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Effect of Initial Air Content
on the Dynamics of Bubbles in Liquids

Initiation and collapse of cavitation bubbles are
strongly influenced by the gas content of the liquid.
Degassed liquids can withstand large tensions without
bubble formation: Harvey' subjected air-saturated
water to pressures of 10* psi for several minutes,
forcing the air nuclei into solution; upon depressuriza-
tion, the solution did not cavitate under conditions
which produced cavitation before pressurization. In
this note, we analyze the effect of initial air partial
pressure on the growth rate and dynamic stability of a
bubble.

We assume the bubble is spherical throughout its
growth; this is valid if the radial acceleration and
velocity are sufficiently small. We neglect air diffusion
across the bubble wall, which Epstein and Plesset?
showed is so slow, compared with the growth rate of
bubbles, that it does not affect the bubble air content.
The question of nucleation is avoided by assuming a
finite initial radius. Thermal effects of evaporation and
condensation of liquid vapor are neglected ; heat flow is
not important when the temperature is appreciably
below the boiling point of the liquid. The liquid
viscosity is neglected.

From Rayleigh’s® theory, the bubble radius R
satisfies the equation

RA?R/df* + (3/2)(dR/d1)?
=(1/p)[Pv_Poo +Pa_(26/R)] s (1)

where P, is the vapor pressure of the liquid, P, is the
partial pressure of air in the bubble, P, is the atmos-
pheric pressure, o is the surface tension, and ¢ is time.
For isothermal growth,

ud*ufdt* + (3/2)(du/dr)?

=[14p/u® -1+ Bul/(1 +P), )]
where
u=R/Ry, t=(AP + P,/p)*(|R,),

AP=P,—-P_, f=P,/AP,
with R, the equilibrium radius 26/(AP + P,;) and P,;
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the initial air pressure in the bubble (zero for a vapor
bubble). The first integral of (2) is

dujdt = +{[2/3 + 2B(Inu)/u®

= (L+Pfu+c[u®]d + p}*, 3)

in which ¢ =1 + BurQ + un?) — 23u’ -
2BInu;, where u; and u; are the initial values of
u and du/dr respectively. For § = 0,

dujdt = +(2/3 — u + ¢'[u®)*%, @

Figure 1 4 as a function of u for § = 0 and various
values of c.




2.0

1.0
_________________________ 8/15 |

0OH
A2

-1.0H

3 -20 1

4.0

Figure 2 a as a function of u for f=1/2 and
various values of c.

where ¢ = u2[1 + uai;2 — (2/3)u;]. This case was
considered by Dergarabedian*; its phase plane
trajectories are shown in Fig. 1.

Equation (2) expressed in first-order differential
form is

difdu = {[u® - (1 + Pu® + 1)1 + B)
—G/2u’u}utu, &)

where & denotes du/dr. The singularities are the points
(u;, 0), with uy, u,, u; the roots of u® — (1 + Pu? +
B=0,ie,u =1u ;= (F2)[1 + (1 + 4/)"”]. For
=90, the onlyrootisu = 1. The pointu = 1,14, =0
on Fig. 1 is a singular point representing dynamically
unstable equilibrium. For § s 0, the roots %, and u,
represent, when positive, dynamic equilibrium points.
The singularity at ¥ = 1 corresponds to R = R, and
the parameter f§ determines the effect of the initial air
on the other equilibrium radius. There are three
possible types of dynamic behavior: if fi = 1/2,
u; = u, = 1; for any positive value of § other than
1/2 there is another positive root u,, u; < u,forfi > 12
and u, > u, for B < 1/2; if Ap is negative, so that
fi < 0, there is only one positive root ¥ = 1, the other
roots have no physical meaning. If f = 1/2, the two
singularities coincide. The energy curve c(u) is given by

Figure 3 G as a function of u for g =1/4 and
various values of c.

c(w)y= -3 =28Inu+Q + Pu? +c, (6)

which has a point of inflection with a horizontal
tangent at ¥ = 1. Trajectories through (1, 0) cusp at
this point; there are no closed trajectories, hence no
periodic solutions. Figure 2 shows the curve c(«), and
the trajectories of (3). For a particular pair of initial
values (u;, i;), the trajectory is uniquely determined.
Trajectories for positive and negative & correspond to
growth and collapse, respectively. The singular point
u = 1 is dynamically unstable.

For f =0, the criterion # = 0, ¥ > 1 indicated
growth. However, bubbles containing air tend to grow
upon disturbance: for ¥ > 1, the trajectories resemble
those for § = 0, but for u < 1, the bubble is growing,
not collapsing. Physically, when u < 1, the internal
potential energy of the air causes the bubble to rebound
before it shrinks to zero radius. For 0 < f§ # 1/2, there
are two singularities. Since the two cases are similar
except that the singularities are interchanged, we
discuss only the case § < 1/2 (Figure 3 corresponds to
p = 1/4). The trajectories are closed curves surround-
ing the center point (#,, 0) unless the energy constant
is large enough that the trajectory passes through the
saddle point (u,, 0). For energies quite different from
c(u,), there are two distinct types of open solution
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Figure 4 u as a function of 1.

curves, i.e., two different types of aperiodic motion.
The motion is periodic only for a small range of
initial conditions.

The case § < 0 arises only if AP < 0, since P,; = 0.
For the only root u; to have physical meaning, P,;
must exceed |Ap|: otherwise, the equilibrium radius,
which is also the initial radius, would be negative.

To determine the dynamic equilibrium condition
from (2), let

fwy=1+B/u> -1+ B)fu, @)
whence
[df [dul,=y =1—28. (8)
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The range of non-negative § for which [df/du],-, = 0
is 122 =0, ie., 40/3AP £ Ry £ 20/AP with
APj2 z P,; = 0. Within this regime, the bubble is
dynamically unstable; for f = 1/2, dfjdu = 0, it is
neutrally stable. Equation (8) also shows that, for
u<1 (ie, R< Ry, dfldu <0 for all § > 1/2, i.e.,
a bubble of radius R < 4¢/3AP is dynamically stable
when AP > 0. However, such a bubble would soon
dissolve.

Figure 4 shows response curves for the cases f§ = 0,
1/4, 1/2 with different initial values of ¢. The integral
form of (4) for § = O is

T-T = J'" (23 = 1/C + ' [0%)~%dC . ®

For ¢ =1/3 (e, u, =1, 4 =0), this can be
integrated,* showing that the closer u, is to unity, the
longer it takes for the bubble to grow. For f§ # O,
(3) shows that as u increases without bound the
asymptotic growth rate is linear in time; physically,
the effect of air is important in the initial growth, but,
except for determining the asymptotic slope of theu — 1
curve, it may not affect significantly the subsequent
growth behavior.

Figure 4 illustrates, for B = 1/4, the periodic
oscillation when u lies between the limits of the loop
through the saddle point. Evidence of oscillating
bubbles is found in hydraulic machinery and in ultra-
sonic cavitation. At the center point u,, the bubble is
in stable dynamic equilibrium. For values of u within
the loop, the trajectories are limit cycles, representing
periodic solutions.
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