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Computer-Automated  Design 
of Multifont  Print  Recognition Logic 

Abstract: A computer  program has been wr i t ten  to  design character  recognition  logic based on  the 
processing of data samples. This program consists of  two subroutines: (1) t o  search for logic  circuits 
having  certain  constraints  on  hardware design, and (2)  t o  evaluate  these logics in  terms  of  their dis- 
criminating  ability  over samples of the  character set they  are expected t o  recognize. An executive 
routine is used t o  apply these subroutines t o  select a complete  logic with a  given  performance and 
complexity.  This  logic consists of 39 t o  96 AND gates connected t o  a shift  register and  a table  look-up 
or  resistance network comparison system. 

The  methods  were  applied to  the design of  recognition logics for  the 52 upper and lower case characters 
of  IBM  Electric  Modern Pica type  font and lower case Cyrillic characters scanned from Russian text.  In 
both cases when the logics were  tested  on  data  different  from  that used t o  design the logics, the substitu- 
tion  rate was about one error  per thousand. A  single  logic was designed t o  read two  different  Cyrillic 
fonts. For  this design, an error  rate  of one error  per  hundred characters was observed. 

Several experiments  are  reported  on a number  of logics designed for  typewritten data, and  single- and 
two-font  Cyrillic data. The  performances of  different  recognition systems are  compared as a function  of 
the  complexity  of  the  recognition logics. 

Introduction 

This  paper describes a  program, to be called the 
Recognition Logic  Designer, which was written to 
apply  the systematic and rapid  data-handling  capa- 
bilities of the  computer  to  the problem  of designing 
logic for  large-alphabet, single-font, and multifont 
print  recognition machines. To date,  most  work  in 
character recognition' ' either  has involved devices 
where templates of characters  are  stored  and  matched 
to unknown  characters or has been concerned with 
methods of describing the  attributes of the  patterns 
formed by these characters; these attributes have been 
derived through experience and  intuition.  It is our 
opinion that even when one  can  alter  character  shapes 
to improve  discrimination in large character sets, the 
process of designing recognition logic requires the 
screening of a vast amount of data.  The design of 
high-performance  recognition logics, even for limited 

2 problems like single-font print  recognition, is difficult 

because designers cannot easily manipulate all of the 
possible bit patterns  that a useful machine may be 
required to handle. 

During  the  last few years we have witnessed the 
application of the  computer  to  the  solution of many 
decision processes which are  nonnumerical in nature. 
It has been found  that  the  computer can be economi- 
cally applied to  the study of the  performance of com- 
plex systems without  constructing  them. Of much 
interest has been the use of the  computer  to simulate 
models of human problem-solving situations such as 
theorem p r ~ v i n g . ~ ,  One problem that  humans solve 
very effectively  is visual pattern  recognition. However, 
few usable algorithms or heuristic procedures exist for 
the  solution to the  problem of designing recognition 
logics by machine. 

Most  character recognition methods  may  be  con- 
veniently considered as  performing two functions: 
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(1) to measure certain  attributes of the  patterns to 
be recognized and (2) to decide into which character 
classes the  patterns belong, on the basis of the results 
of these measurements. Such measurements have been 
given as individual pattern  element^,^ pairs of  ele- 
ments,8 geometric features,’ or randomly chosen 
groups of pattern  elements.”, 2 3  With the exception 
of the recent work of Bonner,’ Lewis,6 and  Uhr and 
V o s ~ l e r , ~ ~  the  automatic  construction of recognition 
measurements has not been considered to any  extent. 
The basis for  measurements  has usually been selected 
intuitively. Well-known decision procedures, imple- 
mented by a  computer  program,  a logic or resistance 
network, or optical masks, were then  adapted  .to 
recognition of membership in classes. This  paper 
concerns the design of measurements and presents 
several usable heuristic procedures  for  obtaining good 
recognition measurements with a  computer. 

The present design procedure is based on a  statistical 
analysis of actual samples representative of those  the 
recognition machine will  be called upon to recognize. 
Statistical design procedures in which recognition de- 
signers have used the computer  as  a design aid have 
been r ep~r t ed . ””~   I t  was our  aim, however, to arrive 
at a completely automatic  computer design procedure 
based on  the analysis of representative data  and  on  the 
automation of some of the  methods of the  human 
designer. 

A flying-spot scanner was used to reduce the images 
of characters on photographs of printed text to 
records on magnetic tape. Each character was isolated 
from its  neighbors by circuits in the scanner and was 
represented on magnetic tape  as  a  pattern of ONES and 
ZEROS. A large group of different characters was 
manually identified. The character identities and 
corresponding  bit  patterns were then read into  the 
IBM 7090 computer.  In two to three  hours  the 
computer  produced  a wiring table  for  a recognition 
logic. 

During  those  two to three  hours,  the  computer 
(1) generated circuits  from  a large group of implemen- 
table logics; (2) evaluated each circuit against  a set of 
samples, called “analysis data,” in terms of its dis- 
criminating  ability; ( 3 )  selected the best logic circuits 
it had  evaluated; (4) tried the  complete logical system 
on a set of different samples ; and (5) tried  the pre- 
vious steps again if recognition was poor. On these 
retrials, the  computer was made to emphasize the 
input  characters which the logic previously mis- 
identified. A  computer  program  embodying these 
principles has been developed and  has been used to 
produce logic for  both recognizing typewritten text 
and  printing in two  fonts  taken  from  journal  text. 
The logic designed by the  computer  program consists 
of 39 to 96 AND gates connected to a shift register and 
a  table  look-up or resistance network comparison 
system. 

Three typical problems given to the  program and 
performance of their  solutions are given below: 

COBeTCICWe XH 
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Figure I Two  Cyrillic fonts from Russian journal 
text which were scanned in  the charac- 
ter recognition  experiment. 

1 .  Three typewriters were used to provide 1560 prints 
of various  upper  and lower case IBM Electric Modern 
Pica characters that were scanned by a flying-spot 
scanner and used by the  program to design a logic. 
The logic was tried on 1300 samples, comprising 25 
each of the 52 upper  and lower case alphabetic 
characters. These test data were  of the  same  font  but 
were taken  from  three different typewriters. All but 
two  characters were read  correctly; an “1” was called 
an “i”  and  a “j” was called an “1”. Alternatively, a 
decision criterion  could  be  adjusted so that  no charac- 
ters were misread if four  characters out of 1300 were 
rejected. 
2. The  two Cyrillic fonts  from  Russian  journal text 
shown in Fig. I were scanned.  Thirty samples from 
each of the two fonts of the 26 lower case characters 
that occur most  frequently were used to design the 
logic. The  three  characters JI, R ,  and u were so different 
in each of the  two  fonts that they were treated  as 
separate  characters in each of the  fonts.  The logic was 
tested on 870 characters different from  those used to 
design the logic. These data  had many  broken  and 
filled-in characters. Eight characters were misread. 
Alternatively, an  error rate of 0.46% could be main- 
tained  at  a rejection rate of 0.7%. A different logic 
was designed using only the first font.  There was one 
error when this logic was tested on 1180 different 
characters of the  same  font. 

3. In  the  third  problem, 4793 of the 32 lower case 
Cyrillic characters were scanned.  Typical  binary  pat- 
terns  for these data  are shown  in Fig. 2. Because of the 
experimental conditions,  parts of some  characters were 3 

DESIGN  AUTOMATION OF RECOGNITION LOGICS 




" 

............ .".. . . . . . . .  . . . . . . . . . . . . . .  ..... ........ - ." .- - - "" 

". 
. 

- ". ". " 

5 - CHARACTER STANDARD 
R - RECOGNIZED CHARACTER 

Figure 2 Typical  binary  patterns  for  Cyrillic 
characters. S: character  standard. R:  recog- 
nized  character 

Figure 3 CRT scan pattern and output. 
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missing and  the bit patterns of characters differed in 
size as  the  data were scanned. These two effects are 
evident in Fig. 2.  With a logic designed with 1008 
characters,  four out of 3785 different lower case 
Cyrillic characters were misrecognized. 

Computer design of  recognition logic 

The recognition logics to be reported  on in this 
study  are characterized by two  important  features: 

4 1. They  depend on a fixed set of measurements on 

every character, these measurements being indepen- 
dent of character  registration. A measurement con- 
sists of a  determination of the occurrence  in  the  scanned 
character of a set of black and white points satisfying 
some prescribed spatial  relationship.  This  feature 
guarantees that recognition will  be independent of 
misregistration inherent  in  the  source  document, or 
instabilities and inaccuracies in  document  handling or 
in the optical eq~ipment . '~  

2.  An identification is made by comparing the results 
of the set of measurements with sets of reference 
values, one set for  each  character  in  the  alphabet to be 
recognized. The  comparison may take  the  form of any 
of several statistical decision criteria.I6* 

This  paper is primarily  concerned with methods of 
finding  good  measurements. However, a number  of 
different decisions of different criteria complexities 
were studied and were found to differ in performance. 
These will be reported on in the  experimental section 
of this  paper.  The next sections describe a  computer- 
automated process to find M measurements consisting 
of switching functions on  an N-bit  representation of 
character  patterns which have good  discrimination over 
a set of input  characters. The design of this system of 
logic is to be based on typical samples of the  input. 
In  order  to realize this objective, we have adopted 
three principles, which are  the topics of the next three 
sections : 

1. There  must  be  a way to restrict the number of 
switching functions that  are  to be considered in the 
design procedure. In effect, an efficient search  pro- 
cedure for logic must  be  found. 

2.  There  must  be a quantitative measure of the dis- 
criminating  ability of a set of switching functions used 
over actual samples of the  character set they are 
expected to recognize. 

3. There  must  be an executive routine to apply  the 
above  two principles to actual samples, to select good 
switching functions, to test  the  recognition  ability of 
the  chosen logic and  to repeat the procedure,  empha- 
sizing improperly identified characters  until  the logic 
performs  adequately. 

Methods  of logic generation 

To reduce  the  number of logics considered, the follow- 
ing  three  constraints have been imposed on the 
generation of recognition switching functions: 

1.  Only recognition logics which are  invariant to 
translation of the  input  characters with respect to  the 
logic were considered. 

2. Recognition logics consisting of only certain types 
of n-tuples, with conditions on  the positions of each 
of the n points with respect to each other were 
considered. 

3. Specific switching functions on these n-tuples such 
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Figure 4 The shift register  with one digital mask 
connected in an “L” configuration. 

as AND-ing only or majority logics of the n points 
were used. 

It must  be  admitted that, even with constraints 
using these three principles, the  number of possible 
switching functions that can  be  generated is still 
quite large, requiring the use of a selection strategy. 
We  feel, however, that  the yield of useful switching 
functions picked with these constraints is much higher 
than if they were picked using any  reasonable selection 
strategy  without  constraints. 

A model of a recognition system will now be 
described and  the embodiment of these constraints 
will be related to hardware. The character field  is 
scanned sequentially, as shown in Fig. 3, and  the bits 
obtained are shifted into  the register shown in Fig. 4. 
If the  characters to be read are R bits high, R - 1 
blank bits are placed into  the register after  each  scan. 
Consider now a particular logic configuration such as 
the  “L” in Fig. 4. The bits upon which this configura- 
tion  fall are connected to a  combinatorial logic circuit 
to be called L.C. If the contents of the register are 
shifted to the  right, the same configuration will appear 
as  input to L.C. but  in a different position relative to 
the  input  matrix.  In  the system studied,  L.C. is set to 
ONE if a particular  state of its  inputs  occurs  for  any 
shift position. M translation  invariant switching 
functions such as  L.C.  are  connected to  the shift 
register. 

The possible configurations of the  input  are  further 
reduced by considering constraints on the bit con- 
figurations. The constraints on  the bit  configurations 
being used are shown in Fig. 5. In each of the  three 
constraints  shown,n  points  are selected from  a possible 
64 positions. These n points are each assigned to a 
ZERO or  to a ONE state. We are now using the specific 
logic of AND-ing the  states of input  matrix  points at 
the relative positions of the  “masks”. If the  mask  con- 
tains  a ONE, that  input  position  state is AND-ed ; if a 

( 0 )  SIZE 8 x 8 

( b )  SIZE 4 x  16 

I 

- 

__ 

- 

- 
- 

- 

- 
( c )  SIZE 17 x 17 WITH  CONSTRAINTS AS SHOWN 

Figure 5 Three  typical  digital masks. 

ZERO is contained,  the  input  state is inverted and 
AND-ed. A total of n states are AND-ed to determine the 
output state of each  L.C.  The  remaining 64 - n cells 
of each  L.C. are DON’T-CARE  conditions. The choice 
of n was based on a  study of the  discrimination of the 
logics and  the frequency of match of the logics and 
data,  as a  function of the complexity of the logics. The 
results of this study  are described in the  Experimental 
Results  section. The constraints were chosen so that 
local features of the  characters  are emphasized but 
some global information is extracted.  Other  constraints 5 
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can be applied to reduce the  number of positions 
required  in the shift register. 

Two search strategies for selecting cells from  the 
mask constraint have been considered. The first 
strategy selects the best r + I-th  tuple (based on  an 
evaluation  function) using an r-tuple as a  base. By 
repeating  this process for r = 1 to M - 1, n-tuples may 
be synthesized by adding complexity until the value of 
each logic synthesized no longer increases with n. 
This  procedure was found  to require too much  com- 
puter time and only simple random selection of con- 
strained n-tuples is reported  here.  Two  pseudorandom 
numbers are used to generate the locations and  the 
states of each mask point.  The  generated L.C.’s are 
recorded on punched  cards to be  used later  for  their 
evaluation and  to be used to construct  a wiring 
table. 

Methods  of  evaluating  recognition logics 

A measure is used to determine  the  worth of the par- 
ticular  parameters  extracted by each logic L.C.  A 
second measure is used to determine the redundancies 
in  partitioning  the  character set of a group of logics. 
These  measures  are described below: 

An information measure 

An ideal observer (similar to the ideal observer of 
Woodward’s radar theory)’* can be postulated  for  a 
character  reader. The ideal observer specifies the dis- 
tribution  of  the  states of the  input signal to a physical 
system, based on  the  state of the  output.  In this case 
the  input is a  character  pattern  and  the  output  the 
state of a set of parameters. The ideal observer con- 
serves all information relevant to specifying the  input, 
but  no more.  Consider  a  character  reader with M 
parameters, xl, x2 . . xM used to classify m different 
characters, cl, c2 . . . cm. Then  the conditional  proba- 
bility distribution of the  character set P{cilx}, given 
the  particular  state of the M parameters  x, completely 
describes the  input  for  any  state of the M parameters. 
If for  any  probable x, this  distribution is peaked, that 
is, one of the  characters  has  probability  near  one  and 
the  other m - 1 characters have probability  near  zero, 
then this is a good set of parameters. If on the  other 
hand,  the probabilities are all nearly  equal,  then the 
parameter set is poor.  The following measure derived 
in  the  Appendix is being used to get a quantitative 
value for  this  property:I9 

I = log, m + P{x} 1 P{c,lx)log, P{cilx} . 

P { x }  is the  probability of the  parameter  state x and  the 
first sum is taken over all states of the  parameter  set. 

This  measure is applicable for determining  the value 
of the  complete set of parameters x. It has been 
applied to evaluating  a  particular logic circuit j .  In 
this case, xj has  two  states and  the probabilities 

6 
P { c i l x j }  and  P(xj}  are easily computed.  The experi- 
ments  (determining  eachxj)  are, of course, not indepen- 

m 

X i= 1 
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Table I Probabilities  of  matching  for  four dif- 
ferent logics. 

Cimrncter Logic I Logic 2 Logic 3 Logic 4 
I = 0.784 I = 0.380 I = 0.215 I = 0.025 

_. 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
w 
x 
Y 
Z 
a 
b 

d 
e 
f 
g 
h 

C 

1 

j 
k 
1 
m 
I1 
0 

P 
9 
r 
S 

t 

U 
V 

W 

X 

Y 
2 

0.76 
1 .oo 
0.94 
0.97 
0.97 

0.21 
0.91 
1 .oo 
0 
0 

I .oo 
1 .oo 
1 .oo 
0.61 
0.82 

1 .oo 
1 .oo 
1 .oo 

0 
1 .oo 

1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
0.03 

0 
0.39 
0 
0 
0 

0 
0 

0 
0.12 

0 
0 
0 
1 .oo 
0.52 
0 

0.45 
0 
0 
0 
0 

0.06 
0.27 
1 .oo 
0.48 
0.33 
0 

0 
0.88 
0.24 
0.91 
0.85 

0.67 
0.30 
0.89 
0.73 
0.97 

0.89 
0.82 
0.24 
0.36 
0.33 

0.97 
0.24 
0.82 
0 
0.91 

1 .oo 
0.45 
0.45 
0.89 
0.76 
0.48 

0.27 
0.42 
0.09 
0.06 
0.55 

0.36 
0.48 
0.36 
0 
0.03 

0.67 
0 
1 .oo 
0.70 
0.12 

0.94 
0.15 
0.06 
0.18 
0.70 

0.06 
0.09 
0.24 
0.15 
0.06 
0.33 

0 
0.27 
0 
0.03 
0.12 

0.03 
0.03 
0.09 
0.03 
0.03 

0.21 
0 
0.06 
0.06 
0 

0.06 
0.03 
0.21 
0.12 
0 
0.06 
0.09 
0.09 
0.45 
0.12 
0.12 

0.33 
0.03 
0 
0.03 
0.24 

0 
0.91 
0 
0 
0 

0.03 
0 
0.15 
0 
0.06 

0.03 
0 
0 
0.97 
0 

0.68 
0.03 
0.21 
0.27 
0.58 
0.33 

1 .oo 
1 .oo 
1 .oo 
I .oo 
1 .oo 
1 .oo 
I .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
0.89 

1 .oo 
1 .oo 
1 .oo 
1 .oo 
0.97 
1 .oo 

dent  and  the individual  information values obtained 
are  not additive. However, the values of Z obtained 
for  each L.C. agree with our intuitive  judgment  of  its 
worth.  The value Z is 0 if the  L.C.  has no discrimina- 
tion; all characters  either  match  or  don’t  match.  The 



value of I is a maximum of one  bit when every charac- 
ter of one-half of the set of characters matches and  the 
other  characters do  not match  the L.C. Table 1 shows 
the values for f and  the frequencies of matching 
on a specific set of data  for  four different but typical 
L.C.’s. 

An evaluation is first made over the complete set of 
data  to select L.C.’s which best divide the  character set 
into  two  parts. At a  later stage the  evaluation  function 
is only applied to specific characters to force the system 
to choose L.C.’s which are less  efficient but will 
resolve confusion sets. 

A redundancy  measure 
When using the previous measure there is no assurance 
that’each of the measurements will not divide the 
alphabet  into  the  same  two  parts. Experimentally, we 
found  that  the  random choice of masks did lead to a 
random  partitioning.  Another  question that arose 
during  the  study is the  number of  logics that must 
be selected to meet a certain specified error rate. 
Theoretically, if m characters  are to be classified, 
log, m binary logics which correctly partition  the 
character  alphabet  into two parts will  be necessary and 
sufficient. However, since the data samples may have 
many unpredictable  variations,  some  redundancy 
must be provided if confusions between classes are 
to be eliminated.  Thus,  feature  code  representations 
of different classes must maintain  a  certain dis- 
tance. Following this line of reasoning we have 
used the following method  for minimizing a large 
number of logic circuits to yield a smaller set with 
a given minimum distance between pairs of charac- 
ters. 

Let us assume that a set of N L.C.’s has been de- 
signed to recognize a set of m classes successfully. 
We can  compute  the pairwise information measure 
I l k , j  for every pair of classes cI and ck and  the  para- 
meter of each L.C. x j ,  

I l k , j  = + p{xj}[p{cllxj}lOgZ p { c l l x j }  
x, = 0.1 

f p{cklxj)10g2 p(cklxj}l . 
The values of I l k , j  may be  viewed as  the elements 

of a C,” by N matrix, ( I i j )  where each information 
value, Iij = indicates the  separation power of 
the jth measurement on the ilh pair of characters c1 
and ck, 

The elements of (fij)  are now quantized  into ZEROS 
and ONES. Each element fij is set equal to one if it is 
greater than  a  certain  threshold value 0 and is made 
zero otherwise. Let us assume that r measurements are 
required to distinguish each pair, that is, a  minimum 
separation distance of r is needed. A  threshold value 
0 is chosen that will produce at least r ONES in each 
row of the  matrix.  Next,  the rows are  rearranged such 
that  the  number of ONES in each row increases as i 
increases, and  the number of ONES in each column 
decreases as j increases. Each row in the  matrix is 

then checked and  the columns  marked that will pro- 
duce r ONES in each row. Only the  marked measure- 
ments are preserved. 

The following example illustrates  the  procedure. 
The  matrix  shown below represents a typical quan- 
tized and  rearranged pairwise information  matrix 
( I i j ) .  It is required that this  matrix be reduced so that 
the  minimum  distance r is three and  thus  at least 
three ONES be left in each  row  after  reduction.  The 
marked  columns below represent the reduced set of 
measurements. 
d d d d d  d d  
1 0 1 1 0 0 0 0 0 0 0 0  
1 1 0 1 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 1 1 0 0 0 0  
1 1 0 ~ 1 0 0 0 0 0 0 0  
1 1 1 0 0 1 0 0 0 0 0 0  
0 0 1 1 1 0 0 0 1 0 0 0  
1 0 1 0 1 1 1 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 1 0 1  
1 1 1 0 0 1 1 0 0 0 1 0  
1 1 0 0 1 1 0 1 1 0 0 0  

Executive  routine 

In this section the different steps that  are executed 
during  the design of a  recognition logic will be  out- 
lined. Before doing this we will describe how the  data 
is prepared  for the Recognition Logic Designer. 

Characters are scanned  from  photographic film 
reproductions of typewritten or  journal text by a 
cathode ray tube flying-spot scanner.  Rows of charac- 
ters  are digitized and written as records on magnetic 
tape.  Each  row of characters is contained within a 
scan  column 32 bits  high; lower case characters  are 
about 15 bits high and 10 bits wide. This  magnetic 
tape is the  input to a  computer run which automatically 
separates  adjacent  characters, assigns a sequence 
number to  them,  and  prints  out  the  bit  patterns of the 
scanned characters  along  with  their sequence numbers. 
This  printout is manually  read and  the  true identity of 
each of the  characters is associated with  its sequence 
number. 

Using these identified bit  patterns  the  Recognition 
Logic Designer works  as  follows: 
1. About 1000 logics derived from  each of the  three 
constraints  are  generated,  stored on magnetic tape, 
and punched out  on cards to be used later for pre- 
paring a wiring table.  A  computer run is made with 
the bit patterns of a set of scanned data  to be used for 
analysis as  one  input  and  the  pregenerated logics as  the 
other  input.  A compiler transforms  each of the logics 
into  a list of logical statements to be executed by the 
program.  The  data bit patterns  are  transformed by 
the logical statements to produce  a  binary word for 
each character with a  component bit for each logic 
which is ONE if that logical statement is met and is ZERO 
if it is not  met. These words, to be called feature  codes, 
are  the basic input to all of the  routines which follow 7 
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and  correspond  to a binary  representation of the  state 
vector x. 
2.  The information  content  for  each logic is computed. 
A predetermined  number of the logics having  the 
largest information value Z are selected. The  feature 
code for each  character of the analysis data is reduced 
in size so that only the selected logics are represented 
by it. 

3. For each class of characters ci, the frequency of 
each of the  states  for each selected logjc x j  is com- 
puted. These conditional  probabilities P{xjlci} are 
used as  the weights of a Bayes' Rule decision procedure. 

4. A new set of data is selected. These data,  treating 
each of the characters  as  unknowns,  are recognized by 
the selected logic with conditional  probabilities de- 
veloped from analysis data by using the decision rule : 

Maximum, Gi = n P { x j l c i }  . 

The  state of each bit x j  of the  feature  code 
determines which of two probabilities, P{x j  = Ilc,} 
or P{x j  = Ole,} = 1 - P{xj  = llc,}, is multiplied for 
each  character ci to  compute Gi. G, is proportional  to 
the inverse probability P{ci ls}  with the assumption 
of independence on  the xj's and  equal apriori proba- 
bilities P{ci} .  

The most  probable identification (the  maximum Gi) 
is found.  (The  ratio of the probabilities of the two 
most likely choices will be used later  as a rejection 
criterion. If this  ratio is less than a  certain pre-set level, 
the  unknown is rejected and  no positive identification 
is made  in  this case.) 

5 .  If all of the  characters are  not recognized correctly, 
each  character class which has at least one  character 
misrecognized or substituted  for another character is a 
member of a confusion  set.  Steps 1 and 2 are  repeated 
on  the original analysis data. However, only those 
character classes which are members of the confusion 
set are used during  this  run. Logics are selected which 
have a high information value when they resolve 
members of the confusion  set. These additional logics 
are included with the previously generated and selected 
logics and Steps 3 and 4 are repeated  with the en- 
larged measurement set. Steps 1 to 4 are repeated 
until the  error  rate of the system reaches a  certain 
desired level. 

6 .  The logics generated are next tested to eliminate 
unnecessary redundancies. Using the analysis data, 
the logics are  reduced  in  number  until  there is a 
predetermined  distance r between all pairs of charac- 
ters. 

Experimental results 

Four types of data were digitized by a flying-spot 
8 scanner and were available  for  application of the 
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methods  that have been described in this paper. Since 
three of these will  be referred to in  each of the first 
five experiments to be described below we  will first 
describe those data. 

Typewriter. Each of six electric typewriters was 
used to supply  ten samples each of the 62 upper,/lower 
case alphabetic and numeric  characters. All type- 
writers used Modern Pica type font.  The typing was 
done by the users of the  particular typewriters. The 
conditions of the typewriters were as we found  them. 
In  the subsequent  reports, confusions between upper 
and lower case of the  same  character  are  not considered 
to be errors. 

Single-font C,vrillic. Pages from  the Russian Journal 
of the Academy of Sciences were photographed  and  the 
photographs  scanned. A sample of a few lines from 
this  journal is shown  in  the top half of Fig. 1. The 
infrequent  occurrence of upper case and certain 
lower case letters  from text allowed us to obtain 
reasonable analysis and test data sample sizes for  the 
Cyrillic alphabet  for 26 lower case letters  only. 

Two-font Cyrillic. Pages from  the  Russian Journal 
of Applied Physics were photographed  and  scanned. 
A few lines of these data  are shown  in  the  bottom half 
of Fig. 1. The two-font samples included data from 
each of the two Russian journals. As we pointed out 
earlier, the  three Cyrillic characters a, A, and u are so 
unlike  in  each of the  fonts  that they were treated  as 
six independent  characters  during the experiments. 

Experiment 1 

Discrimination as a  function ojthe complexity ojeach 
logic 

The first experiment is concerned with the  number of 
points n in  each mask to be AND-ed to  form a logic. 
Masks were generated at  random using only the eight- 
by-eight box  constraint. Logic circuits were formed 
from these masks by AND-ing four, five,  six and seven 
points and these logics were evaluated. The informa- 
tion value l of each logic was determined using both 
typewriter and two-font data. A yield, defined as  the 
percentage of logics having a value of I 2 0.5, was 
determined  for each value of n for each type of data. 
The results are summarized in Table 2. 

It should be noted  that  for  the experiment with 
typewriter data there were 52 different characters  and 

Table 2 Yield as a function of n. 

Number of 
points n 

Percent of 
logics with 
Z 2 0.5 

Two-font 

I I I 



for  the experiment with two-font data, samples of 
only 26 lower-case characters were used. Therefore, 
the values of computed I were  in general higher for 
two-font data.  From  the results tabulated  above, it 
was apparent  that seven-point logics would be more 
informative  than logics with fewer numbers of points. 

9 Experiment 2 

Performance with and without selection 

This experiment was performed to determine if 
recognition results are significantly better if the logics 
are selected using the information measure I .  First 
1050 logic circuits with n = 7 were generated using 
the  three  constraints.  Then 75 of these were chosen at 
random to form a recognition logic. Based on 1560 
samples of alphabetic typewritten data,  the 75 logics 
with the largest I were selected to  form a second 
recognition logic. Both logics were tested on 780 
samples of typewritten data  taken from different 
typewriters than  those used to select the logics. A 
Bayes' decision rule was  used with conditional  proba- 
bilities computed  from  the data used to select the 
logics. If  the  ratio of the two largest values of Gi was 
smaller than 10 for  any  character in the test data  that 
character was rejected. The results are shown in 
Table 3. 

Experiment 3 

Comparison of decision methods 

Four different decision methods have been compared 
using the logic generated by the  Recognition Logic 
Designer as  the basis for  determining  the set of para- 
meters used to describe the  data. These decision rules 
may be implemented by either stored logic16 or by a 
resistance network.I7 For either of these it is important 
that  the precision required of the  storage devices or 
the resistors be determined. We have tested recog- 
nition  performance with the precision of the decision 
method  as a parameter. 

Three of the decision methods are based on maxi- 
mizing an a posteriori probability with equal a priori 
probabilities  for  each of the different character classes 
(Bayes' Rule). The conditional  probabilities have been 
quantized  into  three different precisions. The Bayes 
decision rule described in the preceding Section is 
based on a  computation of conditional  probabilities 

Table 3 Performance  with and without selection. 

Logic Information 
Selection  Random  Measure 
Method (No Selection) Selection 

Error  rate 1.54% 0.13 % 
Reject rate 10.62 0.25 

from 30 samples of each character. These conditional 
probabilities : ( 1 )  have been used unquantized, (2) have 
been quantized  into eight levels so they can  each  be 
represented by three bits and (3) have been quantized 
into three levels so that they can each be represented 
by two bits. 

The  fourth decision method assigns the  unknown 
character to the class having the minimum distance 
from  it. Each of the  conditional  probabilities  for each 
character  and logic is converted  into  a new represen- 
tation Sij  based on  the following assignments: 

P { X i  = 1 l C j }  Sij 

2 0.7 

0 5 0.2 
don't  care < 0.7 > 0.2 

1 

For each  unknown  character,  the elements of its 
feature  code x are  compared to the elements of each 
column of the  matrix Sij representing the  state vector 
for  the class cj .  A distance to each class cj is computed 
as  the  number of times x i  = 1 when Sij = 0 and 
x i  = 0 when S ,  = 1. 

Each of the  four decision methods was tested on 
typewriter, single-font Cyrillic, and two-font data.  In 
each case the  same set of 30 samples of each character 
was used to select the logic and  to determine  the  para- 
meters in the decision rule. This logic was then  tried 
for all four decision methods on a set of data different 
from  the  data used to design the logic. The results are 
shown on  the following page in Table 4. 

9 Experiment 4 

The efect of redundancy on performance 

If m character classes are  to be recognized, in prin- 
ciple only log, rn measurements need be used. This 
implies that  each  measurement  has an information 
value of one;  that is, all characters of a given class will 
produce  the  same  state  for every measurement.  Further- 
more,  it  implies that each  additional  measurement m 
breaks  the  character set into 2" parts, giving a mini- 
mum distance r (as defined in  the section on evaluating 
recognition logics) of one between all pairs of charac- 
ters. We have determined  the effect of redundancy, 
based on a measure of the  minimum  distance between 
pairs of characters, on  the recognition  performance of 
a set of logics. Using the  alphabetic  typewritten data, 
30 samples of each  character were used to select a set 
of 75 logics. The minimum distance between all  pairs 
of the 52 characters was six. Using the  reduction tech- 
nique described previously, the system was reduced to 
48 logics with the minimum  distance of five. The 
system was reduced again to  40 logics with a minimum 
distance of four. These three sets of logics were tested 
on 1300 samples different from  those used to select 
the logics or  to reduce the  number of logics. The results 
in Table 5 show the performance  for the different 9 
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systems with the  unquantized  and three-level quantized 
Bayes' decision rules. 

In  another experiment using the  same data,  the per- 
formance of the system was determined  as  a  function 
of the  sum of the  information values of the individual 
logics used. The most  informative logics were selected 
for each point  from  the set of 75 logics described 
above.  A Bayes' decision rule was used in this experi- 
ment.  The results are presented in  Fig. 6. 

Experiment 5 

Performance as  function of analysis data sample size 

To design logic for  a  character  recognition machine, 
the  Recognition Logic Designer must be supplied 
with actual samples of patterns representative of those 
a recognition machine will  be called upon to identify. 
The method we have described is self-designing in the 
following sense. Given  representative samples of the 
set of characters to be recognized, there is a specific 
procedure  for  producing  a wiring diagram or a list of 
values in  a  storage medium to generate  a machine to 
recognize the  input  set.  The  performance of a  machine 
will depend to some degree on the variety of the samples 
supplied to the  machine designer. Generally,  the  more 
these input samples cover the different variations  to be 
encountered in practice, the  better  the  machine will 
perform. 

It is therefore  important to understand  the  perform- 
ance of the recognition design procedure with 
various sample sizes. We have found  that  the values 
of the  conditional  probabilities used in the decision 
systems are  the most sensitive elements of the recog- 
nition system when the  sample size  is varied.  Table 6 

Table 4 Performance  with  different  decision  methods. 

illustrates this. Logics were designed with 30 samples 
of each of the 52 characters of typewriter data. A 
Bayes' decision procedure was used to recognize 1300 
different samples. The conditional  probabilities used 
in the decision rule were computed using 10, 20, and 
30 samples of each  character. We have also found  that 
the recognition rate is the  same  for  both  the new data 
and  the  data used to design the logic if the  sample size 
is 30. 

Experiment 6 

Performance  with large variations in the data 

At  the present  time we are carrying out a series of 
experiments using the  Recognition Logic Designer on 
more varied data  than  that which was described earlier. 
These variations include changes in character size 
and  the recognition of characters in fonts  not used 
during  the design procedure. 

To determine the ability of the logics to recognize 
data of a different size, tests were run  on 425  new type- 
written  alphabetic  characters whose size was 5%  to 
7 % smaller than those used to design the logics or  for 
computing  the  conditional  probabilities. Using a 
Bayes' decision rule with a rejection ratio  of 10, there 
were one  error  and two rejects. 

In journal text,  there is no control over the sequences 
or frequency of characters. Since these characters 
must be identified to  the Logic Designer program, 
some means must be accomplished for associating the 
identities with the bit patterns of each input. 

We are presently using an  approach  to  data compila- 
tion in which a primitive form of the logic is used to 
compile data for  the design of a  betterrecognitionlogic. 

Decision Method 

Alphabetic 
Typewriter, 

Single-font 

54 Logics 75 Logics 
1 180 Samples 1300 Samples 
Cyrillic, 

Reject 1 
Bayes 0.3 % 

0 

Bayes 

(3 Levels) 
1.4 Bayes 

0 (8 Levels) 
1.1 

0 

Error Error Reject 

0 %   0 %  0.34 % 
0.15 

0 

0.08 0 

0.43 0 0.4 
0.32 0.64" 

Minimum 
Distance 0 

1*77 I 
I '0 * 936 samples were tested in these cases. 
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0.08 
0.54 

0.08 
0.65 

0.32 0.43* 
0.54 0 

Two-font 
Cyrillic, 
870 Samples 
73 Logics 

Reject Error 

0.7 % 
0 

0.46 % 
0.92 

1.6 
0 

0.7 
2.3 

1.3 
2.3 0 
1.6 

Numeric 
Typewriter, 
464 Samples 
39 Logics 

No Errors or 
Rejects 

No Errors  or 
Rejects 



were based on 1008 samples different from  those that 
were tested for  recognition. The results using various 
decision rules on this data  are shown  in  Table 7. 
Conclusion 

A computer  program  has been developed for designing 
specific character recognition logics using actual 
samples of data.  This  program has been applied,  thus 

The recognition program is first structured by the 
Recognition Logic Designer based on a few samples 
which have been manually identified. The program is 
then used to identify the  remaining  samples.  Although 
its present  performance is inferior to its  ultimate per- 
formance,  it is adequate to identify a large percentage 
of the  input at a high rate of speed.  The  computer is 
arranged to print out,  for each character,  the  input 
bit pattern  along  with a bit pattern  taken  from  a 
library of standard  characters  indicating  its recog- 
nition  for that character. Samples of this printout  are 
shown in Fig. 2. The first and  third rows illustrate 
the programs’ recognition for  the  input characters be- 
low each of the  “character  standards”. (In this case, 
the machine had been given 15 samples of each of 
the lower-case Cyrillic letters.) The machine errors 
are quickly identified manually and  the identifica- 
tions  corrected.  The  larger set of samples identified 
in this way  is used to design a  better  performing 
machine. 

In analyzing these data  the recognition logic, al- 
though  structured only with the lower-case Cyrillic 
alphabet, was found to recognize correctly most 
italicized characters and upper-case characters if the 
lower-case version of these characters was the same 
general shape.  This is illustrated in Fig. 2. We are 
presently studying  tolerance to large  variations  in size 
and  font.  The  data shown  in  Fig, 2 are  typical of that 
resulting with a  scanner ripple component which was 
introduced to affect the  horizontal size  of the  scanning 
field such that this field varied by an average size dif- 
ference of 20 % between characters. Using these data, 
the set of 32 lower-case Cyrillic characters was 
recognized. The logic design and  the  conditional 
probabilities that were used in the decision procedure 

Figure 6 Performance as a function of total 
information. 
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Table 6 Performance for various sample Sizes. 

Number of samples Error rate with 
to  compute P{ xj lc i }  no rejects 

10  5.6 % 
20 1.2 
30 0.15 

Table 5 Performance with  different numbers of 
logics. Table 7 Performance with large width  variations. 

I 

Alphabetic typewriter, 1300 samples Single-font  CyrilIic 

96 Logics 
Decision Method 4095 Samples Number 

of Logics Bayes’ Decision 

Not  Quantized 1 Three-Level Error 

0.05 % 
0.19 

0.15 
0.34 

Reject 
I 

Error Bayes Error 

0 0.15 
1.4% 0 % 

Reject Reject 

0.3 % 
0 

75 0.08 % 
0.54 

0.6 
1.4 

Bayes 
(8 Levels) I 

48 0.8 
0 O 0.2 I ia4 0.07 

0.44 
Minimum 
Distance I 

40 1.4 
0 

0.8 
1.8 

0.2 5.6 
1.0 i 0 

1 1 3785 Samples in this test. 
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far, to the design of recognition logics of practical 
complexity for  reading single- and two-font  printed 
alphabets.  Substitution  rates in the  order of one  error 
per  thousand  characters were achieved on a wide 
range of printing  quality.  The  application of con- 
textual analyses”’ l 6  to word recognition, using the 
methods described in this paper for  the character 
recognition, should  produce machine designs with 
word  error  rates below one  word  error  per  thousand 
words. 

In  the application  of  this  method of designing recog- 
nition logic, it has become apparent  that there are 
relationships between logic complexity and perform- 
ance of a recognition system. System constraints to 
control  the  amount of hardware  required to implement 
a system can be specified to  form  a part of the design 
procedure.  Some experimental relations were reported 
on the effect of these constraints on the  performance 
of a recognition machine. These constraints involve the 
complexity of the logic circuits and  the number of 
logic circuits. Furthermore, we showed the  perform- 
ance resulting from different methods of  treating  the 
outputs  from  the logic circuits. Finally, results were 
reported  as  a  function of the  quality and variety of 
characters  handled by the machine. For example, a 
given logic system worked better on a smaller alphabet 
than  on a  larger one; recognition of  more  than a single 
font by a single logic yielded inferior  performance than 
that logic applied to a single font. Conversely, equiva- 
lent  performance  with  poorer  quality  or  more varied 
inputs  could be obtained at  the expense of more 
complex logic. 
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Appendix 

The  parameterization of the  input is to yield M dif- 
fere’nt parameter values, xi, j = 1,2, . . M. All of the 
xj are presented to  the classifier at the  same  time and 
will  be considered here as a point x in a M dimension 
space. The  parameter values are  considered to be 
discrete; they may be binary, they may represent a 
multistate  measurement, or they may represent 
samples of a  continuous but frequency-band-limited 
measurement. 

The classifier, using all of the  parameter values, 
produces  one of m possible codes ci,  i = 1,2, . . m. 
In  the simplest case, each  code ci represents  one  alpha- 
numeric  symbol of m possible symbols. Only this case 
will be used here. Although we will use only single 
symbols, there is no reason why the theory to be 
developed can  not  be applied to groups of symbols. 

12 It will be assumed that  the apriori distribution of the 
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code sequences cl, c2, * - ci, P{ci} = P { c , ,  c2,  - ci}  
has been measured and is known and  stationary for 
some finite number of symbols r 2 1. If r = 1 only 
the symbol frequencies are  known. In effect, r is the 
range of contextual influence. 

The recognition logic, R.L., is presented with an 
unknown  input  symbol S. Based on measurements of 
M parameters xi of S, R.L.  must associate one of m 
possible codes ci with S. The codes ci are mutually 
exclusive and  exhaustive; that is, every S belongs to 
one  and only one of the ci. Let us consider for  a  par- 
ticular set of measurements of S yielding the value x, 
the  conditional  probability P { c , l x } .  This is the 
probability that  the  input symbol S is associated with 
the  code ci based on  the  parameter values x. This set of 
conditional probabilities  describes all of the information 
in the parameter values x relevant to classifring S 
independently of any decision method. 

Woodward’8 has described the ideal receiver as  one 
which  specifies the  distribution of the  states of the 
input signal based on knowledge of  the  output signal. 
The ideal receiver conserves all information relevant 
to specifying the  input  but  no more.  The ideal classifier 
conserves all information relevant to specifying S 
given x and no more.  Thus, given P{ci lx}  a decision 
method need not be considered as  part of the  character 
reader if  we are interested in  studying  the ability of a 
given parameterization to extract  information about S. 

Some insight into  the  problem of rating  para- 
meterizations might be gained by considering the 
following example. Fig. A-1 represents the set of 
P{c, lx}’s  for a particular x of a  parameterization tl. 
In general, the set of probabilities will  be different for 
each x but consider this set in Fig. A-1 to be typical of 
a. Fig. A-2 represents a typical set of P{ci lx} ’s  for a 
parameterization p. We  feel intuitively that more is 
known  about S from  parameterization f i  than from a 
if the  particular x in each case is typical. This is true 
because the distribution  in the case of f i  is more 
peaked. In this case, one of the  codes ci = cl is much 
more  probable than  the others.  Restated,  the  more 
peaked the distribution of P{ci lx}  the more is known 
about S.  If we can find a computable and good 
measure of  the peakedness of P{ciJx} and average this 
measure over all  of  the  parameter values for a given 
parameterization, we can  produce  a measure of the 
value of that parameterization in separating  codes. 

An  information measure will be used here to 
describe the  spread of P { c i l x } .  It is in effect a measure 
on how much we know about  the ci’s and is a maxi- 
mum if the c i s  are completely determined.  Con- 
versely, Shannon’s’’ information measure describes 
how  much knowledge is contributed by each ci and is 
a minimum if the c i s  are  determined a priori. The 
measure to be used here is similar to one used by 
Lewis” to describe approximations to probability dis- 
tributions  and  to  one used by Lindley” to  compare 
experiments to determine  the value of a continuous 
parameter. 
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Figure A-2 Distribution of code probabilities for 
a specific measurement 9,  Case /?. 

First, consider the following  measure which is a 
function of x: 

I(x) = 2 P{c,(x}log, P{CilX} - P{c,}log,  P{Ci} . 
m 

i =  1 

Shannon,’  has shown that the function Pi log, Pi  
is a maximum for all  of the Pi equal, zero  only if one 
of the Pi)s = 1 and the others are zero, and monotonic 
between  these  limits. Thus if the probabilities 
P{cilx} equal their a priori probabilities P{ci}, 
I(x) = 0. For the perfect parameterization, P{cilx} = 1 
for i = 1, P{cilx} = 0 for i # 1 and, if P { c i }  = 
I/m, I(x) = log, m. (We  can  specify one of m states 
with log, m bits.)  Since xi P i  log Pi is monotonic, Z(x) 
gives a measure of the spread of P{cilx} when using a 
particular value of x. 

The probabilities of the states of  the parameter 
values  may  be  described by a distribution P{x} where 
Call x P{x} = 1. The average information I of a para- 
meterization is then the expected  value of  Z(x) for the 
parameterization or 
I = 1 P{x}I {x }  . 

all x 

If the a priori probabilities of each character ci are 
equal, P{c i }  = l/m, then 

I = log, rn + 2 P{x} P{c,lx}log,  P{c,ix} . 
m 

S I =  1 
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