R. E. Bonner

A “Logical Pattern” Recognition Program

Abstract: A description is given of an 1BM 7090 program which searches for ‘“logical patterns’ in a
set of input samples. The program was tested on a character recoghition problem, where it designed
a recognition system whose error rate and hardware requirements are compared to those of a system
designed by humans. This program is intended to be used as a research tool to discover certain kinds of
patterns in data and as a step in the direction of automatic logic design for some character recognition

problems.

Introduction

In recent years some attempts have been made to use a
computer to generate properties useful in “concept”
formation or pattern recognition. The results have
been described by such authors as Bledsoe and
Browning,' Hovland and Hunt,2 Kochen,? Stearns,*
and others. This paper relates another method of
attacking the problem. The method has been imple-
mented by three sequential IBM 7090 programs total-
ing about 8000 instructions.

The input to the first of these programs is a set of
samples representing the problem. Each sample is a
binary word with an identifying “name” or ‘“type”
attached to it. Each bit of the word represents the state
of a certain property, present or absent. These proper-
ties are supposedly the result of a human designer’s
best effort to pick quantities pertinent to his recogni-
tion problem. After he has done this, if sufficient
variation still remains among samples of a type, it is
desirable to use some automatic technique to finish the
design. How much effort the designer puts into finding
the primary properties depends on how much power
the automatic technique possesses and on the difficulty
of the problem.

The output of the last program is a description of an
automatically derived recognition system and the sub-
stitution error and reject rate for this system.

The basic theme of this method is twofold:

1) Use of nonexhaustive heuristic algorithms to find
“valuable” properties (Program II).

2) Employment of various devices to make the require-
ments expected of heuristic method (1) less stringent.
These include a method of dividing a problem into a
number of simpler problems equivalent to the original
problem (Program I) and a decision process which can

operate effectively without requiring properties of very
high ““value” (Program III).

The practical rationale for attacking the problem at
all rests mainly on these two points:

1) The pattern recognition problems of the future are
apt to involve a tremendous latitude of variation in the
patterns. Design by humans will be difficult because of
the large amount of data that must be manipulated.
Computers will have the ability to handle these data
and can do so if we can tell them how.

2) Since automatic design produces a standardized
structure, it permits concentration on the design
program and the implementation of the type of
machine the program designs. This is contrasted to the
present typical situation involving a different design
effort for each different problem.

Program I: Category formation

The first step taken to lighten the burden of the
property-finding algorithm of Program II is to divide
the original recognition problem into a number of
simpler recognition problems which can be solved one
at a time, independently of each other, and whose
solutions taken together equal the solution to the
original problem, The program accomplishes this by
dividing the original sample set (S) into a number of
mutually exclusive sample sets (P;) and insuring that
any new sample will be placed in one and only one of
these sets. Each of the P, henceforth called a category,
can now be looked at as representative of a recognition
problem in itself and considered separately. This
process is depicted in Fig. 1 for five categories.

353

IBM JOURNAL s JULY 1962

354

The criterion for categorizing requires mutual
“similarity” among members of a category. Since the
most bothersome recognition problems occur when
samples which look alike have different “names,” this
choice of criterion tends to isolate and simplify the
difficult parts of the original problem. For example, in
alphabetic character recognition, many samples of O
and Q might “look alike” and tend to be placed in
the same category, while presumably most of the other
letters would be sufficiently different to be excluded
from this category. If they were alone in that category,
the required recognition logic would involve a simple
search for the tail of the Q.

Of course, it is entirely possible that not all samples
of a “type” look alike (i.e., 4 and a) and so different
samples of the same letter can be present in a number
of categories.

During the categorizing process, the “name”(such as
A) of a sample is not referred to, in order that the
program be unprejudiced by human preconception
regarding what “types’’ should look alike. The reliance
is solely upon a measure of “‘similarity” between two
samples. It is possible to define and use many measures
of similarity, each pertinent to its own problem. How-
ever, in order that specific examples of the categorizing
process can be given, a particular definition of simi-
larity will be used throughout:

To compare two binary words, count the number of
identical bits in the words and compare this to a present
number T. If it equals or exceeds that number, the words
are similar.

This definition was chosen because:

1) There is a one-to-one correspondence between
“difference” and distance in n-dimensional property
space.

2) In the absence of other knowledge, “0*’ and *“1”* are
two states which should be treated identically.

3) It provides simplicity and ease of computer mani-
pulation.

® Method of formation
The categories are formed in the following manner:
a) Take Sample 1; remember it as “Mask 17,

b) Take Sample 2 and compare it with Sample 1 to
see if they are similar.

c) If they are similar, ignore Sample 2; if they are not,
remember Sample 2 also as ‘““Mask 2”.

d) Take Sample 3 and compare it, one at a time, to all
samples which are being remembered as “masks”.

e) If it is similar to any of these, ignore it; if not,
remember it as another mask.

f) Continue this process until all samples have been
used up. The result will be a number of masks, none

IBM JOURNAL * JULY 1962

PROCESS 3 j
\hp‘ FORALL i # j

ORIGINAL SAMPLE SET \ps

s

/P'

L—~P, S = UPR
e saf CATEGORIZING [___p 1 _ g

Figure I The categorizing process.
The original recognition problem (sample set S)
is divided into several simpler recognition prob-

lems P;.
ORIGINAL MASKS FORMED
SAMPLE SET AT T=3
00011 —————» 0001]
01011 11001
10111 01110
11001
11100
01110
01010

Figure 2 Method of forming the ‘“masks’’.
SIMILARITY TEST

11100 00011 NO 0
\ 11001 ———YES |
!

01110 —— YES

SIGNATURE OF a = 011

a WILL BE PLACED
IN CATEGORY 01
WITH ALL OTHER
SAMPLES HAVING
THIS SIGNATURE

SAMPLE a MASK SAMPLES

TO B8E CLASSIFIED

Figure 3 Example of “signature’ formation using
the program’s definition of similarity.

of which are similar to any other. For an example, see
Fig. 2.

These masks will now be used as a basis for forming
a signature for each sample of S.

g) Return to the first sample of S and compare it in
turn to each of the mask samples. A binary word
representing the result of these comparisons is formed,
with one bit per comparison. If the sample is similar to
a mask sample, then the bit representing this mask
sample is a ONE; if not, it is a zErRo. Call the binary
word formed for a sample in this manner the signature
of the sample. All samples with the same signature are
placed into the same category and that signature be-
comes the “name” of the category.

The program therefore assigns a signature to each
sample, determines the number of different signatures,
and groups together all samples with the same signa-
ture. The process of signature formation is illustrated
by Fig. 3.

This method of finding masks and signatures repre-

sents a compromise between sophistication and practical
realization. Since it is a pre-processing step, it was
decided to lean heavily toward producing a fast
program. The masks found represent a set of pseudo-
orthogonal vectors used to characterize the other
samples. If there are n masks, not all 2" possible cate-
gories need actually be present. In fact, since there is a
guarantee that each sample is similar to at Jeast one
mask, the category represented by an all-zERO signa-
ture is never present. All categories not used by the
original sample set represent the “‘reject” space. For
each category used, a logic is designed by the following
programs using the samples in that category. When
the process is completed, the resulting recognition
system will examine an unknown sample (assumed to
be not in the original set) and determine its category by
finding its signature, after which it will either reject it
or proceed to use the recognition logic appropriate to
this category.

A simpler way to determine masks would be to pick
uniformly scattered points as category “centers”. The
advantage of the present method is that only that part
of measurement space containing samples is selected
to be dissected. The simpler method considers the
whole space and would produce inefficient results in
situations where all samples were in a relatively small
portion of the space.

A disadvantage of the present method is that, other
than guaranteeing consideration of the correct area in
the space, it disregards any natural clustering boun-

' daries. For instance, it may divide a cluster of A’s-in

half, even though the members of the cluster are all
similar to each other. This results in relatively in-
efficient masks as compared to those which could be
obtained from a more sophisticated method which
took natural clustering into consideration.

® Program control

1) In running the program, the user specifies the
number of masks he desires, say m, and the program
manipulates the threshold T, automatically attempting
to satisfy this request. Since the number of signatures
or categories can never be larger than 2™ — 1, this
feature provides a control on the maximum number of
sample sets formed. The number desired is left to the
judgment of the user and normally depends on the
number of possible types of samples and the difficulty
of the problem.

2) There is an option to subcategorize within each
category. The threshold of similarity finally arrived at
in the original categorization process is used to look
for a set of samples (new masks) within a category
which are all dissimilar at that threshold. It is some-
times possible to find such a set because members of a
category are not guaranteed to be similar to each other
at the categorizing threshold (only at worst at twice
this threshold). The normal process of categorization
is followed, which ultimately results in a number of
new categories for those of the former categories which

can be subcategorized in this manner.

3) There is a feature which allows the program to
ignore samples of a certain type in a category after it
has more than a certain preset number. This is
valuable in cases where two types have a large differ-
ence in frequency of occurrence in a category. For
example, if there are 1000 A’s for each B, then to get a
reasonable number of B’s to examine, one would have
to examine many more A’s than were needed to
generalize. The feature allows one to stop collecting
A’s after a certain number, say 200, has been reached,
while continuing to collect all the B’s available.
Memory requirements of Program II also dictate the
need for such a feature.

4) There is a mode of operation which allows the
masks formed from one sample set to be used in
forming signatures for samples of a different set. This
allows testing of a recognition system on samples not
used in its formation to determine error-rate stability.

Some of the advantages of this categorization
scheme are:

1) It allows separate consideration of the recognition
problems in each category. An example of the use of
this property is given in the description of the results.

2) It allows simple control of the tradeoff between
error rate and equipment cost. By specifying a large
number of masks, the user can most likely get an over-
all decrease in error rate but will require more hard-
ware to effect it.

In summary, the input to Program I is a set of
samples. The output is a number of subsets of this
set, where the members of each subset are “similar’” to
each other.

Program Il: Property-finding algorithm

This section considers each category from Program I
separately and treats each in the same manner. Essen-
tially, it looks for bits and logical combinations of bits
which are valuable in distinguishing the various types
of samples in the category. It does this mostly in a
nonexhaustive manner by proposing hypotheses of
possibly valuable properties, then evaluating and
classifying these hypotheses and creating new hypo-
theses from the result. The following description of the
process operates on the samples within a particular
category.

® Definititions of “*high” and “‘good”

The measure of “value” of x; (the j* state of property
x) relative to type of sample 4; is defined by use of
P4 (x;), the conditional probability of x;, given that
the sample is an A4;. This can be estimated simply by
counting the number of samples of 4; for which x; is
present, defined as N,(x;), and dividing by the total
number of A; samples, defined as N .

There are by definition, two components of value:

355

IBM. JOURNAL s JULY 1962

356

1) x; is “high” with respect to 4; if
Py(x) > Ky,
where 1 2 K; = 0.5.

2) x; is “‘good for 4; vs 4,” if both equations (a) and
b) below are satisfied:

PA.(xj)

Pox) > K, (a)
N4 (%)) k#i

NoGrp X2 Ky>1. ®)

The parameters K, and K, are arbitrarily picked by
the designer and typical values might be K; = 0.9,
K, = 4. Since the program tests for presence or
absence of a property, x; is always either ONE or ZERO.

The presence of “highness” guarantees that a
particular state of a property is present quite often for
a particular type of sample. This, however, is not
enough to make it valuable, for it may be present quite
often for the other types of samples also. The presence
of component (b) of “goodness” guarantees that this is
not so. Component (a) of “goodness” insures dis-
criminating power. Table | gives some examples to
familiarize the reader with the two ‘““goodness” com-
ponents.

A state of a property relative to 4; may be good for
some of the 4, and not for others. It is called *‘good
for all” if it is good for all 4, (k # i).

Table 1 Examples of violation of ‘‘goodness”
for K| = 0.9, K; = 4,

1 2 3 4

N, 100 10 100 100

Ny, 10 100 100 100

N, (x;) 91 10 91 100

N4 (x;) 10 10 10 100
Eq. (a)

satisfied No Yes Yes No
Eq. (b)

satisfied Yes No Yes No

The measures of value chosen are relatively simple
and have the advantage of indicating what type of
value a property possesses, thereby allowing more
intelligent use to be made of this property. For
example, knowing that a property is valuable for 4 vs
B allows it to be used in resolving 4-B conflicts. Also,
the method of combining properties to produce more
valuable properties is based on use of value type to
indicate the course of action.

® Summary of property combination procedure

It is clear that there are some possible classifications of
a state of a property (henceforth called merely proper-

IBM JOURNAL °* JULY 1962

ty), which can be derived from ‘“high” and “good”
such as:

(1) High and good for all (HGA)

(2) High and good for some (HGS)
(3) Good for all but not high (GA)
(4) Good for some but not high (GS).

The problem is to take properties which have classi-
fications (2) to (4) and convert them to properties of
class (1), the most valuable. Because of its general
nature, logical combination seemed a fitting method.

For instance, or-ing two properties together will
produce a property which occurs at least as frequently
(i.e., with at least as much “‘highness™), as either of the
two original properties. Therefore, Or-ing two proper-
ties classified GA might yield one classified HGA. The
logical AND on the other hand, lowers the “highness”
and can help to produce “goodness” if it lowers the
“highness’ of competing types more than that of the
desired type. By a procedure using these principles, the
program builds up properties of such complexity as:
a thirty-way AND Or-ed to a forty-way AND; a four-way
OR AND-ed to another; and other properties of lesser
complexity down to and including individual bits.

The following is a detailed description of this pro-
cedure, which is also represented in Fig. 4.

® Property search: Part I

First, the P,(x) and N ,(x) are calculated for both states
of each bit for all bits and for all types. The types are
now considered one at a time.

The two states (b, and b,) of each bit position r are
classified for the first type, say A4;, as having certain
“kinds” of value (i.e., HGS, GA, et cctera).

The bit states found to be HGS are remembered
simply as valuable for 4;. They are also stored in a
pair “conflict” memory where they are remembered as
valuable for 4; vs A,. Any HGS properties subse-
quently found are also stored in the “conflict”
memory.

The bit states found to be HGA are remembered as
exceptionally valuable for 4;. Any properties subse-
quently found to be HGA are remembered in the same
way. Therefore, this classification will not be mentioned
again.

All the bit states found to be GA are used to
generate a many-way OR (example, b, + b, + b, +
b, - - +). The presence of this property is now tested for
in the sample set and the property is classified.

If it is GA, it is ignored since “highness” has not
been produced.

If it is HGS, it means that too many bits have been
used in the or and GA-ness has been lost. In this case,
all possible two-state or’s of GA bit states (example,
b, + b,) are formed to be tested. It can be seen then
that this many-way OR acts as a quick check to tell if
ORr-ing any subset of GA bit states will ever produce
“highness”.

Part 1

BIT STATES by, b,

HGS HGA \‘GA

—
STORE AS BOTH HGS BIT STORE FORM OR OF ALL AND_
AND CONFLICT PROPERTY CLASSIFY by +bs + by +bq ..

HGS HGA
FORM 2-WAY ORs AND STORE

CLASSIFY by + by, by + by, etc.

(\|HGS Hon
FORM 2-WAY OR OF 2-WAY ORs | ygs STORE STORE
{RESULT 1S 3-AND 4-WAY OR) IN TEMPORARY

AND CLASSIFY b, +b; +by, MEMORY
by +bg +by +bp

{ CLASSIFY INDIVIDUAL

HGA

STORE AND N PAIRS AND CLASSIFY
(bz + bq) (by + bz + bp)

HGA

STORE

The two-way OR’s are classified. If an or is HGS, it is
stored in a temporary memory (not the conflict
memory) for future use. All or’s found to be GA are
again OR-ed in pairs exhaustively producing three- and
four-way OR’s (i.e., if b, + b, and b, + b, are both
GA, then the new OR is b, + 5, + b,).

These new OR’s are classified. All orR’s which are
HGS are stored in the same temporary memory used
for HGS two-way OR storage. All possible two-way
AND’s are now formed from the properties in this
memory. Excluded are two-way AND’s where one
component is a subset of the other because this
property has already been tested

{i.e., [(b, + B,)b, + b, + D) = (b, + b)]}.

The hope is that this AND-ing will restore some lost
“goodness”. These AND’s are classified and any result
other than HGA is ignored.

® Property search: Part Il

The next section of the program (Part 1I in Fig. 4),
generates many-way AND’s (sample, b,bsf)qbz o) It
does this by AND-ing together the first two samples of
the same type and then counting the number of ONE’s
in the resultant AND. If this number is above a certain
preset amount, another sample of this type is AND-ed
in; if it is not, the last AND is stored and the sample
which caused the bit sum to drop below the acceptable
limit is used to start a new aND. This process is con-

Part 11

FORM MANY-WAY ANDs
AND CLASSIFY by bsbg. . .
HGA \li

STORE FORM 2-WAY ORs AND
CLASSIFY (bnbbg . . .1+

(babpby . .)

HGA

STORE

Figure 4 Procedure of searching for properties.
The contents of the boxes is a description of the
synthesis performed and a sample result. The
arrows from each box indicate the subsequent path
Jor properties so classified.

tinued until all samples of the type are used.

The idea here is to generate many-way AND’s which
are present often for the type from which they were
generated but, because a large number of conjunctions
can be required, are restrictive enough not to be
found much in other types.

These hypotheses are evaluated. Those classified
GA are or-ed in pairs (bbb, -+ bbb, - +)
exhaustively and evaluated, in the hope of generating
highness. These AND’s are classified and any result
other than HGA is ignored. The memory can accom-
modate five properties per conflict per category and
sixteen HGA properties per type per category.

This ends the search for properties for type 4;. The
same search method is now used for all other types in
the category.

® Additional features

In addition to the search for properties, a test is made
after the individual bits have been found to see if
enough are available to identify the types. If there are,
the program stops looking for properties. This is done
to avoid needless complication.

Statistics are compiled on the number of each kind
of property that is found. If not enough properties are
found, the program lowers its criteria of *““value” to an
alternate set of K, and K, also specified by the
designer and goes through the whole procedure again.

When Program 11 is finished, it has for each type in
each category:

357

IBM JOURNAL s JULY 1962

358

1) A set of HGA properties.
2) A set of HGS bits.

3) A set of “conflict” properties for that type vs each
of the other types in its category. A typical one might
be classified as “‘high and good for 4 vs B” and is used
by Program III to resolve A-B conflicts.

Program lll: Recognition criteria

This program implements the decision-making opera-
tion which attempts to recognize the given samples
using the properties found by Program II. Here again
each category is examined separately, its samples
being recognized by the properties found for that
category.

The decision-making philosophy evolved from the
consideration that it should be useful even if Program
IT finds no HGA properties. It also attempts to make
efficient use of the knowledge which the value criteria
of Program II provide. This is best illustrated in the
use of the “conflict” set of properties.

® Decision procedure

A sample is examined for the presence of each of the
HGA and HGS properties of each type. A percentage
match is obtained for each type. This is obtained by
finding the number of properties present and dividing by
a normalizing factor. The highest percentage match is
determined and the percentage match for each of the
competing types is subtracted from it, one by one.
Each of those types whose match is within 0.3 of the
highest are considered part of the conflict group. If
none are within that amount, the sample is identified
as the type of the highest match.

If there is a conflict group, the conflict properties are
used to resolve it. Each conflict property is assigned a
weight, starting at a value of “one”. Each set of
properties for a particular conflict has a normalizing
factor which is initially equal to the number of proper-
ties present.

As an example of the process followed when a con-
flict appears, consider that an unknown sample
produces a conflict group of 4, B, and C. This involves
six sets of conflict properties; namely 4 vs B, A vs C, B
vs A, Bvs C, C vs 4, and C vs B. The sample is exam-
ined for the presence of all of these properties. Let us
assume that the 4 vs B property set consists of three
properties with weights W, W, and W, and normaliz-
ing factor N 5. Let us assume also that only properties
(1) and (2) are present. The percentage match for 4 vs B
in this case is then given by W, + W, divided by N ;5. In
like manner, the percentage match for 4 vs C is com-
puted and averaged with that for 4 vs B to yield an
overall percentage match to represent the type 4 in
this conflict situation. The conflict percentage match
for A is then averaged with the original percentage
match to obtain the final percentage match for A.
Identical computations are performed for B and C.

The sample is finally identified to be the type of the

IBM JOURNAL * JULY 1962

highest match. There is also a reject feature which
allows the sample to be rejected if the closest competi-
tor to the highest match is within a certain amount.

® Perturbation learning

As a further feature, learning can occur if a reject or
error is found. This might be described as perturbation
learning, since its aim is to compensate for the “odd”
samples which the “bulk” statistical learning process
of Program II cannot handle. This learning process
attempts to alter the recognition system until the error
or reject is removed or until the learning feature gives
up. It operates in two ways:

1) It can alter the multiple AND properties.

2) It can reassign weights to the conflict properties.

When an error or reject is found in a conflict situa-
tion, the program alters the weights of the conflict
properties in the following manner:

1) If the property in question was in the proper state
(present for the right type or absent for other types), its
weight is increased by one, as is the normalizing factor
for its conflict set.

2) If the property in question was in the wrong state
(absent for the right type or present for a wrong type),
its weight is decreased by one, as is the normalizing
factor for its conflict set. If the weight is already zero,
nothing is done.

Only those properties involving conflict with the
correct type are altered. For example, if the proper
type is 4, properties in (B vs C) are not altered, even if
both are in the conflict set.

This choice of learning procedure allows repeated
learning from the same sample to produce conflict
percentage matches which usually approach 1009, for
its actual identity and something less for all other con-
flict types involved.

The second learning feature involves changing the
many-way AND properties in the high-and-good-for-all
class which were not present for the correct identity.
The AND property is AND-ed to the sample in error and
the ONE’s in the resultant word are counted. If this sum
is above the preset threshold, the old AND is replaced
by this new AND. The philosophy here is that a 35-way
AND is almost as restrictive as a 40-way AND and
therefore, if the number of ONE’s in the AND is high,
chances are it will still retain its goodness. Its highness
will increase and it will now be present for the error
sample where it was previously absent. In any case,
because it retains its highness, the worst effect of such
a move would be to create more conflict situations. If
the correct identity was one of the alternatives before
learning was effected, it would still be an alternative.

In addition, the program keeps testing and learning
until it removes all errors or until its error rate remains
constant (or rises).

Results of program test

The input set in the test consisted of 27,519 samples of
E13B type font numerals (10) and special characters
(4). No two samples were completely identical. This
set represented the result of an exhaustive search
through about 1,000,000 electronically scanned charac-
ter samples to obtain a statistical cross section of what
the machine will have to read. It was the same set
that was used by human designers in obtaining the
logic for an IBM character recognition machine. The
samples were represented by a 7 x 10 bit binary
matrix. This bit matrix provided the standard quan-
tized visual form of the character. The E13B type font
is very stylized and designed for ease of machine
recognition. However, the numbers of different
samples generated and the low error rate required
still rate it as a nontrivial test of a machine pro-
cess.

The goal was to use the program to design a
recognition system for these samples and compare its
performance against that of the human designers. The
same set of 27,519 samples used in the design were
employed to test this design.

® Specific design details

In using the program, the aim was to obtain a satis-
factory error rate at as low a cost as possible.

In the first attempt, 90 categories were used, and the
results were that all samples were recognized correctly
by the recognition system found. There were no
decisions where the top choice had a competitor whose
percentage match was within 0.15 (perfect score is 1.0).
Since this was used as a reject criterion, there were no
rejects.

The number of categories was then lowered to 30 in
an attempt to reduce cost. Two of these categories had
more than 3000 members. This created a problem
because the program was restricted to handling a maxi-
mum of 3000 samples per category in forming the
recognition system. There was an overflow of 5629
characters. However, Part I of the program has an
option to save overflow and so it did. The idea here is
that the perturbation learning feature can later be used
to adjust the initial system to conform also to the
overflow samples.

In the initial run there were no substitution errors
and 7 rejects in 21,890 samples. After adding the
overflow for one pass at perturbation learning, the
over-all error rate was three substitution errors and 20
rejects. While it was realized that this could probably
be improved by another pass through perturbation
learning, an attempt was made to bypass this step by
trying a smaller number of categories.

Fifteen categories were tried. Here there were three
categories overflowing, containing a total of about
12,000 samples. About 9000 of these were in one
category. This is rather more than a perturbation, so
perturbation learning was not attempted here. In
addition, the 15-category system did not offer a cost

saving over the 30-category system (because of the
increased logical complexity required per category).

The next step here was to let the computer design a
new 30-category system with tightened controls (more
“value” required of a property before it was retained)
to produce a less expensive model. The result was a
system having about one-fourth the number of com-
ponents of the previous system. However, when tested
for error rate, one category in this system produced

-1036 rejects out of 1942 samples, whereas it previously

had two rejects. Because of the independence of cate-
gories, it is possible to use the design for this category
found in the previous 30-category system in place of
the new design for this category and to use the new
design for the other 29 categories. This combination
yielded an error rate (without considering excess) of no
substitution errors and two rejects out of 21,890
samples.

The overflow was tested with the new system for the
two categories involved. After one pass through
perturbation learning, one category had no substitu-
tion errors and three rejects and the other had no
substitution errors and 112 rejects. Therefore, one of
the new categories was accepted and the other deemed
unsatisfactory.

At this point it was decided that enough was done to
illustrate the procedure, although it seemed likely that
further manipulation could cut the system cost and
also improve performance.

® Comparison with human design

The final system had 30 categories (two old and 28
new). It made two substitution errors and had 14
rejects out of 27,519 samples. There were about 4000
individual bit tests, 110 many-way AND’s, 7 OR’s and
66 disjunctions of AND’s. About 10 hours of IBM 7090
time were required for the design.

Assuming a particular hardware configuration, it is
estimated that this system would have about three
times the number of transistors as the human-designed
machine logic system. This must be balanced against
the monetary saving from a less expensive design effort
and the savings in time to produce a product. This
estimate of the size of the machine-designed system is
based on hardware which would be useful only for the
problem which generated it and would be incapable of
further learning.

The speeds of the two machines would be com-
parable.

The real error rates could not be compared exactly,
because the frequencies of occurrence of the samples
in error and rejected in the experiment were not
known. Also, it is not known how the design would do
on another set of new samples. However, under the
assumption that the million samples used in the design
were statistically sufficient and because of the small
number of errors obtained and the likelihood that they
had lower than average frequencies of occurrence, it is
not unreasonable to guess that the error rates of the’

359

IBM JOURNAL ¢ JULY 1962

360

two machines would be similar. Although it was
certainly desirable to explore this matter further, the
unfavorable cost differential between machines made
it somewhat premature to do so. Consequently,
present effort is being directed toward improving the
program.

Conclusions and discussion

The over-all method presented points up the usefulness
of the concepts of “‘similarity” of samples and “‘value”
classification of a property as tools to reduce the
exhaustive search problem in automatic design.
Specific points are:

1) The method of finding conjunctive “concepts™ is
different from those of Kochen or Stearns in that it
does not use samples of negative instances but relies
on the oddness of the many-way AND to provide
goodness.

There seems to be some philosophical import to this
difference. The many-way AND provides a “blanket”
goodness. The more ONE’s required by the AND, the
smaller the universe of samples which can satisfy it.
Therefore, if such an AND can be found present in
most samples of a type, it can act as an effective filter
rejecting everything except things very “similar”™ to the
samples which generated it. When the AND is lessened
to a few bits, this blanket rejection is lost, being sacri-
ficed for efficiency. Therefore, for problems where the
negative-instance set is unmanageable, it could prove
to be worth a sacrifice in efficiency if this rejection
could be better retained.

2) Using a normal logic-reducing program, it
might be impossible to generate a sufficiently small
number of members of a disjunction of many-way
AND’s to be practical. However, since the categorizing
process of Part I separates the samples of a type into
groups where the members are similar, it is easier to
find many-way AND’S in each category. This empha-
sizes the role of similarity between samples in leading
to a more efficient answer (since fewer disjunctions are

IBM JOURNAL * JULY 1962

required). Rather than indiscriminately AND-ing to-
gether samples, if they were first broken into a number
of “clumps” of look-alike samples, and each clump
searched separately for AND’s, it would seem that more
independence betweéen AND’S would be obtained, and
therefore probably fewer AND’s would be required.

3) The procedure used to find valuable properties
used the sample set representing the recognition
problem to generate them, rather than some random-
choice technique. Although this is not new, it is felt
that a great gain in efficiency is realized by doing this.

As a final summary, a comparison was made
between machine and human performance in a prac-
tical situation. The results seem to indicate that efforts
in automatic recognition logic design are feasible and,
in all probability, can ultimately yield some useful
solutions. Since the program presented has thus far
been tested only on one task which humans did not
find too difficult, it remains to be seen how large a
class of problems it and its successors can handle
successfully.

Acknowledgment
I wish to thank H. Penafiel for programming Part I.
References

1. W. W, Bledsoe and 1. Browning, “Pattern Recognition and
Reading by Machine,” Proceedings of the Eastern Joint
Computer Conference, 225 (1959).

2. E. B. Hunt and C. 1. Hovland, “Programming a Model of
Human Concept Formation,” Proceedings of the Western
Joint Computer Conference, 145 (1961).

3. M. Kochen, “An Experimental Program for the Selection of
Disjunctive ‘Hypotheses’,” Proceedings of the Western Joint
Computer Conference 19, 571 (1961).

4. S. D. Stearns, “A Method for the Design of Pattern Recog-
nition Logic,” IRE Transactions on Electronic Computers,
EC-9, 48 (March 1960).

Received June 19, 1961

