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A “Logical  Pattern”  Recognition  Program 

Abstract: A description is  given of an IBM 7090 program which searches for “logical patterns” in a 
set of input samples. The program was tested on a character recognition problem,  where it designed 
a recognition system  whose error  rate and hardware  requirements are compared to those of  a system 
designed  by  humans. This program is  intended to be used  as a research tool  to discover certain kinds of 
patterns in  data and as a step in  the direction of automatic logic design for some character recognition 
problems. 

Introduction 

In recent years some  attempts have been made to use a 
computer to generate  properties useful in  “concept” 
formation  or  pattern recognition. The results have 
been described by such authors  as Bledsoe and 
Browning,’ Hovland  and Hunt,’ K ~ c h e n , ~  st earn^,^ 
and  others.  This  paper relates another  method of 
attacking  the  problem.  The  method  has been imple- 
mented by three  sequential  IBM 7090 programs  total- 
ing about 8000 instructions. 

The  input  to the first of these programs is a set of 
samples  representing  the  problem.  Each  sample is a 
binary word  with an identifying “name”  or “type” 
attached  to it.  Each  bit of the word represents the  state 
of a  certain  property,  present  or  absent. These proper- 
ties are supposedly the result of a  human designer’s 
best effort to pick quantities  pertinent to his recogni- 
tion  problem. After he has  done this, if sufficient 
variation still remains  among samples of a type,  it is 
desirable to use some  automatic  technique to finish the 
design. How much effort the designer puts  into finding 
the  primary  properties  depends on how much power 
the  automatic  technique possesses and  on  the difficulty 
of the  problem. 

The  output of the last program is a  description of an 
automatically derived recognition system and  the  sub- 
stitution  error  and reject rate  for this system. 

The basic theme of this  method is twofold: 

1) Use of nonexhaustive heuristic algorithms to find 
“valuable”  properties  (Program 11). 
2 )  Employment of various devices to make  the  require- 
ments expected of heuristic  method (1) less stringent. 
These include  a  method of dividing a  problem into a 
number of simpler problems  equivalent to  the original 
problem  (Program I) and  a decision process which can 

operate effectively without  requiring  properties of very 
high “value”  (Program 111). 

The practical  rationale  for  attacking the problem at 
all  rests mainly on these two points: 

1) The  pattern recognition problems of the  future  are 
apt  to involve a  tremendous  latitude of variation in  the 
patterns. Design by humans will be difficult because of 
the large amount  of  data  that must be manipulated. 
Computers will have the ability to handle these data 
and can do so if we can tell them  how. 

2)  Since automatic design produces a standardized 
structure,  it  permits  concentration  on  the design 
program  and  the  implementation of the  type of 
machine  the  program designs. This is contrasted  to the 
present typical situation involving a different design 
effort for  each different problem. 

Program I : Category formation 

The first step  taken to lighten the  burden of the 
property-finding  algorithm of Program I1 is to divide 
the original  recognition  problem  into a number of 
simpler recognition  problems which can be solved one 
at a  time,  independently  of  each  other, and whose 
solutions  taken  together  equal the solution to  the 
original  problem. The  program accomplishes this by 
dividing the original  sample set (5’) into a number of 
mutually exclusive sample sets (Pi) and  insuring that 
any new sample will  be placed in  one  and only  one of 
these sets. Each of the P i ,  henceforth called a cafegory, 
can  now be looked at  as representative of a  recognition 
problem  in itself and considered  separately.  This 
process is depicted in Fig. 1 for five categories. 353 
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The  criterion  for categorizing requires mutual 
“similarity” among members of a category. Since the 
most bothersome recognition problems occur when 
samples which look alike have different “names,” this 
choice of criterion tends to isolate and simplify the 
difficult parts of the original problem. For example, in 
alphabetic  character recognition, many samples of 0 
and Q might “look alike” and tend to be placed in 
the same category, while presumably most of the  other 
letters would be sufficiently different to be excluded 
from  this category. If they were alone  in  that category, 
the required recognition logic would involve a simple 
search for  the  tail of the Q. 

Of course, it is entirely possible that  not all samples 
of a “type” look alike (i.e., A and a)  and so different 
samples of the same letter  can be present in a  number 
of categories. 

During  the categorizing process, the “name”(such as 
A )  of a sample is not referred to, in order that  the 
program be unprejudiced by human preconception 
regarding what “types” should look alike. The reliance 
is  solely upon  a measure of “similarity” between two 
samples. It is possible to define and use many measures 
of similarity, each pertinent to  its own problem. How- 
ever, in  order that specific examples of the categorizing 
process can be given, a  particular definition of simi- 
larity will be used throughout: 

To compare two  binary words, count the number of 
identical bits in the words  and  compare this to a present 
number T. If it  equals  or exceeds that  number, the w o r d  
are  similar. 

This definition was chosen because: 

1) There is a  one-to-one correspondence between 
“difference” and distance in n-dimensional property 
space. 
2) In  the absence of other knowledge, “0” and “1” are 
two states which should be treated identically. 

3) It provides simplicity and ease of computer mani- 
pulation. 

Method of formation 

The categories are  formed  in  the following manner : 

a)  Take Sample 1 ; remember it  as  “Mask 1”. 

b) Take Sample 2 and  compare  it with Sample 1 to 
see  if they are similar. 

c) If they are similar, ignore Sample 2; if they are  not, 
remember Sample 2 also as  “Mask 2”. 

d) Take Sample 3 and  compare  it,  one at a time, to all 
samples which are being remembered as “masks”. 

e) If it is similar to any of these, ignore it; if not, 
remember it as another mask. 

f )  Continue this process until all samples haw been 
354 used up. The result will be a number of masks, none 

P* s = up; 
P3 P ; “ = O  PROCESS 
p, FOR ALL i # j 

ORIGINAL SAMPLE SET Ps 

Figure I The categorizing process. 
The  original recognition problem (sample set S )  
is divided into  several  simpler  recognition prob- 
lems Pi. 

SAMPLE SET 
ORIGINAL MASKS FORMED 

AT T = 3  

0001 1 - 0001 1 

1 1  100 

01010 

Figure 2 Method of forming the “masks”. 

SIMILARITY TEST 

-NO 0 SIGNATURE OF a = Oll 

SAMPLE a MASK SAMPLES a WILL BE PLACED 

WITH ALL OTHER 
IN CATEGORY 01 1 

SAMPLES HAVING 
THIS SIGNATURE 

TO BE CLASSIFIED 

Figure 3 Example of “signature” formation using 
the program’s definition  of  similarity. 

of  which are similar to any other. For  an example, see 
Fig. 2. 
These masks will now be used as  a basis for forming 
a signature for each sample of S.  

g) Return to  the first sample of S and  compare it in 
turn  to each of the mask samples. A binary word 
representing the result of these comparisons is formed, 
with one bit per comparison. If the sample is similar to 
a mask sample, then  the bit representing this mask 
sample is a ONE; if not,  it is a ZERO. Call the binary 
word formed for  a sample in this manner the signature 
of the sample. All samples with the same signature are 
placed into  the same category and  that signature be- 
comes the  “name” of the category. 

The program therefore assigns a  signature to each 
sample, determines the number of different signatures, 
and  groups together all samples with the same signa- 
ture.  The process of signature formation is illustrated 
by Fig. 3. 

This method of finding masks and signatures repre- 
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sents a  compromise between sophistication and practical 
realization. Since it is a pre-processing step,  it was 
decided to lean heavily toward  producing  a  fast 
program.  The masks found represent a set of pseudo- 
orthogonal vectors used to characterize  the  other 
samples. If there  are n masks, not all 2” possible cate- 
gories need actually be present. In fact, since there is a 
guarantee that each sample is similar to  at least one 
mask,  the  category represented by an all-ZERO signa- 
ture is never present. All categories not used  by the 
original sample set represent the “reject” space. For 
each category used, a logic is designed by the following 
programs using the samples in that category. When 
the process is completed, the resulting recognition 
system will examine an unknown  sample (assumed to 
be not in the  original  set)  and  determine  its  category by 
finding its  signature,  after which it will either reject it 
or proceed to use the recognition logic appropriate to 
this category. 

A simpler way to determine masks would be to pick 
uniformly scattered  points as category “centers”. The 
advantage of the present method is that only that  part 
of measurement space containing samples is selected 
to be dissected. The simpler method considers the 
whole space  and would produce inefficient results in 
situations where all samples were in a relatively small 
portion of the space. 

A  disadvantage of the present method is that,  other 
than  guaranteeing  consideration  of  the  correct  area in 
the space, it  disregards  any  natural clustering boun- 

, daries. For instance, it may divide a cluster of A’s in 
half, even though  the members of the cluster are  all 
similar to each other.  This results in relatively in- 
efficient masks as compared to those which could be 
obtained  from  a  more sophisticated method which 
took  natural clustering into consideration. 

Program control 

1) In running  the  program,  the user specifies the 
number of masks he desires, say m, and  the  program 
manipulates  the threshold T, automatically  attempting 
to satisfy this request. Since the  number  of  signatures 
or categories can never be larger than 2” - 1, this 
feature provides a  control on the maximum number of 
sample sets formed.  The  number desired is left to the 
judgment of the user and normally depends on the 
number of possible types of samples and  the difficulty 
of  the  problem. 

2) There is an  option  to subcategorize within each 
category. The threshold of similarity finally arrived at 
in the original categorization process is used to look 
for  a set of samples (new masks) within a  category 
which are all dissimilar at  that threshold. It is some- 
times possible to find such a set because members of a 
category are  not  guaranteed to be similar to each other 
at the categorizing threshold (only at worst at twice 
this  threshold).  The  normal process of categorization 
is followed, which ultimately results in a  number of 
new categories for those of the  former categories which 

can be subcategorized in this  manner. 
3) There is a  feature which allows the  program to 

ignore samples of a  certain  type in a  category  after  it 
has  more  than  a  certain preset number.  This is 
valuable in cases where two types have a  large differ- 
ence in frequency of occurrence in a category. For 
example, if there  are I O 0 0  A’s for each B, then to get a 
reasonable  number of B’s to examine, one would have 
to examine many  more A’s than were needed to 
generalize. The  feature allows one to  stop collecting 
A’s after  a  certain  number, say 200, has been reached, 
while continuing to collect all  the B’s available. 
Memory requirements of  Program I1 also  dictate  the 
need for such a  feature. 

4) There is a  mode  of  operation which allows the 
masks formed from  one  sample set to be used in 
forming signatures for samples of a different set.  This 
allows testing of a recognition system on samples not 
used in its formation to determine  error-rate  stability. 

Some of the  advantages of this  categorization 
scheme are : 

I )  It allows separate  consideration  of  the recognition 
problems in each category. An example of the use of 
this  property is  given in the  description of the results. 

2) It allows simple control of the tradeoff between 
error  rate  and  equipment  cost. By specifying a large 
number of masks, the user can  most likely get an over- 
all decrease in error  rate  but will require more  hard- 
ware to effect it. 

In  summary,  the  input to Program I is a set of 
samples. The  output is a  number of subsets of this 
set, where the members of each subset  are “similar” to 
each  other. 

Program I I: Property-finding algorithm 

This section considers each category  from  Program I 
separately  and  treats each in the same manner. Essen- 
tially, it  looks for bits and logical combinations of bits 
which are valuable in distinguishing the  various types 
of samples in the  category. It does  this mostly in a 
nonexhaustive manner by proposing hypotheses of 
possibly valuable properties,  then  evaluating  and 
classifying these hypotheses and  creating new hypo- 
theses from  the result. The following description of the 
process operates on the samples within a  particular 
category. 

DeJinititions of ’’high”  and “good” 

The  measure of “value” of xi (thejth state of property 
x) relative to type of sample A i  is defined by use of 
PA,(xj), the  conditional  probability  of xi, given that 
the sample is an Ai.  This  can be estimated simply by 
counting  the  number of samples of A i  for which xi is 
present, defined as NAi(xj) ,  and dividing by the  total 
number of A ,  samples, defined as NAi.  

There  are by definitio-n, two  components of value: 355 
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1) xi is “high” with respect to A i  if 

PAi(xj) > KI 9 

where 1 >= K, 1 0.5. 

2) xi is “good for A i  vs A,’’ if both  equations (a) and 
b) below are satisfied: 

The parameters K ,  and K2 are  arbitrarily picked by 
the designer and typical values might be K ,  = 0.9, 
K2 = 4. Since the program tests for presence or 
absence of  a  property, xi is always either ONE or ZERO. 

The presence of “highness” guarantees that a 
particular  state  of  a  property is present quite  often  for 
a  particular type of sample. This, however, is not 
enough to make it valuable,  for it may be present quite 
often for  the  other types of samples also.  The presence 
of component (b) of “goodness” guarantees that this is 
not so. Component  (a) of “goodness” insures dis- 
criminating power. Table  1 gives some examples to  
familiarize the  reader with the  two “goodness” com- 
ponents. 

A  state  of  a  property relative to A i  may be good  for 
some of  the A,  and  not  for  others. It is called “good 
for all” if it is good for all A,  (k # i ) .  

Table I Examples of violation of “goodness” 
for K, = 0.9, K1 = 4. 

1 2 3 4 

100 10 100 100 
10 100 100 100 
91 10 91 100 
10 10 10 100 

No Yes  Yes No 

Yes No Yes No 

The measures of value chosen are relatively simple 
and have the  advantage of indicating  what  type of 
value a  property possesses, thereby allowing more 
intelligent use to be made of this  property. For 
example, knowing that a  property is valuable for A vs 
B allows it to be used in resolving A-B conflicts. Also, 
the  method  of combining properties to produce  more 
valuable properties is based on use of value type to 
indicate the  course of action. 

Summary of property combination procedure 

356 
It is clear that there  are some possible classifications of 
a  state  of  a  property (henceforth called merely proper- 

ty), which can be derived from  “high”  and  “good” 
such as: 
(1) High and  good  for  all (HGA) 
(2) High and  good  for  some (HGS) 
(3) Good  for all  but not high (GA) 
(4) Good  for some but  not high (GS). 

The problem is to take  properties which have classi- 
fications (2) to (4) and  convert  them to properties of 
class (l),  the most valuable. Because of its general 
nature, logical combination seemed a fitting method. 

For instance, OR-ing two  properties  together will 
produce  a  property which occurs at least as frequently 
(i.e., with at least as much “highness”), as either  of  the 
two original properties.  Therefore, owing two  proper- 
ties classified GA might yield one classified HGA.  The 
logical AND on the other hand, lowers the “highness” 
and  can  help to produce “goodness” if it lowers the 
“highness” of competing types more than  that of  the 
desired type. By a  procedure using these principles, the 
program builds up properties of such complexity as: 
a thirty-way AND OR-ed to a forty-way AND ; a four-way 
OR AND-ed to  another;  and  other properties of lesser 
complexity down to and including individual  bits. 

The following is a detailed description of  this  pro- 
cedure, which is also represented in Fig. 4. 

Property search: Part I 

First,  the PA@) and NA(x) are calculated for  both  states 
of each bit for  all bits and  for all types. The types are 
now considered one at a time. 

The  two  states (b, and 6,) of each bit position r are 
classified for the first type, say Ai,  as having  certain 
“kinds”  of value (i.e., HGS, GAY et cetera). 

The bit states  found to be HGS are remembered 
simply as valuable for Ai .  They  are  also  stored in a 
pair “conflict” memory where they  are remembered as 
valuable for A i  vs A,. Any HGS properties subse- 
quently found  are  also  stored in the “conflict” 
memory. 

The bit states  found to be HGA  are remembered as 
exceptionally valuable for Ai. Any properties subse- 
quently  found to be HGA  are remembered in the  same 
way. Therefore,  this classification will not be mentioned 
again. 

All the bit states  found to be GA  are used to 
generate a many-way OR (example, b, + 6, + 6, + 
6, - ). The presence of this  property is now tested for 
in the sample set and  the  property is classified. 

If it is GA, it is ignored since “highness” has  not 
been produced. 

If it is HGS,  it means that  too many bits have been 
used in the OR and GA-ness has been lost. In this case, 
all possible two-state OR’S of GA bit  states (example, 
b, + 6,) are formed to be tested. It can be  seen then 
that this many-way OR acts  as a quick check to tell if 
OR-ing any subset of GA bit states will ever produce 
“highness”. 

I 
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Part I Part ZZ 

BIT  STATES b., b, 
I I 

H G A   G A  
I ,  I 

STORE  AS BOTH HGS BIT 
AND  CONFLICT PROPERTY CLASSIFY b, + b, + b, + b, ... 

FORM OR OF ALL AND- 

I I 

HGA 
r 1 

FORM  P-WAY ORs A N D  
CLASSIFY b, + b,, b, + b,, etc. 

L I 

HGA 
7 r I r I 

FORM  2-WAY OR OF 2-WAY ORs I STORE I STORE HCS 
(RESULT I S  3-AND  I-WAY_ OR) - 
b, + b, + b, + b, 

MEMORY A N D  CLASSIFY b, + b, + b,. 
IN 

HGA 
1 

STORE A N D  IN PAIRS-AND CLASSIFY 
( b , + b q ) ( b , + b z + b p )  

The two-way OR’S are classified. If an OR is  HGS,  it is 
stored in a temporary  memory  (not  the conflict 
memory)  for  future use. All OR’S found to be GA  are 
again OR-ed in pairs exhaustively producing  three- and 
four-way OR’S (i.e., if b, + 6, and 6, + 6, are  both 
GA,  then  the new OR is b, + 6, + 6,). 

These new OR’S are classified. All OR’S which are 
HGS  are stored in the same  temporary memory used 
for HGS two-way OR storage. All possible two-way 
AND’S are now formed  from the properties  in  this 
memory. Excluded are two-way AND’S where one 
component is a  subset of the  other because this 
property  has  already been tested 

{i.e., [(b,  + FZ)(b, + 6, + 6,) = (b, + F , ) ] ] .  

The  hope is that this AND-ing will restore  some  lost 
“goodness”. These AND’S are classified and  any result 
other  than  HGA is ignored. 

Property search:  Part II  

The next section of the  program (Part I1 in Fig. 4), 
generates many-way AND’S (sample, b,b,6,bZ . ). It 
does  this by  AND-ing together  the first two samples of 
the same  type  and then counting  the  number of ONE’S 
in the  resultant AND. If this  number is above  a  certain 
preset amount,  another sample of this type is AND-ed 
in; if it is not,  the  last AND is stored  and  the  sample 
which caused the bit sum to  drop below the  acceptable 
limit is used to start  a new AND. This process is con- 

A N D  CLASSIFY b, b, b,,. , , 

FORM MANY-WAY ANDs 

FORM 2-WAY ORs A N D  
CLASSIFY (b.b,b, . . . )+  

Figure 4 Procedure of searching for  properties. 
The contents of the boxes  is a  description of the 
synthesis performed  and a  sample result. The 
arrows  from each box indicate the subsequentpath 
for  properties so classified. 

tinued  until all samples of  the type are used. 
The idea here is to generate many-way AND’S which 

are present  often  for the type from which they were 
generated  but, because a large number of conjunctions 
can  be  required,  are restrictive enough  not  to be 
found much in  other types. 

These  hypotheses are evaluated.  Those classified 
GA are OR-ed in  pairs (b,b,b, . . . + b$,& * . ) 
exhaustively and  evaluated, in the hope  of  generating 
highness. These AND’S are classified and  any result 
other  than  HGA is ignored. The memory  can  accom- 
modate five properties per conflict per  category and 
sixteen HGA properties  per type per  category. 

This  ends the search  for  properties  for  type Ai.  The 
same  search  method is now used for all other  types in 
the category. 

Additional features 

In  addition  to  the search for properties, a test is made 
after  the individual  bits have been found to see if 
enough are available to identify the  types. If there  are, 
the  program  stops  looking  for  properties.  This is done 
to avoid needless complication. 

Statistics are compiled on  the number  of each kind 
of property  that is found. If not  enough  properties  are 
found,  the  program lowers its  criteria of “value” to  an 
alternate set of K ,  and K2 also specified  by the 
designer and goes through  the whole procedure  again. 

When Program I1 is finished, it has  for each type in 
each  category : 357 

IBM JOURNAL JULY 1962 



1) A set of HGA properties. 

2)  A set of HGS bits. 

3) A set of “conflict” properties  for  that  type vs each 
of  the  other types in  its  category. A typical one might 
be  classified as  “high and good for A vs B” and is used 
by Program I11 to resolve A-B conflicts. 

Program 111: Recognition criteria 

This program implements the  decision-making  opera- 
tion which attempts  to recognize the given samples 
using the  properties  found by Program 11. Here again 
each category  is examined separately,  its samples 
being recognized by the properties  found  for that 
category. 

The decision-making  philosophy evolved from  the 
consideration that it  should be useful even  if Program 
I1 finds no HGA properties. It also  attempts  to  make 
efficient  use  of the knowledge which the value criteria 
of Program I1 provide.  This is best illustrated  in the 
use of the “conflict” set  of  properties. 

Decision  procedure 

A sample is examined for  the presence of each of the 
HGA and HGS properties of each  type. A percentage 
match is obtained  for each  type.  This is obtained by 
finding the  number of properties  present and dividing by 
a  normalizing  factor. The highest percentage  match is 
determined and  the percentage match  for  each of the 
competing types is subtracted  from  it,  one by one. 
Each of those types whose match is within 0.3 of the 
highest are considered part of the conflict group. If 
none  are within that  amount,  the sample is identified 
as  the  type of the highest match. 

If  there is a conflict group,  the conflict properties are 
used to resolve it.  Each conflict property is assigned a 
weight, starting at a value of “one”.  Each set of 
properties  for  a  particular conflict has  a  normalizing 
factor which is initially equal to the  number of proper- 
ties present. 

As an example of the process followed when a con- 
flict appears, consider that  an  unknown sample 
produces  a conflict group of A ,  B, and C. This involves 
six sets of conflict properties; namely A vs B, A vs C, B 
vs A ,  B vs C, C vs A,  and C vs B.  The sample is exam- 
ined for  the presence of all of these properties. Let us 
assume that  the A vs B property set consists of three 
properties with weights W,,  W, and W, and normaliz- 
ing  factor NAB.  Let us assume also that only properties 
(1) and (2)  are  present. The percentage  match  for A vs B 
in this case is then given by W ,  + W, divided by NAB. In 
like manner,  the percentage match  for A vs C is com- 
puted and averaged with that  for A vs B to yield an 
overall percentage match to represent the type A in 
this conflict situation.  The conflict percentage  match 
for A is then averaged with the original  percentage 
match to obtain  the final percentage  match  for A .  
Identical  computations  are  performed  for B and C. 

358 The  sample is finally identified to be the type of the 
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highest match.  There is also  a reject feature which 
allows the sample to be rejected if the closest competi- 
tor  to  the highest match is within a certain amount. 

Perturbation learning 

As a  further  feature,  learning  can  occur if a reject or 
error is found.  This might be described as perturbation 
learning, since its  aim is to compensate for  the  “odd” 
samples which the  “bulk” statistical  learning process 
of Program I1 cannot  handle.  This  learning process 
attempts to alter the recognition system until  the  error 
or reject is removed or  until  the learning  feature gives 
up.  It  operates in  two  ways: 

1) It can  alter  the multiple AND properties. 

2) It can reassign weights to  the conflict properties. 

When an  error  or reject is found  in  a conflict situa- 
tion,  the  program  alters the weights of the conflict 
properties  in the following manner: 

1) If the  property in question was in the  proper  state 
(present for  the right  type or absent for  other types), its 
weight is increased by one, as is the  normalizing  factor 
for  its conflict set. 

2 )  If  the  property  in  question was in the wrong state 
(absent  for  the  right  type or present for a  wrong type), 
its weight is decreased by  one, as is the normalizing 
factor  for  its conflict set. If the weight is already  zero, 
nothing is done. 

Only those  properties involving conflict with the 
correct  type are altered. For example, if the  proper 
type is A ,  properties in ( B  vs C) are  not  altered, even  if 
both  are  in  the conflict set. 

This choice of learning  procedure allows repeated 
learning  from  the same sample to produce conflict 
percentage matches which usually approach 100 % for 
its  actual  identity  and  something less for all other  con- 
flict types involved. 

The second learning  feature involves changing the 
many-way AND properties in the high-and-good-for-all 
class which were not  present  for the correct  identity. 
The AND property is AND-ed to  the sample in error  and 
the ONE’S in the resultant  word  are  counted. If this  sum 
is above  the preset threshold,  the old AND is replaced 
by this new AND.  The philosophy here is that a 35-way 
AND is almost  as restrictive as  a 40-way A N D  and 
therefore, if the number  of ONE’S in the AND is high, 
chances  are  it will still retain  its  goodness. Its highness 
will increase and  it will now  be  present  for  the error 
sample where it was previously absent. In any  case, 
because it  retains  its highness, the worst effect of such 
a move would be to create  more conflict situations. If 
the  correct  identity was one of the  alternatives before 
learning was effected, it would still be an alternative. 

In  addition,  the  program keeps testing  and  learning 
until  it removes all errors or until  its  error rate remains 
constant  (or rises). 



Results of program test 

The  input set in  the test consisted of 27,519 samples of 
E13B type font numerals (IO) and special characters 
(4). No two samples were completely identical.  This 
set represented the result of  an exhaustive  search 
through  about 1,000,000 electronically scanned  charac- 
ter samples to obtain  a  statistical  cross section of  what 
the machine will have to read. It was the  same set 
that was used by human designers in  obtaining the 
logic for  an  IBM character recognition machine. The 
samples were represented by a  7 x 10 bit binary 
matrix.  This  bit  matrix provided the  standard  quan- 
tized visual form of the  character. The El 3B type font 
is very stylized and designed for ease of machine 
recognition. However, the  numbers of different 
samples generated and  the low error  rate required 
still rate  it  as  a  nontrivial test of a machine  pro- 
cess. 

The goal was to use the  program  to design a 
recognition system for these samples and  compare its 
performance  against that  of  the  human designers. The 
same set of  27,519 samples used in  the design were 
employed to test  this design. 

Specific design details 

In using the program,  the  aim was to  obtain a satis- 
factory  error  rate at  as low a  cost as possible. 

In  the first attempt, 90 categories were used, and  the 
results were that all samples were recognized correctly 
by the recognition system found.  There were no 
decisions where the top choice had a competitor whose 
percentage match was within 0.15 (perfect score is 1 .O). 
Since this was used as a reject criterion,  there were no 
rejects. 

The number  of categories was then lowered to 30 in 
an  attempt  to reduce cost. Two of these categories had 
more  than 3000 members. This created  a  problem 
because the  program was restricted to handling  a maxi- 
mum of 3000 samples per  category in forming  the 
recognition system. There was an overflow of  5629 
characters. However, Part I of the  program  has  an 
option  to save overflow and so it did. The idea here is 
that  the  perturbation  learning  feature  can  later be used 
to  adjust  the initial system to  conform  also to  the 
overflow samples. 

In  the  initial  run  there were no substitution  errors 
and 7 rejects in 21,890 samples. After  adding  the 
overflow for  one pass at perturbation  learning,  the 
over-all error  rate was three  substitution  errors and 20 
rejects. While it was realized that this  could  probably 
be improved by another pass through  perturbation 
learning, an  attempt was made to bypass this  step by 
trying a smaller number of categories. 

Fifteen categories were tried.  Here  there were three 
categories overflowing, containing a total of about 
12,000 samples. About 9000 of these were in  one 
category.  This is rather  more  than a perturbation, so 
perturbation  learning was not  attempted  here. In 
addition, the 15-category system did not offer a cost 

saving over the 30-category system (because of the 
increased logical complexity required  per  category). 

The next step  here was to let the  computer design a 
new 30-category system with tightened  controls  (more 
“value”  required  of  a  property  before  it was retained) 
to produce  a less expensive model. The result was a 
system having about  one-fourth  the number  of  com- 
ponents of the previous system. However, when tested 
for  error  rate,  one category in  this system produced 
1036 rejects out of  1942 samples, whereas it previously 
had two rejects. Because of the independence of cate- 
gories, it is possible to use the design for this category 
found in the previous 30-category system in place of 
the new design for this category and  to use the new 
design for  the  other 29 categories. This  combination 
yielded an  error  rate (without considering excess) of no 
substitution  errors  and  two rejects out of 21,890 
samples. 

The overflow was tested with the new system for  the 
two categories involved. After  one pass through 
perturbation  learning,  one  category  had no substitu- 
tion  errors  and  three rejects and  the  other  had no 
substitution  errors and 112 rejects. Therefore,  one of 
the new categories was accepted and  the  other deemed 
unsatisfactory. 

At  this  point  it was decided that enough was done  to 
illustrate the procedure,  although  it seemed likely that 
further  manipulation  could  cut the system cost  and 
also  improve  performance. 

Comparison  with  human design 

The final system had 30 categories (two  old and 28 
new). It  made two substitution  errors  and  had 14 
rejects out of 27,519 samples.  There were about 4000 
individual bit tests, 110 many-way AND’S, 7 OR’S and 
66 disjunctions of AND’S. About 10 hours of IBM 7090 
time were required  for the design. 

Assuming a particular  hardware  configuration,  it is 
estimated  that  this system would have  about three 
times the  number of transistors  as the human-designed 
machine logic system. This must be balanced against 
the  monetary saving from  a less expensive design effort 
and  the savings in time to produce  a  product.  This 
estimate of the size of the machine-designed system is 
based on hardware which would  be useful only for  the 
problem which generated  it and would be  incapable of 
further learning. 

The speeds of  the two  machines would be  com- 
parable. 

The real error  rates  could not be compared exactly, 
because the frequencies of occurrence of the samples 
in error  and rejected in the experiment were not 
known. Also, it is not known  how  the design would do 
on  another set of new samples. However, under  the 
assumption that  the million samples used in  the design 
were statistically sufficient and because of the  small 
number of errors  obtained and  the likelihood that they 
had lower than  average frequencies of occurrence, it is 
not unreasonable to guess that  the  error rates of the’ 359 
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two machines  would  be  similar.  Although it was 
certainly  desirable to explore this matter  further,  the 
unfavorable  cost differential between machines  made 
it  somewhat  premature to  do so. Consequently, 
present effort is being directed toward  improving  the 
program. 

Conclusions  and  discussion 

The over-all  method presented points  up  the usefulness 
of the  concepts of “similarity”  of  samples and “value” 
classification of  a  property  as  tools to reduce the 
exhaustive  search  problem in automatic design. 
Specific points are: 

1) The method of finding conjunctive  “concepts”  is 
different from  those  of  Kochen or Stearns  in that it 
does  not use samples of negative instances  but relies 
on  the oddness of the many-way AND to provide 
goodness. 

There seems to be some  philosophical  import to this 
difference. The many-way AND provides  a  “blanket” 
goodness. The  more ONE’S required by the AND, the 
smaller the universe of samples which can satisfy it. 
Therefore, if such an AND can be found present in 
most samples of a type, it  can  act  as  an effective filter 
rejecting everything except things very “similar” to the 
samples which generated it. When the AND is lessened 
to a few bits, this blanket rejection is lost, being sacri- 
ficed for efficiency. Therefore, for problems where the 
negative-instance set is unmanageable,  it  could  prove 
to be worth  a sacrifice in efficiency  if this rejection 
could  be  better  retained. 

2) Using  a  normal logic-reducing program,  it 
might be impossible to generate  a sufficiently small 
number of members  of  a  disjunction of many-way 
AND’S to be practical. However, since the categorizing 
process of Part I separates  the samples of a type into 
groups where the members are similar, it is easier to 
find many-way AND’S in each  category.  This  empha- 
sizes the role of similarity between samples in leading 
to a  more efficient answer  (since fewer disjunctions  are 
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required). Rather  than indiscriminately AND-ing to- 
gether samples, if they were first broken  into  a  number 
of “clumps” of look-alike samples, and  each  clump 
searched separately  for AND’S, it would seem that  more 
independence between AND’S would be obtained,  and 
therefore  probably fewer AND’S would be  required. 

3) The procedure used to find valuable  properties 
used the  sample set representing the recognition 
problem to generate  them,  rather than some  random- 
choice technique.  Although  this is not new, it  is felt 
that a  great gain in efficiency is realized by doing  this. 

As a final summary,  a  comparison was made 
between machine and  human performance in a prac- 
tical  situation.  The results seem to indicate that efforts 
in  automatic recognition logic design are feasible and, 
in  all  probability,  can  ultimately yield some useful 
solutions. Since the  program presented  has  thus far 
been tested only on  one task which humans  did  not 
find too difficult, it  remains to be seen how large a 
class of problems it and its successors can  handle 
successfully. 
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