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Coding  for  Logical  Operations 

Abstract:  The behavior of a computation system  consisting of encoders,  an unreliable logical operator 
and a decoder is  investigated. It is  shown that for almost all Boolean  functions,  coding  each  block  of k 
input bits into a block of n bits such that all sets of s or less errors  will be corrected requires that 
R 2 (2s + 1)k. This result suggests that  the capacity (in the information theoretical sense) of such a 
computation system is zero. 

Introduction 

This  paper investigates one  aspect of the problem of Elias' noted that this  feature  of the results is 
performing reliable computation using less reliable "unsatisfying, or  at least  disappointing,  from  a  theoreti- 
components.  This  problem is of interest both  to  the cal  point of view in the context  set by information 
neurophysiologist and  to  the computer engineer. The theory. In fact, these results have the  character of the 
nervous system is capable of functioning reliably, yet pre-information  theory  results on  the reliable trans 
there is evidence that  the  function performed by a mission of information  over  unreliable (noisy) chan- 
single neuron is probabilistic. To use the  language of nels." Consider the transmission system shown in Fig. 
a  communication engineer, the  function performed by 1. The source  sends ZEROS and ONES, the  encoder con  
a single neuron is perturbed by noise. The computer verts a  block of k bits  sent by the  source into a block 
engineer is faced with the problem of a growing of n bits. With  probabilityp, each of the n bits entering 
demand,  both military and commercial, for computers the memoryless binary symmetric channel comes oul 
designed to  function reliably in  spite of thermal  and incorrectly. The decoder  accepts the block of n bits 
electrical noise present  in  the system. The problem perturbed by the noise and decodes it  into a block oj 
facing  the  computer engineer may  become even more k bits, usually the  same block of k bits  sent by the 
acute if the techniques which are used for producing source.  Mistakes  are still made by the system, namelJ 
active elements in very large  quantities do  not result the block of k bits  coming out of the decoder  is no1 
in the  production of highly reliable individual elements. the same block sent by the  source;  but  the  fundamenta' 

Von  Neumann,'  Moore and  Shannon,2 M ~ r o g a , ~  theorem  for  a discrete memoryless channel with noise' 
and McCulloch,  Cowan et  al.4 applied themselves to guarantees that if the  rate of transmission, R = k/r 
the problem of designing a reliable automaton using bits  per  symbol, is less than  the  channel capacity 
less reliable components.  Each of them investigated C = 1 + p log, p + (1 - p)log,(l - p ) ,  then keeping 
the problem using different elements; and in  each case R constant  and letting k and n increase can  make the 
the results of the investigation showed that by making  probability of error  arbitrarily small. 
the  automaton  redundant, i.e.,  by using more  com- The question  then  arises: Can we have  a compu 
ponents  than is absolutely  n cessary for  the design of tation system, as shown  in  Fig. 2, similar to the trans 
the  automaton,  it was possible to make  the  proba- mission system, which will exhibit similar capabilitiec 
bility of malfunction  arbitrarily small. The exact 
amount of redundancy  required to achieve a certain 
level of reliability differed in each  case; yet all the Figure 1 Transmission system for binarv svm. 
methods  had  one  feature  in  common:  In  order  to metric channel. 
obtain  arbitrarily high reliability, almost  all  the 
elements in the  redundant  automaton were needed to 
combat  the noise, and only  a very small  fraction s o u R c E ~ ~ ~ ~ l  n B l T s - E l  k BITS 

(which approached  zero  with  increase  in  the reliability) 
were needed to perform  the desired function. I - P  u 
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Figure 2 Computation system for noisy logical operator. 

for combating  the  noise?  In  other words, what is the 
Zapacity  of a noisy logical operator? 

One major difference  between the communication 
system shown in Fig. 1 and  the computation system 
shown in Fig. 2 is the requirement on  the block of k 
)its coming out of the decoder. In the communication 
system  we want  the block of k bits coming out of the 
lecoder to be the same as  the block of k bits sent by 
:he source; while in the case of the  computation system 
Ne want  the k bits coming out of the decoder to be 
:he same as  the block of k bits which would have 
:esulted had  a noiseless logical operator f operated on 
:he m blocks of k bits sent by the m sources. 

The  computation system shown in Fig. 2 should not 
)e  viewed as  a scheme for designing a reliable auto- 
naton using  less reliable components. In  the  computa- 
:ion  system, as well as in the communication system, 
:he encoder and  the decoder are assumed to operate 
with complete reliability. It is therefore unrealistic to 
issume that parts of the  automaton, namely the logical 
lperator f, are affected by noise, while other  parts, 
lamely the encoder and decoder, are  not affected. 
The computation system of  Fig. 2 was  devised for  the 
;ole purpose of studying the relation of information 
:heory of reliable automata. 
Background 

:n 1958 P. Elias presented a  paper entitled "Compu- 
.ation in the Presence of  Noise,"' in which he investi- 
gated the possibilities of block coding the  inputs of 
L noisy logical operator and then decoding the  output 
Aock. In  particular, Elias investigated all Boolean 
unctions of two variables. He assumed that  the  nature 
)f the noise is such that with probability p the  output 
)f the noisy logical operator is incorrect. Thus  the 
ogical operators he investigated can be represented 
;thematically as shown in Fig. 3. The box f is assumed 
o be noiseless, and  the entire effect  of the noise is 
*epresented by a memoryless binary symmetric channel. 

Figure 3 Noisy logical operator. 
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Elias divided the 16 Boolean functions of two 
variables into two classes: 

C, = (0, 1, a,  a', b,  b', a @ b, a'@ b} 

Cz = { a - b ,  a '*b ,  a - b ' ,  a'ab', u + b, a ' +  b, u + b', 
a' + b'} . 

(We  use the  notation a 0 b = ab' + a'b.) 

No coding is  necessary for  the first two functions of 
C,, namely f = 0 and f = 1, because the  output does 
not convey any  information  about  the inputs. As for 
the  other six functions in C,, group codes' may be 
used to code their inputs, and as long as the  rate of 
flow of information at the  output is less than 
1 + p log, p + (1 - p)log,(l - p )  bits per symbol, 
which  is the capacity of the binary symmetric channel, 
an arbitrarily small probability of error may be 
achieved. 

In  order to investigate the possibilities of  efficient 
coding for  the functions of C,, Elias considered the 
system shown in Fig. 4. He proved that in the system 
of Fig. 4, iff is in C,, then in order to correct all pos- 
sible sets of s or less errors, n must be at least (2s + 1)k. 
This is in marked contrast  to  the results obtained  for 
group 

On  the basis of his investigation, Elias conjectured 
that even in  the  more general case, shown in Fig. 5 ,  
iff E C, then n 2 (2s + l )k  is a necessary condition 
for correction of all possible sets of s or less errors. 

Consider the  computation system shown in Fig. 5. 
Source 1 sends a block of k bits X, = (x , , ,  x,, * * q k ) ,  

which are encoded by Encoder 1 into  a block of n bits 
Y, = &(X,) = (y,,, ylz - - * yln). Similarly, the second 
source sends a block of k bits X, = (x,,,  x,, * * . q k )  

which are encoded by Encoder 2 into a block of n bits 
Y, = E,(X,) = (y,,, y,, * * y,,). The function F 
operates on the two vectors Y, and Y, bit by bit, and 
in the absence of noise the result of the  computation 
would have been Z = (z, ,  z ,  * * z,). Because of the 
noise, which is represented by the binary symmetric 
channel, the  output of the noisy operator, F, is the 
block Z* = (zl*, z,* * * z,*), which is the block Z 
distorted by the noise. The decoder accepts Z* as its 
input  and performs the function D on  it  to obtain 
U = D(Z*) = (u,, u, uk). For a reliable compu- 
tation system we expect U to be f ( X , ,  X,) most of 
the time, and consider the system to be  in  error when 43 '1 
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U is not f ( X , ,  X , ) .  Note that in this general scheme, 
the function performed by the logical operator, F, is 
not necessarily the function, f, which  we want the 
whole  system to perform reliably. 

A comparison between the computation system  of 
Fig. 2 and that of Fig. 5 shows a restriction which 
Elias  imposed on the system. The blocks of k bits sent 
from each source are to be encoded independently of 
the blocks sent from the other source. This is  shown 
schematically by the two separate encoders; Encoder 1, 
which operates on X ,  above, and Encoder 2, which 
operates on X ,  above. The reason for this restriction 
is to guarantee that Y1 and Y, carry information only 
about X ,  and X ,  respectively and  not  about any 
logical combination of the two  blocks. This means 
that none of the desired computation, f ( X , ,  X,) ,  is 
carried out in the encoder, which  is  assumed to be 
noiseless.  Elias  imposed another restriction on the 
system, to ensure that none of the desired computation 
is performed by the decoder. He required that in the 
absence of noise the function performed by the decoder 
will  be one-to-one. This means that there is a one-to- 
one correspondence between U and Z, and  that 
Z = D"(U). This restriction means that whatever 
information is present in Z* about X ,  and X ,  con- 
cerns only the logical combination of X ,  and X , .  
For further discussion on these  two restrictions, the 
reader is referred to Elias' paper.s 

W. W. Peterson and M. 0. Rabin, in their paper, 
"On Codes for Checking  Logical  Operations,"" 
proved  Elias' conjecture, with a very  mild restriction. 
They let F = (F,,  F, - - * F,,), which means that 
zi  = Fi(yli, y,,), and showed that if  we require that 
E,(Ok) = E,(Ok) = D"(Ok) = 0", (0" is the block  of 
k ZEROS and 0" is the block of n ZEROS), then Elias' 
conjecture holds for  any f E C,. This means that under 
these conditions, in order to correct all s or less errors, 
n 2 (2s + l)k has to hold. 

Figure 4 Multiple-f computer. 
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The problem 

Consider the general computation system of Fig. 6.  
This  system operates under the same conditions which 
Elias  imposed  in the case  of functions of  two variables, 
namely : 

1. The block  of k bits sent by each source is encoded 
independently of the bits sent by any other source. 
This restriction is manifested by having m different 
encoders for  the m different  sources. 

2. In the absence of  noise, the function performed by 
the decoder  is one-to-one. That means that Z = 
D"(U). 

We shall now  investigate the possibilities of coding 
for a pair of functions (F, f ) .  In particular we would 
like to find those pairs (F, f) for which the ability to 
correct all sets of s or less errors requires that 
n 2 (2s + 1)k.  We  say that Elias' conjecture holds for 
a  pair of functions (F,  f )  if the ability to correct all sets 
of s or less errors for this pair implies n 2 (2s + I)k. 

We  will limit  ourselves to memoryless functions, 
which means that the function F can be represented as 
F = (F,, Fz * - F,,) and zi = Fi(yli,  y Z i  y,J; and 
the function f can be  represented as f = (f,, f ,  fk), 
which means that ui is supposed to be A(xli, 

With no loss of generality we can assume that  for 
each coordinate i ,  (1 4 i S n),  there are two vec- 
tors Z, = D"(U,) and Z, = D"(U,) such that 
(Z,), = 0 and (Z,), = 1. In other words, Z = 1" 
and n Z = 0", where n indicates the logical operation 

AND performed coordinate-wise, and indicates the 
logical operation OR performed coordinate-wise. If this 
condition is not satisfied for some coordinate i of Z 
then this coordinate carries no information about the 

x,i - - x,,). 

all Z 

all z 
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Figure 5 General  computation system for functions of two variables. 
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I 
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Figure 6 General  computation system for functions of m variables. 

desired output. Let n'(n' 5 n)  be the  number of coordi- 
nates which do satisfy this condition then proving that 
n' 2 (2s + l)k proves also that n 2 (2s + 1)k. 

We  will first consider functions of two variables 
(m = 2), and then we  will generalize the results 
obtained, to functions of m variables. 

Functions of two variables 

We  will now demonstrate that Elias' conjecture holds 
for all the functions of two variables in C2 even without 
the restriction of Peterson and Rabin. 

Theorem I 
Let F = (F,,  F, F,,) and f = (f,, f, ..*fk). 
Fi(a, b) = f j ( a ,  b)  = a b for all 1 6 i 5 n and all 
I 6 j 5 k then Elias' conjecture holds. 

To prove the  theorem we will need the following 
lemma : 

Lemma 1: Let D"(X, - X,) = E,(X,) E,@,) 
and let D"(X) = 1" then: 

1.  For all X, D"(X) = E1(X) = E,(X) 
all X 

2 . x ,  2 x, D"(X,) 2 D"(X,) 

D"(X) = D"(X  lk) = E,(X).E,(lk) ; 

Proof: For all X, 

this means that D"(X) E E2(lk). But since D"(X) 
s E2(lk) for  all X then 1" = 1 D"(X) E2(lk) 

and therefore E2(lk) = 1". Thus,  for  all X, 
all X ' D"(X) = E,(X) E2(lk) = E,(X) * 1" = E,(X). 

Similarly D"@) = E,@) for all X. Let X, 2 X, then: 

D"(X,) = D"(X, * X,) = &(X,) * E,(X,) 
= D-'(x,) .D-'(x,)  

which means that D"(X,) 2 D"(X,). 
Q.E.D. 

Proof of Theorem I :  To be able to correct  all possible 
sets of s or less errors,  the  Hamming distance' 
d(Z, ,   Z , )  between any two distinct vectors Z ,  and Z ,  
has  to satisfy d(Z, ,   Z , )  = W ( Z , )  + W(Z,) - 2W(Z,  
Z,) 2 2s + 1 where W ( Z )  is the  number of 1's in Z .  

In  particular if Z ,  2 Z ,  we obtain W ( Z , )  = W(Z,) 
+ d(Z, ,   Z,) .  Let (liOk-i) represent the vector whose 
first i coordinates  are 1 and  the remaining k - i are 0. 
Since we have 

(lk) 2 ( P O )  2 (l"2) * 2 ( O k )  

then by Lemma 1, 

D"(lk) 2 D"(lk-'O) * * * 2 D"(0"). 
Thus : 
n 2 WID"(lk)] = d[D"(lk), D-'(lk-'O)] 

+ WID-l(lk-lO)] 
k - 1  

= d[D-'(lk-ioi), D-l(lk-[-lOi+1 11 
i = O  

+ W[D"(@)] 

2 k(2s + 1) + WID"(Ok)] 2 k(2s + 1) 
Q.E.D. 

It is clear that a similar proof  can be carried out 433 
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when the logical function to be performed is OR rather 
than AND, and  that therefore Elias' conjecture holds 
also in the case that Fi(a, b) = f j ( a ,  b) = a + b for all 
1 6 i n and all 1 6 j 5 k. A similar argument can 
be carried out  for  the remaining six functions of C,. 
To prove this result in a  formal way, we note that any 
function g E C, can be written as g(a, b) = (a Q tl) 
(b Q t ,) 0 t ,  for some t , ,  I , ,  t ,  (ti = 0 or 1). We  will 
show that if a  function F* is obtained  from  a  function 
F by complementing some of the variables of F or 
possibly complementing F, and a  function f* is 
obtained  from  a function f i n  a similar manner,  then 
the pair (F* , f* )  is equivalent to  the  pair ( F , f )  as  far 
as Elias' conjecture is concerned; i.e., Elias' conjecture 
holds for  the pair (F* , f* )  if and only if it holds for 
the  pair ( F , f ) .  Since any function g(a, b) E C ,  can be 
obtained  from  the  function g(a, b) = a b in such a 
way, this will prove that Elias' conjecture holds for 
all the functions of C,. 

Let Xbe a v-dimensionalBooleanspace (X = (0, l}"), 
and let T be any v-dimensional Boolean vector. By 
T ( X )  we  will denote  the  function which maps any 
vector x E X into  the vector x 0 T E X ,  where x 0 T 
means modulus 2 addition,  coordinate by coordinate. 

9 Theorem 2 
Let F = (Fl,  F,, * * ' , F,) and f = (fi t  , fk),   ifFi E 
C2 a n d h  E C, for all 1 5 i 5 n and I 5 j 6 k ,  then 
Elias' conjecture holds for the pair (F ,  f ) .  

To prove the theorem we need the following 
lemma : 

Lemma 2: Let To, T I ,  * , T,  be any m + 1 Boolean 
vectors of n coordinates. Let To', Tl', . , T,' be any 
m + 1 vectors of k coordinates. Then: Elias' conjec- 
ture holds for  the pair (F,  f )  if and only if it holds  for 
the  pair (F*,f*) ,  where 

F*(Y1,Y2, ... 9 Ym) 

= TO{FCTl(Y,), T'(YJ9 * * * 9 ~m(Yrn)ll 
and 

f*(x , ,  X 2 9  * * . 9 X,) = To'{fCT;(X1), 

Ti(X2)9 * * 9 Tm'(Xrn)I} * 
Note  that  in  the lemma we let F and f (and therefore 
F* andf*) be functions of m variables where m is not 
necessarily equal to 2. 

Proof: We  will first prove that if  Elias' conjecture 
does not hold for (F, .f) then  it does not hold for 
(F*, f*)  either. Let E,, E,, * , E, be  the encoders and 
D be the decoder for  the  pair (F,f) such that n e 
(2s + 1)k and yet for  any two distinct vectors U ,  
and U,,  d[D"(U,),  D-'(U,)] 2 2s + 1. Define 
El*, E,*, - , E,* to be Ei*(Xi) = TiEiTi'(Xi) for 
all 1 5 i 5 m and define D* to be D*(Z*) = 
To'DTo(Z*). Using El*,  E,*, - , E,* as encoders and 
D* as  a decoder for  the logical operator F* will 
make the whole system compute f * because: 

1OURNAL OCTOBER 1962 

U* = D*(Z)  = D*F*(Y,, Y,, * , Y,) 

= D*F*[E1*(X1),  E,*(X,), * * * , 

E m * ( X m ) I  * 

Substituting the values of D*, F*, and Ei* in terms of 
D,  F, E, and using the  fact that  for all Ti,   Ti2(Y)  = Y :  

U* = T,'DF{E,[T,'(X,)], 

E2CT2'(YJI, * * 9 EmCTm'(xm)I} 
But since D and  the Els  are  the decoder and  encoder 
for  the  pair ( F , f ) ,  and therefore f = DF[E,(X,), - * , 
E,(X,)], we obtain: 

U* = To' f [T l ' (X l ) ,  T2'(X2), * * * , T,'(X,)] =f* . 
Thus  for every vector U*, we obtain: 

(D*)-'(U*) = ToD"To'(U*) = To @ D"(U) , 
where 

U =fCT,'(X,) ,  7 '2 ' (X2)9  * * 7 ' m ' ( X m ) l  
Therefore for  any two vectors U1* and U2* we ob- 
tain d[(D*)"(U,*),  (D*)"(U,*)] = d[To @ D-'(U,), 
To Q D-'(U2)]  = d[D"(U,),  D"(U,)] > 23 + 1. 
Thus Elias' conjecture does not hold for (F*,f*)  if 
it does not hold for (F,f). To prove that Elias' conjec- 
ture does not hold for ( F , f )  if it does not hold for (F*, 
f*), note that (F, f) = [(F*)*, (f *)*I. . Q.E.D. 

Proof of Theorem 2: Since Elias' conjecture holds for 
the case Fi(a, b) = Fj(a, b) = a b for all 1 5 i 6 n 
and 1 5 j 5 k, it holds by Lemma 2 for  the case that 
Fi(a, b) = (a Q t i , )  * (b Q t iJ  @ t i ,  and fj(a, b) = 
(a @ t j , )  * (b @ ti,) Q ti., which proves the  thebrem. 

We  will now demonstrate that  the requirements 
imposed on the computation system imply that if 
f E C, then F, E Cz for all 1 5 i 6 n, and therefore 
Elias' conjecture will hold f x  every system which 
computes a  function f e  C, using a bit-by-bit process, 
independently of F. 

Lemma 3: Let F = (Fl, F, * * F,) and f = 
(f1,f2 * fk), iffi(a, b) = a b for  all 1 6 i 6 k and 
'&D-'(U) = 1" and IT D"(U) = o", then Fi E C, 

for all 1 5 i 4 n. 

Proofi For every i there are two vectors X' and X' 
such that E1(X1), = 0 and El(Xz)i  = 1, otherwise 
F[E,(X),  E2(lk)] = D"(X) will have the same ith 
coordinate  for  all X ,  contrary  to the assumption. 
Similarly we can find two vectors X 3  and X 4  (not 
necessarily distinct from X' and X , )  such that E2(X3),  
= Oand E2(X4), = 1. But 

FCE,(X'), Ez(ok)l = FCE1(Xz), ~%(o~)l 

all all u 

= . w W ~ ) ,  &(x3)] = F C E ~ O ~ ) ,  E , ( x ~ ) I  
= D"(Ok) . 



From  this  it follows that 

FiCO, ~ 2 ( o ~ ) i I  = FiC1, E2(Ok)iI = Fi[E,(Ok)i, 01 
= Fi[El(Ok), 11 . 

But the only  Boolean  functions g of two variables 
which are  not  constant  and which can satisfy g(0, b) = 
g( 1, b) = g(a, 0)  = g(a, 1) for some a, b are  the 
functions of C,. 

Q.E.D. 

Theorem 3 
L e t F = ( F l ,  F2...F,,)andf=(f,,f2...f,,),iffi~C2 
for all 1 5 i 5 k then Elias' conjecture holds. 

Proof: Because of Lemma 3 and  Theorem 2, Elias' 
conjecture  holds if fi(a, b) = a * b for  all  1 6 i S k. 
Apply Lemma 2 to this result. 

Q.E.D. 

Functions of many variables 

As  will be  shown, results concerning  functions of two 
variables may be used as a  tool  for investigating 
functions of many variables. We  will limit the  domain 
of a  large class of functions of many variables, without 
affecting their  range, and then  apply  the previous re- 
sults to  the functions with limited domain. 

Before proceeding to investigate functions of many 
variables in  general, we will study an example of a 
function of three variables and show that Elias' 
conjecture  holds  for  this  function.  Then we will apply 
the same reasoning  to find the class of functions of m 
variables for which Elias' conjecture  holds.  Consider 
the case when F = (Fl, F2,  + . , FJ and f = ( f,,  f,, . . , 
fk) wheref,(a, b, c) = a b + c for  all 1 6 i =< k ;  that 
means that f(X,, X,, X,) = X, X2 + X, where the 
operations  are  performed  coordinate by coordinate. 
Consider  the set of all  inputs (X,, X,,  X,) such that 
X, = (0"). In  this case the function which is actually 
computed is X, X, and therefore  (by  Theorem 3) 
n 2 (2s + 1)k. That means that Elias' conjecture 
holds  for  the  case just studied. 

We shall find it  advantageous to represent the 
Boolean functions  in  terms of the  binary  operations 
" " (multiplication) and " @ " (modulus 2 addition). 
Thus every Boolean function g(x,, x,, . . . , x,) can be 
represented as 

m 

g(x1, x29 . * 9 x,) = C e , e 2 . .  .e,,, n 3 

e1e2. .  . e,,, i= 1 

where ei and C,,,, . . . e, take  the values 0 or 1, and 
xio = 1 and xi1 = x i ,  and  the summation is performed 
modulus 2 over all  the 2"' possible values of the m- 
tuples (e1e2 . . . em). This  means that each Boolean 
function  can  be viewed as a  polynomial  in  the variables 
x,, x2 . . . x,. In  particular we can define the linear 
Boolean functions,  as  those  functions which do  not 
include  products of the variables (i.e., CeIe2 . . .e, = 0 
for  all m-tuples e,e, . * * e, in which two or  more ei's 
take  the value 1). 

Lemma 4: Let g(xl, x,, . . . , x,) be  a  nonlinear 
Boolean function, then there exist two variables xi  
and xi and m - 2 constants c,(r # i , j )  such that 

B(c,, * Xi, * + ~ j ,  * * c,) h(xi, x i )  E Cz . 
Proofi Since g(x,, x2 . . . x,,,) is nonlinear,  there exists 

at least  one  product of some two variables. Let 
xi xj  x,, x,, . . x,, be the lowest product  in which 
xi and x j  appear.  (The lowest product  means  the  pro- 
duct with the smallest number of variables. If more 
than  one lowest product exists we can  take  any  one 
of them.) Let c, = 1 if r is one of the rI)s which appear 
in  the  product,  and c, = 0 for  all  other r # i, j .  Then : 

Q.E.D. 
Note  that  the range of h(xi, x j )  is the  same as  the range 
of g(x, * * . x,). 

Theorem 4 
Consider the general computation system of Fig. 6. 
Let F = (F,, F, F,,) and f = (f,, f, *..-fk) such 
thatfi = f2 = . = fk, then  Elias' conjecture holds if 
and only if fi is nonlinear. 

Pro08 If fi is linear we can  group-code  the  inputs 
X,, X2 * . X, and use Fi = fi and  obtain  arbitrarily 
high reliability if R = k/n < 1 + p log, p + (1 - p )  

If fi is nonlinear, we can (by Lemma 4) find two 
variables x i  and xi and a set of constants c,(r # i, j )  
such that fi(c,, c2 . x i  * xj * . . c,) = X j )  

E C,. Consider the case when X, = (e,, c, . * c,) for 
all t # i ,  j ,  i.e., f(X1, X, * * . X,) = g(Xi, Xj) E C,. 
Then by Theorem 3, Elias' conjecture holds. 

Q.E.D. 

Of all  the 2'"' Boolean  functions of m variables only 
2"+ functions are linear, namely all  functions which 

can be represented as f(xl, x2 . , x,) = KO 0 Kixi 
for some K ~ s .  Of those 2"" functions only 2 are 
explicit functions of all  the m variables, namely 

xi and 1 @ x i .  Thus we  see that Elias' con- 

logz(1 - P ) .  

rn 

i = l  

m rn 

i = l  i =  1 
jecture  holds for  almost  all Boolean  functions. 

Discussion 

The investigation of the reliability of codes for logical 
operations  carried  out  in  this  paper  dealt  with  their 
error-correcting capabilities. The underlying assump- 
tion was that  as  the reliability of a code increases, s, 
the  number of errors which can always be  corrected 
increases, and therefore k/n 5 (2s + l)-' decreases. 

We saw that  most Boolean  functions are similar 
(in the sense of Lemmas 2 and 4) to  the AND function, 
and therefore any results about coding for  the logical 
operation AND will hold  for  all  the  nonlinear  Boolean 
functions. It might be easier to investigate coding for 
the  operation AND because Lemma 1 gives us some 435 
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f  the codes for this information  about  the  structure o 
operation. 

The results obtained  in  this  paper do  not rely on  the 
assumption that  the effect  of the noise can be repre- 
sented by a memoryless binary symmetric channel, 
but follow from  the restrictions imposed on  the com- 
putation system. These restrictions were : 

1. The  inputs X,, Xz X, are  to be encoded 
independently of each other. 

2. In  the absence of noise, the  function performed 
by the decoder is one-to-one. 

3. The logical operator F operates on  the  inputs 
bit by bit. 

In  a  forthcoming  paper by S .  Winograd and J. D. 
Cowan, it is shown that relaxing any of these three 
assumptions can lead to more positive results concern- 
ing the possibility of performing reliable computation 
in the presence of noise, at nonzero rate of flow of 
information. 
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