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A Discrete  Queueing  Problem 
with  Variable  Service  Times 

Abstract: Methods from  the theory of Markov chains are used to analyze a simple single-server  queueing 
model. The model is of the sort that arises naturally in information-handling contexts, in  that a discrete 
time basis is  used, which  matches the cyclic character of processors. Considerable generality is  attained, 
in  that no  appeal is  made to  the exponential or other conventional forms for the probability distribu- 
tions governing the number of arrivals  per cycle  and the service times. 

The principal object of study is  the queue length; the stationary distribution governing this quantity 
is  calculated, along with various  associated  averages. The relation between the present method and 
the  more usual continuous-variable method is illustrated by the derivation of some of the classical 
equations from a limiting case of our model. 

Introduction 

Consider  a system in which transactions  occur  from 
time to time  and are stored in a buffer, from which 
they are  taken serially for processing. The time re- 
quired to process a given transaction will  be variable; 
furthermore, we  will suppose  the processor to  operate 
on a cyclic (or discrete) basis, so that  the time  required 
to process a given transaction will  be represented by a 
positive integer, namely the number of cycles during 
which the processor is occupied with that  transaction. 
In this paper we will study  the lengths of the  queues 
that may be expected to form in the buffer. 

A special case of this  problem, namely that in which 
it is assumed that every transaction  requires exactly 
two cycles for processing, has  already been reported.' 
Also it may be  mentioned that  part of the present  paper 
was presented to the  American  Mathematical Society.' 

Since the  literature  in  queueing  theory includes 
several excellent books  and  other surveys, we need not 
comment at  any length on the  relation between this 
and other  work. However, one  aspect of this  relation 
is shown in Sections 4.A-4.C, where some of the simple 
classical results are derived. Furthermore, we would 
like to direct  attention to a recent  paper by R. G .  
Miller3 in which group  arrivals are allowed, as they 
are here. 

* The Rockefeller Institute. 

1. The principal properties of the model 

A .  Formalization of the model 

We are concerned,  then, with a system consisting of 
two parts: a buffer which accepts and stores  trans- 
actions which originate externally, and a processor 
which from  time to time  takes a transaction  from  the 
buffer and processes it. We suppose that  the processor 
is cyclic or discrete in  character,  in  the sense that it 
will only accept a transaction  for processing at  the 
beginning of a cycle, and  that it always requires an 
integral  number of cycles to process a  transaction. We 
suppose that only one  transaction  can  be processed 
at a time, and  thus it is convenient to say that  at  the 
beginning of a cycle the  processor may be in either of 
two  states, namely either  available (if a transaction is 
not being processed) or occupied (if a  transaction is 
being processed). Each  transaction is to require a 
variable  number of cycles for processing: let pn  be the 
probability that exactly n cycles are  required to process 
a given transaction, where p l ,  p 2 ,  . . * , p n ,  are  to 
be  any given probability  distribution of the positive 
integers. During  any cycle  new transactions may 
be  stored in the  buffer: we let pn be the probability 
that exactly n new transactions  appear  during  any 
particular cycle, where po, p l ,  . . , pn, * is a given 
probability  distribution of the non-negative integers. 

We suppose that  the system works  according to 407 
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the following rules : 
1) If at  the beginning of a certain cycle,  say the 

kth, there are transactions in the buffer, and 
the processor will  be  in the available state at 
the beginning of the (k  + 1)" cycle, then at  the 
beginning of the (k + l)st  cycle a  transaction is 
transferred from the buffer to  the processor. If 
this transaction requires n cycles for processing, 
then the processor will  be  in the occupied state 
at the beginning of the (k + 2)nd, (k  + 3)rd, * * * , 
( k  + n)th cycles, and it will again be available at 
the beginning of the (k  + n + 1)". 

2) If at  the beginning of the kth cycle there are no 
transactions waiting in the buffer, then  no  trans- 
action will be moved to the processor at  the 
beginning of the (k + l),' cycle,  even  if a new 
one should appear  during  the kth cycle. 

3) No transactions will  be  moved to  the processor 
at  the beginning of a cycle  if the processor is 
occupied at  the beginning of that cycle. 

Thus, the processor can take  a transaction from the 
buffer only at the beginning of a cycle, and  then only 
if it is not still occupied with a  prior  transaction  and 
only if there was a  transaction already in the buffer 
at the beginning of the previous cycle. 

The  status of the system at  the beginning of the kth 
cycle may be specified quantitatively by the pair 
(Mk, Ek), where Mk is the number of transactions 
waiting in the buffer at the beginning of the kth cycle, 
and Ek will be defined so as to describe the  state of the 
processor at  the beginning of the kth cycle. Let x k  be 
the number of  new transactions which occur during 
the kth cycle; we assume that X,, X,, * , x,, * - are 
jdentically distributed independent random variables 
and  that their common distribution is written po, 
p,, . . * ,  p,, * .  This is the assumption that with 
probability p,, there occur exactly n new transactions 
during  the kth cycle. It is evident that 

M k + l  = + M k  - < k + l  9 

where & + I  is to be 1 or 0 according as  a  transaction is 
or is not  taken out of the buffer for processing at  the 
beginning of the k + 1" cycle. As to the availability 
of the processor, it is convenient to think of a  counter 
being set as  a  transaction is transferred to  the  pro- 
cessor, the  entry in this counter being the  number of 
cycles required to process that  transaction.  The 
contents of the  counter is to be diminished by 1 just 
before the beginning of each subsequent cycle, until 
it reads 1; thus  at  the beginning of a cycle a reading 
of the  counter  other than 1 is always the number of 
cycles, including the  one then beginning, required to 
complete the processing of the  current  transaction. 
If the contents of the  counter is 1 at the beginning of 
any cycle, then  the processor will be in the available 
state at the beginning of the next cycle; and if not,  then 
it will be in  the occupied state. We let Ek be the con- 
tents of the  counter at  the beginning of the k'h cycle; 

408 these remarks may then  be  translated  as follows: 

If E k  > 1 then E k + l  = E k  - 1, 
if Ek = 1 and Mk = 0 then Ek+l = 1, and 
if E k  = 1 and h f k  > 0 then E k +  1 = n with pro- 
bability p,,. 

Now we can define rk+ I to be 1 if Ek = 1 and Mk > 0, 
and  to be 0 otherwise; thus strictly speaking 5 could 
be dispensed with, and (Mk+ Ek+ ,) has been  specified 
in terms of (Mk, &) and  the distributions p and p .  

Thus we perceive that  the sequence (Mk, Ek), 
k = 0, 1, 2, - . constitutes a  Markov  chain.  Indeed, 
our interest is confined to  the random variable Mk, 
and we introduce Ek precisely because the study of the 
pair (Mk, &) is simpler than  the study of M k  alone; 
and  the reason for this gain in simplicity is essentially 
that  the two together constitute a Markov  chain, while 
Mk by itself does not. 

It is perhaps worthwhile to note  that while we  will 
borrow the language of the theory of Markov chains, 
our main argument is self-contained, in that it depends 
only on certain elementary theorems from analysis. 
Nowhere do we make use  of a deep fact  about  Markov 
chains. 

B. The probabilities of occurrence of the various 
states 

Let us denote by P(v ,  5 )  the probability that if 

above remarks may be interpreted in this notation as 
follows, where we have adopted  the convention that 
pv = 0 for negative values of v :  

P(v,  qlc,  t) = 0 i f q  z 5 - 1 , 
and 

(Mk,  Ek) = (c, t), then ( M k + l ,  Ek+l) = ( v ,  ?)* The 

If 5 > 1 then 

P(v,  5 - q r ,  t) = pv-r; i f q  = 5 - 1 ; 

P(V, vir, 1) = P Y - c +  I P S  if 5 > 0 Y 

P(v,  110,1) = P v  . 

if 5 = 1 then 

and 

These are  the transition probabilities for  our  Markov 
chain. 

Let P k ) ( v ,  q )  be the probability of the occurrence 
of the  state ( v ,  q )  on the kth cycle,  i.e., 

p(k)(V, q)  = PrOb{(Mk, E k )  = ( V ,  q)} . 
Evidently there is the inductive relation 

so that if one knows P'')(v, q) for all v and q then in 
principle one may calculate P(k)(v,  q )  for all k, v ,  and q. 
On making use  of the values of the  transition  prob- 
abilities listed above, we find 

IBM JOURNAL OCTOBER 1962 



v +  1 

+ 2 PqPv-I;+ lp(k)(L 1) + 6,,PvP'k'(0, 1) 9 
[= 1 

where dl,, is the  traditional  Kronecker  delta, i.e., the 
last  term  appears only when q = 1 .  

Now define 

n k ( v )  = 1 p'k'(v, v]) ; 
00 

,,= 1 

since P("(v, q), is the  probability  that Mk = v and 
Ek = v], we see that n k ( v )  is the  probability that 
h f k  = v ,  regardless of the values of Ek. Thus, n k ( V )  

is the  probability  that  there are exactly v transactions 
in the buffer on  the kth  cycle. Our objective now 
becomes the  determination of properties of the se- 
quence of distributions nk. A precise statement of our 
results appears  in Sections l.D and 1.E, but first we 
discuss a  hypothesis which underlies all our arguments. 

C. The load on the processor 

Let A and p be the means of the  distributions p and p 
respectively: 

A = c " v  

W 

v = o  

and 

so that A is the average number of  new transactions 
occurring  during  a cycle, and p is the average number 
of cycles required to process a  transaction. We shall 
assume throughout the present  paper  that I p  < 1 . 

Intuitively, this is very reasonable.  During  the first 
N cycles, approximately AN transactions should occur; 
on  the average the process time for  a  transaction is 
about p cycles, so that if N is large and Ip < 1 the 
processor should be working about ApN of the first N 
cycles, and idle about N - I p N  of the first N cycles. 
Thus  the processor  should  be  working with proba- 
bility about 

( l / N ) . I p N  = Ip 

and idle with probability about 

( l / N ) . ( N  - A p N )  = 1 - Ap. 

A little more  formally, we could say that .the processor 
is working during  the kth cycle (of any  one experiment) 
if Ek-l > 1 or else if Ek-l = 1 and Mk-1 > 0, and is 
idle otherwise, i.e., if Ek-1 = 1 and M k - 1  = 0. It will 
appear  during  the  course of our main argument  that 
if I p  < 1 then 

I i m  ( I / N )  2 P k - ' ) ( O ,  1)  = 1 - Ap . 
N 

N- cr, k =  I 

On the  other  hand, if Ap were to exceed 1, then after 
N cycles about I N  transactions  should have occurred, 
whereas only about N / p  should have been processed, 
so that  about 

I.1 P 

should be in the buffer. Thus Mk should grow approxi- 
mately linearly with k .  This also could be formalized, 
but seems to be clear enough as it  stands. 

Thus Ap represents in some sense a  load on  the 
processor,  and 1 - l p  represents  an excess capacity; 
our hypothesis is that there be a positive excess 
capacity. 

D. The average number of transactions in the buffer 

Let 
m 

mk = 1 vrk(v) ; 

then mk is the  expectation of Mk, or  the average 
number of transactions in the buffer on  the kth cycle. 
The  variance of M,,  to be written u k ,  is defined to be 
the expectation of ( M k  - mk)2, or equivalently, 

v = o  

m 
vk = v2nk(v) - mk2 

v = o  

On  the face of it, of course, mk and uk depend  on  the 
initial distribution PC'), i.e., on  the number of trans- 
actions in the buffer at  the beginning of the process, 
even though this may only be  given stochastically. 
Thus, if initially there were a large number of trans- 
actions in the buffer then at least during  the early 
cycles mk should  be larger than if say there  had been 
only a few. On  the  other  hand, it would seem that in 
the  long  run the effect of the initial distribution  should 
wear off;  and indeed it does. We define the average 
number of transactions in the bufSer to be 

N 

N-03 k = O  

we  will prove that,  at  any rate if the initial distribution 
is finite in a  reasonable sense, and if 1 - Ap > 0, 
then  this limit exists, is independent of the initial 
distribution P(O), and in  fact is equal to 

1 1  A+" 
2 1 - I p  (A2M + 9 

where I and p are defined as above, and A and M are 
similar higher moments : 

m 

A = V ( V  - l ) p v  
I 

v=o 

and 

q =  1 409 
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We  will also prove under a stronger but still very 
general hypothesis that the means mk themselves 
converge to this limit. 

Somewhat analagous considerations hold for  the 
variances. If 

B = v(v - l ) ( v  - 2)pv 

and 

m 

v = o  

then 

lim (1/N) uk 

exists and is equal to 

N 

N - t  m k = O  

A + A - A ~ + A ~ + A  

1 +-- ( A 3 A  + 3AAM + Y p ) ,  
3 l - A p  

where 

provided, however, that the average of mk2 is the same 
as  the  square of the average of mk (which  will be true, 
for example, if mk converges). The same condition 
that insures the convergence of mk insures also the 
convergence of uk. 

E. The limiting distribution 

It is known from  the general theory of Markov chains 
that there will  exist a stationary or limiting distribution, 
that is, there will  be a set of quantities P(v, q)  which  is 
stationary in the sense that if P(O)(v, q )  = P(v, q)  
then also P(k)(v, q)  = F(v, q )  for all k,  and is limiting 
in  the sense that, regardless of P(O)(v, q), 

lim p(k)(v, q) = P(v, q) 

for all v and q .  The interested reader may consult,  for 
example, the  book of Feller4, or  that of Chung5 ; 
however, we need make no explicit  use  of this theorem. 
Instead we  will simply exhibit a certain distribution P 
and prove that it is stationary, and then, under a weak 
restriction on  the distributions P ,  p ,  and p we  will 
prove directly the convergence. 

k-  m 

If we let 

where f and g are  the generating functions for  the 
distributions p and p respectively : 

Naturally the mean and variance of the  distribution 
7i agree with the averages of mk and v k  listed in Section 
1 .D. 

2. The computation of the various  averages 

A .  The generating functions 

We have already defined f to be the generating function 
of the  distribution p :  that is, we set 

m 

This series converges at least for IzI < 1, and of 
course defines an analytic function on this region. 
Similarly, we define, for each k and q, F,,(k) to be the 
generating function determined by f “k ) (v ,  r]) with v 
running : 

m 
F,‘k’(z) = p y v ,  q)z’ . 

v = o  

We also define 
m 

so that FCk) is the generating function of the distri- 
bution which governs k t k :  

m 

Now the expectation mk of Mk can be recovered from 
F(k)  : since 

F‘”‘(z) = Vn(k)(v)Zv-l , 
m 

v = o  

it follows that 

mk = P)’( l )  . 
Our first object will be to calculate the average 

number of transactions in  the buffer as already defined, 
namely 

N 

L ,  = lim (1 /N)  mk . 
N - r  m k = O  

m 

.Tt = P(V, q) 7 We will do this by means of the following device. 

it obviously must turn  out  that ?i is a limiting distri- m 

bution  for the sequence of random variables M k .  AS ~ ( w )  = tnkWk 

it  happens Ti is  given by a very simple generating 

*= 1 We form  the  function 

k = O  

41 0 function, namely for 0 5 w e 1 ; then  it is a fact of classical analysis 
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that since each mk is non-negative 

L ,  = l i m  (1 - W ) C I ( W ) ,  (2) 

the existence of the limit (1) which  defines L,  being 
guaranteed by the existence of the limit (2). This is a 
theorem of the  Tauberian  type;  a complete elementary 
discussion appears in Hobson's book on real variables,6 
and there is also  a  treatment in Widder's book.' 

This interest in the  function CI leads us to consider 
the  function 

w - 1 -  

a, 

w )  = 2 F(~)(Z)W~ , 
k = O  

because CL can be recovered from r : evidently 

.(W) =- . :: I l , w  

The evaluation of the limit L, of Eq. (1) will now 
consist in finding  a  more or less closed form  for  the 
function r and  then  computing 

lim (1 - w) - I 

w - 1 -  E I l s W  
B. A closed form for r 

We saw in Section 1 .B that the probability distribution 
P ( k + l )  is  specified explicitly in  terms of the  distribution 
P ( k ) ;  it is then  more or less obvious that  the functions 
F ( k + l )  should be expressible in terms of the  functions 
F(k).  In fact, as is easy to deduce, 

Z F i k + l )  = zfF,, I(k) + pqf [F l (k )  - P(k)(  OJ)] 

+ B1,zfP'k'(O, 1) , (3) 

where here and hereafter we suppress unnecessary 
mention of z and w when they occur as  arguments of 
the various functions which appear. 

Define 
m 

G,(z, w) = F,,(")(z)wk , 
k = O  

so that 

Then  the recurrence relation (3) implies immediately 
that 

ZG, = zwfG,+ 1 + p,wf[G1 - 4 4 1  
+ zF,(O) + G,,zwfA(w), (4) 

where we have set 

A(w) = P'k'(0,  1)Wk . 
m 

k = O  

The  relations  among  the  various  functions G, are 
surprisingly simple, and  on making use of the  fact that 

lim G, = 0 one finds that they may 
n+ m 

be sc dvec 3 expli- 
., - 
citly for each of the  functions G, in terms of the 
function A and f, the  distribution p ,  and  the  initial 
distribution PC') which appear  as coefficients  of the 
functions E('). Specifically, on multiplying Eq. (4) by 
( ~ f ) ~  and then summing over values of q between 1 
and N ,  one finds that 

N + 1  

zcl = z(Wf)NGN+l+ ,= 1 pq(wf)q(G1 - A )  

+ ZWfA + z (Wfy- . 
N +  1 

,= 1 

Therefore on setting 

w) = 1 P,CW!(Z)l~ 

00 

,= 1 

and 

@(z, W )  = F'o'(~)[~f(~)]'"l , 

it appears that 

m 

q =  1 

(z - a)G1 = (zwf - -6)A + za) 

or 

G,  = 
(zwf - -6)A + z@ 

Z - - 6  

Having  obtained G,, one  could of course  now write 
each G, in terms of A and CD. However, it is more  to 
our immediate purpose to note simply that  on sum- 
ming Eq. (4) over all values of q we obtain 

m 

~ ( l  - wf) G, = wf(1 - z)(G1 - A )  + z Fie) 
m 

,= 1 ,= 1 

from which it follows that 

where we have set 

O(Z) = Ftl(O'(z). 
m 

, = l  

Now  in principle we know the  functions 0 and 0, 
in that they depend only on  the  distributions p and 
PC'), so that  further understanding of r depends only 
on  further understanding of the  function A .  It is easy 
to see that  for each value of w satisfying 0 5 w < 1, 
the function Gl(z, w) is analytic  in z for IzI < 1; 
but G,(z, w) has been expressed as a  fraction 

[zwf- -6(z,  w)]A(w) + z@(z, w) 
z - o(z, w) G,(z, w) = 2 

and  it follows that  the  numerator of this  fraction 
must vanish whenever the  denominator  does, at least 
inside the  unit disk. From this  observation  can  be 41 1 
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deduced all the  information we need about A(w) .  
Indeed, set 

f#lw(z) = z - a(z, w) . 
If z is real, so is $,(z); it is easy to see that 

m 

On  the  other  hand 
m 

+w(O) = - pk(WpO)k < Y 

k =  1 

since the  hypothesis  1 - Ap > 0 precludes the possi- 
bility that po vanishes. Therefore, 4w has at least one 
real zero in  the unit  interval. By Rouche’s theorem 
cpw can vanish but once on  the open  unit  disk, since z 
vanishes but once  there and  on  the unit circle we have 

Iz( > 4 1  . 
Therefore  there is for each w between 0 and 1 a  unique 
root O(w) in the unit disk of the  equation 

= 0 

and this root is real. 
If we replace z with O(w) in  the  numerator of the 

expression for G1, the result must vanish identically. 
Thus it follows that 

where we have made use of the fact that o[O(w), w] 
may be replaced with d(w). Thus knowledge of  the 
function T(z ,   w)  now turns  on knowledge of O(w). 

C. The behavior of the root O(w) 

The  study of d(w) is considerably simplified by the  fact 
that  our interest is confined to values of w near 1. 
Differentiation of the  relation defining 8, namely 

m 

e(w> - pk{Wf[e(W)l>k = 
k =  1 

reveals that, since 1 - Ap > 0, O’(w) is positive. It 
follows that O increases monotonely, and therefore 
that lim O(w) exists, say 

w“11- 

lim O(w) = a . 

Define for z restricted to  the unit  interval 

w+1-  

m 

then 
m 

h’(z) = 1 - 1 kpkf(Z)k-l’f’ (Z)  
k = l  

so that 

Furthermore  it is evident that h(0) < 0 (since again 
p o  # 0) and h(1) = 0; thus h increases monotonely 
to zero as z varies along  the  unit  interval. On the  other 
hand + w  converges uniformly to h as w approaches 1 
from  the left, and therefore h(a) = 0. Therefore 

lim O(w) = 1 . 

It follows that 

w-11-  

lim O‘(w) = - P 
w + 1 -  1 - A p ’  

and,  on differentiating twice the relation 
that 

defining 6,  

These remarks  contain sufficient information  about 
A(w) to enable us to evaluate  the limit L,. 

D.  The average number of transactions in the buffer 

One now computes  without difficulty that 

1 

f 
1 - a(1, w )  (( 1 - wf[O(w)] - 1 @.cO(w), wl  

- @(l, w )  + A 1 - a(1, w )  
1 - w  ) 

The  quantity in  angular  brackets  approaches  zero as 
w approaches 1 from  the left, and therefore 1’Hospital’s 
rule applies. One  thereby verifies that 

and  then uses this  together with the fact that 

d O  am a@ 
d z  1 1  + aw / I , I  = % 1 1 . 1  
to  calculate 

- 

(AzM + PA).  
w-11-  

This establishes Eq. (1) of Section 2.A. 

E. The  average of the variances 

Suppose we let 

uk = v2n(k)(v) 
m 

v = o  

so that 

vk = uk - mk 2 41 2 h’(z) > 1 - Ap > 0 . 
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where zlk is the variance of the  distribution q,, as 
defined in Section 1.D. Let 

~ Then  it is evident 

ti/( = F'k"'( 1) + F'"'( 1) , 
and therefore we may  obtain L, from by the 
equation 

L,  = lim (1 - w )  - 
w + 1 -  

By a  procedure which is strictly analagous to  that  just 
used to evaluate L,, but whose complexity is remark- 
able,  one may evaluate  this  limit;  one finds 

1 1  
31  - i p  

L , = A + I + - -  ( A 3 A  + 3AAM + p 9 )  

+ 2A2 + ( 2 i  + ] )A,  
where 

1 1  A=-- (R'M + pA) 
21 - 1 p  

It follows 

L,-L1'=A+l.-AZ 

1 1  +-- 
31  - A p  

(A3& + 3AAM + p 9 )  + A' + A ; 

we would like, of course, to identify L, - L12 with the 
average of the variances, i.e., to assert 

lim (I/N) uk = L,  - L,', 

but this is incorrect unless 

N 

N - r ,  k =  1 

N 

L12 = Iim(l/N) mk2 
N - +  m k =  1 

This last statement is, however, correct if 

L ,  = lim mk ; 

and this we will prove in Section 3.B for somewhat 
restricted p, p ,  and PC'). 

F. The stationary distribution 

If for  any  reason  one suspected that  there might exist 
a  stationary  distribution (e.g. because one knew the 
theorem  mentioned  in Section I.E), then  one might 
very naturally suspect that it  would  be P ,  where 
P(v, q )  is defined by 

P(v, r l )  = lim (I /N) P k ' ( v ,  q ) .  

We do not have the  quantities F"k'(v, r]) available 

k-+m 

N 

N - r ' X  k = O  

except in the guise of their generating functions, but 
this is no obstacle: we put 

N 

and  it  should be true  that 

F,(z) = lim (1 - w)G,(z, w )  . 
w'1 -  

Let  us calculate this last limit. Returning to Eq. (5 )  
of Section 2.B, we have 

+ ( w f ) j - l F j + , - l ( o )  4- G,,WfA * 

m 

j =  1 

Therefore using the fact that 

lim ( I  - MJ)A(w) = 1 - Ap , 
w+1- 

we find 

lim (1 - w)G,(z, w )  
w - + 1 -  

Thus we are led to conjecture that if  we put Fq(z) equal 
to the right member of this  equation and define 
P(v, q )  in terms of F,(z), i.e., if  we let 

m 

F,(z) = P(v, q>zv 9 

v = o  

then  the distribution P should  be  stationary. 
But now the  proof  that P so defined is in fact  station- 

ary is trivial. In Eq. (3) of Section 2.B we let Fck) = F,  
for each value of q ; a little rearrangement reveals that 
it follows that also F ( k + l )  = F ,  for all q .  Since the 
functions F ,  are  unchanged  from cycle to cycle, it 
follows that  the distribution P is also unchanged  from 
cycle to cycle, i.e., is stationary. 

Finally if as in Section l.E we let 

E(v) = P(v, q )  9 

m 

,= 1 

it is easy to  calculate the generating  function for  the 
distribution E ;  we find 

On noting that if g is the  generating  function  for  the 
distribution p then 

d Z ?  1) = s [ f ( z ) l  9 

we see that we have the generating function  for if 
announced  in Section l.E. 41 3 

IBM JOURNAL OCTOBER 1962 



3. The question of convergence 

A .  The  analyticity of the junction 8(w) 

In Section 2.D we proved that 

exists, but we left open  the  question of whether  or 
not  the sequence mk itself converged. Similarly, in 
Section 2.F we came very close to proving that 

N 

exists, although  it  turned  out to be unnecessary to 
examine this particular  question  there.  Now we  will 
prove that i f  the distributions P(O), p, and p are well 
behaved, in the sense that there exists a real number r 
greater than I such that each of the series 

m c P J V  
v=o 

and 
W 

converges, then 

lim mk = L ,  

Jim vk = L, - L~~ 

and 

lim ~ ‘ ~ ’ ( v ,  q)  = P(v, y) . 

We should  perhaps  note  that we have no reason to  
believe that  any of these limits fail to exist, even if 
some of the series diverge for all r greater than 1 .  
Indeed, we have already  noted in Section l.E that  the 
third of these equations is true  more  generally; and 
results obtained by Kiefer and wolf ow it^',^ in  a 
somewhat  analogous  situation lead one to suspect 
that  the first two also are  true  more generally. On 
the  other  hand  for  our  purposes this loss in generality 
is not serious, and  the  argument we give below does 
recommend itself by virtue of its simplicity. 

The use of this  added  hypothesis will  be to insure 
that certain  functions which arise are analytic on 
regions larger than  the unit  disk, and hence that 
certain  Maclaurin  expansions converge at 1. To be 
somewhat  more explicit, we will show, for example, 

k - t  m 

k-+ w 

k+ m 

414 is analytic on a disk of the w-plane which is larger 

than  the  unit  disk,  and hence that  the series converges 
for w = 1, and hence that mk - L, converges to 
zero. 

We begin by considering the  function 8. In Section 
2.B, O(w) was defined for 0 5 w < 1 ;  but we shall 
see that O(w) could  just as well have been defined 
for w complex and IwI < 1 ,  and  that  the above  hypo- 
thesis permits  the extension of 8 to a  neighborhood of 
the  unit circle. Remembering that 8(w) was to satisfy 
the  equation 

z - a(z, w) = 0 ,  ( 6 )  

where 

we see if I w[ < 1, then  for z on the  unit circle we have 

IzI > I+, w>l 9 

and therefore,  again by  Rouchk’s theorem, for  each 
such w the  function z - a(z, w) vanishes at exactly one 
point inside the  unit  circle; define 8(w) to be that point, 
so  that 8 is defined throughout  the  open  unit disk of 
the w-plane, and takes values in the  open unit disk of 
the z-plane. That 8 is analytic  for these values of w 
follows from  the implicit function  theorem, for  the 
hypotheses of that  theorem  are satisfied, in  that if we 
set 

a(z, w) = U i j Z i W j ,  
m w  

{=O j = o  

then  the series on the right  certainly converges for 
IzI < 1 and IwI < 1; and 

where 

E l  
vPJ,wj(Z)l~- * Wf‘(4 5 IcL < 1 

for IzI 1 and IwI < 1, so that this  partial derivative 
does not vanish in  the region in  question. 

Now since cYm=o pvzv and x;’ pqzq converge for 
JzI < r, where r > 1, and since if IzI < 1 then  also 

it follows that  there is a positive number E such that  the 
series (7) actually converges for  all z and w satisfying 
1zI < 1 + E and \wI < 1 + E ;  thus  it  appears likely 
that 8 can  be extended to a slightly larger region of the 
w-plane. Let wo be  a  point on the unit  circle; we ask 
what value is to  be assigned to 8(wo). Now 8(two) 
is defined for 0 5 t < 1, and lies within the closed 
unit  disk;  thus there  is at least one  accumulation  point, 
say a, for 8(two) as t approaches 1 from  the left. By a 
continuity  argument  it follows that a - a(u, wo) = 0; 
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now invoking the implicit function  theorem  again, 
we find that  there is an open disk U ,  with center wo 
throughout which there is defined an  analytic  function 
Bo which is unique subject to  the conditions 

o, (~)  - o p o ( w ) ,  wl = o 
and 

Oo(Wo)  = a . 
It is easy to see that  either la1 < 1, or else a = 1, and 
that  the latter can occur only if 1v0q = 1 whenever 
p,, # 0. In the case (a1 < 1, the  radius of Uo may be 
chosen so small that  the values of 8, all lie within the 
unit circle of the  z-plane; it then follows from  the 
uniqueness of the  solution to Eq. (6) subject to  the 
conditions IzI < 1 and IwI < 1 that 8 and Bo agree at 
points  common to Uo and  the unit disk of the w-plane, 
and  thus  that 8, provides a genuine extension of 8. 
In the case a = 1 and wo = 1 ,  for t real and less than 
but  near 1, eo([) lies inside the unit disk, so that O and 
8, must agree at least for these values of t ;  but this 
suffices to insure agreement throughout  their  common 
domain. In the case a = 1 but wo f 1, there is an 
integer k such that wok = 1 and p,, = 0 unless k 
divides q .  But in this case if u is any kth  root of unity and 

z - a ( z ,   w )  = 0 

then also 

z - o(z ,  u w )  = 0 , 
so that  it follows, at least for IwI < 1, that O(uw) = 
O(w); thus in this instance the possibility of extending 
0 to a  neighborhood of wo may be  inferred  from  the 
possibility of extending O to a  neighborhood of 1. 

Therefore 8 is analytic  throughout  the  open  unit 
disk, and has no singular point on  the unit  circle; 
hence 8 may be extended analytically to some  open disk 
with center at the origin and radius  greater than 1. 
Furthermore, by contracting  this disk slightly if 
necessary, we can  insure that 8 takes  the value 1 at  no 
point of this disk except I and  the kth roots of unity, 
where k is the  greatest  common divisor of those v]  

for which p,, # 0. 

B. The convergence of the  means mk 

It is now easy to see that, in  the presence of the hypo- 
theses stated at the beginning of Section 3.A, 

lim nlk = L ,  . 

Recall that 
k + m  

and therefore 
m 

= m k W k  ; 

hence at least for I w I  < 1 

We  will  see that  the function on  the left  is analytic  on 
a disk with center at the origin and radius  greater than 
1, and hence that  the radius of convergence of the series 
on the right exceeds 1. It will follow that  this series 
converges in  particular at w = 1, and hence that its 
general term  tends to  zero: 

lim (mk - L,) = 0 .  
k - +  m 

To establish the  required analyticity, we note that 1 ’ 1  Ll 1 aZ l,w I - ~  I - ~  

where 

- @(l, w )  + I 1 - o ( 1 ,   w )  
1 - w  * 

Now  in  order  that  the  ratio of two analytic  functions, 
say a(w)/j?(w), be analytic at zero of the  denominator, 
say wo, it is sufficient that c((wo) = 0 but  that p’(wo) # 
0 ;  the  application of this principle in turn  to each of 
the  fractions  appearing on  the right of Eqs. (9) and (10) 
reveals first that Y and  then that 

is analytic on a  neighborhood of the closed unit  disk. 
Thus  the  radius of convergence of  the series on the 
right of Eq. (8) must exceed 1 and  the convergence of 
the sequence m, to L, is established. 

This same argument applied to the expression for 

d Z 2  1,w 

establishes 
m 

I i m  v2nk(v)  = L, ; 
k - t m  v = O  

since we now have 

it follows 

Iim vk = L, - L , , .  
k - t m  

There seems to be no reason to give any of the details. 

~ ~~ 
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C. Convergence of the distributions P ( k )  

An argument similar to  that  just used sufices  to estab- 
lish the convergence of the probabilities of occurrence 
of any  particular  state on successive cycles; however 
the  situation is now complicated by the  fact that we 
have to deal with the  generating  functions of the 
quantities involved rather  than with a simple sequence 
of numbers. We shall confine ourselves to showing 
how to circumvent this particular difficulty, and  for 
simplicity we will treat  the  distributions n, which govern 
the  random variables M ,  rather  than  the distributions 
P k ) .  If we let 

and define 71 as  the sequence of coefficients of the 
Maclaurin expansion of 4, namely 

4(z )  = 71(v)z” , 
m 

v = o  

then it is our intention to show 

lim nk( v) = E( v) 

for each v.  
We have 

k - t m  

where 

wf(z) (z  - 1) y(z,  w )  + A(z, W )  = 
O(Z) - O ( Z )  

z - o(z ,   w)  1 - wf(z )  

and 

a  horizontal  bar over a function  here  means  that  the 
function refers to the  initial  distribution being chosen 
to be  the  stationary  distribution.  One  proves  that 
there are two disks D and E in  the z and w planes 
respectively, each with center at the origin and with 
radius exceeding 1 ,  such that  for each z of D the 
function A(z,  w) is analytic  in w at each  point w of E :  
this is as before a matter of examining A(z,  w) of each 
value of w for which a quantity  in a denominator 
vanishes; since z is fixed, only derivatives with respect 
to w become involved. One  must  also check that 
$(z, w) is analytic in w for each choice of z .  Now evi- 
dently 

a, 

41 6 A(z, W )  = 2 [ F ( k ’ ( ~ )  - 4 ( z ) ] w k ,  
k = O  

and  therefore  for  each z and D this series converges 
in  particular at w = 1 ;  we have proved that  the 
sequence of functions F ( k )  converges pointwise in D 
to 4. 

To conclude  that  the coefficients nk(v) of P k )  

converge to those of 4, namely 71(v), it is necessary to 
see that  the convergence of F(k)  to 4 is in  fact uniform. 
But this is immediate, in that if E has  radius r‘, where 
r’ > 1, then 

and  it follows that there is a  number s > 1 and  an 
integer N such that if k > N then 
IF‘k’(z) - 4(Z)l < S - k  

for all ZED.  
Since D is larger than  the  unit disk, it follows 

and it  turns  out  that 4’(1) = L,; this would again 
establish the convergence of mk to L,. Similarly 

from which one may conclude that vk converges to  
L, - L,Z. 

4. Relation to the continuous case 

A .  Discrete approximations 
Our equations may be used to derive some of the 
classical theorems. To this  end we consider now a 
continuous process, in that we suppose  arrivals of 
transactions  may  occur at any  instant,  and  that  the 
process time is represented by a real-valued rather 
than  an integer-valued random  variable. We  will 
approximate this system by a discrete system, invoke 
facts established above, and pass to  an  appropriate 
limit. 

We will restrict our  attention  to  the case of Poisson 
inputs, and we will take  the average interarrival  time 
to be 2. Intuitively, this  means that  the arrivals of 
transactions  for processing are independent of one 
another,  and in  a  time  interval of length t about t1.r 
of them may be expected to arrive; precisely, this 
means that  during a time interval of length t the 
probability that exactly n transactions  arrive for 
processing is to be (l /n!)(t /z)”e-f’7.  It will become 
apparent  that this  restriction is essential, because the 
approximation  procedure to be used turns on the 
independence of events in successive arbitrarily small 
cycles. 

The process time will  be taken to be governed by a 
given distribution 4, that is, the probability that  the 
time  required to process a particular  transaction  does 
not exceed t is to be exactly 4(t). Thus 4 must  be 
such  a  function  that d(0) = 0, 4 is monotone  non- 
decreasing, and lim 4(t) = 1. Furthermore, we will 

t - r m  
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assume that 4 is differentiable, although this hypothesis 
could be relaxed. The probability that  the process 
time for  a given transaction lies between t and t + 6 
is $(t + 6) - @(t), and  taking 4 to be differentiable 
merely enables us to replace this  quantity with 
4’(i). 6 for  a  suitable choice of t between t and t + 6. 

Thus we have in mind the  Markov process described 
by the  pair ( M , ,  E,), where t ranges over the  non- 
negative real numbers;  for each t ,  M ,  and E, are 
random variables with values in respectively the  non- 
negative integers and  the non-negative real numbers; 
M ,  increases in unit steps according to a Poisson pro- 
cess, and decreases by one  unit at any  instant t for 
which M ,  > 0 and E, = 0; and E, increases by a 
random  amount governed by the  distribution 
whenever M ,  > 0 and E, = 0, and decreases linearly 
with unit slope whenever it is positive. 

The N t h  discrete approximation is constructed as 
follows. We let a cycle have length ( 1 / N ) ,  so that 
cycles  begin at times 0, ( l / N ) ,   ( 2 / N ) ,  . 1 , and it follows 

intuitively this means that on the average a transaction 
arrives  for processing once every N z  cycles. The 
distribution  governing the process time is taken to 
be 

P k N  = N k / N )  - 4(k - 1 / W  ; 

it follows 

for suitably chosen points tlN, t 2N,  * * * . It follows that 

1 r m  
= f. J tf$’(t)df ; 

T o  

this integral may of course be identified as  the average 
process time. The requirement 1 - Ap > 0 imposed 
above  must  be satisfied here;  that is, for sufficiently 
large N it  must be true  that 1 - A N p N  > 0; this will 
evidently be so if 

1 - l [ m t 4 f ( t ) d t  > 0 ,  i.e.,  if t > t4’(t)dt . 
T o  s: 

Intuitively, this simply says that  the  average  inter- 
arrival time should exceed the average process time. 

B. The average number of transactions waiting 

It is evident 

and  that 
00 m 1 kf, = k ( k  - l ) p k N  = k ( k  - l ) + ’ ( t k N )  ’ y ; 

k =  1 k =  1 

therefore in the N t h  approximation  the average 
number of transactions waiting in the buffer is 

and therefore 

Similar  considerations  apply to the  second  moment. 

C. The stationary  distribution 

We have the  fact that 

d Z 7  = 1 pkf(z>k ; 
W 

k =  1 

therefore in the Nth  approximation 

and  it follows 

lim cN(z, 1 )  = @(t)et(’-’)’‘dt . 

Therefore  the limit of the  stationary  distributions 
governing the number of words  in  the buffer in the 
various  approximations  has  the  generating  function 

N-PCO 1: 

For the  particular case of exponential service times, one 
chooses 4(t) = 1 - e -ar ,  and on evaluating  and  re- 
arranging  the  various integrals one finds that in this 
case  the  above expression reduces to 
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These results are of course well known. The general 
result was given  by Kninchine in 1932, and is discussed 
at length in Riordan’s recent book”;  the  particular 
case of exponential service times appears  in Feller’s 
book.” In order to see that  our results indeed agree 
with those cited, it is necessary to note that  our state 0 
corresponds to their states 0 and 1 combined:  intui- 
tively, “the buffer is empty” may mean that  there is no 
demand present (“the processor is also empty”) or 
else there is one  demand present (“a transaction is in 
the processor”). 

Finally we know that the  stationary  probability 
that the  counter  reads q and  there  are exactly v trans- 
actions in the buffer is the coefficient of z in  the 
expression 

transactions in the buffer the coefficient of zv in the 
expression 

where uo is the largest integer which does not exceed 
uN. In the same spirit as above we find the limit of this 
expression as N becomes large:  after some rearrange- 
ment it  turns  out  to be 

For the  particular case of exponential service times 
this is 

Therefore we take  as the Nth approximation to the 1 + (1 - e - a ~ )  

stationary probability that E, 5 p and there  are v a t  ‘ I  - z 
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