses varies considerably. The lower 
trace is the  output from  the  network, and the  ampli- 
tude  variation of the pulses is considerably  reduced. 

Figure 15(d) shows two adjacent pulses at 900 
bpi. The  outputs  from  the head and  from  the network 
are  superimposed. The peaks of the pulses obtained 
at  the head are seen to be more widely separated  than 
the  ones  obtained  from  the  network;  consequently at 
this density the network reduces the bit-shift of the 
head signal. 31 

INCREASING RECORDING DENSITY 



1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1  

Figure 15 Oscillograms of a pulse-compression ratio of 2 to 1. 
( a )  Horizontal  scale: 2  psecllarge  division.  Vertical scale: Input (wide) pulse-20 mvllarge  division. Output 
(narrow) pulse-5 mvllarge  division. Delay  from input to.+utput:  1.25 psec. ( 6 )  Horizontal  scale: 2 psecl 
large division. Recording density:  450  bpi. ( c )  Horizontal  scale: 5  psecllarge  division. Recording density: 
900 bpi. Upper trace:  Network input.  Lower trace:  Network  output. ( d )  Horizontal  scale: 2 psecllarge 
division. Recording density: 900 bpi.  Wide  pulse:  Network input.  Narrow pulse:  Network  output. 

Figure 15 offers only a qualitative, pictorial account 
of the network behavior. A quantitative evaluation is 
shown in  Fig. 16. The relative amplitude of the pulses 
and their bit-shift are offered at several recording 
densities. It is  seen that  the amplitude obtained from 
the head decays after 450 bits per inch, as originally 
designed. Also at this density the bit-shift starts  to 
increase. Nevertheless, with the same head,  the  output 
from the network shows that  the relative amplitude 
of the pulses starts to decay at 900 bpi,  and also at 
this density the bit-shift starts  to increase. 

Conclusions 

Again it has been confirmed that  the principle of 
superposition applies to  the read-back waveform in a 

32 magnetic recording system. For our purposes the read- 

back process can be considered linear. 
Proper linear filtering of the signal read from  a 

magnetic surface reduces the interference of adjacent 
read-back pulses, and in some cases permits an increase 
in recording density. A practical case has been  illus- 
trated,  and  the  laboratory results have indicated a 
twofold increase in the recording density. 

For this purpose a network has been  designed in 
general form such that  a network can be  easily 
obtained  for every particular application. 
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