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Effect of Initial  Air Content 
on the  Dynamics of Bubbles in Liquids 

Initiation and collapse of cavitation bubbles are 
strongly influenced by the gas content of the liquid. 
Degassed liquids can withstand large tensions without 
bubble formation : Harvey’ subjected air-saturated 
water to pressures of io4 psi for several minutes, 
forcing the  air nuclei into  solution;  upon depressuriza- 
tion,  the solution did  not cavitate under conditions 
which produced cavitation before pressurization. In 
this note, we analyze the effect  of initial air  partial 
pressure on  the growth  rate and dynamic stability of a 
bubble. 

We assume the bubble is spherical throughout  its 
growth; this is  valid  if the radial acceleration and 
velocity are sufficiently small. We neglect air diffusion 
across the bubble wall,  which Epstein and Plesset’ 
showed is so slow, compared with the growth rate of 
bubbles, that  it does not affect the bubble air  content. 
The question of nucleation is avoided by assuming a 
finite initial radius. Thermal effects  of evaporation  and 
condensation of liquid vapor  are neglected; heat flow  is 
not  important when the  temperature is appreciably 
below the boiling point of the liquid. The liquid 
viscosity  is neglected. 

From Rayleigh’s3 theory,  the bubble radius R 
satisfies the  equation 

Rd2R/dt2 + (3/2)(dR/dt)’ 

= (l/P)L-P, - p ,  + pa - W R ) 1  9 (1) 

where P,  is the  vapor pressure of the liquid, Pa is the 
partial pressure of air in the bubble, P, is the atmos- 
pheric pressure, t~ is the surface tension, and t is time. 
For isothermal growth, 

ud’uldz’ + (3/2)(du/dz)* 

= c1 + P/u3 - (1 + P)/ul/(l + P )  7 

where 

u = R/Ro , z = (AP + Pai/p)”(t/Ro),  

AP = P ,  - P ,  , P = Pai /AP,  

472 with R, the equilibrium radius 2a/(AP + Poi) and Pai 

the initial air pressure in the bubble (zero for  a  vapor 
bubble). The first integral of (2) is 

du/dz = & { [2 /3  + 2P(lnu)/u3 

- (1 + P)/u + c/u31/(1 + PI>” , (3) 
in which c = (1 + P)ui2(1 + u i f i 2 )  - (2/3)ui3 - 
2Plnui, where ui and tii are  the initial values of 
u and du/dz respectively. For /? = 0, 

du/dr = +(2/3  - l / ~  + c ’ / u ~ ) ” ,  

Figure 1 li as a function of u for /I = 0 and  various 
values of c. 
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Figore 2 u as a function of u for /? = 112 and 
various values of c. 

where c' = ui2[l + uitii2 - (2/3)ui]. This case was 
considered by Dergarabedian4;  its phase plane 
trajectories are shown  in Fig. 1. 

Equation (2) expressed in  first-order differential 
form is 

tlli/du = { [ u 3  - (1 + P)u2 + p]/(1 + p) 
-(3/2)u3ti2}/u4ti , ( 5 )  

where ti denotes du/dz. The singularities are  the points 
(ui, 0), with ul ,  u2,  u3 the roots of u3 - (1 + p)u2 + 
/? = 0, i.e., u1 = 1, u2,3 = (p/2)[1 f (1 + 4/p)%]. For 
/? = 0, the only root is u = 1. The  point u = 1, til = 0 
on Fig. 1 is a singular point representing dynamically 
unstable equilibrium. For p # 0, the  roots u1 and u2 
represent, when positive, dynamic  equilibrium points. 
The  singularity at u = 1 corresponds to R = R, and 
the  parameter p determines  the effect of the initial air 
on the  other  equilibrium  radius.  There are three 
possible types of dynamic  behavior: if = 1/2, 
u1 = u2 = 1 ; for any positive value of p other  than 
I /2 there is another positive root u2, u1 < u2 forb > 1/2 
and u ,  > u2 for p < 1/2; if Ap is negative, so that 
/I < 0, there is only one positive root u = 1, the  other 
roots have no physical meaning. If f i  = 1/2, the two 
singularities coincide. The energy curve c(u) is  given by 
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Figure 3 u as a function of u for /? = 114 and 
various values of c. 

C ( U )  = - ( 2 / 3 ) u 3  - 28 I t 1  u + (1 + j ) u 2  + c , (6) 

which has a  point of inflection with a  horizontal 
tangent at u = 1. Trajectories  through (1,O) cusp at 
this point; there are no closed trajectories, hence no 
periodic solutions.  Figure 2 shows the  curve c(u), and 
the  trajectories of (3). For a  particular  pair of initial 
values (ui ,  t i i ) ,  the trajectory is uniquely determined. 
Trajectories for positive and negative ti correspond to 
growth and collapse, respectively. The  singular  point 
u = 1 is dynamically unstable. 

For p = 0, the  criterion ti = 0, u > 1 indicated 
growth. However, bubbles containing air  tend  to grow 
upon disturbance : for u > 1, the trajectories resemble 
those for = 0, but for u < 1, the bubble is growing, 
not collapsing. Physically, when u < 1, the  internal 
potential energy of  the  air causes the  bubble to  rebound 
before it shrinks to zero radius. For 0 < /I # 1/2, there 
are two singularities. Since the two cases are similar 
except that  the singularities are interchanged, we 
discuss only the case p < 1/2 (Figure 3 corresponds to 
b = 1/4). The trajectories are closed curves surround- 
ing the  center  point (u2,  0) unless the energy constant 
is large enough that  the trajectory passes through  the 
saddle point (ul, 0). For energies quite different from 
c(u2), there  are  two  distinct types of open  solution 473 
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Figure 4 u as a function of z. 

curves, i.e., two different types of  aperiodic  motion. 
The motion is periodic only for  a  small  range of 
initial conditions. 

The case p < 0 arises only if AP < 0, since Pai 2 0. 
For the only root ui to have physical meaning, Pai 
must exceed [Apl :  otherwise, the  equilibrium  radius, 
which is also  the  initial  radius, would be negative. 

To determine  the  dynamic  equilibrium  condition 
from (2), let 

f(u) = 1 + P/u3  - (1  + P)/u 9 (7) 
whence 

[ d f / d u ] , = ,  = 1 - 2p . (8) 
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The range of non-negative /1 for which [~ffldu],=, 2 0 
is 1/2 2 p 2 0, i.e., 4a/3AP 5 R, 5 2a/AP with 
AP/2 2 Pai 2 0. Within this regime, the  bubble is 
dynamically unstable;  for p = 1/2, dfdu = 0, it is 
neutrally  stable.  Equation (8) also shows that, for 
u < 1 (i.e., R < Ro), df/du < 0 for all p > 1/2, Le., 
a bubble of radius R < 40/3AP is dynamically stable 
when AP > 0. However, such a bubble would soon 
dissolve. 

Figure 4 shows response curves for  the cases p = 0, 
1/4, 1/2 with different initial values of c .  The integral 
form of (4) for p = 0 is 

z - zi = 1: (2/3 - l/i + ~ ‘ / ( ~ ) - ~ d i  . 

For c’ = 1/3  (i.e., u1 = 1,  6 = 0), this  can be 
integrated,4 showing that  the closer u1 is to unity, the 
longer it  takes for  the bubble to grow. For p # 0, 
(3) shows that  as u increases without  bound  the 
asymptotic  growth rate is linear in time; physically, 
the efSect of air is important in the initial growth,  but, 
except for determining the asymptotic slope of the u - T 
curve, it may not afSect signiJcantly the subsequent 
growth behavior. 

Figure 4 illustrates,  for P = 1/4, the periodic 
oscillation when u lies between the limits of the  loop 
through  the  saddle  point. Evidence of oscillating 
bubbles is found  in  hydraulic machinery and in ultra- 
sonic  cavitation. At  the center  point u2,  the  bubble is 
in stable  dynamic  equilibrium. For values of u within 
the  loop,  the trajectories are limit cycles, representing 
periodic  solutions. 
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