
M. A. Leibowitz 

Letter  to the Editor 

A Note on Some  Fundamental  Parameters 
of Multiqueue  Systems 

In a previous paper, an approximate  method was 
developed for  treating  a class of multiqueue problems.' 
These problems  are of considerable interest in the 
design of communication systems with many terminals. 
The  purpose  of  this  note is to obtain expressions for 
some parameters often used to characterize such 
systems and to draw an important distinction between 
two different types of  averages-a distinction which 
can lead to serious consequences if overlooked. 

The  situation considered in Ref. 1 is this: N queues 
of unrestricted length are served in cyclic order by a 
single server. At  any  queue,  the server serves all  units 
which were on  that queue at  the  moment that  it 
arrived. The  input  to each  queue is Poisson with 
average interarrival time I l l ,  and s(t),  w(t) are  the 
probability densities of the service time for  a  unit  and 
the walking time (i.e., the time required by the server 
to go from  one  queue to the next). 

In Ref. 1, the  quantity of interest was p,, the  station- 
ary  probability that there  are n units on a given queue 
at the moment of the server's arrival. This  probability 
must  be distinguished from  another  and generally more 
useful quantity: namely, r,, the  probability that there 
are n units  on  the  queue at  some randomly chosen 
instant. The following alternative definitions may make 
this distinction clearer. Consider k successive arrivals 
of the server at  the  same  queue  taking place over a 
period of time S.  Then  for k and S sufficiently large, 
p ,  will be very nearly the  fraction of the k arrivals at 
which the server finds the queue to be of length n, 
while r, will be the  fraction of time S that  the  queue is 
of this length. 

To determine r, it is necessary to  introduce  another 
quantity which is in itself important.  Let P(T) be the 
probability density of the scan time, i.e., the time 
required to serve each queue once. P(T) is analogous to 
p ,  in that it is related to the frequency at  which scans 
of a given length occur and  not  to  the  proportion of 
time they occupy. 

470 Since the scan time, T, is also  the time between 
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successive arrivals of the server at  the  same  queue, 

and 
m f m  

G(x) = p , ~ "  = J  e-"T'l-X)P(T)dT.  (2) 
n = O  0 

Relations between the  moments of { p , }  and P(T) are 
easily obtained by differentiating Eq. (2) with respect 
to x, and explicit expressions can  then be found by 
using the results of Ref. 1. We have, e.g., for  the 
expected value of T, 

where l/p and iC are  the mean service and walking 
times, respectively. 

The eflciency, E, can be defined as the  fraction of 
time  spent by the server in actually servicing the 
queues.  Thus, 

(4) 

Note  that E is independent of the walking time. 
To find the  mean waiting time, W, of a  unit, it is 

tempting to reason as follows: When a given unit 
arrives, the server could  be at  any queue  in  the system, 
and  on  the average this  queue will  be half-way removed 
from  the unit. Thus half a  scan of the system will be 
required before the  unit  can be served, so that W = T/2. 
This leads to the  remarkable conclusion that if the 
walking time were zero,  units would never have to wait 
(cf. Eq. 3 above). However, this conclusion and  the 
argument behind it is wrong. 

To see this, consider how T would be determined 
experimentally. One would measure the time Ti 
( j  = 1,2, * , k )  of k successive scans of the system 



(beginning with some specified queue)  and  form 
(TI + T ,  + * - TJk which for sufficiently large k 
would be nearly T. Another  average, T',  is obtained if 
we observe the system at k random instants, record the 
times T i  ( j  = 1, 2, k )  of the  scans  then  occurring, 
form (Ti + Ti + . . + Ti)/k and let T' be the limit 
of this  quotient  as k -+ co. Unless the scan  time is 
always the same  (i.e.,  deterministic) 7;' > T. The 
reason for this is that if the  instants of observation are 
chosen at  random,  there is a greater  tendency to 
observe the system during  the longer scan times than 
the  shorter, simply because the  former last longer. In 
fact, if R(T) is the probability  density of scan  times 
chosen by random  observation as above,  then 

R ( T )  = T P ( T ) / T .  ( 5 )  

Indeed,  consider  a very long  period  of  time S. Then 
R(T)dT is that fraction of the  time S which is occupied 
by scans whose lengths lie in  the small  interval 
[T ,  T + dT];   R(T) ,  therefore, is analogous to {r,} .  
Now in the time S approximately S/Tscans occur. Of 
these, SP(T)dT/T will have  lengths between T and 
T + dT, and hence they will require  a  time STP(T)dT/T. 
But  this is just SR(T). 

It follows from ( 5 )  that 

Now  units  enter  the  queues at random times. Since 
these times  can  equally well be  regarded as  random 
instants of observation, the  correct relation between 
the waiting time and  the scan  time  is 

by Eqs. (2) and (6). 
Because of  the complex  interactions of the queues, 

an exact  calculation  of W seems prohibitively  com- 
plicated for N > 2. However, approximate expressions 
can  be  found  from  the results of Ref. 1. Thus,  correct 
to terms O(1') as 1 --f 0, we have (if the variance 
d2(w) wz - W2 = 0 and  the  time scale is chosen so 
that p = 1) 

- 

Note  that  the waiting time  does not tend to zero as  the 
walking time becomes indefinitely small. 

Finally we obtain  an expression for  the probability 
r, i n  terms of P(T).  Let P(n, t )  be the probability 
density that if one observes a given queue at  some 
random  instant  (a) a scan beginning with this  queue 
has been in progress for exactly a time t / 2 ,  and (b) the 
queue  contains n units. Since the probability  density 
of (a) is 

Hence, since 

r, = 1; P(n, t ) d t ,  

it follows that 

From this  equation,  the  moments of the  distribution 
{r,} can be related to those of P(T) and { p , } .  
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- ' [  1-NIZ 2 
W = -  N1s2 -I" 

- 
(cf. Ref. 1, Eq. 25) 
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