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Coding for Logical Operations

Abstract: The behavior of a computation system consisting of encoders, an unreliable logical operator
and a decoder is investigated. It is shown that for almost all Boolean functions, coding each block of k
input bits into a block of n bits such that all sets of s or less errors will be corrected requires that
n = (2s + 1)k. This result suggests that the capacity (in the information theoretical sense) of such a

computation system is zero.

Introduction

This paper investigates one aspect of the problem of
performing reliable computation using less reliable
components. This problem is of interest both to the
neurophysiologist and to the computer engineer. The
nervous system is capable of functioning reliably, yet
there is evidence that the function performed by a
single neuron is probabilistic. To use the language of
a communication engineer, the function performed by
a single neuron is perturbed by noise. The computer
engineer is faced with the problem of a growing
demand, both military and commercial, for computers
designed to function reliably in spite of thermal and
electrical noise present in the system. The problem
facing the computer engineer may become even more
acute if the techniques which are used for producing
active elements in very large quantities do not result
in the production of highly reliable individual elements.

Von Neumann,! Moore and Shannon,? Muroga,’
and McCulloch, Cowan et al.* applied themselves to
the problem of designing a reliable automaton using
less reliable components. Each of them investigated
the problem using different elements; and in each case
the results of the investigation showed that by making
the automaton redundant, i.e., by using more com-
ponents than is absolutely n' cessary for the design of
the automaton, it was possible to make the proba-
bility of malfunction arbitrarily small. The exact
amount of redundancy required to achieve a certain
level of reliability differed in each case; yet all the
methods had one feature in common: In order to
obtain arbitrarily high reliability, almost all the
elements in the redundant automaton were needed to
combat the noise, and only a very small fraction
(which approached zero with increase in the reliability)
were needed to perform the desired function.
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Elias® noted that this feature of the results is
“unsatisfying, or at least disappointing, from a theoreti-
cal point of view in the context set by information
theory. In fact, these results have the character of the
pre-information theory results on the reliable trans-
mission of information over unreliable (noisy) chan-
nels.” Consider the transmission system shown in Fig.
1. The source sends ZEROs and ONEs, the encoder con-
verts a block of & bits sent by the source into a block
of n bits. With probability p, each of the »n bits entering
the memoryless binary symmetric channel comes out
incorrectly. The decoder accepts the block of » bits
perturbed by the noise and decodes it into a block o
k bits, usually the same block of k bits sent by the
source. Mistakes are still made by the system, namely|
the block of k bits coming out of the decoder is no
the same block sent by the source; but the fundamenta
theorem for a discrete memoryless channel with noise®
guarantees that if the rate of transmission, R = k/n
bits per symbol, is less than the channel capacity
C=1+ plog,p + (1 — p)log,(1 — p), then keeping
R constant and letting k£ and » increase can make the
probability of error arbitrarily small.

The question then arises: Can we have a compu
tation system, as shown in Fig. 2, similar to the trans
mission system, which will exhibit similar capabilitieg

Figure 1 Transmission system for binary sym
metric channel.
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Figure 2 Computation system for noisy logical operator.

for combating the noise ? In other words, what is the
capacity of a noisy logical operator ?

One major difference between the communication
system shown in Fig. 1 and the computation system
shown in Fig. 2 is the requirement on the block of &
bits coming out of the decoder. In the communication
system we want the block of k bits coming out of the
decoder to be the same as the block of k bits sent by
the source; while in the case of the computation system
we want the k bits coming out of the decoder to be
the same as the block of k bits which would have
resulted had a noiseless logical operator f operated on
the m blocks of k bits sent by the m sources.

The computation system shown in Fig. 2 should not
be viewed as a scheme for designing a reliable auto-
maton using less reliable components. In the computa-
tion system, as well as in the communication system,
the encoder and the decoder are assumed to operate
with complete reliability. It is therefore unrealistic to
assume that parts of the automaton, namely the logical
operator f, are affected by noise, while other parts,
namely the encoder and decoder, are not affected.
The computation system of Fig. 2 was devised for the
sole purpose of studying the relation of information
theory of reliable automata.

Background

In 1958 P. Elias presented a paper entitled “Compu-
tation in the Presence of Noise,””” in which he investi-
gated the possibilities of block coding the inputs of
a noisy logical operator and then decoding the output
block. In particular, Elias investigated all Boolean
functions of two variables. He assumed that the nature
of the noise is such that with probability p the output
of the noisy logical operator is incorrect. Thus the
logical operators he investigated can be represented
schematically as shown in Fig. 3. The box f'is assumed
to be noiseless, and the entire effect of the noise is
represented by a memoryless binary symmetric channel.

Figure 3 Noisy logical operator.
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Elias divided the 16 Boolean functions of two
variables into two classes:

Cl = {0’ 19 a, a,’ bs b’aa@b9 al® b}

C,={a'b,a'"b,a'b’,a’"b',a+b,a’"+b,a+b,
a +b'}.
(We use the notationa @ b = ab’ + a'b.)

No coding is necessary for the first two functions of
C,, namely / = 0 and f = 1, because the output does
not convey any information about the inputs. As for
the other six functions in C;, group codes’ may be
used to code their inputs, and as long as the rate of
flow of information at the output is less than
I + plog, p + (1 — p)log,(1 — p) bits per symbol,
which is the capacity of the binary symmetric channel,
an arbitrarily small probability of error may be
achieved.

In order to investigate the possibilities of efficient
coding for the functions of C,, Elias considered the
system shown in Fig. 4. He proved that in the system
of Fig. 4, if fis in C,, then in order to correct all pos-
sible sets of s or less errors, » must be at least (25 + 1)k.
This is in marked contrast to the results obtained for
group codes.”'8:?

On the basis of his investigation, Elias conjectured
that even in the more general case, shown in Fig. 5,
if fe C, then n = (25 + 1)k is a necessary condition
for correction of all possible sets of s or less errors.

Consider the computation system shown in Fig. 5.
Source 1 sends a block of £ bits X; = (x;4, %12 *** X10)»
which are encoded by Encoder 1 into a block of n bits
Y, = E\(Xy) = (J11, Y12 * * * V1) Similarly, the second
source sends a block of & bits X, = (x,, X35 " X3)
which are encoded by Encoder 2 into a block of n bits
Y, = Ex(X;) = (¥21,Y22 """ Y2)- The function F
operates on the two vectors Y, and Y, bit by bit, and
in the absence of noise the result of the computation
would have been Z = (z,, z, - - - z,). Because of the
noise, which is represented by the binary symmetric
channel, the output of the noisy operator, F, is the
block Z* = (z,*, z,* - -+ z,*), which is the block Z
distorted by the noise. The decoder accepts Z* as its
input and performs the function D on it to obtain
U= D(Z*) = (uy, u, '+ u,). For a reliable compu-
tation system we expect U to be f(X,, X,) most of
the time, and consider the system to be in error when
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U is not f(X,, X,). Note that in this general scheme,
the function performed by the logical operator, F, is
not necessarily the function, f, which we want the
whole system to perform reliably.

A comparison between the computation system of
Fig. 2 and that of Fig. 5 shows a restriction which
Elias imposed on the system. The blocks of k bits sent
from each source are to be encoded independently of
the blocks sent from the other source. This is shown
schematically by the two separate encoders; Encoder 1,
which operates on X, above, and Encoder 2, which
operates on X, above. The reason for this restriction
is to guarantee that Y, and Y, carry information only
about X, and X, respectively and not about any
logical combination of the two blocks. This means
that none of the desired computation, f(X;, X,), is
carried out in the encoder, which is assumed to be
noiseless. Elias imposed another restriction on the
system, to ensure that none of the desired computation
is performed by the decoder. He required that in the
absence of noise the function performed by the decoder
will be one-to-one. This means that there is a one-to-
one correspondence between U and Z, and that
Z = D™'(U). This restriction means that whatever
information is present in Z* about X; and X, con-
cerns only the logical combination of X, and X,.
For further discussion on these two restrictions, the
reader is referred to Elias’ paper.®

W. W. Peterson and M. O. Rabin, in their paper,
“On Codes for Checking Logical Operations,”!?
proved Elias’ conjecture, with a very mild restriction.
They let F=(F,F, -+ F), which means that
z; = F(y;;, ¥5,), and showed that if we require that
E\(0) = E,(0") = D™1(0F) = 0", (0* is the block of
k zERos and 0" is the block of n zEROs), then Elias’
conjecture holds for any f e C,. This means that under
these conditions, in order to correct all s or less errors,
n 2 (25 + 1)k has to hold.

Figure 4 Multiple-f computer.
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The problem

Consider the general computation system of Fig. 6.
This system operates under the same conditions which
Elias imposed in the case of functions of two variables,
namely:

1. The block of & bits sent by each source is encoded
independently of the bits sent by any other source.
This restriction is manifested by having m different
encoders for the m different sources.

2. In the absence of noise, the function performed by
the decoder is one-to-one. That means that Z =

D(U).

We shall now investigate the possibilities of coding
for a pair of functions (F, f). In particular we would
like to find those pairs (F, f) for which the ability to
correct all sets of s or less errors requires that
n z (25 + k. We say that Elias’ conjecture holds for
a pair of functions (F, f) if the ability to correct all sets
of s or less errors for this pair implies n = (25 + 1)k.

We will limit ourselves to memoryless functions,
which means that the function F can be represented as
F=(F,F, - F)and z; = F(y1;, Y2 *** Yms); and
the function f can be represented as f = (f1, /2 *** fi)»
which means that u; is supposed to be fi(x;
X5 * " Xpi)-

With no loss of generality we can assume that for
each coordinate i, (1 £ i < n), there are two vec-
tors Z, = D”'(U,) and Z, = D~*U,) such that
(Z,); =0 and (Z,); = 1. In other words, ) Z = 1"

allZ

and [] Z = 0", where [ ] indicates the logical operation
allZ

AND performed coordinate-wise, and ), indicates the
logical operation OR performed coordinate-wise. If this
condition is not satisfied for some coordinate i of Z
then this coordinate carries no information about the

k "f' OPERATORS

DECODER k DIGITS

IBM JOURNAL s OCTOBER 1962




SOURCE 1 — b ENCODER 1 Lii

X2 Y2

SOURCE 2 i ENCODER 2

U=fX, Xp)

*
1 P l DECODER

Figure 5 General computation system for functions of two variables.
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Figure 6 General computation system for functions of m variables.

desired output. Let »'(n” £ n) be the number of coordi-
nates which do satisfy this condition then proving that
n' 2 (2s + Dk proves also that n = (25 + 1)k.

We will first consider functions of two variables
(m = 2), and then we will generalize the results
obtained, to functions of m variables.

Functions of two variables

We will now demonstrate that Elias’ conjecture holds
for all the functions of two variables in C, even without
the restriction of Peterson and Rabin.

& Theorem 1
Let F=(F, F, - F) and f=(f, o= fi)- If
Fi(a,b) =fi(a,b) =a-b forall 1 £ixnandall
1 £ j £ k then Elias’ conjecture holds.

To prove the theorem we will need the following
lemma:

Lemma 1.' Let D—l(xl * Xz) = El(xl) * Ez(Xz)
andlet ) D7!(X) = 1" then:

all X

1. For all X, D~(X) = E,(X) = E,(X)
2X,2X,=>D7'(X;) 2 DT'(Xy)

Proof: Forall X,
D™'(X) = DX 1¥) = E\(X)-E;,(1Y) ;
this means that D~ YX) € E,(1%. But since D~'(X)
g E,(1* for all X then 1"= Y D~'(X) g E, (19
and therefore E,(1¥) = 1" Thusa,“ f"(or all X,

DX = E,(X)- E,(19 = EX) - 1" = E(X).

Similarly D71(X) = E,(X) forall X. Let X, 2 X, then:

D_I(Xz) = D_I(X1 ‘Xy) = Ex(x1) CEy(Xy)
= D!(X))- DX,

which means that D™1(X,) 2 D~ '(X,).
Q.E.D.

Proof of Theorem 1: To be able to correct all possible
sets of s or less errors, the Hamming distance®
d(Z,, Z,) between any two distinct vectors Z, and Z,
has to satisfy d(Z,, Z,) = W(Z,) + W(Z,) — 2W(Z,
+Z,) 2 2s + 1 where W(Z) is the number of 1’s in Z.
In particular if Z, 2 Z, we obtain W(Z,) = W(Z,)
+ d(Z,,Z,). Let (1'0*%) represent the vector whose
first i coordinates are 1 and the remaining k — i are 0.
Since we have

1921102 (lk—202) ce 209

then by Lemma 1,

D-'1H=2D (1 10) --- 2D7(0YH.

Thus:

nz W[D~'(1%] = d[D~'(1"), D~'(1*710)]
+ WID~1(1*"10)]

k=1
= Z d[D—l(lk—ioi)’D—l(lk—i—101+1)]
i=0

+ W[D~'(0%]

ZkQs+ 1)+ WD) 2 k(25 + 1)
Q.E.D.
It is clear that a similar proof can be carried out
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when the logical function to be performed is OR rather
than AND, and that therefore Elias’ conjecture holds
also in the case that Fi(a, b) = fi(a, b)) = a + b for all
1<iZnandalll £j< k. A similar argument can
be carried out for the remaining six functions of C,.
To prove this result in a formal way, we note that any
function g € C, can be written as g(a, b)) = (a ® ¢,) -
b @t,) @ty for some ¢, t,, 15 (1; = 0 or 1). We will
show that if a function F* is obtained from a function
F by complementing some of the variables of F or
possibly complementing F, and a function f* is
obtained from a function fin a similar manner, then
the pair (F*, f*) is equivalent to the pair (F, f) as far
as Elias’ conjecture is concerned; i.e., Elias’ conjecture
holds for the pair (F*, f*) if and only if it holds for
the pair (F, f). Since any function g(a, b) € C, can be
obtained from the function g(a, b) = a- b in such a
way, this will prove that Elias’ conjecture holds for
all the functions of C,.

Let X be a v-dimensional Booleanspace (X = {0, 1}*),
and let T be any »-dimensional Boolean vector. By
T(X) we will denote the function which maps any
vector x € X into the vector x @ Te X, where x ® T
means modulus 2 addition, coordinate by coordinate.

® Theorem 2
LetF = (FlaFZ’ 9Fn)andf= (fla 9f;c)alfFiE
Coandf;eCyforalll Si<nandl £j=Zk, then
Elias’ conjecture holds for the pair (F, f).

To prove the theorem we need the following
lemma:

Lemma 2: Let Ty, Ty, -+, T,,be any m + 1 Boolean
vectors of n coordinates. Let Ty', T}/, - - - , T, be any
m + 1 vectors of k coordinates. Then: Elias’ conjec-
ture holds for the pair (F, ) if and only if it holds for
the pair (F*, f*), where

F*(Yls ) ST Ym)

= To{F[Tl(Yl)’ TZ(Y2)’ MY Tm(Ym)]}
and

f*(xl’ XZ’ T Xm) = Tol{f[Tl’ (xl),

T)(X5), -+, T (X1}

Note that in the lemma we let F and f (and therefore
F* and f*) be functions of m variables where m is not
necessarily equal to 2.

Proof: We will first prove that if Elias’ conjecture
does not hold for (F, f) then it does not hold for
(F*,f*) either. Let E, E,, -- - , E,, be the encoders and
D be the decoder for the pair (F,f) such that n <
(2s + Dk and yet for any two distinct vectors U
and U,, d[D7'(U;), D7 '(U,)] 2 25 + 1. Define
E*, E*, -+ ,E* to be EX*X;)) = T\E;T/X;) for
all 1 £ 7 £ m and define D* to be D*Z*) =
Ty’ DTo(Z*). Using E *, E,*, - -+, E,* as encoders and
D* as a decoder for the logical operator F* will
make the whole system compute f* because:
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U* = DMZ) = D*F*(Y,, Y5, -+, Y,)
= D*F*[El*(XO, Ez*(xz), Tty

E,*(X,)].

Substituting the values of D*, F*, and E;* in terms of
D, F, E; and using the fact that for all T, T,2(Y) = Y:

U* = TOIDF{El[Tl’(Xl)]s
EZ[TZ’(YZ)]i Tty Em[Tm’(Xm)]} .

But since D and the E;’s are the decoder and encoder
for the pair (F, f), and therefore f = DF[E,(X,), """,
E,(X.,)], we obtain:

U* =T, f[T,'(Xy), To'(X2)s -+ s T/ (Xi)] =f*.
Thus for every vector U*, we obtain:

(DY)™H(U*) = T,D™'T,'(U*) = T, ® D~ (V)
where

U=f[T,/(X)), T,'Xp), ", Tw'(Xp)] .
Therefore for any two vectors U;* and U,* we ob-
tain d{(D*)”1(U;*), (D*) "} (U,")] = dlT, ® D7'(Uy),
T, ® D7'(Uy)] = d[D™'(Uy, D '(Up)]> 25 + 1.
Thus Elias’ conjecture does not hold for (F*,f*) if
it does not hold for (F, f). To prove that Elias’ conjec-
ture does not hold for (F, f) if it does not hold for (F*,
S*), note that (F, f) = [(F*)*, (f*)*].
. Q.E.D.

Proof of Theorem 2: Since Elias’ conjecture holds for
the case Fya, b) = Fj(a,b)=a-bforall1 si<n
and 1 £j £ k, it holds by Lemma 2 for the case that
Fi(a’ b) = (a @ th) ' (b @ tiz) ® tia andf;’(fl’ b) =
(@a® ) b ¢, @, which proves the theorem.

We will now demonstrate that the requirements
imposed on the computation system imply that if
feC, then F;eC, for all 1 £i £ n, and therefore
Elias’ conjecture will hold for every system which
computes a function fe C, using a bit-by-bit process,
independently of F.

Lemma 3: let F=(F,, F -+ F,) and f =
(fi,.f2 " S if fla,b)y =a-bforall 1 £i < k and
Z‘bD"(U) =1"and [[ D7'(U) = 0", then F,eC,
all allU
foralll £iZn

Proof: For every i there are two vectors X! and X?
such that E;(X'), = 0 and E;(X?); = 1, otherwise
FIE,(X), E,(1M] = D~1(X) will have the same i
coordinate for all X, contrary to the assumption.
Similarly we can find two vectors X* and X* (not
necessarily distinct from X! and X2) such that E,(X?),
= 0and E;(X*), = 1. But

F[E{(X"), E;(0%] = F[E(X?), E5(0%)]
= F[E;(0), E,(X®)] = F[E,(0"), E,(X*)]
=D"Y05).




From this it follows that
Fi[Os Ez(Ok)i] = Fi[la Ez(ok)i] = Fi[El(Ok)i, O]
= Fi[El Ok)a 17.

But the only Boolean functions g of two variables
which are not constant and which can satisfy g(0, b) =
g(1, b) =g(a, 0) = g(a, 1) for some a, b are the
functions of C,.

Q.E.D.

® Theorem 3
Let F=(Fy, Fy- " F)and f= (fi,f " f,), if fie C;
for all 1 £ i £ k then Elias’ conjecture holds.

Proof: Because of Lemma 3 and Theorem 2, Elias’
conjecture holds if f(a,b) =a-bforall 1 £i 5 k.
Apply Lemma 2 to this result.

Q.E.D.

Functions of many variables

As will be shown, results concerning functions of two
variables may be used as a tool for investigating
functions of many variables. We will limit the domain
of a large class of functions of many variables, without
affecting their range, and then apply the previous re-
sults to the functions with limited domain.

Before proceeding to investigate functions of many
variables in general, we will study an example of a
function of three variables and show that Elias’
conjecture holds for this function. Then we will apply
the same reasoning to find the class of functions of m
variables for which Elias’ conjecture holds. Consider
the case when F= (F, F,, -, Fyand f=(f, 5" ",
f) where fi(a,b,c) =a b + cforalll £i = k; that
means that f(X;, X;, X3) = X, - X, + X; where the
operations are performed coordinate by coordinate.
Consider the set of all inputs (X, X,, X;) such that
X; = (0. In this case the function which is actually
computed is X, - X, and therefore (by Theorem 3)
n 2 (2s + k. That ineans that Elias’ conjecture
holds for the case just studied.

We shall find it advantageous to represent the
Boolean functions in terms of the binary operations
. ” (multiplication) and *“ @ ” (modulus 2 addition).
Thus every Boolean function g(x,, x,, - - - , x,,) can be
represented as

s X)) = Z

e1e2’ em

m

glxg, Xz, -+ Cerer---om Hl X%,
i=

where e; and C,,,...., take the values 0 or 1, and
x® = land x;! = x;, and the summation is performed
modulus 2 over all the 2™ possible values of the m-
tuples (e,e, - -- e,). This means that each Boolean
function can be viewed as a polynomial in the variables
X{s X3 ' X In particular we can define the linear
Boolean functions, as those functions which do not
include products of the variables (i.e., C,pe,..-c,, = 0
for all m-tuples e,e, - - - e, in which two or more e;’s
take the value 1).

Lemma 4: Let g(x,, x;, -+, x,,) be a nonlinear
Boolean function, then there exist two variables x;
and x; and m — 2 constants c,(r # i, j) such that

g(cl""xia'"xj""cm)=h(xiaxj)ec2'

Proof: Since g(x;,x, ' - * x,,) is nonlinear, there exists
at least one product of some two variables. Let
X;" Xt Xp " X, X, be the lowest product in which
x; and x; appear. (The lowest product means the pro-
duct with the smallest number of variables. If more
than one lowest product exists we can take any one
of them.) Let ¢, = 1if r is one of the r;’s which appear
in the product, and ¢, = 0 for all other r # i, j. Then:
glepcp "X X 0y) = Ko @ Kyx; @ Kox; @
xx; = h(x;, x;) € C,.

Q.E.D.
Note that the range of A(x;, x;) is the same as the range
of g(x; "+ Xp).

® Theorem 4

Consider the general computation system of Fig. 6.
Let F= (F, F, -+ F,) and f= (fi,f, " fi) such
thatfy = f, = *+* = f, then Elias’ conjecture holds if
and only if f; is nonlinear.

Proof: If f; is linear we can group-code the inputs
X, X, - X, and use F; = f; and obtain arbitrarily
high reliability if R=k/n <1 + plog,p + (1 — p)
log,(1 — p).

If f; is nonlinear, we can (by Lemma 4) find two
variables x; and x; and a set of constants c,(r # i, )
such that flcy, ¢ r X X ¢) = gilXi> X))
€ C,. Consider the case when X, = (¢,, ¢, - ¢,) for
all ¢ #4i,j, ie, XX, -X,)=9X,X)eC,.
Then by Theorem 3, Elias’ conjecture holds.

Q.E.D.

Of all the 22™ Boolean functions of m variables only
2™*! functions are linear, namely all functions which

can be represented as f(x;, x, X)) = Ko ® Y, Kixy
i1

for some K;'s. Of those 2™*! functions only 2 are
explicit functions of all the m variables, namely

Y x;and 1@ ) x;. Thus we see that Elias’ con-
i=1 i=1
jecture holds for almost all Boolean functions.

Discussion

The investigation of the reliability of codes for logical
operations carried out in this paper dealt with their
error-correcting capabilities. The underlying assump-
tion was that as the reliability of a code increases, s,
the number of errors which can always be corrected
increases, and therefore k/n < (25 + 1)~! decreases.
We saw that most Boolean functions are similar
(in the sense of Lemmas 2 and 4) to the AND function,
and therefore any results about coding for the logical
operation AND will hold for all the nonlinear Boolean
functions. It might be easier to investigate coding for
the operation AND because Lemma 1 gives us some
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information about the structure of the codes for this
operation.

The results obtained in this paper do not rely on the
assumption that the effect of the noise can be repre-
sented by a memoryless binary symmetric channel,
but follow from the restrictions imposed on the com-
putation system. These restrictions were:

1. The inputs X,, X, --- X,, are to be encoded
independently of each other.

2. In the absence of noise, the function performed
by the decoder is one-to-one.

3. The logical operator F operates on the inputs
bit by bit.

In a forthcoming paper by S. Winograd and J. D.
Cowan, it is shown that relaxing any of these three
assumptions can lead to more positive results concern-
ing the possibility of performing reliable computation
in the presence of noise, at nonzero rate of flow of
information.
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