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Analysis of Static and Quasidynamic Behavior
of Magnetostatically Coupled Thin Magnetic Films

Abstract: When two superposed films exert fields on each other, their static and dynamic behaviors
change. The following method of analysis is used to study the behavior: The stable states are found by
minimizing the total free energy of the films. Then constant-field contours are plotted in the 6,-0,
plane (0’s being the stable orientations of the magnetization vectors). In examining the plot, one can
predict multiple stable states, switching, threshold, hysteresis, and the detailed paths of magnetization
change as a function of applied field.

The solution is carried out by a numerical process which permits evaluation of the following effects:
the variation of the degrees of symmetries of the anisotropy energies, the relative orientation between
the films, the coupling strength, and the drive-line layout. An example is carried out in sufficient detail

for illustrative purposes.

Introduction

Stoner and Wohlfarth! derived the critical curve theory
for a uniaxial single domain undergoing rotational
flux reversal. Its application to magnetic thin films
indicates several properties useful for memory and
logic schemes. Subsequent investigations on Ni-Fe
films reveal some fundamental deviations from the
theory® Nevertheless, the theory provides an essential
framework for depicting the flux reversal behavior of
thin films.

The Stoner-Wohlfarth theory has been referred to in
various forms in the literature of thin magnetic films,
for example the work of Bradley and Prutton.?
However, an excellent exposition in a form which is
particularly pertinent to the present work can be found
in an unpublished report by Slonczewski.> Behringer*
later made a significant extension to films with aniso-
tropy energy characterized by K, sin? nf(n > 1).
Slonczewski’s theory is summarized in Appendix I
for reference.

As broader and deeper understanding is gained for
single films, current interest has branched into multi-
film structures. For instance, two films may be super-
posed in closely spaced parallel planes. The spacing is
large enough to prevent atomic interaction but small
enough to permit magnetostatic interaction. The
strength of interaction depends on the thickness-to-

* See comprehensive review by S. Middelhoek, p. 394, this issue.

diameter ratios and the magnetizations of the films.
The magnetostatically coupled films exhibit static and
dynamic behaviors significantly different from those
of the individual films. In the literature, only one
application®:® of the two-film structure has been
reported; viz., an NDRO scheme using a film with
high threshold for storing information and another
film with low threshold for read-out.

Coherent rotational flux reversal for single films is
described by critical curves and hysteresis loops which
predict multiple stable states, switching threshold and
hysteresis. In the two-film structures, similar infor-
mation is desired. However, as the orientations of the
two magnetization vectors have to be represented by
two dependent variables, the mathematical formulation
of the problem and the presentation of the results are
very much different from those for the single-film
theory.

The present paper develops a new method of analysis.
For the convenience of the reader, similarities to single-
film theory are indicated whenever possible. On the
other hand, new methods (e.g., the constant-field
contours) and new emphases (e.g., critical state being
the limiting case of stable state) are stressed. The
mathematical formulation accommodates the many
degrees of freedom provided by the two-film structure;
namely, the degrees of symmetries of the anisotropy
energies, the relative orientation between the films,
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the coupling strength and the drive-line layout.
The assumptions and the limitations implied are also
discussed in some detail.

Assumptions

In order to facilitate analysis, the following assump-
tions are made:

1. Each film behaves as a single domain with uni-
form magnetization and can therefore be represented
by a single magnetization vector.

2. Flux change is effected by the rotation of the
magnetization vector. This can be realized under
either of the two following situations: The threshold
field for wall motion is much higher than that re-
quired for rotation; or the wall motion is much slower
than the rotation, such that for an applied pulse of
short duration only the rotation can take place.

3. The magnetization vector of each film is confined
to the plane of the film; otherwise an excessive magneti-
zation energy would result from a magnetization
component perpendicular to the film plane.

4. The magnetization of each film produces an
internal demagnetizing field. Moreover, the two
superposed films are in such proximity that each is
exerting a planar uniform field throughout the other.
Based on formulae given in Bozorth’ and Chang®
both the internal and the external fields for a thin film
are

H =~ —(n/4)(1/dM , 1

where H = uniform planar magnetic field inside or
outside of the film due to its magnetization
t = film thickness
d = film diameter
M = uniform magnetization of the film.
Calculations indicate that the above equation holds
in the space roughly covering the film area and of a
depth of one-tenth the film diameter.

The internal field, as given by Bozorth, was con-
firmed experimentally by Humphrey,® and the ex-
pression for the external field was later confirmed
experimentally by Matick.!?

5. The anisotropy energy of each film is assumed
to be of the form K, sin? nf), where K, is the anisotropy
constant, n the number of axes of symmetry, and 6 the
angle between the magnetization vector and the major
axis of symmetry.

Physical principle and mathematical model

The physical structure under consideration is two
superposed films with their major easy axes at an
angle o (see Fig. 1). A stripline wraps both films, or
just one film, to provide the same or different fields
to the films. More than one stripline are used to
provide fields in different directions or to sense various
components of flux changes.

The purpose of the present analysis is to find stable
orientations of the films for a given applied field as
well as the threshold for rotational switching. Other

IBM JOURNAL * OCTOBER 1962

MAJOR EASY AXIS
OF FilM 1

a 0] 02

A
('/?:E/FS‘ el.\/\
N\P“)%(. P

TOP VIEW

STRIP LINE

o

v N N

KzF,I'LV\h:, 2N2 \N T'Z

SIDE VIEW

Figure 1 Two superposed films.

useful relations are derivable from the above infor-
mation.

The physical principle utilized for the analysis is
that a system tends toward minimum energy for its
stable state. The total free energy of the two-film
structure consists of the individual anisotropy energies,
the individual magnetization energics, and the inter-
action magnetization energy. In normalized form, as
derived in Appendix 11, the total free energy is:

e = —[cos 8, + sm, cos 0,]h,
—[sin 0; + sm, sin 6,]h,

+h; cos(0, — 0,)

+sin? pf,
+kaysin? q(8, — ), 2
where
e = the total free energy of the coupled films

(6, 8,) = the orientations of the magnetization vectors
(hy hy) = the x-, y-components of the applied field
h; = the interaction field
o = the angle between the easy axes of the
films
my, k,, = the ratios of magnetization and aniso-
tropy constants of the films
p, g = the degrees of symmetry in the aniso-
tropy energies of the films
a constant determined by the layout of
the drive lines.
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Table 1 Conditions for equilibrium

. Physical
Conditions at (6, 0,) Then e(8,, 8,) is significance
2 0? o*
e(By, 0,)ec ez (or ——e;) <0 Relative maximum Unstable
d%e e 0% 00, 09
20,00, ~ 36,2 362, = © ; 2
J%e de . .
“-‘5012 or —5022 >0 Relative minimum Stable
fe_fe o, Do Teie | Saddle poi Unstabl
30, ~ 20, = 30,00, ~ 06,2 00,% addle pomt netable

The normalization factors and explicit definitions of
the above quantities are given in Appendix 1I.

The mathematical apparatus required to find the
relative minimum energies is shown in the calculus
theorems'! in Table 1.

As indicated in the table, e(d,, 0,)ec?, the function
e(0,, 8,) has continuous first and second deviatives.

Stable states

According to Table 1, the extrema are the solutions of
Je Oe
00, 90,

which lead to two equations relating (h,, h,) and
0y, 0;). With (h,, h,)) given, (8, 0,) can be found;

0, (3

Figure 2 Stable s(;:ate obtained by graphically
e Je

conversely, with (0;, 8,) given, (A, 4,) can be found.
However, since the equations are linear in /. and h,,
it is easier to solve for (h,, h,) for given (0,, 0,) either
by graphical construction (Fig. 2) or by determinants.
The solution obtained may be either a stable state
(relative minimum) or an unstable state (relative
maximum or saddle point) depending on the values of
A = e;,> — e, e,, and e, (see Table 1).

In Fig. 2, it is interesting to note that the two lines
representing ¢, = 0 and ¢, = 0 have inclinations 6,
0, which are the orientations of the magnetization
vectors M, M,, respectively. It is also obvious that
for given (6,, 8,), (h,, h,) can be uniquely determined
since two lines can have only one intersection. How-
ever, several pairs of lines corresponding to different
solutions for (8,, 6,) (multistable states) may intersect
at the same point in the /.-h, plane. For 6, = 8,, the
two lines will intersect at infinity, implying that the

solving — = — = 0. two magnetization vectors will both be pulled to
901 06 the direction of a high field.
1 . .
= sin 8, e sin(0y — 82) — p sin 2p 6] Critical states
B: _;I_ [h: sin(6, — 62) For a given pair of films subject to a given field, the
smz sin Oz total free energy of the two films can be plotted

+ gkzq sin2g(82 — o)]

as constant e(fy, 8,) contours in the 6,-0, plane.
Relative minima and maxima are separated by energy
barriers (see Fig. 3). The film pair is in a stable state
corresponding to one of the minima. As the field is
changed, the contours will alter and the stable state
will shift continuously. However, when the field varies
to a value to lower the energy barrier such that the
minimum state will vanish, the stable state will
suddenly switch into a neighboring minimum point.
Such a field value is a critical one. The loci of critical
field values in the h,-k, coordinates constitute a
critical curve or rotational switching threshold curve.

/|
\%‘W i In the theory for a single film, the critical state is
= { mathematically identified as a point of inflection as
B N well as an extremum point, and can be found by solving

0E/d0 = 0 and 0*E/06? = 0 simultaneously.
In coupled-film theory, such simple mathematical
identification does not exist. However, since the critical

2
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Figure 3 Total free energy contours of a pair of magnetostatically coupled films.

state is the limiting case of stable states, one can pro-
pose that if the stable state region is mapped out in the
0,-0, coordinates the critical state locus should be the
boundary of the stable state region.

Comparison with single-film theory

Table 2 summarizes the similarities and differences
between a single film and a pair of magnetostatically
coupled films. One important difference not revealed
in the mathematical formalism is the fact that the
simple critical curve theory can not be extended to the
coupled films. Consequently, new methods of analysis
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and presentation of results (see Section on constant-
field contours in the 6;-6, plane) are different concep-
tual definitions and practical calculations (critical
state) are called for.

Appendix I discusses the critical-curve theory for
single films. It is proved that the stable states can be
represented by families of straight lines in the A.-h,
plane. The orientation of each line is the stable mag-
netization vector orientation, and the points on the
line indicate all possible field values to maintain the
magnetization orientation. The envelope of the family
of equilibrium lines is the well-known astroid-shaped




Table 2 Comparison between single film and pair of magnetostatically coupled films.

Single film

Coupled films

Magnetization vectors

M=M/0

M, =M L0,;M; =M,.0,

Major easy axes

6=0

0, =00, =«

Total free energy

Anisotropy energy
+ magnetization energy

Anisotropy energies
+ magnetization energies (due to applied

Stable states (corresponding

to minimum energy) are condition
determined by solving
equations shown 9’E

-56—2 >0

JE/08 = 0, subject to the

field)
+ magnetization energy (due to interac-
ting field)
0E|08, = OE/08, = 0 subject to the con-
ditions
PE gt (ZE) - ZECE
20,2~ V2% \30,20,) T 30,2 30, <

Critical states

states
0E[060 = 0
2E|06* = 0

Limiting case of stable

Limiting case of stable states

0E|20, = 0E|30, = 0
0%*E}90,%* = 0 or 6%E/00,%> = 0 or

(ZEV.ZECE
2

30,00,

Convenient description

Critical curve and equili-
brium line in A,-h,

Constant field contours in 6,-8, plane
(see Section of that title and also Fig. 4)

plane (see Appendix I

and Fig. 8)

critical curve. All equilibrium lines are tangent to
and terminate on the critical curve. These geometri-
cal relationships make the critical curve a uniquely
convenient and concise method of presenting both
stable states and critical states in the same Figure.

In coupled films, as is discussed in the Section on
stable states (also see Fig. 2), the stable state point
(64, 8,) is determined by two intersecting straight
equilibrium lines in the h,-h, plane. There are no
longer families of straight lines as stable states, with
their envelope as the critical curve.

A rotational threshold curve (or critical curve) con-
structed in the A,-h, plane based on the definition in
the previous Section does not relate to the stable
states in any sense other than being their limiting
values. A different single graphical presentation of
both stable states and critical states is therefore deriv-
ed in the following Section.

Constant-field contours in §;-9; plane—prediction
of switching behavior

For a given pair of films (as specified in Appendix II
by m;, kzg, By p, 4, %, 5), and a given applied field (as

represented by 4, h,), one can find one or more stable
states (as represented by 6, 8,). One way of presenting
all possible stable states corresponding to all possible
values of fields is to plot constant-field contours in the
0,-6, plane.

Figure 4 gives an illustrative example. It considers
two identical films with easy axes at 90°. Each film
alone has a rotational threshold field Hy = 2K/u M.
We choose the thickness such that the demagnetizing
field H, is equal to 0.25 Hy. (Typically, Hx = 4 oe,
H; = 1 oe for 0.5 cm diameter, S000 A thick Perm-
alloy film). This results in an interacting field A; =
2H,/Hy = 0.5 (see Eq. A2.8).

The plot is to be examined to reveal such properties
as multiple stable states, switching, threshold and
hysteresis.

The limiting cases are to be checked first as illus-
trated in Fig. 5. For example, for infinite applied
field at 45°, 135°, 225° or 315°, both magnetization
vectors align exactly along the applied field. At a
given large field, there is only one corresponding stable
state. With no field applied, there are four possible
quiescent stable states, Q,, @,, @, and Q,. For every
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quiescent stable state, the two magnetization vectors
are nearly opposing each other while each is aligned
nearly along its own easy axis. Opposing magnetiza-
tion vectors minimize the demagnetizing energy and the
alignment with the easy axis minimizes the anisotropy
energy.

The four regions with duplicate field values clearly
indicate multiple stable states at low fields. Now let us
confine our attention to Region |. When a field is
applied, the stable state moves from the quiescent
point @, toward the boundary. If the total applied
field is increasing in any direction between 0° and 90°,
both magnetization vectors will eventually align with
the applied field. Otherwise, when the stable state
moves onto the boundary, it will swirch out of Region
1. The corresponding field (A,, h,) is the threshold for
rotational switching. If the switching is irreversible,
there will be hysteresis. All possible means of switching

out of Region 1 are summarized in Table 3. The
boundary field values are used to plot the rotational
switching threshold curve as shown in Fig. 6.

The information contained in the constant-field
contours can also be used to construct M-H loops;
one example is given in Fig. 7. The magnetic field is
applied in the y-direction with /4, held at zero. As the
field alternates in directions, the magnetization vectors
switch between Regions 1 and 4. The change of
(0y, 0,) as a function of (h,, h,) is indicated by the
traces a, b, ¢, d, e in the constant-field contours in
Fig. 4. The M-H loops in Fig. 7 are labelled corre-
spondingly.

Summary and discussion

1. The static and quasidynamic behavior of coupled
films have been analyzed by plotting stable states as
constant-field contours in the 6,-8, plane. The analysis

Table 3 Possible modes of switching from quiescent stable state Q1 (Refer 1o Fig. 4).

Leaving Entering
Drive boundary region Remarks
(+, +) = (+ o, +0) Approaching A1Bl.
No switching.
(+, —) B1C1 4 Irreversible switching.
Exceeding thresholds of both Hysteresis,
BIC1 and D343
©, =) Clor C2 4(h, = 0%) or Irreversible switching.
Exceeding (0, —2) 3h,=07) Hysteresis.
0,0) - (0, —2) - (0,0) 1or2 Equally likely to fall into
Region 1 or 2.
Reversible. No hysteresis.
(—' s _) .
Below threshold of C1D1 2(|n,| > |h)) or Irreversible switching.
B2C2 (or D444 Hysteresis.
(or DAAD 4] < I g
(—' » _)‘ i .
Exceeding thresholds of both C1D1 3 Irreversible switching.
B2C2 and D444 Hysteresis.
(-,0 D1 or D4 2(h, = 0%) or Irreversible switching.
Exceeding (-2, 0) 3(h, = 07) Hysteresis.
0,0) > (=2,0) > (0,0) lord Equally likely to fall into
Region 1 or 4.
Reversible. No hysteresis,
(=, +) D141 2 Irreversible switching.

Exceeding thresholds of both
D1A41 and B3C3

Hysteresis.
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can be extended to the following cases: more drive
lines, each with different s = H,/H,, more than two
coupling films, and films each with mixed anisotro-
pies. These cases are all conceivably of practical interest.

2. The analysis reveals properties such as multiple
stable states, switching, threshold and hysteresis for
the coupled films. These suggest possible applications
for memory and logic. There are three distinctive
features of the coupled films: (a) The films form a
closed magnetic path which allows the use of thick
films with high demagnetizing field when not coupled.
(b) Each film acts as a rotatable bias on the other.
This may allow novel memory and logic operations.
(c) The two films constitute a system of two elements
with coupling which is a sine function of the angular
displacement between the magnetizations.

3. In the present analysis, damping is not taken
into account, hence the analysis is not truly dynamic
in nature. In a separate paper'? switching behavior
with damping is studied.

4. A comprehensive study was made and will be
reported elsewhere of the coupled-film behavior for
various values of m,, k,,, h;, p, ¢, «, and s correspond-
ing to variations in structure, film thickness, and
material property.

5. The rotational mechanism of flux reversal occurs
only in limited ranges of magnitudes and angles of the
applied field. A complete description of switching
behavior must take into account other mechanisms.
One such consideration on single, uniaxial Permalloy
films is presented in Refs. 13 and 14.

Appendix . Critical curve theory for single films 1

The total free energy of a uniaxial film is given by
E=—~u,M-H+ Ksin*0, (Al.1)
where

0 = orientation of M as measured from the
easy axis
E = total free energy per unit volume
—uoM-H = mutual magnetization energy per unit
volume between the film and the
applied field
K = anisotropy constant.

Physically, the stable orientation of a magnetization
vector at a given field (H,, H,) corresponds to a
position with relative minimum-energy. As the field
changes, the minimum-energy orientation, or stable
state, will also change. At certain field values, the
stable state has to jump to a new value, instead of
varying continuously, to achieve a new minimum-
energy orientation. The locus of such field values in
the H,-H, plane is a critical curve. As we shall
presently explain, the critical curve can also be used
to find stable states at any given field.

The mathematical conditions at which the stable
states or the critical states occur are summarized here:

Physical

Conditions at 0 Then E(0) is significance

E(0)ec? 0*E[80* < 0 Relative

maximum Unstable

0E/30 =0 02E/00* > 0 Relative
minimum Stable

0*Ej00* = 0 Point of

inflection  Switching

The equation JE/00 = 0 gives a family of straight
lines in the H,-H, coordinates with parameter 6:

#oM sin OH, — poM cos OH, + 2K sinfcos 6 = 0.
(A1.2)

The simultaneous solution of dE/d0 = 0 and 9%E/06?
= 0 gives the envelope to the family of straight lines.
By definition, these straight lines are tangent to the
envelope. Further examining Eq. (A1.2), we see that
the slope of the straight line is

8H JoH, = tan 6, (A1.3)

where 0 is the orientation of the magnetization vector.
Hence the magnetization vector is parallel to the
tangent to the critical curve. Since the envelope divides
its tangent dE/d6 = O into two segments, each with
8%E[00* > 0, or 02E/d6? < 0, the former segment
determines the orientation of the magnetization vector.
The readers are reminded that the results obtained

Figure 8 Critical curve and stable-state lines for
an uniaxial film.
Field in units of 2K{u M.
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above apply to films with any anisotropy energy of the
form E (6)

If a critical curve is properly labelled (as in Fig. 8)
to help select the segment of tangent with 82E/302 > 0,
the stable states corresponding to a given field can be
easily determined according to the following rule:
Draw a tangent from the field point (4,, 4,) to the
critical curve such that the tangent is pointing toward
the field point, the orientation of the tangent is a stable
state for the given field if and only if this angle, as
measured from the +#, axis, falls within the range
labelled on the corresponding part of the critical curve.
Based on the above rule, it is found that for field values
within the critical curve, one of two possible stable
states can occur, depending on the history of magneti-
zation. Outside the critical curve, only one stable state
is possible. When the critical curve is crossed during
field change, switching (or discontinuous change in
magnetization orientation) may or may not occur. A
concrete illustration of the application of the above
rule is shown in Fig. 9. The easy-direction hysteresis
is constructed by using field values along the A -axis
and the corresponding M cos 0, with 6 determined by
the rule. The other loops are similarly constructed.

Appendix Il. The total free energy of coupled films

For the isolated Film 1, the free-energy equation is
the following:

E, =Ey + Ex,

= (—poM; H, + K, sin® p8,)nd’t/4, (A2.1)
where
E, = total free energy (joule)
E\y = mutual energy between the film and the
applied field
Ey, = anisotropy energy
o = permeability of air (henry/m)
M, = magnetization of Film 1 (ampere-turn/m)
H; = applied field on Film 1 (ampere-turn/m)
K;, = anisotropy constant (joule/m?)
p = number of axes of symmetry for
anisotropy energy
0, = angle between magnetization and major
easy axis (radians)
d = diameter of the Films 1 and 2 (m)
t; = thickness of Film 1 (m).

Similarly for the isolated Film 2,
E; =Ey; + Egs

= [—uoM; H, + K, sin? g(0, — 0)Jnd?t,/4 ,
(A2.2)
where

o
I

angle between major axes of Films 1 and 2
thickness of Film 2.

Since the two films are placed in proximity and
subject to the fields of each other, there is mutual
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magnetization energy E,;, between them.
Eyyz = (=M, -Hyp)nd’t, j4
— oM, (= N,My)nd*t, /4

= po[(n?/16)dt 1,1M, M, , (A2.3)
where
Tty
=—--, A24
2= (A2.4)

To further simplify the analysis, assume that the
drive striplines (Fig. 1) are both between or around the
films such that

s=H,/H, . (A2.5)

Table A.IT gives the value of s for some typical con-
figurations.

Table A.1I Drive line layout and values of s.

Configuration Value of s
Stripline wraps both films 1
Stripline goes between the films with
return around but away from Film 1 -1
Stripline goes between the films with
return around and close to Film 1 —1t00

The total energy of the system of the two films is
ET=E1 +E2+EM12. (A26)

Substituting Eqs. (A2.1) through (A2.3) into Eq.
(A2.6) and uvsing K, ,/JuoM;, M,, K,, as normalization
factors for field, magnetization, and energy per unit
volume respectively, we obtain

e= — [cos §; + sm, cos 0,]h,
— [sin 8y + sm, sin 8,7k, + h; cos(8; — ;)
+ sin? pf; + k,,sin? (6, — «) . (A2.7)

Figure 9 Hysteresis loops. Field in units of 2K{p M.

(a) Easy direction; (b) hard direction.
My M,

hy =0

hy = 0.8[
1

M MpEF——~————

=M




In Eq. (A2.7) we have

. Er/(nd’t,[4)
(ﬂoM1)(K1p/lloM1)
h; = NoMo[(Ky,/uoMy) = 2H,y/H, (A2.8)

interacting field between the two films
my = (MM )(t,/t))
kaq = (Kzo/ Ky ,)(12/t1)

hy = H,[(K,,/uoM,)

h, = H [(K{,/usM,) .

It is of interest to note that since N, M, is the de-
magnetizing field (H,) in Film 2, and 2K ,/uoM, is the
rotational threshold (#,) for an uniaxial Film 1, the
interacting field 4; can also be written as 2H,/H,.
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