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A Discrete Queueing Problem
with Variable Service Times

Abstract: Methods from the theory of Markov chains are used to analyze a simple single-server queueing
model. The model is of the sort that arises naturaily in information-handling contexts, in that a discrete
time basis is used, which matches the cyclic character of processors. Considerable generality is attained,
in that no appeal is made to the exponential or other conventional forms for the probability distribu-
tions governing the number of arrivals per cycle and the service times.

The principal object of study is the queue length; the stationary distribution governing this quantity
is calculated, along with various associated averages. The relation between the present method and
the more usual continuous-variable method is illustrated by the derivation of some of the classical

equations from a limiting case of our model.

Introduction

Consider a system in which transactions occur from
time to time and are stored in a buffer, from which
they are taken serially for processing. The time re-
quired to process a given transaction will be variable;
furthermore, we will suppose the processor to operate
on a cyclic (or discrete) basis, so that the time required
to process a given transaction will be represented by a
positive integer, namely the number of cycles during
which the processor is occupied with that transaction.
In this paper we will study the lengths of the queues
that may be expected to form in the buffer.

A special case of this problem, namely that in which
it is assumed that every transaction requires exactly
two cycles for processing, has already been reported.!
Also it may be mentioned that part of the present paper
was presented to the American Mathematical Society.?

Since the literature in queueing theory includes
several excellent books and other surveys, we need not
comment at any length on the relation between this
and other work. However, one aspect of this relation
is shown in Sections 4.A-4.C, where some of the simple
classical results are derived. Furthermore, we would
like to direct attention to a recent paper by R. G.
Miller® in which group arrivals are allowed, as they
are here.

* The Rockefeller Institute.

1. The principal properties of the model
® A. Formalization of the model

We are concerned, then, with a system consisting of
two parts: a buffer which accepts and stores trans-
actions which originate externally, and a processor
which from time to time takes a transaction from the
buffer and processes it. We suppose that the processor
is cyclic or discrete in character, in the sense that it
will only accept a transaction for processing at the
beginning of a cycle, and that it always requires an
integral number of cycles to process a transaction. We
suppose that only one transaction can be processed
at a time, and thus it is convenient to say that at the
beginning of a cycle the processor may be in either of
two states, namely either available (if a transaction is
not being processed) or occupied (if a transaction is
being processed). Each transaction is to require a
variable number of cycles for processing: let p, be the
probability that exactly n cycles are required to process
a given transaction, where py, p,, - - *, p,, * * - are to
be any given probability distribution of the positive
integers. During any cycle new transactions may
be stored in the buffer: we let p, be the probability
that exactly » new transactions appear during any
particular cycle, where pg, p1, """, pp *° * 1S @ given
probability distribution of the non-negative integers.
We suppose that the system works according to
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the following rules:

1) If at the beginning of a certain cycle, say the
k™ there are transactions in the buffer, and
the processor will be in the available state at
the beginning of the (k + 1)** cycle, then at the
beginning of the (k + 1)* cycle a transaction is
transferred from the buffer to the processor. If
this transaction requires n cycles for processing,
then the processor will be in the occupied state
at the beginning of the (k + 2), (k + 3)9, - - -,
(k + n)™ cycles, and it will again be available at
the beginning of the (k + n + 1)*.

2) If at the beginning of the k'™ cycle there are no
transactions waiting in the buffer, then no trans-
action will be moved to the processor at the
beginning of the (k + 1)** cycle, even if a new
one should appear during the k™ cycle.

3) No transactions will be moved to the processor
at the beginning of a cycle if the processor is
occupied at the beginning of that cycle.

Thus, the processor can take a transaction from the
buffer only at the beginning of a cycle, and then only
if it is not still occupied with a prior transaction and
only if there was a transaction already in the buffer
at the beginning of the previous cycle.

The status of the system at the beginning of the k'
cycle may be specified quantitatively by the pair
(M,, E,), where M, is the number of transactions
waiting in the buffer at the beginning of the k™ cycle,
and E, will be defined so as to describe the state of the
processor at the beginning of the k™ cycle. Let X, be
the number of new transactions which occur during
the k'™ cycle; we assume that X, X;, -+ *, X, -+ - are
identically distributed independent random variables
and that their common distribution is written po,
P1s° ", Pu- . This is the assumption that with
probability p, there occur exactly n new transactions
during the k™ cycle. It is evident that

Myyi =X+ My —&tqs

where &, ., is to be 1 or 0 according as a transaction is
or is not taken out of the buffer for processing at the
beginning of the k + 1°! cycle. As to the availability
of the processor, it is convenient to think of a counter
being set as a transaction is transferred to the pro-
cessor, the entry in this counter being the number of
cycles required to process that transaction. The
contents of the counter is to be diminished by 1 just
before the beginning of each subsequent cycle, until
it reads 1; thus at the beginning of a cycle a reading
of the counter other than 1 is always the number of
cycles, including the one then beginning, required to
complete the processing of the current transaction.
If the contents of the counter is 1 at the beginning of
any cycle, then the processor will be in the available
state at the beginning of the next cycle; and if not, then
it will be in the occupied state. We let E, be the con-
tents of the counter at the beginning of the k™ cycle;
these remarks may then be translated as follows:
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IfE, > 1then E, ., = E, — 1,

if E,=1and M, = O then E,,, = 1, and

if £,=1 and M, > 0 then E,,, = r with pro-
bability p,.

Now we can define &, , , tobe 1if E, = 1 and M, > O,
and to be 0 otherwise; thus strictly speaking & could
be dispensed with, and (M, , ;, E; ) has been specified
in terms of (M,, E,) and the distributions p and p.

Thus we perceive that the sequence (M, Ey),
k=0,1,2, - constitutes a Markov chain. Indeed,
our interest is confined to the random variable M,
and we introduce E, precisely because the study of the
pair (M,, E,) is simpler than the study of M, alone;
and the reason for this gain in simplicity is essentially
that the two together constitute a Markov chain, while
M, by itself does not.

It is perhaps worthwhile to note that while we will
borrow the language of the theory of Markov chains,
our main argument is self-contained, in that it depends
only on certain elementary theorems from analysis.
Nowhere do we make use of a deep fact about Markov
chains.

® B. The probabilities of occurrence of the various
states

Let us denote by P(v, #|(, £) the probability that if
My, E) = ((,8), then (Myyy, Eryy) = (v, 7). The
above remarks may be interpreted in this notation as
follows, where we have adopted the convention that
p, = 0 for negative values of v:

If ¢ > 1 then
P(v,n|f, &) =0ifp# ¢ -1,
and
Pv,i =15, ) =p,(ifn=8—1;
if ¢ = 1 then
P, nfl, 1) = py_g41p,if >0,
and

P(»1j0,1) =p,.

These are the transition probabilities for our Markov
chain.

Let P®(v, ) be the probability of the occurrence
of the state (v, ) on the k' cycle, i.e.,

P®(v, ) = Prob{(M,, E) = (v, m)} .

Evidently there is the inductive relation

P(k+l)(v, n) = ;io éi—i PO, V[|C, 5)P(k)(c’ 9F

so that if one knows P©(v, ) for all v and 5 then in
principle one may calculate P%®)(v, ) for all k, v, and 7.
On making use of the values of the transition prob-
abilities listed above, we find




PE Dy, =3 po PO+ D)
;=0

v+1

+ {Zl pnpv—l-i-lP(k)((’ 1) + 51npvP(k)(0’ 1) ’

where 6, is the traditional Kronecker delta, i.e., the
last term appears only when = 1.
Now define

JORDW LONE

since P®)(v, ), is the probability that M, = v and
E, =1#n, we see that m,(v) is the probability that
M, = v, regardless of the values of E,. Thus, m,(v)
is the probability that there are exactly v transactions
in the buffer on the k™ cycle. Our objective now
becomes the determination of properties of the se-
quence of distributions m,. A precise statement of our
results appears in Sections 1.D and L.E, but first we
discuss a hypothesis which underlies all our arguments.

® C. The load on the processor

Let A and u be the means of the distributions p and p
respectively:

e

A= 3 vp,
v=0

and

L= np,,
n=1

so that 4 is the average number of new transactions
occurring during a cycle, and y is the average number
of cycles required to process a transaction. We shall
assume throughout the present paper that jy < 1 .

Intuitively, this is very reasonable. During the first
N cycles, approximately AN transactions should occur;
on the average the process time for a transaction is
about u cycles, so that if N is large and Au < 1 the
processor should be working about AuN of the first N
cycles, and idle about N — AuN of the first N cycles.
Thus the processor should be working with proba-
bility about

(1/N) AN = dp
and idle with probability about
(1/N)-(N — AuN) =1 — .

A little more formally, we could say that the processor
is working during the &' cycle (of any one experiment)
ifE,_; > lorelseif E,_; = 1and M,_, > 0, and is
idle otherwise, i.e., if E,_; = 1 and M,_; = 0. It will
appear during the course of our main argument that
if Ay < 1 then

N
lim (1/N) Y, P*"D0,1)=1-Au.
=1

N>o

On the other hand, if Au were to exceed 1, then after
N cycles about AN transactions should have occurred,
whereas only about N/u should have been processed,
so that about
vty

u U
should be in the buffer. Thus M, should grow approxi-
mately linearly with k. This also could be formalized,
but seems to be clear enough as it stands.

Thus Au represents in some sense a load on the
processor, and 1 — Au represents an excess capacity;
our hypothesis is that there be a positive excess
capacity.

N

o D. The average number of transactions in the buffer
Let

g

my = Z VI v) 5

v=0
then m, is the expectation of M,, or the average
number of transactions in the buffer on the k™ cycle.
The variance of M,, to be written v,, is defined to be
the expectation of (M, — m,)?, or equivalently,

[+ ]
v = Zo vim(v) — m?.
b=

On the face of it, of course, m, and v, depend on the
initial distribution P®), i.e., on the number of trans-
actions in the buffer at the beginning of the process,
even though this may only be given stochastically.
Thus, if initially there were a large number of trans-
actions in the buffer then at least during the early
cycles m, should be larger than if say there had been
only a few. On the other hand, it would seem that in
the long run the effect of the initial distribution should
wear off; and indeed it does. We define the average
number of transactions in the buffer to be

N
im(1/N) > my;
N—-w k=0

we will prove that, at any rate if the initial distribution
is finite in a reasonable sense, and if 1 — Au > O,
then this limit exists, is independent of the initial
distribution P9, and in fact is equal to

1
A+

M+ A
21_/1#( + A,

where A and u are defined as above, and A and M are
similar higher moments:

A= v‘éo v(v — Dp,

and

M= 21 n(n — Dp, .
s
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We will also prove under a stronger but still very
general hypothesis that the means m, themselves
converge to this limit.

Somewhat analagous considerations hold for the
variances. If

Z= 3 wv—1)v-2p,
v=0

and

M= i 01 — 1(n — 2)p,

then

lim (1/N) z Uk

N-ow

exists and is equal to

A+A—224+A2T+A

(A3A + 3)AM + L),
Ap

31—
where
A—l (M + Ap)
_21_ y’a

provided, however, that the average of m,? is the same
as the square of the average of m, (which will be true,
for example, if m, converges). The same condition
that insures the convergence of my, insures also the
convergence of v;.

® E. The limiting distribution

It is known from the general theory of Markov chains
that there will exist a stationary or limiting distribution,
that is, there will be a set of quantities P(v, ) which is
stationary in the sense that if P©(v, #) = P(v, 1)
then also P®(v, n) = P(v, 1) for all k, and is limiting
in the sense that, regardless of P®)(v, ),
lim P®(y, n) = P(v, n)
k— 0
for all v and #. The interested reader may consult, for
example, the book of Feller*, or that of Chung®;
however, we need make no explicit use of this theorem.
Instead we will simply exhibit a certain distribution P
and prove that it is stationary, and then, under a weak
restriction on the distributions P, p, and p we will
prove directly the convergence.

If we let

= Zﬁv,n)

it obviously must turn out that 7 is a limiting distri-
bution for the sequence of random variables M,. As
it happens 7 is given by a very simple generating
function, namely
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& _ —1
v;) m(v)z” = (1 — iw)f(z) ————[ oy

where f and g are the generating functions for the
distributions p and p respectively:

=% ez ad @)= p.

Naturally the mean and variance of the distribution
7 agree with the averages of m, and v, listed in Section
1.D.

2. The computation of the various averages

® A. The generating functions

We have already defined f'to be the generating function
of the distribution p: that is, we set

=5 nt.

This series converges at least for |z| < 1, and of
course defines an analytic function on this region.
Similarly, we define, for each k and 5, F,*® to be the
generating function determined by P®(v, n) with v
running:

[+e]
F%(z) = ZO PO, )z .

We also define

F¥z)= 3 F%()
1

-
so that F® is the generating function of the distri-
bution which governs M,:

FO@) =Y %)z’ .
v=0

Now the expectation m, of M, can be recovered from
F®: since

a0
F®'(z)= Y va®)z'~t,
v=0

it follows that
m, = F®'(1) .

Our first object will be to calculate the average
number of transactions in the buffer as already defined,
namely

= lim (1/N) Z my . (1

N-w

We will do this by means of the foliowing device.
We form the function

o0
aw) = 5 mw*
k=0

for 0 £ w < 1; then it is a fact of classical analysis




that since each m, is non-negative

L= lim (1 - w)x(w), (2)
w—1-

the existence of the limit (1) which defines L; being
guaranteed by the existence of the limit (2). This is a
theorem of the Tauberian type; a complete elementary
discussion appears in Hobson’s book on real variables,®
and there is also a treatment in Widder’s book.’

This interest in the function o leads us to consider
the function

L(z,w)= ) F®(w*,
k=0

because a can be recovered from I': evidently

or
O((W) = E

1w

The evaluation of the limit L; of Eq. (1) will now
consist in finding a more or less closed form for the
function I' and then computing

0
lim (1 -w) —F
w—1~ 02

& B. A closed form for T’

1,w

We saw in Section 1.B that the probability distribution
P®*1D js specified explicitly in terms of the distribution
P®; it is then more or less obvious that the functions
F®*1 should be expressible in terms of the functions
F®_ In fact, as is easy to deduce,

2F,** D = 2fF, 4 pfIF,® — PP(0.0)]
+ 6,,2f/P(0, 1), 3

where here and hereafter we suppress unnecessary
mention of z and w when they occur as arguments of
the various functions which appear.

Define

Gz, w)= Y F®(2)w*,
k=0
so that

I'(z,w)= 21 Gz, w).

Then the recurrence relation (3) implies immediately
that

ZG,, = waGry+1 + pqwf[Gl - A(W)J
+ zF, O + 8,,zwfA(w), 4

where we have set

Aw) =Y PP, Hwk.
k=0
The relations among the various functions G, are
surprisingly simple, and on making use of the fact that

lim G, = 0 one finds that they may be solved expli-
'éitly for each of the functions G, in terms of the
function 4 and f, the distribution p, and the initial
distribution P9 which appear as coefficients of the
functions F°. Specifically, on multiplying Eq. (4) by
(wf)" and then summing over values of 5 between 1
and N, one finds that

N+1

z2G, = z(wf)¥Gy 41+ Zl p(w)NG, — A)

N+1
+zwfA+z Y (W) 'FO, )
n=1
Therefore on setting

o(z, w) = §1 p[wf(2)]"

and

0w = 3. FORM@T

it appears that
(z —0)G, = (zwf — 6)A + z®
or
_(zwf~a)A + z®
z—gq

G,

Having obtained G,, one could of course now write
each G, in terms of 4 and ®. However, it is more to
our immediate purpose to note simply that on sum-
ming Eq. (4) over all values of # we obtain

el

2 —w) Y Gy=wf(l—2)(G—A)+z 3 F,@
n=1 n=1
from which it follows that
. wl-2) wf(l — z2) 1
_(l—wf)(z—a)(p_ zZ—0 A+1—wf®’

where we have set

0

Oz =Y F%2).
n=1

Now in principle we know the functions ® and @,
in that they depend only on the distributions p and
P, 50 that further understanding of I" depends only
on further understanding of the function A. It is easy
to see that for each value of w satisfying 0 < w < 1,
the function Gy(z, w) is analytic in z for |z| < 1;
but G,(z, w) has been expressed as a fraction

[zwf — a(z, w)]A(w) + zD(z, w)

Gy(z,w) = p——

s

and it follows that the numerator of this fraction
must vanish whenever the denominator does, at least
inside the unit disk. From this observation can be 411
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deduced all the information we need about A(w).
Indeed, set

¢w(z) =z~ O'(Z, w).

If z is real, so is ¢,(2); it is easy to see that
lim¢,(z)=1— Y pw*>0.

z—1 k=1

On the other hand

$u0) = = 3 pilwpo)* <0,

since the hypothesis 1 — Au > 0 precludes the possi-
bility that p, vanishes. Therefore, ¢,, has at least one
real zero in the unit interval. By Rouché’s theorem
¢,, can vanish but once on the open unit disk, since z
vanishes but once there and on the unit circle we have
|z| > |o(z, w)] .

Therefore there is for each w between 0 and 1 a unique
root 8(w) in the unit disk of the equation

du(z) =0

and this root is real.

If we replace z with 8(w) in the numerator of the
expression for Gy, the result must vanish identically.
Thus it follows that

O6(w), w]
AW =T e

where we have made use of the fact that o[6(w), w]
may be replaced with 8(w). Thus knowledge of the
function I'(z, w) now turns on knowledge of 6(w).

e C. The behavior of the root 6(w)

The study of 6(w) is considerably simplified by the fact
that our interest is confined to values of w near 1.
Differentiation of the relation defining 0, namely

00 — 3. pwfTOONI = 0

reveals that, since 1 — du > 0, 8'(w) is positive. It
follows that 6 increases monotonely, and therefore
that lim 6(w) exists, say

w—1-

lim 6(w)=a.

w1~

Define for z restricted to the unit interval

D) =z- 3 pffs

then

M@ =1= 3 knf(2"" /@)
so that

Wiz)>1—-Au>0.
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Furthermore it is evident that A(0) < O (since again
po # 0) and A(1) = 0; thus % increases monotonely
to zero as z varies along the unit interval. On the other
hand ¢,, converges uniformly to  as w approaches 1
from the left, and therefore 4(a) = 0. Therefore

lim 6(w)=1.

w—1-

It follows that

. 7
lim 6'(w) = ,
w1~ ( ) 1 _'A#

and, on differentiating twice the relation defining 0,
that

1
hm 6" (W) = ——— [W*A + M + 224%(1 — Ap)] .
Jim9"(w) T —n° L | pe(1 = )]

These remarks contain sufficient information about
A{w) to enable us to evaluate the limit L,.

® D. The average number of transactions in the buffer
One now computes without difficulty that

_do
1,w_ dz

or
(1- W)é—z‘

1

w 1—w
HETT w)<{1 s e(w)]} OLO(w), w1

—q>(1,w)+,11—_1ﬁ—w—)>.

The quantity in angular brackets approaches zero as
w approaches 1 from the left, and therefore ’'Hospital’s
rule applies. One thereby verifies that

and then uses this together with the fact that

ol IO

dz |, ow i1 0z |11

to calculate

wlir?_ - w)%g - =1+ %E_I—M(AZM + uh).

This establishes Eq. (1) of Section 2.A.

® E. The average of the variances

Suppose we let

o0
ue= 3. va®(),
v=0
50 that

2
Up = U — My~ ,




where v, is the variance of the distribution 7, as
defined in Section 1.D. Let

L, = lim (1/N) Z Uy .

N— oo

Then it is evident
u, = FO(1) + FO'(1),

and therefore we may obtain L, from [ by the
equation

or

or 1,w] ,

L,= lim (1 —w) +
1w 62

w—1-

[621"

By a procedure which is strictly analagous to that just
used to evaluate L;, but whose complexity is remark-
able, one may evaluate this limit; one finds

1 1
Ly=A+1+-= PM 4+ 3IAM + &
2 + +31—Au( + + u¥)

+2A% + QA+ DA,
where

=31—7a (/IZM + uA).

It follows
Ly—L*=A+/.-2*

+1
31 -ip

+A;

we would like, of course, to identify L, — L,? with the
average of the variances, i.e., to assert

lim (1/N) Z v, =L, — L%,
N-ow
but this is incorrect unless
L,? llm(l/N)Z m2.
N-ow
This last statement is, however, correct if
L, = lim m,;
k-

and this we will prove in Section 3.B for somewhat
restricted p, p, and P(¥,

o F. The stationary distribution

If for any reason one suspected that there might exist
a stationary distribution (e.g. because one knew the
theorem mentioned in Section 1.E), then one might
very naturally suspect that it would be P, where
P(v, n) is defined by

N
P(v,n) = lim (1/N) Y. PP(v, n).
N-ow k=0

We do not have the quantities P®(v, #) available

except in the guise of their generating functions, but
this is no obstacle: we put

F(z) = lim (1/N) Z F®¥(z),
N- oo

and it should be true that
F(z)= lim (1 —w)G,(z,w).

w—17

Let us calculate this last limit, Returning to Eq. (5)
of Section 2.B, we have

P-(1-wH4d &

Z—a

G Z Pjt+ng~ 1(Wf)

n=

+ 'Zl(wf)j_le+n—1(0) + 5111wa .
j=

Therefore using the fact that
Iim (1 — w)Aw) =1 — Au,

w=1-
we find
lim (1 — w)G,(z, w)
w—1-
=(1-— zu)[ ——G(Z-—l) Zp,+,, S+ 51,,f]

Thus we are led to conjecture that if we put F,(z) equal
to the right member of this equation and define
P(v, n) in terms of F,(z), i.e., if we let

Fi@)= 3 Poun)z".

then the distribution P should be stationary.

But now the proof that P so defined is in fact station-
ary is trivial. In Eq. (3) of Section 2.B we let F® = F,
for each value of 5; a little rearrangement reveals that
it follows that also F** = F, for all 5. Since the
functions F, are unchanged from cycle to cycle, it
follows that the distribution P is also unchanged from
cycle to cycle, i.e., is stationary.

Finally if as in Section 1.E we let

w(v) = Zlﬁ(v, m,
=
it is easy to calculate the generating function for the
distribution 7; we find
-1
(Z N’

On noting that if g is the generating function for the
distribution p then

o(z, 1) = gLf(2)],

we see that we have the generating function for &
announced in Section 1.E. 413

¥ Fy(2) = (1 = ()
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3. The question of convergence
® A. The analyticity of the function 8(w)
In Section 2.D we proved that

N
im(A/N)Y m,
N-w k=0

exists, but we left open the question of whether or
not the sequence m, itself converged. Similarly, in
Section 2.F we came very close to proving that

N
lim (1/N) Y. P®(v, )
N—ow K=o
exists, although it turned out to be unnecessary to
examine this particular question there. Now we will
prove that if the distributions P®, p, and p are well
behaved, in the sense that there exists a real number r
greater than I such that each of the series

> x POt

v=0 n=1

o0
Y ot
v=0

and

[ra)
2 Pyt
n=1
converges, then

limm, =L,
k— w0

H _ 2
limp, =L, — L,
k— o

and

lim P®(v, n) = P(v, n) .

k—

We should perhaps note that we have no reason to
believe that any of these limits fail to exist, even if
some of the series diverge for all r greater than 1.
Indeed, we have already noted in Section 1.E that the
third of these equations is true more generally; and
results obtained by Kiefer and Wolfowitz®® in a
somewhat analogous situation lead one to suspect
that the first two also are true more generally. On
the other hand for our purposes this loss in generality
is not serious, and the argument we give below does
recommend itself by virtue of its simplicity.

The use of this added hypothesis will be to insure
that certain functions which arise are analytic on
regions larger than the unit disk, and hence that
certain Maclaurin expansions converge at 1. To be
somewhat more explicit, we will show, for example,

= 2]

2 (my — Ll)Wk

k=0

is analytic on a disk of the w-plane which is larger
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than the unit disk, and hence that the series converges
for w =1, and hence that m, — L, converges to
zero.

We begin by considering the function 6. In Section
2.B, 6(w) was defined for 0 £ w < 1; but we shall
see that 6(w) could just as well have been defined
for w complex and |w| < 1, and that the above hypo-
thesis permits the extension of € to a neighborhood of
the unit circle. Remembering that 6(w) was to satisfy
the equation

z—a(z,w)=0, ©6)

where

a(z, w) = le.,[Wf @7,

e
we see if [w| < 1, then for z on the unit circle we have
lz| > |o(z, w)| ,

and therefore, again by Rouché’s theorem, for each
such w the function z — o(z, w) vanishes at exactly one
point inside the unit circle; define 8(w) to be that point,
so that 6 is defined throughout the open unit disk of
the w-plane, and takes values in the open unit disk of
the z-plane. That 6 is analytic for these values of w
follows from the implicit function theorem, for the
hypotheses of that theorem are satisfied, in that if we
set

b

G'(Z, W) = Z Z aijziwj 3 (7)
i=0 j=0

then the series on the right certainly converges for

|z| < 1and |w| < 1;and

a -]
o [z—0o(z,w)]=1- ; npLwf ()1 wf'(2),
where

S np T W )

for |z| < 1 and |w] < 1, so that this partial derivative
does not vanish in the region in question.

Now since Y ;2o p,z° and z,‘,”:l pyz" converge for
|z| < r, where r > 1, and since if |z| < 1 then also

o0
A
v=0

it follows that there is a positive number ¢ such that the
series (7) actually converges for all z and w satisfying
|z2] <1+ ¢ and |w <1 +¢; thus it appears likely
that 6 can be extended to a slightly larger region of the
w-plane. Let w, be a point on the unit circle; we ask
what value is to be assigned to 8(wg). Now 8(twg)
is defined for 0 < ¢ < 1, and lies within the closed
unit disk; thus there is at least one accumulation point,
say a, for O(twg) as t approaches 1 from the left. By a
continuity argument it follows that a — a(a, wy) = 0;

Sip<ti

<1,




now invoking the implicit function theorem again,
we find that there is an open disk U, with center w,
throughout which there is defined an analytic function
0, which is unique subject to the conditions

0o(W) — a[0o(w), w] =0
and
Oo(wo) = a .

It is easy to see that either [a| < 1, orelse @ = 1, and
that the latter can occur only if wy" = 1 whenever
Py # 0. In the case |a] < 1, the radius of U, may be

chosen so small that the values of 8, all lie within the:

unit circle of the z-plane; it then follows from the
uniqueness of the solution to Eq. (6) subject to the
conditions |z] < 1 and |w| < 1 that 6 and 6, agree at
points common to U, and the unit disk of the w-plane,
and thus that 0, provides a genuine extension of 0.
In the case a = 1 and w, = 1, for 7 real and less than
but near 1, 8,(7) lies inside the unit disk, so that 8 and
8, must agree at least for these values of ¢; but this
suffices to insure agreement throughout their common
domain. In the case @ = 1 but w, # 1, there is an
integer k such that wo* =1 and p, = 0 unless k
divides #. But in this case if u is any k' root of unity and

z—o(z,w)=0
then also
z—o(z,uw)=0,

so that it follows, at least for [w[ < 1, that O(uw) =
O(w); thus in this instance the possibility of extending
0 to a neighborhood of wy, may be inferred from the
possibility of extending 6 to a neighborhood of 1.

Therefore 8 is analytic throughout the open unit
disk, and has no singular point on the unit circle;
hence 6 may be extended analytically to some open disk
with center at the origin and radius greater than 1.
Furthermore, by contracting this disk slightly if
necessary, we can insure that 6 takes the value 1 at no
point of this disk except 1 and the k™ roots of unity,
where k is the greatest common divisor of those #
for which p, # 0.

® B. The convergence of the means my

It is now easy to see that, in the presence of the hypo-
theses stated at the beginning of Section 3.A,

limm,=0L,.
k— o0

Recall that
Tiz,w)= Y Y mz'v,
k=0 v=0

and therefore

or ® .
— = mw"
0z 1,w k=0 ,

hence at least for |w| < 1

or L, ® .

5| T = L Lowt ®)
We will see that the function on the left is analytic on
a disk with center at the origin and radius greater than
1, and hence that the radius of convergence of the series
on the right exceeds 1. It will follow that this series
converges in particular at w = 1, and hence that its
general term tends to zero:

lim (m, — L) =0.

k~ oo

To establish the required analyticity, we note that

oy L 1
0z 1w 1~w 1-—w
do w
x [E 1+——1 _a(l’w)“:‘(w)—Ll], 9)
where
1—w
Y(w) = ey D[O(w), w]
—®(1, w) + al=odw (10)
1—w

Now in order that the ratio of two analytic functions,
say a(w)/f(w), be analytic at zero of the denominator,
say w,, it is sufficient that a(w,) = O but that 8'(w,) #
0; the application of this principle in turn to each of
the fractions appearing on the right of Egs. (9) and (10)
reveals first that W and then that

or L

EE l,w—l_'w

is analytic on a neighborhood of the closed unit disk.
Thus the radius of convergence of the series on the
right of Eq. (8) must exceed 1 and the convergence of
the sequence m, to L, is established.

This same argument applied to the expression for

or
oz?

1,w

establishes

lim Y v’m(v)=L,;
koo v=0

since we now have

limm?2=1L,?,
k—

it follows

limvk = L2 - L12 .

k—= o

There seems to be no reason to give any of the details.
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% C. Convergence of the distributions P

An argument similar to that just used suffices to estab-
lish the convergence of the probabilities of occurrence
of any particular state on successive cycles; however
the situation is now complicated by the fact that we
have to deal with the generating functions of the
quantities involved rather than with a simple sequence
of numbers. We shall confine ourselves to showing
how to circumvent this particular difficulty, and for
simplicity we will treat the distributions 7, which govern
the random variables M, rather than the distributions
PO If we let

—1
82 = (1= 4 fa) =

and define 7 as the sequence of coefficients of the
Maclaurin expansion of ¢, namely
¢(z) = ) 7z’

v=0

then it is our intention to show

lim 7, (v) = i(v)

k-

for each v.
We have

1
Iz w) - ¢(@) =4z W),

where
_wfz)z - 1) 0(z) - O(2)
A, w) = z —o(z, w) Ha W+ 1 - wf(z)
and
_ ®[0(w), w] — O[6(w), w]
HE W = e
O(z, w) — B(z, w) )
B 1 —wf(z) ’

a horizontal bar over a function here means that the
function refers to the initial distribution being chosen
to be the stationary distribution. One proves that
there are two disks D and E in the z and w planes
respectively, each with center at the origin and with
radius exceeding 1, such that for each z of D the
function A(z, w) is analytic in w at each point w of E:
this is as before a matter of examining A(z, w) of each
value of w for which a quantity in a denominator
vanishes; since z is fixed, only derivatives with respect
to w become involved. One must also check that
®(z, w) is analytic in w for each choice of z. Now evi-
dently

Az W) = § IFOE) - 9@,
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and therefore for each z and D this series converges
in particular at w = 1; we have proved that the
sequence of functions F® converges pointwise in D
to ¢.

To conclude that the coefficients m,(v) of F®
converge to those of ¢, namely 7(v), it is necessary to
see that the convergence of F® to ¢ is in fact uniform,
But this is immediate, in that if £ has radius ', where
r’ > 1, then

1
lim sup |[F®(z) — ¢(2)|"* =,

n—o r
and it follows that there is a number s > 1 and an
integer N such that if & > N then

|[F(z) - g(2)] < s

for all z¢D.
Since D is larger than the unit disk, it follows
¢'(1) = lim F¥'(1),
k—

and it turns out that ¢'(1) = L,; this would again
establish the convergence of m, to L. Similarly

¢"(1) = lim F®'(1),
k-0

from which one may conclude that v, converges to
L, — L%

4, Relation to the continuous case

% A. Discrete approximations

Our equations may be used to derive some of the
classical theorems. To this end we consider now a
continuous process, in that we suppose arrivals of
transactions may occur at any instant, and that the
process time is represented by a real-valued rather
than an integer-valued random variable. We will
approximate this system by a discrete system, invoke
facts established above, and pass to an appropriate
limit.

We will restrict our attention to the case of Poisson
inputs, and we will take the average interarrival time
to be 7. Intuitively, this means that the arrivals of
transactions for processing are independent of one
another, and in a time interval of length ¢ about ¢/t
of them may be expected to arrive; precisely, this
means that during a time interval of length ¢ the
probability that exactly » transactions arrive for
processing is to be (1/a!)(z/7)"¢”"*. It will become
apparent that this restriction is essential, because the
approximation procedure to be used turns on the
independence of events in successive arbitrarily small
cycles.

The process time will be taken to be governed by a
given distribution ¢, that is, the probability that the
time required to process a particular transaction does
not exceed ¢ is to be exactly ¢(f). Thus ¢ must be
such a function that ¢(0) = 0, ¢ is monotone non-
decreasing, and lim ¢(r) = 1. Furthermore, we will

t—o0




assume that ¢ is differentiable, although this hypothesis
could be relaxed. The probability that the process
time for a given transaction lies between ¢ and ¢ + ¢
is ¢(t + 8) — ¢(1), and taking ¢ to be differentiable
merely enables us to replace this quantity with
¢’(D)- 6 for a suitable choice of  between ¢ and ¢ + 4.

Thus we have in mind the Markov process described
by the pair (M,, E,), where ¢ ranges over the non-
negative real numbers; for each ¢, M, and E, are
random variables with values in respectively the non-
negative integers and the non-negative real numbers;
M, increases in unit steps according to a Poisson pro-
cess, and decreases by one unit at any instant ¢ for
which M, > 0 and E, = 0; and E, increases by a
random amount governed by the distribution ¢
whenever M, > 0 and E, = 0, and decreases linearly
with unit slope whenever it is positive.

The N'™ discrete approximation is constructed as
follows. We let a cycle have length (1/N), so that
cycles begin at times 0, (1/¥N), (2/N), - - -, and it follows

1 1\
v 2 (LY -amn
Py vl (Nr) € ’

and therefore

[+2)
@ = Y pNar= e
[o]

It follows
, 1
I =fi0) =1

intuitively this means that on the average a transaction
arrives for processing once every Nt cycles. The
distribution governing the process time is taken to
be

p" = ¢(kIN) — ¢k ~ 1/N) ;

it follows

[ee] © 1
=Y kp" =Y k-¢'(tN)- N
k=1 k=1

for suitably chosen points ¢,V, £,¥, - - - . It follows that
12 k 1
im gy = lim = 3 = (M)~
Jim Jpin L’l’n;Nd’(" )N
1

= ;L t¢'(n)dt ;

this integral may of course be identified as the average
process time. The requirement 1 — Ay > 0 imposed
above must be satisfied here; that is, for sufficiently
large N it must be true that 1 — Ayuy > 0; this will
evidently be so if

[ - lf t¢'(Hde >0, e, if = >I te'(Hydr .
T 0 0

-Intuitively, this simply says that the average inter-

arrival time should exceed the average process time.
& B. The average number of transactions waiting
It is evident

1

AN = ;‘Il(l) = TZNZ

and that
o0 w0 1
My =% kik —Dpl = ¥ kik — 1)¢'(t,") N
k=1 k=1
therefore in the N'™ approximation the average
number of transactions waiting in the buffer is
1 1
L=y +=——
' "Tar- Antiy
and therefore

limL~ = % [1 - %Jwtqb’(t)dt] o le-[wtzdf(t)dt .

N-w 0 0

(]‘NZMN + unAy) 5

Similar considerations apply to the second moment.
& C. The stationary distribution
We have the fact that

o(z, 1) = kipkf (2" ;

therefore in the N'® approximation

oz =3 [¢(k/N) - ¢('%—1)]e"‘z-l>/"‘ ,

and it follows
lim opy(z, 1) =-[ ¢'(Hez-Divgy
N-oow V]

Therefore the limit of the stationary distributions
governing the number of words in the buffer in the
various approximations has the generating function

-1
fim (1~ dyp) —

N> - O-N(Za 1)

= [1 - %f:@’(t)dt] {z - 1]
x [z - fom¢'(t)et(z_‘)/tdt] .

For the particular case of exponential service times, one
chooses ¢(f) = 1 — e *, and on evaluating and re-
arranging the various integrals one finds that in this
case the above expression reduces to

(-2
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These results are of course well known. The general
result was given by Kninchine in 1932, and is discussed
at length in Riordan’s recent book'®; the particular
case of exponential service times appears in Feller’s
book.!! In order to see that our results indeed agree
with those cited, it is necessary to note that our state 0
corresponds to their states 0 and 1 combined: intui-
tively, “the buffer is empty” may mean that there is no
demand present (‘‘the processor is also empty”) or
else there is one demand present (“‘a transaction is in
the processor”).

Finally we know that the stationary probability
that the counter reads # and there are exactly v trans-
actions in the buffer is the coefficient of z in the
expression

Z k+rp—1f(z)k + 6,1./(2)

= M) J

R s

Therefore we take as the N™ approximation to the
stationary probability that E, £ u and there are v

transactions in the buffer the coefficient of z¥ in the
expression

1-fuz) &

(1 — Ayun) z ;:F__l‘) Z pk+n—1fN(Z)

where u, is the largest integer which does not exceed
uy. In the same spirit as above we find the limit of this
expression as N becomes large: after some rearrange-
ment it turns out to be

[z — o(u) — jw¢’(t + u)e’("”/'dt]
0

X [1 - (% J :td)'(t)dt) _1] [z —j:d(t)e‘(“””dt]._ 1

For the particular case of exponential service times
this is

(- Dfrva-em=1].
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