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M. A. Leibowitz

A Note on Some Fundamental Parameters

of Multiqueue Systems

In a previous paper, an approximate method was
developed for treating a class of multiqueue problems.!
These problems are of considerable interest in the
design of communication systems with many terminals.
The purpose of this note is to obtain expressions for
some parameters often used to characterize such
systems and to draw an important distinction between
two different types of averages—a distinction which
can lead to serious consequences if overlooked.

The situation considered in Ref. 1 is this: N queues
of unrestricted length are served in cyclic order by a
single server. At any queue, the server serves all units
which were on that queue at the moment that it
arrived. The input to each queue is Poisson with
average interarrival time 1/4, and s(f), w(r) are the
probability densities of the service time for a unit and
the walking time (i.e., the time required by the server
to go from one queue to the next).

In Ref. 1, the quantity of interest was p,, the station-
ary probability that there are » units on a given queue
at the moment of the server’s arrival. This probability
must be distinguished from another and generally more
useful quantity: namely, r,, the probability that there
are n units on the queue at some randomly chosen
instant. The following alternative definitions may make
this distinction clearer. Consider k successive arrivals
of the server at the same queue taking place over a
period of time S. Then for k and S sufficiently large,
D, will be very nearly the fraction of the k arrivals at
which the server finds the queue to be of length n,
while r, will be the fraction of time S that the queue is
of this length.

To determine r, it is necessary to introduce another
quantity which is in itself important. Let P(T) be the
probability density of the scan time, i.e., the time
required to serve each queue once. P(T) is analogous to
D, in that it is related to the frequency at which scans
of a given length occur and not to the proportion of
time they occupy.

Since the scan time, 7, is also the time between
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successive arrivals of the server at the same queue,
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Relations between the moments of {p,} and P(T') are
easily obtained by differentiating Eq. (2) with respect
to x, and explicit expressions can then be found by
using the results of Ref. 1. We have, e.g., for the
expected value of T,
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where 1/p and W are the mean service and walking
times, respectively.

The efficiency, E, can be defined as the fraction of
time spent by the server in actually servicing the
queues. Thus,
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Note that E is independent of the walking time.

To find the mean waiting time, W, of a unit, it is
tempting to reason as follows: When a given unit
arrives, the server could be at any queue in the system,
and on the average this queue will be half-way removed
from the unit. Thus half a scan of the system will be
required before the unit can be served, so that W= T}2.
This leads to the remarkable conclusion that if the
walking time were zero, units would never have to wait
(cf. Eq. 3 above). However, this conclusion and the
argument behind it is wrong.

To see this, consider how T would be determined
experimentally. One would measure the time T
(j=1,2,---,k) of k successive scans of the system




(beginning with some specified queue) and form
(T, + T, + - -+ + T)/k which for sufficiently large k
would be nearly T. Another average, T', is obtained if
we observe the system at k random instants, record the
times T/ (j = 1, 2, - - - k) of the scans then occurring,
form (T{ + T, + - - - + T;)/k and let 7’ be the limit
of this quotient as & — co. Unless the scan time is
always the same (i.e., deterministicy 7' > T. The
reason for this is that if the instants of observation are
chosen at random, there is a greater tendency to
observe the system during the longer scan times than
the shorter, simply because the former last longer. In
fact, if R(T) is the probability density of scan times
chosen by random observation as above, then

R(T) = TP(T)/T. 5

Indeed, consider a very long period of time S. Then
R(T)dT is that fraction of the time S which is occupied
by scans whose lengths lie in the small interval
[T, T + dT]; R(T), therefore, is analogous to {r,}.
Now in the time S approximately S/T scans occur. Of
these, SP(T)dT/T will have lengths between T and
T + dT,and hence they will require a time STP(T)dT/T.
But this is just SR(T).

It follows from (5) that

T =T?T. (6)

Now units enter the queues at random times. Since
these times can equally well be regarded as random
instants of observation, the correct relation between
the waiting time and the scan time is

W=T/2=T}2T= % (n - n)A ™

by Egs. (2) and (6).

Because of the complex interactions of the queues,
an exact calculation of W seems prohibitively com-
plicated for N > 2. However, approximate expressions
can be found from the results of Ref. 1. Thus, correct
to terms O(A*) as 1 — 0, we have (if the variance

0%(w) = w? — W* = 0 and the time scale is chosen so
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. Ref. 1, Eq.
T—Ni (cf. Ref. 1, Eq. 25)

Note that the waiting time does not tend to zero as the
walking time becomes indefinitely small.

Finally we obtain an expression for the probability
r, in terms of P(T). Let P(n,t) be the probability
density that if one observes a given queue at some
random instant (a) a scan beginning with this queue
has been in progress for exactly a time #/2, and (b) the
queue contains » units. Since the probability density
of (a) is

'[w P(T)dT|T,

P(n, 1) is given by>

P(n,t)y=e* %J'w P(T)dT|T.

Hence, since

r, =J P(n, t)dt ,

[4]
it follows that

H(z) = Zo r,2" = . Zo Z"P(n, H)dT
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From this equation, the moments of the distribution
{r,} can be related to those of P(T) and {p,}.
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