
L. A. Kamentsky
C. N. Liu

Computer-Automated Design
of Multifont Print Recognition Logic

Abstract: A computer program has been wr i t ten to design character recognition logic based on the
processing of data samples. This program consists of two subroutines: (1) t o search for logic circuits
having certain constraints on hardware design, and (2) t o evaluate these logics in terms of their dis-
criminating ability over samples of the character set they are expected t o recognize. An executive
routine is used t o apply these subroutines t o select a complete logic with a given performance and
complexity. This logic consists of 39 t o 96 AND gates connected t o a shift register and a table look-up
or resistance network comparison system.

The methods were applied to the design of recognition logics for the 52 upper and lower case characters
of IBM Electric Modern Pica type font and lower case Cyrillic characters scanned from Russian text. In
both cases when the logics were tested on data different from that used t o design the logics, the substitu-
tion rate was about one error per thousand. A single logic was designed t o read two different Cyrillic
fonts. For this design, an error rate of one error per hundred characters was observed.

Several experiments are reported on a number of logics designed for typewritten data, and single- and
two-font Cyrillic data. The performances of different recognition systems are compared as a function of
the complexity of the recognition logics.

Introduction

This paper describes a program, to be called the
Recognition Logic Designer, which was written to
apply the systematic and rapid data-handling capa-
bilities of the computer to the problem of designing
logic for large-alphabet, single-font, and multifont
print recognition machines. To date, most work in
character recognition' ' either has involved devices
where templates of characters are stored and matched
to unknown characters or has been concerned with
methods of describing the attributes of the patterns
formed by these characters; these attributes have been
derived through experience and intuition. It is our
opinion that even when one can alter character shapes
to improve discrimination in large character sets, the
process of designing recognition logic requires the
screening of a vast amount of data. The design of
high-performance recognition logics, even for limited

2 problems like single-font print recognition, is difficult

because designers cannot easily manipulate all of the
possible bit patterns that a useful machine may be
required to handle.

During the last few years we have witnessed the
application of the computer to the solution of many
decision processes which are nonnumerical in nature.
It has been found that the computer can be economi-
cally applied to the study of the performance of com-
plex systems without constructing them. Of much
interest has been the use of the computer to simulate
models of human problem-solving situations such as
theorem p r ~ v i n g . ~ , One problem that humans solve
very effectively is visual pattern recognition. However,
few usable algorithms or heuristic procedures exist for
the solution to the problem of designing recognition
logics by machine.

Most character recognition methods may be con-
veniently considered as performing two functions:

IBM JOURNAL JANUARY 1963

(1) to measure certain attributes of the patterns to
be recognized and (2) to decide into which character
classes the patterns belong, on the basis of the results
of these measurements. Such measurements have been
given as individual pattern element^,^ pairs of ele-
ments,8 geometric features,’ or randomly chosen
groups of pattern elements.”, 2 3 With the exception
of the recent work of Bonner,’ Lewis,6 and Uhr and
V o s ~ l e r , ~ ~ the automatic construction of recognition
measurements has not been considered to any extent.
The basis for measurements has usually been selected
intuitively. Well-known decision procedures, imple-
mented by a computer program, a logic or resistance
network, or optical masks, were then adapted .to
recognition of membership in classes. This paper
concerns the design of measurements and presents
several usable heuristic procedures for obtaining good
recognition measurements with a computer.

The present design procedure is based on a statistical
analysis of actual samples representative of those the
recognition machine will be called upon to recognize.
Statistical design procedures in which recognition de-
signers have used the computer as a design aid have
been r ep~r t ed . ””~ I t was our aim, however, to arrive
at a completely automatic computer design procedure
based on the analysis of representative data and on the
automation of some of the methods of the human
designer.

A flying-spot scanner was used to reduce the images
of characters on photographs of printed text to
records on magnetic tape. Each character was isolated
from its neighbors by circuits in the scanner and was
represented on magnetic tape as a pattern of ONES and
ZEROS. A large group of different characters was
manually identified. The character identities and
corresponding bit patterns were then read into the
IBM 7090 computer. In two to three hours the
computer produced a wiring table for a recognition
logic.

During those two to three hours, the computer
(1) generated circuits from a large group of implemen-
table logics; (2) evaluated each circuit against a set of
samples, called “analysis data,” in terms of its dis-
criminating ability; (3) selected the best logic circuits
it had evaluated; (4) tried the complete logical system
on a set of different samples ; and (5) tried the pre-
vious steps again if recognition was poor. On these
retrials, the computer was made to emphasize the
input characters which the logic previously mis-
identified. A computer program embodying these
principles has been developed and has been used to
produce logic for both recognizing typewritten text
and printing in two fonts taken from journal text.
The logic designed by the computer program consists
of 39 to 96 AND gates connected to a shift register and
a table look-up or resistance network comparison
system.

Three typical problems given to the program and
performance of their solutions are given below:

COBeTCICWe XH
BHbIX IIpOIJeCCO

Figure I Two Cyrillic fonts from Russian journal
text which were scanned in the charac-
ter recognition experiment.

1 . Three typewriters were used to provide 1560 prints
of various upper and lower case IBM Electric Modern
Pica characters that were scanned by a flying-spot
scanner and used by the program to design a logic.
The logic was tried on 1300 samples, comprising 25
each of the 52 upper and lower case alphabetic
characters. These test data were of the same font but
were taken from three different typewriters. All but
two characters were read correctly; an “1” was called
an “i” and a “j” was called an “1”. Alternatively, a
decision criterion could be adjusted so that no charac-
ters were misread if four characters out of 1300 were
rejected.
2. The two Cyrillic fonts from Russian journal text
shown in Fig. I were scanned. Thirty samples from
each of the two fonts of the 26 lower case characters
that occur most frequently were used to design the
logic. The three characters JI, R , and u were so different
in each of the two fonts that they were treated as
separate characters in each of the fonts. The logic was
tested on 870 characters different from those used to
design the logic. These data had many broken and
filled-in characters. Eight characters were misread.
Alternatively, an error rate of 0.46% could be main-
tained at a rejection rate of 0.7%. A different logic
was designed using only the first font. There was one
error when this logic was tested on 1180 different
characters of the same font.

3. In the third problem, 4793 of the 32 lower case
Cyrillic characters were scanned. Typical binary pat-
terns for these data are shown in Fig. 2. Because of the
experimental conditions, parts of some characters were 3

DESIGN AUTOMATION OF RECOGNITION LOGICS

... -. -. .- -" -- __. .- ." ". - - - - _- R =+= -. -." ... " - - - - .".. " - - -
"

............ .".. - ." .- - - ""

".
.

- ". ". "

5 - CHARACTER STANDARD
R - RECOGNIZED CHARACTER

Figure 2 Typical binary patterns for Cyrillic
characters. S: character standard. R: recog-
nized character

Figure 3 CRT scan pattern and output.

I
/
I

I
/

/
I

/
I
I
/

/
/
I
/
/
/

I
/

I
I

/
I

/
/

/
/

/
I

/
I

I

I
/

I
/

I
I

/
I

I
/

/
/

/
/

1 2 3 4 5 6 7 a 9

r m r m r r u m m n n m m
S A M P L E D A N D C L I P P E D V I D E O S I G N A L

S C A N L I N E N U M B E R S
1 1 1 2 1 3 1 4 / 5 1 6 1 7 1 8 1 9 1

TIME-

missing and the bit patterns of characters differed in
size as the data were scanned. These two effects are
evident in Fig. 2. With a logic designed with 1008
characters, four out of 3785 different lower case
Cyrillic characters were misrecognized.

Computer design of recognition logic

The recognition logics to be reported on in this
study are characterized by two important features:

4 1. They depend on a fixed set of measurements on

every character, these measurements being indepen-
dent of character registration. A measurement con-
sists of a determination of the occurrence in the scanned
character of a set of black and white points satisfying
some prescribed spatial relationship. This feature
guarantees that recognition will be independent of
misregistration inherent in the source document, or
instabilities and inaccuracies in document handling or
in the optical eq~ipment . '~

2. An identification is made by comparing the results
of the set of measurements with sets of reference
values, one set for each character in the alphabet to be
recognized. The comparison may take the form of any
of several statistical decision criteria.I6*

This paper is primarily concerned with methods of
finding good measurements. However, a number of
different decisions of different criteria complexities
were studied and were found to differ in performance.
These will be reported on in the experimental section
of this paper. The next sections describe a computer-
automated process to find M measurements consisting
of switching functions on an N-bit representation of
character patterns which have good discrimination over
a set of input characters. The design of this system of
logic is to be based on typical samples of the input.
In order to realize this objective, we have adopted
three principles, which are the topics of the next three
sections :

1. There must be a way to restrict the number of
switching functions that are to be considered in the
design procedure. In effect, an efficient search pro-
cedure for logic must be found.

2. There must be a quantitative measure of the dis-
criminating ability of a set of switching functions used
over actual samples of the character set they are
expected to recognize.

3. There must be an executive routine to apply the
above two principles to actual samples, to select good
switching functions, to test the recognition ability of
the chosen logic and to repeat the procedure, empha-
sizing improperly identified characters until the logic
performs adequately.

Methods of logic generation

To reduce the number of logics considered, the follow-
ing three constraints have been imposed on the
generation of recognition switching functions:

1. Only recognition logics which are invariant to
translation of the input characters with respect to the
logic were considered.

2. Recognition logics consisting of only certain types
of n-tuples, with conditions on the positions of each
of the n points with respect to each other were
considered.

3. Specific switching functions on these n-tuples such

L. A. KAMENTSKY AND C. N. LIU

9 LOGIC
CONFIGURATION

4 8 12

S C A N N E R -

I O

Figure 4 The shift register with one digital mask
connected in an “L” configuration.

as AND-ing only or majority logics of the n points
were used.

It must be admitted that, even with constraints
using these three principles, the number of possible
switching functions that can be generated is still
quite large, requiring the use of a selection strategy.
We feel, however, that the yield of useful switching
functions picked with these constraints is much higher
than if they were picked using any reasonable selection
strategy without constraints.

A model of a recognition system will now be
described and the embodiment of these constraints
will be related to hardware. The character field is
scanned sequentially, as shown in Fig. 3, and the bits
obtained are shifted into the register shown in Fig. 4.
If the characters to be read are R bits high, R - 1
blank bits are placed into the register after each scan.
Consider now a particular logic configuration such as
the “L” in Fig. 4. The bits upon which this configura-
tion fall are connected to a combinatorial logic circuit
to be called L.C. If the contents of the register are
shifted to the right, the same configuration will appear
as input to L.C. but in a different position relative to
the input matrix. In the system studied, L.C. is set to
ONE if a particular state of its inputs occurs for any
shift position. M translation invariant switching
functions such as L.C. are connected to the shift
register.

The possible configurations of the input are further
reduced by considering constraints on the bit con-
figurations. The constraints on the bit configurations
being used are shown in Fig. 5. In each of the three
constraints shown,n points are selected from a possible
64 positions. These n points are each assigned to a
ZERO or to a ONE state. We are now using the specific
logic of AND-ing the states of input matrix points at
the relative positions of the “masks”. If the mask con-
tains a ONE, that input position state is AND-ed ; if a

(0) SIZE 8 x 8

(b) SIZE 4 x 16

I

-

__

-

-
-

-

-
(c) SIZE 17 x 17 WITH CONSTRAINTS AS SHOWN

Figure 5 Three typical digital masks.

ZERO is contained, the input state is inverted and
AND-ed. A total of n states are AND-ed to determine the
output state of each L.C. The remaining 64 - n cells
of each L.C. are DON’T-CARE conditions. The choice
of n was based on a study of the discrimination of the
logics and the frequency of match of the logics and
data, as a function of the complexity of the logics. The
results of this study are described in the Experimental
Results section. The constraints were chosen so that
local features of the characters are emphasized but
some global information is extracted. Other constraints 5

DESIGN AUTOMATION OF RECOGNITION LOGICS

can be applied to reduce the number of positions
required in the shift register.

Two search strategies for selecting cells from the
mask constraint have been considered. The first
strategy selects the best r + I-th tuple (based on an
evaluation function) using an r-tuple as a base. By
repeating this process for r = 1 to M - 1, n-tuples may
be synthesized by adding complexity until the value of
each logic synthesized no longer increases with n.
This procedure was found to require too much com-
puter time and only simple random selection of con-
strained n-tuples is reported here. Two pseudorandom
numbers are used to generate the locations and the
states of each mask point. The generated L.C.’s are
recorded on punched cards to be used later for their
evaluation and to be used to construct a wiring
table.

Methods of evaluating recognition logics

A measure is used to determine the worth of the par-
ticular parameters extracted by each logic L.C. A
second measure is used to determine the redundancies
in partitioning the character set of a group of logics.
These measures are described below:

An information measure

An ideal observer (similar to the ideal observer of
Woodward’s radar theory)’* can be postulated for a
character reader. The ideal observer specifies the dis-
tribution of the states of the input signal to a physical
system, based on the state of the output. In this case
the input is a character pattern and the output the
state of a set of parameters. The ideal observer con-
serves all information relevant to specifying the input,
but no more. Consider a character reader with M
parameters, xl, x2 . . xM used to classify m different
characters, cl, c2 . . . cm. Then the conditional proba-
bility distribution of the character set P{cilx}, given
the particular state of the M parameters x, completely
describes the input for any state of the M parameters.
If for any probable x, this distribution is peaked, that
is, one of the characters has probability near one and
the other m - 1 characters have probability near zero,
then this is a good set of parameters. If on the other
hand, the probabilities are all nearly equal, then the
parameter set is poor. The following measure derived
in the Appendix is being used to get a quantitative
value for this property:I9

I = log, m + P{x} 1 P{c,lx)log, P{cilx} .

P { x } is the probability of the parameter state x and the
first sum is taken over all states of the parameter set.

This measure is applicable for determining the value
of the complete set of parameters x. It has been
applied to evaluating a particular logic circuit j . In
this case, xj has two states and the probabilities

6
P { c i l x j } and P(xj} are easily computed. The experi-
ments (determining eachxj) are, of course, not indepen-

m

X i= 1

L. A. KAMENTSKY AND C. N. LIU

Table I Probabilities of matching for four dif-
ferent logics.

Cimrncter Logic I Logic 2 Logic 3 Logic 4
I = 0.784 I = 0.380 I = 0.215 I = 0.025

_.

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
x
Y
Z
a
b

d
e
f
g
h

C

1

j
k
1
m
I1
0

P
9
r
S

t

U
V

W

X

Y
2

0.76
1 .oo
0.94
0.97
0.97

0.21
0.91
1 .oo
0
0

I .oo
1 .oo
1 .oo
0.61
0.82

1 .oo
1 .oo
1 .oo

0
1 .oo

1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
0.03

0
0.39
0
0
0

0
0

0
0.12

0
0
0
1 .oo
0.52
0

0.45
0
0
0
0

0.06
0.27
1 .oo
0.48
0.33
0

0
0.88
0.24
0.91
0.85

0.67
0.30
0.89
0.73
0.97

0.89
0.82
0.24
0.36
0.33

0.97
0.24
0.82
0
0.91

1 .oo
0.45
0.45
0.89
0.76
0.48

0.27
0.42
0.09
0.06
0.55

0.36
0.48
0.36
0
0.03

0.67
0
1 .oo
0.70
0.12

0.94
0.15
0.06
0.18
0.70

0.06
0.09
0.24
0.15
0.06
0.33

0
0.27
0
0.03
0.12

0.03
0.03
0.09
0.03
0.03

0.21
0
0.06
0.06
0

0.06
0.03
0.21
0.12
0
0.06
0.09
0.09
0.45
0.12
0.12

0.33
0.03
0
0.03
0.24

0
0.91
0
0
0

0.03
0
0.15
0
0.06

0.03
0
0
0.97
0

0.68
0.03
0.21
0.27
0.58
0.33

1 .oo
1 .oo
1 .oo
I .oo
1 .oo
1 .oo
I .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
1 .oo
0.89

1 .oo
1 .oo
1 .oo
1 .oo
0.97
1 .oo

dent and the individual information values obtained
are not additive. However, the values of Z obtained
for each L.C. agree with our intuitive judgment of its
worth. The value Z is 0 if the L.C. has no discrimina-
tion; all characters either match or don’t match. The

value of I is a maximum of one bit when every charac-
ter of one-half of the set of characters matches and the
other characters do not match the L.C. Table 1 shows
the values for f and the frequencies of matching
on a specific set of data for four different but typical
L.C.’s.

An evaluation is first made over the complete set of
data to select L.C.’s which best divide the character set
into two parts. At a later stage the evaluation function
is only applied to specific characters to force the system
to choose L.C.’s which are less efficient but will
resolve confusion sets.

A redundancy measure
When using the previous measure there is no assurance
that’each of the measurements will not divide the
alphabet into the same two parts. Experimentally, we
found that the random choice of masks did lead to a
random partitioning. Another question that arose
during the study is the number of logics that must
be selected to meet a certain specified error rate.
Theoretically, if m characters are to be classified,
log, m binary logics which correctly partition the
character alphabet into two parts will be necessary and
sufficient. However, since the data samples may have
many unpredictable variations, some redundancy
must be provided if confusions between classes are
to be eliminated. Thus, feature code representations
of different classes must maintain a certain dis-
tance. Following this line of reasoning we have
used the following method for minimizing a large
number of logic circuits to yield a smaller set with
a given minimum distance between pairs of charac-
ters.

Let us assume that a set of N L.C.’s has been de-
signed to recognize a set of m classes successfully.
We can compute the pairwise information measure
I l k , j for every pair of classes cI and ck and the para-
meter of each L.C. x j ,

I l k , j = + p{xj}[p{cllxj}lOgZ p { c l l x j }
x, = 0.1

f p{cklxj)10g2 p(cklxj}l .
The values of I l k , j may be viewed as the elements

of a C,” by N matrix, (I i j) where each information
value, Iij = indicates the separation power of
the jth measurement on the ilh pair of characters c1
and ck,

The elements of (fij) are now quantized into ZEROS
and ONES. Each element fij is set equal to one if it is
greater than a certain threshold value 0 and is made
zero otherwise. Let us assume that r measurements are
required to distinguish each pair, that is, a minimum
separation distance of r is needed. A threshold value
0 is chosen that will produce at least r ONES in each
row of the matrix. Next, the rows are rearranged such
that the number of ONES in each row increases as i
increases, and the number of ONES in each column
decreases as j increases. Each row in the matrix is

then checked and the columns marked that will pro-
duce r ONES in each row. Only the marked measure-
ments are preserved.

The following example illustrates the procedure.
The matrix shown below represents a typical quan-
tized and rearranged pairwise information matrix
(I i j) . It is required that this matrix be reduced so that
the minimum distance r is three and thus at least
three ONES be left in each row after reduction. The
marked columns below represent the reduced set of
measurements.
d d d d d d d
1 0 1 1 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0
1 1 0 ~ 1 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0
1 0 1 0 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 0 1
1 1 1 0 0 1 1 0 0 0 1 0
1 1 0 0 1 1 0 1 1 0 0 0

Executive routine

In this section the different steps that are executed
during the design of a recognition logic will be out-
lined. Before doing this we will describe how the data
is prepared for the Recognition Logic Designer.

Characters are scanned from photographic film
reproductions of typewritten or journal text by a
cathode ray tube flying-spot scanner. Rows of charac-
ters are digitized and written as records on magnetic
tape. Each row of characters is contained within a
scan column 32 bits high; lower case characters are
about 15 bits high and 10 bits wide. This magnetic
tape is the input to a computer run which automatically
separates adjacent characters, assigns a sequence
number to them, and prints out the bit patterns of the
scanned characters along with their sequence numbers.
This printout is manually read and the true identity of
each of the characters is associated with its sequence
number.

Using these identified bit patterns the Recognition
Logic Designer works as follows:
1. About 1000 logics derived from each of the three
constraints are generated, stored on magnetic tape,
and punched out on cards to be used later for pre-
paring a wiring table. A computer run is made with
the bit patterns of a set of scanned data to be used for
analysis as one input and the pregenerated logics as the
other input. A compiler transforms each of the logics
into a list of logical statements to be executed by the
program. The data bit patterns are transformed by
the logical statements to produce a binary word for
each character with a component bit for each logic
which is ONE if that logical statement is met and is ZERO
if it is not met. These words, to be called feature codes,
are the basic input to all of the routines which follow 7

DESIGN AUTOMATION OF RECOGNITION LOGICS

and correspond to a binary representation of the state
vector x.
2. The information content for each logic is computed.
A predetermined number of the logics having the
largest information value Z are selected. The feature
code for each character of the analysis data is reduced
in size so that only the selected logics are represented
by it.

3. For each class of characters ci, the frequency of
each of the states for each selected logjc x j is com-
puted. These conditional probabilities P{xjlci} are
used as the weights of a Bayes' Rule decision procedure.

4. A new set of data is selected. These data, treating
each of the characters as unknowns, are recognized by
the selected logic with conditional probabilities de-
veloped from analysis data by using the decision rule :

Maximum, Gi = n P { x j l c i } .

The state of each bit x j of the feature code
determines which of two probabilities, P{x j = Ilc,}
or P{x j = Ole,} = 1 - P{xj = llc,}, is multiplied for
each character ci to compute Gi. G, is proportional to
the inverse probability P{ci ls} with the assumption
of independence on the xj's and equal apriori proba-
bilities P{ci} .

The most probable identification (the maximum Gi)
is found. (The ratio of the probabilities of the two
most likely choices will be used later as a rejection
criterion. If this ratio is less than a certain pre-set level,
the unknown is rejected and no positive identification
is made in this case.)

5 . If all of the characters are not recognized correctly,
each character class which has at least one character
misrecognized or substituted for another character is a
member of a confusion set. Steps 1 and 2 are repeated
on the original analysis data. However, only those
character classes which are members of the confusion
set are used during this run. Logics are selected which
have a high information value when they resolve
members of the confusion set. These additional logics
are included with the previously generated and selected
logics and Steps 3 and 4 are repeated with the en-
larged measurement set. Steps 1 to 4 are repeated
until the error rate of the system reaches a certain
desired level.

6 . The logics generated are next tested to eliminate
unnecessary redundancies. Using the analysis data,
the logics are reduced in number until there is a
predetermined distance r between all pairs of charac-
ters.

Experimental results

Four types of data were digitized by a flying-spot
8 scanner and were available for application of the

[
M

j = l 1

L. A. KAMENTSKY AND C. N. LIU

methods that have been described in this paper. Since
three of these will be referred to in each of the first
five experiments to be described below we will first
describe those data.

Typewriter. Each of six electric typewriters was
used to supply ten samples each of the 62 upper,/lower
case alphabetic and numeric characters. All type-
writers used Modern Pica type font. The typing was
done by the users of the particular typewriters. The
conditions of the typewriters were as we found them.
In the subsequent reports, confusions between upper
and lower case of the same character are not considered
to be errors.

Single-font C,vrillic. Pages from the Russian Journal
of the Academy of Sciences were photographed and the
photographs scanned. A sample of a few lines from
this journal is shown in the top half of Fig. 1. The
infrequent occurrence of upper case and certain
lower case letters from text allowed us to obtain
reasonable analysis and test data sample sizes for the
Cyrillic alphabet for 26 lower case letters only.

Two-font Cyrillic. Pages from the Russian Journal
of Applied Physics were photographed and scanned.
A few lines of these data are shown in the bottom half
of Fig. 1. The two-font samples included data from
each of the two Russian journals. As we pointed out
earlier, the three Cyrillic characters a, A, and u are so
unlike in each of the fonts that they were treated as
six independent characters during the experiments.

Experiment 1

Discrimination as a function ojthe complexity ojeach
logic

The first experiment is concerned with the number of
points n in each mask to be AND-ed to form a logic.
Masks were generated at random using only the eight-
by-eight box constraint. Logic circuits were formed
from these masks by AND-ing four, five, six and seven
points and these logics were evaluated. The informa-
tion value l of each logic was determined using both
typewriter and two-font data. A yield, defined as the
percentage of logics having a value of I 2 0.5, was
determined for each value of n for each type of data.
The results are summarized in Table 2.

It should be noted that for the experiment with
typewriter data there were 52 different characters and

Table 2 Yield as a function of n.

Number of
points n

Percent of
logics with
Z 2 0.5

Two-font

I I I

for the experiment with two-font data, samples of
only 26 lower-case characters were used. Therefore,
the values of computed I were in general higher for
two-font data. From the results tabulated above, it
was apparent that seven-point logics would be more
informative than logics with fewer numbers of points.

9 Experiment 2

Performance with and without selection

This experiment was performed to determine if
recognition results are significantly better if the logics
are selected using the information measure I . First
1050 logic circuits with n = 7 were generated using
the three constraints. Then 75 of these were chosen at
random to form a recognition logic. Based on 1560
samples of alphabetic typewritten data, the 75 logics
with the largest I were selected to form a second
recognition logic. Both logics were tested on 780
samples of typewritten data taken from different
typewriters than those used to select the logics. A
Bayes' decision rule was used with conditional proba-
bilities computed from the data used to select the
logics. If the ratio of the two largest values of Gi was
smaller than 10 for any character in the test data that
character was rejected. The results are shown in
Table 3.

Experiment 3

Comparison of decision methods

Four different decision methods have been compared
using the logic generated by the Recognition Logic
Designer as the basis for determining the set of para-
meters used to describe the data. These decision rules
may be implemented by either stored logic16 or by a
resistance network.I7 For either of these it is important
that the precision required of the storage devices or
the resistors be determined. We have tested recog-
nition performance with the precision of the decision
method as a parameter.

Three of the decision methods are based on maxi-
mizing an a posteriori probability with equal a priori
probabilities for each of the different character classes
(Bayes' Rule). The conditional probabilities have been
quantized into three different precisions. The Bayes
decision rule described in the preceding Section is
based on a computation of conditional probabilities

Table 3 Performance with and without selection.

Logic Information
Selection Random Measure
Method (No Selection) Selection

Error rate 1.54% 0.13 %
Reject rate 10.62 0.25

from 30 samples of each character. These conditional
probabilities : (1) have been used unquantized, (2) have
been quantized into eight levels so they can each be
represented by three bits and (3) have been quantized
into three levels so that they can each be represented
by two bits.

The fourth decision method assigns the unknown
character to the class having the minimum distance
from it. Each of the conditional probabilities for each
character and logic is converted into a new represen-
tation Sij based on the following assignments:

P { X i = 1 l C j } Sij

2 0.7

0 5 0.2
don't care < 0.7 > 0.2

1

For each unknown character, the elements of its
feature code x are compared to the elements of each
column of the matrix Sij representing the state vector
for the class cj . A distance to each class cj is computed
as the number of times x i = 1 when Sij = 0 and
x i = 0 when S , = 1.

Each of the four decision methods was tested on
typewriter, single-font Cyrillic, and two-font data. In
each case the same set of 30 samples of each character
was used to select the logic and to determine the para-
meters in the decision rule. This logic was then tried
for all four decision methods on a set of data different
from the data used to design the logic. The results are
shown on the following page in Table 4.

9 Experiment 4

The efect of redundancy on performance

If m character classes are to be recognized, in prin-
ciple only log, rn measurements need be used. This
implies that each measurement has an information
value of one; that is, all characters of a given class will
produce the same state for every measurement. Further-
more, it implies that each additional measurement m
breaks the character set into 2" parts, giving a mini-
mum distance r (as defined in the section on evaluating
recognition logics) of one between all pairs of charac-
ters. We have determined the effect of redundancy,
based on a measure of the minimum distance between
pairs of characters, on the recognition performance of
a set of logics. Using the alphabetic typewritten data,
30 samples of each character were used to select a set
of 75 logics. The minimum distance between all pairs
of the 52 characters was six. Using the reduction tech-
nique described previously, the system was reduced to
48 logics with the minimum distance of five. The
system was reduced again to 40 logics with a minimum
distance of four. These three sets of logics were tested
on 1300 samples different from those used to select
the logics or to reduce the number of logics. The results
in Table 5 show the performance for the different 9

DESIGN AUTOMATION OF RECOGNITION LOGICS

systems with the unquantized and three-level quantized
Bayes' decision rules.

In another experiment using the same data, the per-
formance of the system was determined as a function
of the sum of the information values of the individual
logics used. The most informative logics were selected
for each point from the set of 75 logics described
above. A Bayes' decision rule was used in this experi-
ment. The results are presented in Fig. 6.

Experiment 5

Performance as function of analysis data sample size

To design logic for a character recognition machine,
the Recognition Logic Designer must be supplied
with actual samples of patterns representative of those
a recognition machine will be called upon to identify.
The method we have described is self-designing in the
following sense. Given representative samples of the
set of characters to be recognized, there is a specific
procedure for producing a wiring diagram or a list of
values in a storage medium to generate a machine to
recognize the input set. The performance of a machine
will depend to some degree on the variety of the samples
supplied to the machine designer. Generally, the more
these input samples cover the different variations to be
encountered in practice, the better the machine will
perform.

It is therefore important to understand the perform-
ance of the recognition design procedure with
various sample sizes. We have found that the values
of the conditional probabilities used in the decision
systems are the most sensitive elements of the recog-
nition system when the sample size is varied. Table 6

Table 4 Performance with different decision methods.

illustrates this. Logics were designed with 30 samples
of each of the 52 characters of typewriter data. A
Bayes' decision procedure was used to recognize 1300
different samples. The conditional probabilities used
in the decision rule were computed using 10, 20, and
30 samples of each character. We have also found that
the recognition rate is the same for both the new data
and the data used to design the logic if the sample size
is 30.

Experiment 6

Performance with large variations in the data

At the present time we are carrying out a series of
experiments using the Recognition Logic Designer on
more varied data than that which was described earlier.
These variations include changes in character size
and the recognition of characters in fonts not used
during the design procedure.

To determine the ability of the logics to recognize
data of a different size, tests were run on 425 new type-
written alphabetic characters whose size was 5% to
7 % smaller than those used to design the logics or for
computing the conditional probabilities. Using a
Bayes' decision rule with a rejection ratio of 10, there
were one error and two rejects.

In journal text, there is no control over the sequences
or frequency of characters. Since these characters
must be identified to the Logic Designer program,
some means must be accomplished for associating the
identities with the bit patterns of each input.

We are presently using an approach to data compila-
tion in which a primitive form of the logic is used to
compile data for the design of a betterrecognitionlogic.

Decision Method

Alphabetic
Typewriter,

Single-font

54 Logics 75 Logics
1 180 Samples 1300 Samples
Cyrillic,

Reject 1
Bayes 0.3 %

0

Bayes

(3 Levels)
1.4 Bayes

0 (8 Levels)
1.1

0

Error Error Reject

0 % 0 % 0.34 %
0.15

0

0.08 0

0.43 0 0.4
0.32 0.64"

Minimum
Distance 0

1*77 I
I '0 * 936 samples were tested in these cases.

1 L. A. KAMENTSKY AND C. N. LIU

~~~ ~ ~~~~~ 

0.08 
0.54 

0.08 
0.65 

0.32 0.43* 
0.54 0 

Two-font 
Cyrillic, 
870 Samples 
73 Logics 

Reject Error 

0.7 % 
0 

0.46 % 
0.92 

1.6 
0 

0.7 
2.3 

1.3 
2.3 0 
1.6 

Numeric 
Typewriter, 
464 Samples 
39 Logics 

No Errors or 
Rejects 

No Errors  or 
Rejects 



were based on 1008 samples different from  those that 
were tested for  recognition. The results using various 
decision rules on this data  are shown  in  Table 7. 
Conclusion 

A computer  program  has been developed for designing 
specific character recognition logics using actual 
samples of data.  This  program has been applied,  thus 

The recognition program is first structured by the 
Recognition Logic Designer based on a few samples 
which have been manually identified. The program is 
then used to identify the  remaining  samples.  Although 
its present  performance is inferior to its  ultimate per- 
formance,  it is adequate to identify a large percentage 
of the  input at a high rate of speed.  The  computer is 
arranged to print out,  for each character,  the  input 
bit pattern  along  with a bit pattern  taken  from  a 
library of standard  characters  indicating  its recog- 
nition  for that character. Samples of this printout  are 
shown in Fig. 2. The first and  third rows illustrate 
the programs’ recognition for  the  input characters be- 
low each of the  “character  standards”. (In this case, 
the machine had been given 15 samples of each of 
the lower-case Cyrillic letters.) The machine errors 
are quickly identified manually and  the identifica- 
tions  corrected.  The  larger set of samples identified 
in this way  is used to design a  better  performing 
machine. 

In analyzing these data  the recognition logic, al- 
though  structured only with the lower-case Cyrillic 
alphabet, was found to recognize correctly most 
italicized characters and upper-case characters if the 
lower-case version of these characters was the same 
general shape.  This is illustrated in Fig. 2. We are 
presently studying  tolerance to large  variations  in size 
and  font.  The  data shown  in  Fig, 2 are  typical of that 
resulting with a  scanner ripple component which was 
introduced to affect the  horizontal size  of the  scanning 
field such that this field varied by an average size dif- 
ference of 20 % between characters. Using these data, 
the set of 32 lower-case Cyrillic characters was 
recognized. The logic design and  the  conditional 
probabilities that were used in the decision procedure 

Figure 6 Performance as a function of total 
information. 

100 

Z 
0 60 
c 

(3 
0 40 

i 
I T O T A L  I N F O R M A T I O N  - B I T S  

Table 6 Performance for various sample Sizes. 

Number of samples Error rate with 
to  compute P{ xj lc i }  no rejects 

10  5.6 % 
20 1.2 
30 0.15 

Table 5 Performance with  different numbers of 
logics. Table 7 Performance with large width  variations. 

I 

Alphabetic typewriter, 1300 samples Single-font  CyrilIic 

96 Logics 
Decision Method 4095 Samples Number 

of Logics Bayes’ Decision 

Not  Quantized 1 Three-Level Error 

0.05 % 
0.19 

0.15 
0.34 

Reject 
I 

Error Bayes Error 

0 0.15 
1.4% 0 % 

Reject Reject 

0.3 % 
0 

75 0.08 % 
0.54 

0.6 
1.4 

Bayes 
(8 Levels) I 

48 0.8 
0 O 0.2 I ia4 0.07 

0.44 
Minimum 
Distance I 

40 1.4 
0 

0.8 
1.8 

0.2 5.6 
1.0 i 0 

1 1 3785 Samples in this test. 

DESIGN AUTOMATION OF RECOGNITION LOGICS 



far, to the design of recognition logics of practical 
complexity for  reading single- and two-font  printed 
alphabets.  Substitution  rates in the  order of one  error 
per  thousand  characters were achieved on a wide 
range of printing  quality.  The  application of con- 
textual analyses”’ l 6  to word recognition, using the 
methods described in this paper for  the character 
recognition, should  produce machine designs with 
word  error  rates below one  word  error  per  thousand 
words. 

In  the application  of  this  method of designing recog- 
nition logic, it has become apparent  that there are 
relationships between logic complexity and perform- 
ance of a recognition system. System constraints to 
control  the  amount of hardware  required to implement 
a system can be specified to  form  a part of the design 
procedure.  Some experimental relations were reported 
on the effect of these constraints on the  performance 
of a recognition machine. These constraints involve the 
complexity of the logic circuits and  the number of 
logic circuits. Furthermore, we showed the  perform- 
ance resulting from different methods of  treating  the 
outputs  from  the logic circuits. Finally, results were 
reported  as  a  function of the  quality and variety of 
characters  handled by the machine. For example, a 
given logic system worked better on a smaller alphabet 
than  on a  larger one; recognition of  more  than a single 
font by a single logic yielded inferior  performance than 
that logic applied to a single font. Conversely, equiva- 
lent  performance  with  poorer  quality  or  more varied 
inputs  could be obtained at  the expense of more 
complex logic. 

Acknowledgments 

The  authors would like to acknowledge the  program- 
ming assistance and suggestions given to them by 
John Cocke and K. C. Hu. They would also like to 
thank E. N. Adams and M. C. Andrews  for  their 
support  and helpful comments  during  this  study. 

Appendix 

The  parameterization of the  input is to yield M dif- 
fere’nt parameter values, xi, j = 1,2, . . M. All of the 
xj are presented to  the classifier at the  same  time and 
will  be considered here as a point x in a M dimension 
space. The  parameter values are  considered to be 
discrete; they may be binary, they may represent a 
multistate  measurement, or they may represent 
samples of a  continuous but frequency-band-limited 
measurement. 

The classifier, using all of the  parameter values, 
produces  one of m possible codes ci,  i = 1,2, . . m. 
In  the simplest case, each  code ci represents  one  alpha- 
numeric  symbol of m possible symbols. Only this case 
will be used here. Although we will use only single 
symbols, there is no reason why the theory to be 
developed can  not  be applied to groups of symbols. 

12 It will be assumed that  the apriori distribution of the 

L. A. KAMENTSKY  AND C. N. LIU 

code sequences cl, c2, * - ci, P{ci} = P { c , ,  c2,  - ci}  
has been measured and is known and  stationary for 
some finite number of symbols r 2 1. If r = 1 only 
the symbol frequencies are  known. In effect, r is the 
range of contextual influence. 

The recognition logic, R.L., is presented with an 
unknown  input  symbol S. Based on measurements of 
M parameters xi of S, R.L.  must associate one of m 
possible codes ci with S. The codes ci are mutually 
exclusive and  exhaustive; that is, every S belongs to 
one  and only one of the ci. Let us consider for  a  par- 
ticular set of measurements of S yielding the value x, 
the  conditional  probability P { c , l x } .  This is the 
probability that  the  input symbol S is associated with 
the  code ci based on  the  parameter values x. This set of 
conditional probabilities  describes all of the information 
in the parameter values x relevant to classifring S 
independently of any decision method. 

Woodward’8 has described the ideal receiver as  one 
which  specifies the  distribution of the  states of the 
input signal based on knowledge of  the  output signal. 
The ideal receiver conserves all information relevant 
to specifying the  input  but  no more.  The ideal classifier 
conserves all information relevant to specifying S 
given x and no more.  Thus, given P{ci lx}  a decision 
method need not be considered as  part of the  character 
reader if  we are interested in  studying  the ability of a 
given parameterization to extract  information about S. 

Some insight into  the  problem of rating  para- 
meterizations might be gained by considering the 
following example. Fig. A-1 represents the set of 
P{c, lx}’s  for a particular x of a  parameterization tl. 
In general, the set of probabilities will  be different for 
each x but consider this set in Fig. A-1 to be typical of 
a. Fig. A-2 represents a typical set of P{ci lx} ’s  for a 
parameterization p. We  feel intuitively that more is 
known  about S from  parameterization f i  than from a 
if the  particular x in each case is typical. This is true 
because the distribution  in the case of f i  is more 
peaked. In this case, one of the  codes ci = cl is much 
more  probable than  the others.  Restated,  the  more 
peaked the distribution of P{ci lx}  the more is known 
about S.  If we can find a computable and good 
measure of  the peakedness of P{ciJx} and average this 
measure over all  of  the  parameter values for a given 
parameterization, we can  produce  a measure of the 
value of that parameterization in separating  codes. 

An  information measure will be used here to 
describe the  spread of P { c i l x } .  It is in effect a measure 
on how much we know about  the ci’s and is a maxi- 
mum if the c i s  are completely determined.  Con- 
versely, Shannon’s’’ information measure describes 
how  much knowledge is contributed by each ci and is 
a minimum if the c i s  are  determined a priori. The 
measure to be used here is similar to one used by 
Lewis” to describe approximations to probability dis- 
tributions  and  to  one used by Lindley” to  compare 
experiments to determine  the value of a continuous 
parameter. 



! I  I ( X ) - - O  

IC i  

m 

Figure A-1 Distribution of code probabilities for 

r 

a specific measurement ii, case a. 

1 

” 

C 

Figure A-2 Distribution of code probabilities for 
a specific measurement 9,  Case /?. 

First, consider the following  measure which is a 
function of x: 

I(x) = 2 P{c,(x}log, P{CilX} - P{c,}log,  P{Ci} . 
m 

i =  1 

Shannon,’  has shown that the function Pi log, Pi  
is a maximum for all  of the Pi equal, zero  only if one 
of the Pi)s = 1 and the others are zero, and monotonic 
between  these  limits. Thus if the probabilities 
P{cilx} equal their a priori probabilities P{ci}, 
I(x) = 0. For the perfect parameterization, P{cilx} = 1 
for i = 1, P{cilx} = 0 for i # 1 and, if P { c i }  = 
I/m, I(x) = log, m. (We  can  specify one of m states 
with log, m bits.)  Since xi P i  log Pi is monotonic, Z(x) 
gives a measure of the spread of P{cilx} when using a 
particular value of x. 

The probabilities of the states of  the parameter 
values  may  be  described by a distribution P{x} where 
Call x P{x} = 1. The average information I of a para- 
meterization is then the expected  value of  Z(x) for the 
parameterization or 
I = 1 P{x}I {x }  . 

all x 

If the a priori probabilities of each character ci are 
equal, P{c i }  = l/m, then 

I = log, rn + 2 P{x} P{c,lx}log,  P{c,ix} . 
m 

S I =  1 

References  and footnotes 

1 .  M. E. Stevens, Automatic Character Recognition, A  State- 
of-the-Art  Report, U.S. National Bureau of Standards, 
Technical Note No. 112, May 1961. 

2. M. Minsky, “A Selected Descriptor-Indexed Bibliography 
to the Literature on Artificial Intelligence,” IRE Trans- 
actions on Human Factors in Electronics, HFE-2, 39-55 
(March 1961). 

3. A.  Newell, J. C. Shaw, and H. A. Simon, “Empirical 
Explorations of the Logic Theory Machine,” Proceedings 
WJCC, pp. 218-239, Feb. 26,  1957. 

4. H. Gelernter, “Realization of a Geometry Theorem Proving 
Machine,” Information Processing, Unesco (Paris) 1960, 

5.  R. E. Bonner, “A  ‘Logical Pattern’ Recognition Program,” 
IBM Journal 6,  353-360 (I 962). 

6. P. M. Lewis, “The Characteristic Selection Problem in 
Recognition Systems,” IRE Transactions on Informution 
Theory, IT-8, 171-178  (1962). 

7. W. H. Highleyman, “An Analog Method for Character 
Recognition,” IRE Transactions on Electronic Computers, 

8. L. P. Honvitz and G .  L. Shelton, Jr., “Pattern Recognition 
Using Autocorrelation,” Proceedings of the IRE 49, 175-185 
(1961). 

9. 0. G. Selfridge, “Pattern Recognition and Modern Com- 
puters,” Proceedings WJCC, pp. 91-93, 1955. 

10. W. W. Bledsoe and I. Browning, “Pattern Recognition and 
Reading by Machine,” Proceedings EJCC, pp. 225-233, 
1959. 

1 1 .  E. C. Greanias, “Some Important Factors in the Practical 
Utilization of Optical Character Readers,” Proceedings for 
the Symposium on Optical Character Recognition, Spartan 
Books, August 1962. 

12. R. J. Evey, “Use of a Computer to Design Character 
Recognition Logic,” Proceedings EJCC, pp. 205-21 1,  
1959. 

pp. 273-282. 

EC-10, 502-512  (1961). 

13. D. N. Freeman, “Computer Synthesis of Character- 
Recognition Systems,” IRE Transactions on Electronic 
Computers,” EC-10, 735-747 (1961). 

14. J. J. Leimer, “Design Factors  in  the Development of an 
Optical Character Recognition Machine,” IRE Trans- 
actions on Information Theory IT-8, 167-1 70 (1 962). 

15. Registration invariant logic has been described by many 
authors. See  Refs. 6, 8, 9, 1 1 ,  12, 13 and 14. 

16. M. C. Andrews, “Multifont Print Recognition,” Proceedings 
for the Symposium on Optical Character Recognition, 
Spartan Books, August 1962. 

17. M. L. Minsky, “Steps Toward Artificial Intelligence,” 
Proc.  IRE 49, No. 9, 8-30 (1961). 

18. P.  M. Woodward, Probability  and Information Theory with 
Applications to  Radar, Pergamon Press, 1953. 

19. A similar measure has been applied to character recognition 
measurements by P. M.  Lewis (Ref. 6). 

20. C. E. Shannon, The Mathematical  Theory  of Communica- 
tion, University of Illinois Press, 1949. 

21. P. M. Lewis, “Approximating Probability Distributions to 
Reduce Storage Requirements,” Information and Control 2, 

22. D. V. Lindley, “On a Measure of the Information Pro- 
vided  by an Experiment,” Ann. Math.  Stat. 27, 986-1005 
(1956). 

23. F. Rosenblatt,  “Perceptron Simulation Experiments,” 
Proceedings of the IRE 48, 301-309 (1960). See also G. 
Palmieri and  R. Sanna,  “Automatic Probabilistic Pro- 
grammer /Analyzer for Pattern Recognition, “Estratto 
Rivista  Methodos 12, #18, 1 (1960). 

24. L. Uhr  and C. Vossler, “A  Pattern Recognition Program 
that Generates, Evaluates, and Adjusts its own Operators.” 
Proceedings WJCC, pp. 555-561,  1961. 

214-225  (1959). 

Received July 30, I962 13 

DESIGN AUTOMATION OF RECOGNITION LOGICS 


