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Analysis of Static and  Quasidynamic  Behavior 
of Magnetostatically Coupled Thin  Magnetic  Films 

Abstract: When  two superposed films exert fields  on  each other, their static and dynamic behaviors 
change. The following method of analysis is  used to study the behavior: The stable  states are found  by 
minimizing  the  total free energy  of the films. Then constant-field  contours are  plotted  in  the 8,-81 
plane (8’s being the stable orientations of the magnetization vectors). In examining the plot, one can 
predict multiple stable  states,  switching, threshold, hysteresis,  and the  detailed paths of magnetization 
change as a function of applied field. 

The solution is  carried  out by a numerical process which permits evaluation of the following effects: 
the  variation of the degrees of symmetries of the anisotropy energies, the  relative orientation between 
the films, the coupling strength, and the drive-line layout. An example is  carried out in sufficient detail 
for illustrative purposes. 

Introduction 

Stoner  and Wohlfarth’ derived the critical curve theory 
for  a uniaxial single domain undergoing rotational 
flux reversal. Its  application to magnetic thin films 
indicates several properties useful for memory and 
logic schemes. Subsequent investigations on  Ni-Fe 
films reveal some fundamental deviations from  the 
theory: Nevertheless, the theory provides an essential 
framework for depicting the flux reversal behavior of 
thin films. 

The  Stoner-Wohlfarth theory has been referred to in 
various  forms in the  literature of thin magnetic films, 
for example the work of Bradley and Prutton.’ 
However, an excellent’ exposition in a  form which is 
particularly pertinent to the present work can be found 
in an unpublished report by Slonczew~ki.~ Behringer4 
later made  a significant extension to films with aniso- 
tropy energy characterized by K,, sin2 nO(n > 1). 
Slonczewski’s theory is summarized in Appendix I 
for reference. 

As broader  and deeper understanding is gained for 
single films, current  interest  has  branched  into multi- 
film structures. For instance, two films may be super- 
posed in  closely spaced parallel planes. The spacing is 
large enough to prevent atomic  interaction  but  small 
enough to permit magnetostatic  interaction.  The 
strength of interaction  depends on the thickness-to- 

* See comprehensive  review by S. Middelhoek, p. 394, this issue. 

diameter  ratios  and  the magnetizations of the films. 
The magnetostatically coupled films exhibit static  and 
dynamic behaviors significantly different from  those 
of the individual films. In  the literature, only one 
applications,6 of the two-film structure  has been 
reported; viz., an  NDRO scheme using a film with 
high threshold  for  storing  information  and  another 
film with low threshold  for  read-out. 

Coherent  rotational flux reversal for single films  is 
described by critical curves and hysteresis loops which 
predict multiple stable states, switching threshold  and 
hysteresis. In  the two-film structures, similar infor- 
mation is desired. However, as  the  orientations of the 
two magnetization vectors have to be represented by 
two  dependent variables, the  mathematical  formulation 
of the problem and  the  presentation of the results are 
very much different from those  for  the single-film 
theory. 

The present paper develops a new method of analysis. 
For the convenience of the  reader, similarities to single- 
film theory  are indicated whenever possible. On  the 
other  hand, new methods (e.g., the constant-field 
contours)  and new emphases (e.g., critical state being 
the limiting case of stable state)  are stressed. The 
mathematical formulation  accommodates  the many 
degrees of freedom provided by the two-film structure; 
namely, the degrees of symmetries of the  anisotropy 
energies, the relative orientation between the films, 41 9 
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the  coupling  strength  and  the drive-line layout. 
The assumptions  and the limitations implied are also 
discussed in some detail. 

Assumptions 

In order  to facilitate analysis, the following assump 
tions are  made: 

1. Each film behaves as a single domain with uni- 
form  magnetization and can  therefore be represented 
by a single magnetization  vector. 

2. Flux change is effected by the  rotation of the 
magnetization  vector.  This  can be realized under 
either of the two following situations:  The  threshold 
field for wall motion is much higher  than that re- 
quired for  rotation;  or  the wall motion is much slower 
than  the  rotation, such that  for  an applied pulse of 
short  duration only the  rotation  can  take place. 

3. The magnetization vector of each film is confined 
to the  plane of the film; otherwise an excessive magneti- 
zation energy would result from  a  magnetization 
component  perpendicular to  the film plane. 

4. The magnetization of each film produces an 
internal demagnetizing field. Moreover,  the two 
superposed films are  in  such proximity that each is 
exerting a planar  uniform field throughout  the  other. 
Based on formulae given in Bozorth’ and Chang‘ 
both  the internal and  the external fields for  a  thin film 
are 

H N -(~/4)(t/d)M , (1) 

where H = uniform  planar  magnetic field inside or 
outside of the film due  to  its magnetization 

t = film thickness 
d = film diameter 

M = uniform  magnetization of the film. 
Calculations  indicate that  the above  equation  holds 
in  the space roughly covering the film area  and of a 
depth of one-tenth the film diameter. 

The  internal field, as given by Bozorth, was con- 
firmed experimentally by Humphrey: and  the ex- 
pression for  the external field was later confirmed 
experimentally by Matick.” 

5 .  The  anisotropy energy of each film is assumed 
to be of the  form K,, sin’ ne, where K,, is the  anisotropy 
constant, n the  number of axes of  symmetry, and 8 the 
angle between the  magnetization vector and  the  major 
axis of symmetry. 

Physical principle and mathematical model 

The physical structure  under  consideration  is  two 
superposed films with their  major easy axes at  an 
angle IX (see Fig. 1). A stripline  wraps both films, or 
just  one film, to provide the same or different fields 
to the films. More  than  one stripline are used to 
provide fields in different directions or  to sense various 
components of flux changes. 

The purpose of the  present analysis is to find stable 
orientations of the films for a given applied field as 

420 well as  the threshold  for  rotational switching. Other 
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Figure I Two superposed films. 

useful relations are derivable from  the  above infor- 
mation. 

The physical principle utilized for  the analysis is 
that a system tends  toward  minimum energy for its 
stable  state. The  total free energy of the two-film 
structure consists of the  individual  anisotropy energies, 
the individual  magnetization energies, and  the inter- 
action  magnetization energy. In normalized  form,  as 
derived in  Appendix 11, the  total free energy is: 

e = -[cos el + sm, COS &]hx 

- [sin 8, + sm, sin O,]h, 

+ h i  cos(e, - e,) 
+sinz pel 

+ k Z q  sin’ q(0, - a) , (2) 

where 
e = the  total free energy of the  coupled films 

(el, e,) = the  orientations of the magnetizationvectors 
(h,., h,,) = the x-, y-components of the applied field 

hi = the  interaction field 
CY = the angle between the easy axes of the 

m,, kZq = the  ratios of magnetization and aniso- 

p ,  q = the degrees of symmetry in the aniso- 

s = a  constant  determined by the  layout of 

films 

tropy constants of the films 

tropy energies of the films 

the drive lines. 



Table I Conditions for equilibrium 

Physical 
Conditions at ( O , ,  6,) Then e(O,, 6,) is significance 

~ e(6,, 6 2 ) ~ ~ ’  aze (or $1 < 0 Relative maximum Unstable 

d2e dze d2e ae, 
”” 

ao1a02 a%,, a 0 2 ,  
< O  

Relative minimum Stable 

Saddle point Unstable 

The normalization  factors and explicit definitions of 
the  above  quantities  are given in Appendix 11. 

The  mathematical apparatus required to find the 
relative minimum energies is shown in the calculus 
theorems”  in  Table 1. 
As indicated  in  the  table,  e(Q,, O,)EC*, the  function 
e(@,, 0,) has continuous first and second deviatives. 

Stable states 
According to  Table 1, the  extrema  are  the  solutions of 

which lead to two equations relating (h,., hy) and 
(Q1, 0,). With (h,,  hy) given, (01, 62) can be found; 

Figure 2 Stable state obtained by graphically 

solving - = - = 
de de 
der dez 

A :  
1 

sin el - [hi sin(& - e 2 )  - p sin 2p e,] 

conversely, with (01, 0,) given, (A,., hy) can be found. 
However, since the  equations  are linear in h, and h,, 
it is easier to solve for (h,, hy) for given ( O , ,  0,) either 
by graphical  construction  (Fig. 2) or by determinants. 
The solution  obtained may be either  a  stable  state 
(relative minimum) or an  unstable  state (relative 
maximum or saddle point)  depending  on  the values of 
A = e,,’ - el1ez2  and el (see Table 1). 

In  Fig. 2, it is interesting to  note  that  the two lines 
representing e, = 0 and e, = 0 have inclinations Q,, 
Q2 which are  the orientations of the  magnetization 
vectors M,, Ma, respectively. It is also obvious that 
for given (Q1, e,), (h,, h,) can  be uniquely determined 
since two lines can have only one  intersection.  How- 
ever, several pairs of lines corresponding to different 
solutions  for (Q,, 6,) (multistable states) may intersect 
at the  same  point  in  the h,-h, plane. For O1 = e,, the 
two lines will intersect at infinity, implying that the 
two  magnetization vectors will both be pulled to 
the  direction of a high field. 

Critical states 

B: ”I 
sm z sin 0 2 

[hi s;n(el - ez) For a given pair  of films subject to a given  field, the 
total free energy of the  two films can be plotted 
as  constant e(O1, 6,) contours  in  the 0,-6, plane. 
Relative minima and maxima are  separated by energy 
barriers (see Fig. 3). The film pair is in a  stable  state 
corresponding to  one of the minima. As the field is 
changed,  the  contours will alter  and  the  stable  state 
will shift continuously. However, when the field varies 
to a value to lower the energy barrier such that the 
minimum state will vanish, the  stable  state will 
suddenly switch into  a  neighboring minimum point. 
Such a field value is a critical one.  The loci of critical 
field values in the h,-h, coordinates  constitute  a 
critical curve or  rotational switching threshold  curve. 

In  the theory for a single film, the critical state  is 
mathematically identified as a point of inflection as 
well as  an extremum  point,  and  can be found by solving 
aE/dO = 0 and a2E/dQZ = 0 simultaneously. 

In coupled-film theory, such simple mathematical 
identification does  not exist. However, since the critical 421 

+ qk2@ sin 2y( 0 2  - a)] 
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Figure 3 Total free energy  contours of a pair of magnetostatically coupled films. 

state is the limiting case of stable states, one can pro- and  presentation of results (see Section on constant- 
pose that if the  stable  state region is mapped out in the field contours  in  the 8,-8, plane) are different concep- 
8,-8, coordinates  the critical state locus should be the tual definitions and practical calculations (critical 
boundary of the  stable  state region. state)  are called for. 
Comparison with single-film theory 

Table 2 summarizes the similarities and differences 
between a single film and  a  pair of magnetostatically 
coupled films. One important difference not revealed 
in the mathematical formalism is the fact that the 
simple critical curve theory  can  not be extended to the 
coupled films. Consequently, new methods of analysis 

Appendix I discusses the critical-curve theory  for 
single films. It is proved that the stable states can be 
represented by families of straight lines in the h,-h, 
plane. The  orientation of each line is the stable mag- 
netization vector orientation, and the  points on the 
line indicate all possible field values to maintain  the 
magnetization orientation. The envelope of the family 
of equilibrium lines is the well-known astroid-shaped 
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Tubfe 2 Comparison between single film and pair of magnetostatically coupled  films. 

Coupled jilms 
~~ ~ 

Magnetization vectors M = MLO 

Major easy  axes 
~ 

e = o  el = 0, e2 = a 

Total free energy Anisotropy energy Anisotropy energies 
+ magnetization energy + magnetization energies (due to applied 

field) 
+ magnetization energy (due to  interac- 

ting field) 

Stable states (corresponding aE/ad = 0, subject to the aE/dd, = d E / d d 2  = 0 subject to the con- 
to minimum energy) are condition ditions 
determined by solving 
equations shown 

Critical states Limiting case of stable Limiting case of stable states 
states 

a q a e  = o aqae ,  = a ~ l a o ,  = o 
a2qae2  = o a2qaeI2  = o or a 2 ~ l a e 2 2  = o or 

Convenient description Critical curve and equili- Constant field contours in d1-d2 plane 
brjum line in h,-h, (see Section of that title and also Fig. 4) 
plane (see Appendix I 
and Fig. 8)  

critical curve. All equilibrium lines are tangent to 
and  terminate  on  the critical curve. These geometri- 
cal relationships make  the critical curve a uniquely 
convenient and concise method of presenting both 
stable states and critical states in  the same Figure. 

In coupled films, as is  discussed in the Section on 
stable states (also see  Fig. 2), the stable state point 
(e,, 8,) is determined by two intersecting straight 
equilibrium lines in  the h,-h, plane. There are  no 
longer families of straight lines as stable states, with 
their envelope as the critical curve. 

A  rotational threshold curve (or critical curve) con- 
structed in  the h,-h, plane based on  the definition in 
the previous Section does not relate to  the stable 
states in any sense other  than being their limiting 
values. A different single graphical presentation of 
both stable states and critical states is therefore deriv- 
ed in the following Section. 
Constant-field contours in e,-& plane-prediction 
of switching behavior 

For  a given pair of films (as specified in Appendix I1 
by m2,  k2q, hi,  p, q, a, s), and  a given applied field (as 

represented by h,, h,,), one can find one or more stable 
states (as represented by e,,  e2). One way  of presenting 
all possible stable states corresponding to all  possible 
values of  fields  is to  plot constant-field contours in the 
&-e2 plane. 

Figure 4 gives an illustrative example. It considers 
two identical films with easy  axes at 90". Each film 
alone has a  rotational threshold field HK = 2K/p,M. 
We choose the thickness such that  the demagnetizing 
field Hd is equal to 0.25 HK. (Typically, HK = 4 oe, 
Hd = 1 oe for 0.5 cm diameter, 5000 A thick Perm- 
alloy film). This results in an interacting field hi = 
2Hd/HK = 0.5 (see Eq. A2.8). 

The plot is to be examined to reveal such properties 
as multiple stable states, switching, threshold and 
hysteresis. 

The limiting cases are  to be checked first as illus- 
trated  in Fig. 5 .  For example, for infinite applied 
field at 45", 135", 225" or 315", both magnetization 
vectors align exactly along  the applied field. At a 
given large field, there is only one corresponding stable 
state. With no field applied, there  are  four possible 
quiescent stable states, Q,, Q2,  Q3 and Q4. For every 423 
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Figure 4 Constant-field contours in e,-& plane. 
Field in units of K/p,M. 

Figure 5 Stable states at infinite or  zero applied 
field : 
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quiescent stable  state,  the two magnetization vectors 
are nearly opposing each other while each is aligned 
nearly along its own easy axis. Opposing magnetiza- 
tion vectors minimize the demagnetizing energy and  the 
alignment with the easy axis minimizes the  anisotropy 
energy. 

The  four regions with duplicate field values clearly 
indicate multiple  stable states at low fields. Now let us 
confine our attention  to Region 1 .  When a field  is 
applied,  the  stable  state moves from  the quiescent 
point Q, toward  the  boundary. If the  total  applied 
field  is increasing in any direction between 0" and 90°, 
both magnetization vectors will eventually align with 
the  applied field. Otherwise, when the  stable  state 
moves onto the  boundary,  it will switch out of Region 
1. The corresponding field (Ax, hy) is the threshold for 
rotational switching. If the switching is irreversible, 
there will  be hysteresis. All possible means of switching 

out of Region 1 are summarized  in  Table 3 .  The 
boundary field values are used to plot  the  rotational 
switching threshold curve as shown in Fig. 6 .  

The  information  contained  in  the  constant-field 
contours can also be used to construct M-H loops; 
one example is given in Fig. 7. The magnetic field  is 
applied in the  y-direction with h, held at zero. As the 
field alternates in directions,  the  magnetization vectors 
switch between Regions 1 and 4. The change of 
(O1, 0,) as  a  function of (hx, h,,) is indicated by the 
traces a,  b, c ,  d, e in  the constant-field contours  in 
Fig. 4. The M - H  loops in Fig. 7 are labelled corre- 
spondingly. 

Summary and discussion 

1. The static and quasidynamic  behavior of coupled 
films have been analyzed by plotting  stable  states as 
constant-field contours  in  the 01-0, plane. The analysis 

Tuble 3 Possible modes of switching from quiescent stable state Q1 (Refer to Fig. 4). 

Drive 
Leaving Entering 

boundary region Remarks 

(+, +) + (+a,  +a) Approaching A1 B1. 

(+, -1 B1 C1 4 Irreversible switching. 

No switching. 

Exceeding thresholds of both Hysteresis. 
BlCl and D3A3 

(0, -1 
Exceeding (0, -2) 

C1 or C2 4(h, = O + )  or Irreversible switching. 
3(h, = 0-) Hysteresis. 

1 o r 2  Equally likely to  fall into 

Reversible. No hysteresis. 
Region 1 or 2. 

( - 9  -1 
Below threshold  of 

B2C2 (or D4A4) 
~ ~ ~ ~~~ 

(-, -1 
Exceeding thresholds of both c1 Dl  3 Irreversible switching. 

B2C2 and D4A4 Hysteresis. 

(-, 0) 
Exceeding (- 2, 0) 

D l  or 0 4  2(hy = O + )  or Irreversible switching. 
Hysteresis. 3(hy = 0-) 

1 or  4 Equally likely to  fall  into 

Reversible. No hysteresis. 
Region 1 or 4. 

( - 9  +) D l A l  2 Irreversible switching. 
Exceeding thresholds of both Hysteresis. 

DlAl and B3C3 
425 
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can be extended to  the following cases:  more drive 
lines, each with different s = H,/H, ,  more  than two 
coupling films, and films each with mixed anisotro- 
pies. These cases are all conceivably of practical interest. 

2. The analysis reveals properties such as  multiple 
stable states, switching, threshold  and hysteresis for 
the coupled films. These suggest possible applications 
for memory and logic. There  are  three distinctive 
features of the coupled films: (a) The films form  a 
closed magnetic path which allows the use  of thick 
films with high demagnetizing field when not  coupled. 
(b) Each film acts  as  a  rotatable bias on the other. 
This may allow novel memory and logic operations. 
(c) The two films constitute  a system of two elements 
with coupling which  is a sine function of the  angular 
displacement between the magnetizations. 

3. In  the present analysis, damping is not  taken 
into  account, hence the analysis is not  truly  dynamic 
in nature.  In  a  separate  paperI2 switching behavior 
with damping is studied. 

4. A comprehensive study was made and will  be 
reported elsewhere of the coupled-film behavior for 
various values of m2,  kZq,  hi, p ,  q, a, and s correspond- 
ing to variations  in  structure, film thickness, and 
material  property. 

5 .  The  rotational mechanism of flux reversal occurs 
only in limited ranges of magnitudes  and angles of the 
applied field. A complete description of switching 
behavior must take  into  account  other mechanisms. 
One such consideration on single, uniaxial Permalloy 
films  is presented in Refs. 13 and 14. 

Appendix 1. Critical  curvetheoryfor single films l5 

The  total free energy of a uniaxial film is given by 

E = -,u,M*H + K sin’ 8 ,  (Al.l)  

where 

8 = orientation of M as measured  from the 

E = total free energy per unit  volume 
-poM.H = mutual  magnetization energy per  unit 

volume between the film and  the 
applied field 

easy axis 

K = anisotropy  constant. 
Physically, the  stable  orientation of a  magnetization 

vector at a given  field (Hx,  H,) corresponds to a 
position with relative minimum-energy. As the field 
changes, the minimum-energy orientation,  or stable 
state, will also change. At  certain field values, the 
stable  state  has to  jump  to a new value, instead of 
varying continuously, to achieve a new minimum- 
energy orientation. The locus of such field values in 
the Hx-H, plane is a critical curve. As we shall 
presently explain, the critical curve can  also  be used 
to find stable  states at any given field. 

The  mathematical  conditions at which the  stable 
states or  the critical states  occur are summarized here : 

Physical 
Conditions at 8 Then E(8) is signijicance 

E(8)cc2 13’E/a8~ < 0 Relative 
maximum Unstable 

a ~ / a 8  = o a 2 ~ / a o 2  > o Relative 
minimum Stable 

a 2 ~ / a e 2  = o Point of 
inflection Switching 

The equation aE/a8 = 0 gives a family of straight 
lines in the Hx-H, coordinates with parameter 0: 

p o M  sin 8 H ,  - p o M  cos OH, + 2K sin 8 cos 8 = 0 .  

(Al.2) 

The simultaneous  solution of aE/dO = 0 and a2E/a8’ 
= 0 gives the envelope to  the family of straight lines. 
By definition, these straight lines are tangent to  the 
envelope. Further examining Eq. (A1.2), we see that 
the  slope of the  straight line is 

aH,/aH, = tan 8 ,  (Al.3) 

where 8 is the  orientation of the  magnetization vector. 
Hence  the  magnetization vector is parallel to the 
tangent to the critical curve. Since the envelope divides 
its  tangent aE/aO = 0 into two segments, each with 
dZE/aOZ > 0, or d2E/a8’ < 0, the  former segment 
determines  the  orientation of the  magnetization vector. 
The readers are reminded that  the results obtained 

Figure 8 Critical curve and  stable-state lines for 
an uniaxial film. 
Field in units of 2K/p0M. 
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above  apply to films  with any  anisotropy energy of the 
form &(e) 

If a critical curve is properly labelled (as in Fig. 8) 
to help select the segment of tangent with d2E/d02 > 0, 
the  stable  states  corresponding to a given  field can be 
easily determined  according to  the following rule: 
Draw  a  tangent  from  the field point ( A x ,  hy) to the 
critical curve such that  the tangent is pointing  toward 
the field point,  the  orientation of the  tangent is a  stable 
state  for  the given  field if and only if this angle, as 
measured from the +A, axis, falls within the range 
labelled on  the  corresponding  part of the critical curve. 
Based on the  above rule, it is found  that  for field values 
within the critical curve, one of two possible stable 
states can occur, depending  on  the  history of magneti- 
zation.  Outside  the critical curve, only one  stable  state 
is possible. When the  critical  curve is crossed during 
field change, switching (or discontinuous  change in 
magnetization  orientation) may or may not occur. A 
concrete  illustration of the  application of the  above 
rule is shown in Fig. 9. The easy-direction hysteresis 
is constructed by using field values along  the A,-axis 
and  the  corresponding M cos 8, with 0 determined by 
the  rule.  The  other  loops are similarly constructed. 

Appendix 11. The  total  free energy  ofcoupled films 

For  the isolated Film 1, the free-energy equation is 
the followine:: 

N - - - .  n t 2  

, - 4 d  
(A2.4) 

To  further simplify the analysis, assume that  the 
drive striplines (Fig. 1) are  both between or around  the 
films such that 

s = HJH, . (A2.5) 

Table A.11 gives the value of s for  some typical con- 
figurations. 

Table A.II Drive  line  layout and values of s. 

Conjiguration Value of s 

Stripline  wraps both films 1 

Stripline goes between the films with 
return  around  but away from Film 1 - 1  

El = + 
= ( -poM1.Hl + K1, sin2 pB,)nd2t/4,  (A2.1) 

where 

E, = total free energy (joule) 
EM1 = mutual energy between the film and  the 

EKI  = anisotropy energy 
po = permeability of air  (henry/m) 

M, = magnetization of Film 1 (ampere-turn/m) 
H1 = applied field on Film 1 (ampere-turn/m) 
K t ,  = anisotropy  constant  (joule/m3) 

p = number of axes of symmetry  for 
anisotropy energy 

O1 = angle between magnetization and  major 
easy axis (radians) 

d = diameter of the Films 1 and 2 (m) 
t1 = thickness of Film 1 (m). 

applied field 

Similarly for the isolated Film 2, 

= + 
= [-poM,*H2 + K,, sin2 q(0,  - a ) ] x d 2 t 2 / 4 ,  

(A2.2) 

CI = angle between major axes of Films 1 and 2 
t ,  = thickness of Film 2. 

where 

Since the two films are placed in  proximity and 
subject to  the fields of each  other,  there is mutual 
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Stripline goes between the films with 
return  around  and close to Film 1 - 1  t o o  

~~~ ~ ~ ~ 

The  total energy of the system of the two films is 

E ,  = E ,  + E2 + E ~ 1 2  . (A2.6) 

Substituting Eqs. (A2.1) through (A2.3) into  Eq. 
(A2.6) and using K l p / p o M t ,  M , ,  K , ,  as normalization 
factors for field, magnetization, and energy per  unit 
volume respectively, we obtain 

e = - [cos 8, -t sm2 cos 8,]h, 

- [sin 8, + srn2 sin B,]h, + hi cos(0, - 8,) 

+ sin2 pel + k2q sin' q(02 - u)  . (A2.7) 

Figure 9 Hysteresis loops. Field  in  units of 2KIpoM. 

(a) Easy direction; (b) hard  direction. 
M X  MY 
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In Eq. ( A 2 . 7 )  we have 

e =  ET/(ndZt1/4) 
( P o ~ l ) ( ~ l p / P o ~ l ~  

= N 2 M , / ( K l p / P o M , )  = 2H,/H,  (A2.8) 

= interacting field  between the two f i l m  

fi’z = (MZ/MlXWl) 

b ,  = ( ~ Z q I ~ l p ) ( ~ ~ / ~ l )  

h x  = ~ x l ( ~ l p l P o ~ l ~  

A, = f f Y l ( ~ l P / P 0 ~ l ~ ~  

It is of interest to  note  that since N , M ,  is the  de- 
magnetizing field (H,)  in Film 2,  and 2 K l p / ~ , M ,  is the 
rotational  threshold ( H k )  for  an uniaxial Film 1, the 
interacting field hi can also be written as 2Hd/Hk.  
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