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Spin Absorption Spectra 

Abstract: Spin  systems exhibit a  whole  spectrum of absorption lines when in small constant external 
magnetic fields giving Zeeman energies comparable to  internal  interaction energies. With such small 
constant magnetic fields, power is  absorbed from an alternating magnetic field at zero frequency, at 
the  Larmor frequency,  and at harmonics of  the  Larmor frequency, both  for perpendicular- and parallel- 
field configurations. The calculation of  this spectrum for spin systems in powdered materials i s  the  main 
purpose of this paper. Both magnetic  dipole-dipole and electric  quadrupole internal  interactions  are 
considered and treated as second-order perturbations  on  the Zeeman interaction.  The  intensities of 
the  two absorption lines that occur at  the  Larmor frequency and double the Larmor frequency are 
obtained for  the parallel-field case. The intensity, frequency shift, and second moment  of  the  Larmor 
line, and the intensities  of the lines that occur at zero frequency and double the  Larmor frequency, are 
obtained for  the perpendicular-field case. The second-order calculation for powdered materials gives 
results  which  are  identical within a constant factor for  both dipole-dipole and quadrupole interactions. 

1. Introduction 

The phenomenon of magnetic resonance in spin 
systems characterized by the use of applied constant 
magnetic fields  giving Zeeman energies which are very 
large in comparison with internal energies, and by 
absorption of energy from an alternating magnetic 
field at the  Larmor frequency, has been extensively 
investigated. The  situation  in which the Zeeman energy 
is only slightly larger than  the  internal energy is con- 
sidered in this paper. As a result of internal interactions 
in  the spin system,  such as the magnetic dipole-dipole 
interaction or  the electric quadrupole  interaction of 
the spin system with the crystalline lattice, the mag- 
netic resonance absorption spectrum changes markedly 
as  the  constant magnetic field becomes small. At low 
constant magnetic fields a whole spectrum of absorp- 
tion lines occurring at zero frequency and  at  the 
Larmor frequency and its harmonics can be observed, 
both when the  alternating field  is perpendicular to  the 
constant field and when they are parallel. 

It was shown some time ago by Wallerl that a spin 
system in the absence of an external magnetic field 
should absorb energy from low-frequency alternating 
magnetic fields.  Broer’ then considered the problem 
for non-vanishing external fields and found that 
absorption should occur at all  the various harmonics 
of the  Larmor frequency with the increasingly higher 
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frequency lines decreasing rapidly in intensity. His 
work, together with the  later work of Wright,3 yielded 
the intensity of the lines at zero frequency, at the 
Larmor frequency, and  at double the  Larmor fre- 
quency, for  both perpendicular- and parallel-field 
configurations. The second and fourth moments of the 
high-field Larmor line have been calculated by Van 
V l e ~ k . ~  Recently, the second moments of all the lines 
mentioned in the penultimate sentence were obtained 
by  Cheng.’ Only the magnetic dipole-dipole internal 
interaction was considered in these papers. It is the 
purpose of the present study  to present a uniform 
account of all the results which are  obtained in the 
second order of perturbation, including both  the 
magnetic dipole-dipole interactions among  the spins 
and their electric quadrupole interactions with the 
crystalline lattice in which they are fixed. 

The general properties of the susceptibility tensor 
and the  intimate relation of this quantity to experi- 
mental measurements are discussed in Section 2. The 
quantum-mechanical formulation of the susceptibility 
is  given in Section 3, and it is related to a spin correla- 
tion function in a  manner amenable to calculation. In 
Section 4 this correlation function is calculated for  a 
spin system in a powdered material, taking  into account 
the magnetic dipole-dipole interaction  as  a second- 
order  perturbation on  the Zeeman energy. In the 
parallel-field case this calculation yields the intensities 



of the  two  absorption lines that occur at the  Larmor 
frequency and double  the  Larmor frequency. For 
the perpendicular-field case the calculation gives the 
intensity, frequency shift, and second moment  of  the 
Larmor line, and the intensities of the lines that occur 
at zero frequency and double  the  Larmor frequency. 
Spins with angular  momentum greater than one-half 
can possess an electric quadrupole  moment and  thus 
interact with electric-field gradients. A noncubic 
crystalline lattice  structure, imperfections, or impuri- 
ties in a cubic lattice give rise to such electric-field 
gradients at spin sites. This  quadrupole  interaction,  in 
addition to the dipole-dipole interaction, is considered 
in Section 5 .  The calculation is carried out in the 
fashion of the previous dipole-dipole case, treating  the 
quadrupole  interaction as a second-order perturbation. 

~ This requires that the  quadrupole  interaction be a weak 
perturbation in the sense that few spins are  in such 
large field gradients that their  contribution to the 
absorption is split far  from  the  center of a line. The 
results of the second-order quadrupole calculation for 
powdered materials are identical with those of the 
preceding second-order dipole-dipole calculation, 
except for  a  change in an over-all constant  factor.  The 
two interactions do  not interfere in second order so 
that  the combination of quadrupole and dipole-dipole 
interactions gives the same results as the  pure dipole- 
dipole  interaction case, except for  the  change of an 
over-all constant  factor. 

2. General properties of the susceptibility 

A brief review  will be given in this section of some 
general properties of the susceptibility tensor which 
will be used in  subsequent calculations. The assumption 
of a  linear  causal  connection between the induced 
magnetization and  an applied spatially uniform mag- 
netic field  is conveyed in 

m(t) = dt'X(t, t').h(t') . 

We shall limit our discussion to time-independent 
systems so that  the real  tensor  (or dyadic) suscepti- 
bility x is invariant  under time translations, 

L (1) 

X(t, t ' )  = X(t - t') . (2) 

For the case of a  monochromatic magnetic field, 

h(t) = + h,*e+iof, (3) 

the  integral  connection (1) becomes 

m(t) = X(o)*h,e-iw' + X(0)*.h,*eio', (4) 

where X(O) is the  Fourier  transform  of ~ ( t ) ,  

X(O) = dte'"'X(t) , ( 5 )  

and 

03 

0 

x ( 4 *  = X (  - 4 3 (6) 

as ~ ( t )  is real. The average energy density stored  in  the 
system, E,, is 

Es = (0/2n) dt[h(t).m(t)]/2 I:', 
= h,* - x,(o) * h, , (7) 

where x,(o) is the  Hermitian part of the susceptibility 
tensor ~(o), 

X , ( 4  = C X ( 0 )  + X(4+1/2 (8) 
The cyclic energy density gain of the system, AE, is 

AE = j:*" dth(t).d[m(t)]/dt 

= 4nh,* * x,(w) * h, , (9) 

where ix,(o) is the skew-Hermitian part of  the suscep- 
tibility tensor, 

X,(O> = C X ( 4  - X(4+1/2i * (10) 

A general symmetry property that we shall use in our 
calculations is obtained  from  the requirement of time 
reversal invariance. We must now state that we are 
considering systems  in a  time-independent, spatially 
uniform,  external magnetic field H,, and  indicate  the 
dependence of the susceptibility on this field explicitly, 

X(@) = X @ ;  Ho) * 

Upon time reversal the  external magnetic field reverses 
direction,  the frequency changes sign, the  stored 
energy remains the same, and  the cyclic energy gain 
changes sign, 

':( E s - + E s ,  A E +   - A E .  

Inspection of the  relations  for  the energy stored and 
gained by the system, (7), (9), shows that this  invariance 
property requires 

~ ( 0 ;  Ho) = x ( - w ;  -Ho)+ (11) 

and, according to  the reality property (6) ,  

X(O; Ho) = X(O; -Ho)' . (12) 

Hence, reversing the  direction of the external magnetic 
field Ho is equivalent to  the mathematical  operation of 
transposing  the susceptibility tensor. 

The calculations in subsequent sections deal  for  the 
most part with powdered materials. In the case of 
powdered materials,  the only distinguished direction 
in  space is that of the  external magnetic field H,. On 
choosing this direction to be  along  the z axis, the 
susceptibility X is invariant  under  the symmetry opera- 
tions of arbitrary  rotations about the z axis and  a 
rotation of n about  the x or y axis coupled with the 
reversal of the direction of H,. These symmetries 
require that  the susceptibility tensor possess only  three 
independent  components and  be of the  form 

o + "W , Ho -+ -Ho 

I 
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xxx x x y  0 x = - f Y  xxx  [ 0 0 ;=I (13) 

for powdered materials,  and that  the time reversal in- 
variance statement (12) be satisfied. 

This  form of the susceptibility tensor  can be diagonal- 
ized by the  introduction of a complex “angular 
momentum”  coordinate system corresponding to a 
change of emphasis from  linear to circular polarization. 
The  rotation  operator J has the j  = 1 representation  in 
Cartesian  coordinates 
(J?)”B = iea(y)B , (14) 

where &‘BY is the completely antisymmetric pseudo- 
tensor of rank three with exyz = + 1. The properties of 
this tensor allow the powder form of the susceptibility 
to be  written as 

x = ~”’1 + ixxyJ ,  + (x” - xxx)Jzz . (15) 

This  demonstrates that in the  coordinate system in 
which J‘ is diagonal x is also  diagonal, with elements 
x+ = xxx + i x X Y  , 
x - x  Y 
0 - 22 (16) 

x -  = xxx - i x X Y  . 
In this  coordinate system the time reversal symmetry 
(12) states that 

X * ( W  Ho) = x Y m ;  -Hob 
x0(w; H,) = ~ ‘ ( 0 ;  -Ho),  (17) 

3. Quantum-mechanical formulation of the sus- 
ceptibility 

The  quantum-mechanical expression for  the suscepti- 
bility is obtained by calculating the expectation value 
of the  magnetization,  treating  the time-dependent 
magnetic field h(t) as a  linear  perturbation. 

Before the  application of the magnetic field h(t) the 
system is described by a time-independent Hamiltonian 
&‘ and a  statistical  distribution pn of the eigenstates 
of the  Hamiltonian In). A density operator p,  which 
commutes with the  Hamiltonian X ,  can be defined by 

P = In>Pn<nl* (1) 
n 

The density operator is normalized to the reciprocal 
volume of  the system 

Trp = p n  = 1 / V .  (2) 

The  application of a time-dependent magnetic field 
h(t) which vanishes in  the  remote  past gives  rise to a 
magnetization 

n 

i(d/dt)ln, t ;  h )  = [2 - h(t).M]ln, t ;  h )  , (4) 

and  approaches the eigenstate In, t )  in  the remote past. 
Here M is the magnetic-moment operator of the 
system, and we use natural  units in which h = 1. The 
dependence of In, t ;  h )  on h(t) is displayed by the 
introduction of an interaction  representation  state 
In, t ;  i) which is defined by 

In, t ;  i )  = eizDrJn, t ;  h )  ( 5 )  

and satisfies 

i (d /d t ) )n ,  t ;  i )  = -M(t)-h(t))n, t ;  i), (6)  

t - ,  “00: In, t ;  i ) + J n )  , (7) 

where 

M(t) = ei“‘Me“”‘ . ( 8 )  

This differential equation, with its accompanying 
boundary  condition, is equivalent to the integral 
equation 

In, t ;  i )  = In) + i dt ’M(t ’ )  SI, 
- h(t’)ln, t ’ ;  i) . (9) 

Performing a single iteration of the  integral  equation, 
inserting the resulting expression for  the  state vector 
In, t ;  h )  in the  formula  for  the magnetization (3), 
and identifying the  dynamic susceptibility with the 
linear dependence of the magnetization on  the time- 
dependent field h(t) gives 

p ( t ,  t ’ )  = iTrp[Ma(t), MB(t’)]O(t - t’)  . (104 

Here  the  step  function O(t) has been included to indi- 
cate explicitly the  retarded,  casual,  nature of x(t, t’), 

The time independence of the system, and  the invari- 
ance of the  trace  under cyclic permutations of the 
operators  it  contains, give the  alternate  form 

,yaB(t - t’) = iTr[p, ~‘(t)l~B(t’)O(t - t’) . (lob) 

The general expression for  the susceptibility will now 
be applied to a  spin system consisting of N identical 
spins si with gyromagnetic ratio y and spin I. The 
magnetic-moment operator is now given explicitly by 

M = y S ,  (12) 

where S is the  total spin operator of the system, 
N 

s = si, s? = Z(I + 1) . (13) 
i =  1 

m(t> = 2 Pn(n ,  t ;  hlM)n, t ;  h )  9 

The spin system will be assumed to be initially in 

the statistical  distribution  operator 
n (3) thermal equilibrium with a large temperature T so that 

where In, t ;  h )  moves under  the  action ofthe complete 
340 Hamiltonian, p = Ae - X / k T  (14) 
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can  be approximated by 

p = A[1 - (&?/kT)] . (15) 

The  Hamiltonian S has  a vanishing trace for  the 
systems to be considered. Accordingly, to first order in 
l / k T ,  the normalization constant is given by 

A = (VTrI)-' = [ ~ ( 2 1 +  . (16) 

In the high-temperature limit the expression for  the 
susceptibility (lob) reduces to 

f B ( t  - t ' )  = - iA(y'/kT)Tr[.@, Sa(t)]Sp(t')6(t - t ' )  

= A(y2/kT)(TrS"S45(t - t') (17) 

- [d/dt][TrSa(t)Ss(t')B(t - t ' ) ] }  . 
Now 

TrS"S@ = NTrl(trl)"trs"sfl,  (1 8) 

where tr denotes the  trace in the space of a single-spin 
operator. Using a result of Appendix A,  Eq. (A.2), the 
previous equation becomes 

TrSaSB = (1/3)NI(I  + 1)(2Z + 1)N6ap . (19) 

Introducing  the spin-correlation function6 

~ a @ ( t  - t ' )  = [~r(sv)~]-'~rsa(t)ss(t')e(t - t ' )  , (20)  

we obtain an expression for  the susceptibility in a 
form suitable for calc~lat ion,~ 

f s ( t  - t ' )  = ~ ~ { 6 ~ ~ 6 ( t  - t') - [d /d t ] [Gap( t  - t ' ) ] }  , 

where 

x. = yZNZ(I + 1)/3kTV  (22)  

is the  static susceptibility of the spin system. 
The  Fourier  transform of the susceptibility is the 

quantity  that is  usually  of experimental interest be- 
cause it describes directly the energy stored and gained 
by a spin system in  a  monochromatic field h(t), 

fp(o) = dteio'f@(t)  = x0[dap + ioGap(w)]  . (23) 

The absorptive part of the susceptibility is 

(21) 

I O W  

x,"@(o> = w o G , " T o )  Y (24)  

where 

G , " p ( ~ )  = (1/2)[Gus(w) + GB"(o)*] . (25) 

According to  the time translational invariance of the 
trace and its invariance under cyclic permutations, 

TrS@(t)SyO) = TrS"( - t)Sfl(O) , (26) 

and the absorptive part of the spin-correlation function 
may be written 

G,"p(o) = (1/2)[Tr(Sv)']-' som dt[ei"'TrS"(t)Sp(0) 

+ e-'"'TrSp(t)S"(O)] 

= ( I / ~ ) [ T ~ ( S ~ ) ~ ] - '  dteiofTrSa(t)Sp(0) . 
-00 (27) 

Although an exact calculation of the spin-correlation 
function is in general impossible, the complete 
moments (w" )  of its absorptive part  can be obtained 
by the following manipulation: 

(o">bs = (l/n)! doo"G,"s(w) 
m 

-00 

= ( 1 / 2 n ) [ ~ r ( ~ ' ) ~ ] "  

x d o I m  dt([(l/i)(d/dt)]"e'"'} 
-03 

x Trsa(t)Ss(o) 

= ( 1 / 2 n ) [ ~ r ( ~ ~ ) ' ] - '  

x dt  [ 1" doeiof ]   [ i (d /d t ) ]"  
- w  - m  

x TrSyt)ss(o) 

= [Tr(Sv)']"[i(d/dt)]"TrS"(t)SB(O)I,=,, (28) 

and  the repeated use  of the Heisenberg equation of 
motion, 

i(d/dt)Sa(t) = [Sa(t) ,  S ]  . (29)  

Examination of Eq. (27) verifies that  the diagonal 
elements of G,(o) are real, even functions of a. 
Accordingly, the  odd  diagonal moments (02"+')aa 

vanish, while 

(o'")~" = (2 /n)  dww'"G,""(w) . 

The simplest moment, the zero'th moment or normali- 
zation,  can be obtained directly from  Eq. (28) 

m 

(30) 
0 

( o o y  = I:- (do/n)G,"p(o)  = sap . (31) 

This section will be concluded with the calculation of 
the "unperturbed" correlation function Go for  a spin 
system interacting with an external constant magnetic 
field H, but with no internal interactions. Taking H, 
along the z direction, the Zeeman Hamiltonian 

No = - yHoh .S  = -00h.S (32) 

yields the equation of motion 

(d /d t )S( t )  = - i o o [ l . S ,  S(t)]  = -o,h x S( t )  . (33)  

Recalling that, 

(d/dt)e(t - t ')  = s(t - 2') , (34) 341 
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the "unperturbed" correlation function 

G,(t - t') = [Tr(S")2]"TrS(t)S(t')O(t - t ' )  (20) 

is seen to satisfy 

[(dldt) + 00.2 x]GO(t - t') = S(t - t')l . (354 

On introducing  the  rotation  operator J,, 

J, = i h x  , (36) 

the previous equation becomes 

[(dl&) - iooJ;]G,(t - t') = S(t - t')l . (333) 

This equation  has  the obvious solution, in the "angular 
momentum" coordinate system  which diagonalizes J,, 
GOmm'( t  - t') = gmm'eimooft-t ' )e(t  - t ')  . 

The  Fourier transform of this solution is 
(37) 

G,"'"'(w) = 6""' JOm dteimoore - er 

= Smm'(i/(o + iE + mo,)) , (38) 

where a convergence factor e-e t  has been inserted in 
the  integrand, and the limit E + +O is implied. 
Explicitly, Eq. (38)  is to be used in integrals in the 
following fashion 

l/(o + i E  + a) = P / ( o  + a) - niS(o + a) , (39) 

where P indicates that  the principal part of the integral 
is to be taken.  Thus  the absorptive part of the un- 
perturbed correlation function is  given  by 

G,,"'"'(w) = d""'nS(o + moo) . (40) 
This result expresses, in  the language of spin correla- 
tion functions, the well-known fact that a spin  system 
with no internal  interactions in an external field H, 
absorbs energy only from those circularly polarized 
magnetic fields 

h,(t) = h(Rcos w,t 9 sin mot) (41) 

that diagonalize the  rotation  operator J, and  are of the 
resonance frequency o, = yH,. 

4. Spin systems with dipole-dipole interactions 

In this section a homogeneous spin system with internal 
magnetic dipole-dipole interactions in addition to  an 
interaction with an external field H, will be considered. 
The dipole-dipole interaction 

sD = (1/2)y x' ri j -3(s i .s j  - ~ P , ~ . s ~ P , ~ . s ~ )  (1) 

will be treated as a  perturbation  on an unperturbed 
system which has only the Zeeman interaction 

i i  

X ,  = -yH,.2.S = -o,2*s , (2) 

and  the correlation function G will be calculated to 
342 second order  in X D  for powdered materials. 
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Before considering the specific case of the dipole- 
dipole interaction, a general method of calculating G 
to second order in an arbitrary  perturbation X l  on 
the Zeeman interaction X ,  will  be  given. With this 
division of the  Hamiltonian, 

x = x , + x 1 ,  
the  equation of motion of the spin operator becomes 

(d/dt)S(t)  =  oh X S( t )  + i[XI(t), S(t)]  , (3) 
giving 

[ (d ldt)  + w,& x]G( t  - t') = S(t - t')l 

+ [ ~ r ( S " ) ~ ] " ~ r i [ ~ ~ ( t ) ,  s(t)]s(t')e(t - t ')  . (4) 

Performing the same operations on S(t'), and observing 
that in the applications that follow 

T r [ Z l ,  S ] S  = 0 ( 5 )  

so that  the linear perturbation term vanishes, yields 

[ ( d l d t  + 00.2 X )G(t-  t') - S(t  - t')l] 

* (dT/dt' - x 200) = I ( t  - t') , (6) 
where 
I(t - t') = [ T r ( S V ) z ] 3 - ' T r i [ ~ ~ ( t ) ,  S( t ) ]  

i[&'l(t'), S(t')]e(t - t') . (7) 
In Eq. (6), dT/dt' signifies a derivative operating  to  the 
left on the variable t'. Since G depends only upon the 
time difference t - t', the interaction function I must 
also depend only on this difference. Using the unper- 
turbed correlation function Go introduced in Section 
3, the differential operations in Eq. (6) can be inverted. 
One  obtains 

G(t - t ' )  = Go(t - t ')  + dtldt,G,(t - t i )  
r m  

. I( t1  - t z )  * Go(t2 - t ' )  , (8) 
as the application of the differential operators occurring 
in Eq. (6) to this result, and the use  of the Eq. (3.35a) 
for Go and its transpose, demonstrates. In Fourier 
space this equation becomes the simple algebraic 
relation 

G(o) =z G,(o) + G ~ ( w ) * I ( o ) . G ~ ( o ) .  (9) 
The calculation of the  interaction function I with the 
spin operators moving only under  the application of 
the Zeeman interaction X ,  yields the correlation 
function G to second order in the  perturbation XI. 

The preceding development will  now be applied to 
the calculation of the correlation function for a spin 
system  with dipole-dipole interactions. The commuta- 
tor required for  the  evaluation of the interaction 
function I D  is 

i [XD,  SI = 3y2 2' rij-3Pij x siPij.sj . (10) 

It can now be verified that  the linear perturbation 
i j  



term ( 5 )  vanishes, for this entails 

Tr[.%?D, s]s - TrSiSjSk, = 0 , i 9 j . 
On inserting the commutator (10) in the definition (7) 
of the interaction function I, and introducing the now 
familiar and useful operator expression for the cross 
product, 

(J')uy = i&"(')Y , (2.14) 

we obtain 

lDU'(t - t ' )  = -9y4C'C'  rij-3rkl-3[~r(~v)2]-1 
i j  kl 

* e(t - t')TrPij'Si(t)Pij*  J"*Sj(t)Pkl 

- ~ ~ ( t ' ) P ~ ~ - J ~ . s ~ ( t ' )  . (1 1) 

Now,  with the neglect  of the dipole-dipole interaction, 

[tr(sv)2]"trs(t)s(t')8(t - r') = Go(t - t ' )  . (12) 

Accordingly, the trace occurring in (1 1) can be evalu- 
ated in zero'th order 

i + j , k = k l :  

[Tr(sY)2]- 'Trs~(t)s~(t)skY(t ' )s~(t ' )e( t  - t') 

= [Z(I + 1)/3N][G~dpGoaY(t - t')GoSd(t - t ' )  

+ 8ilBjkGou6(t - t')G"'(t - t ' ) ]  , (13) 

yielding the desired second-order expression 

~ ~ " ' ( t )  = 3y41(1 + 1)N-l x' rij-'j 

X tpGo'(t)J"(PijPij)Go(t)CoiiPij>, J'] * (14) 

A compact and useful notation has been  achieved here 
with the introduction of the symbol t p  which denotes 
the diagonal sum of tensor indices. 

We shall now  specialize the calculation to the case of 
powdered materials since this considerably  reduces 
the number of algebraic manipulations and gives the 
results of most experimental interest. The interaction 
function I for a powdered material is obtained by 
averaging (14) over all crystal orientations. This 
averaging, according to Appendix B, gives 

(P"PBPyPd>,,  = (l/15)(SasSyd + 6aY6sd + GadSSy) . (B.3) 

Thus, keeping in mind the antisymmetrical nature of 
the operator J, one obtains 

fDas( t )  = (1/5)r4I(I + 1)N-' c' ri j"j  
i j  

x {tpGo(t)tpJuGo(t)J8 + tpJ"Go(t)tpJ8Go(t) 

+ tpJ"Go(t)[JBG0(t) + Go(t)JB]} . (15) 

It is  now convenient to work in the "angular momen- 
tum" coordinate system, for, as was  shown in Section 2 
for the susceptibility tensor, the only nonvanishing 
components of the spin correlation function of a 
powdered material are G+, Go, G-, with 

G-(t - t ' ;  HO) = G + ( t  - t ' ;  -Ho). (16) 

Since the unperturbed correlation function Go is 
diagonal in this coordinate system, the interaction 
function 1 is also diagonal, and, according to (16), only 
the components I + ,  Io need be calculated. Recalling 
the discussion that led to the diagonal form (2.13) of 
the susceptibility  given in Section 2 and the transforma- 
tion (2.16), one finds that these components are 

IDo(?) = (1/5)y41(I + 1)N-I x' rij-'j 
i i  

X {tpGo(t)tpJ"Go(t)J' + tpJ"Go(t)tpJ"Go(t) 

+ tpJ'Go(t)[J"Go(t) + J"Go(t)I} 3 (17) 
and 

ID' ( t )  = (1/5)y41(1 + 1)N-' X' rij-'j 
i j  

X {tpG0(t)tp2-%J-G0(t)2-%Jf 

+ tp2-'/J-G0(t)tp2-%J+Go(t)  

+ tp2-"J-G0(t) 

* [2-'/J+GO(i) + Go(t)2-"J+]} , (18) 
where 

J' = J r + i J Y .  (19) 

Since the trace is invariant under unitary transforma- 
tions, the terms appearing above can be evaluated in 
the "angular momentum" coordinate system. This 
greatly facilitates computation. With the use  of the 
familiar properties of the rotation operator 

J'Im) = mlm), 

the cyclic  symmetry of the trace, and the result of 
Section 3 

Gomm'(t) = gmm'eimmOte(t) , (3.37) 

we secure 

fDo( t )  = (1/3)(Ao2)D[4e2imot + eimot 
+ e-iomt + 4e-2im~t]e(t), (21) 

and 

r D + ( t )  = (1/3)(A02)D[2e2i"0' + 3eiwot 

+ 3 + 2e"mot]e(t),  (22) 
where 

( ~ 0 ~ ) ~  = (3/5)y41(1 + I)N-' rij-'j . (23) 

The Fourier transform of the "powder correlation 
function", G(o), is obtained from the Fourier trans- 
form of I, 

ti 
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according to 

GD0(w) =  goo(^) - G o o ( w ) ~ , o ( ~ ) G ~ ( w )  

where the symmetry property (16) is indicated in  the 
last  equation. 

The  quantity of usual experimental interest is the 
cyclic energy gain of the system which is proportional 
to  the absorptive part of the spin-correlation function. 
In  the case of the  diagonal  form  under consideration, 
this absorptive part is  simply the real part of the 
correlation function, 

camm'(o) = ReG""1w) . (27) 

Upon making use  of the symbolic relations which 
obtain validity in integrations 

Im 
1 n -- S(w - a) 

+ (1/2)6(w T wo) - (11/2)6(w f wo) 

f 2wo6(')(w T 00) 

+ (3/2)wo26("(0 wo)] . (31) 

The S(w) terms of Eq. (30) which give an absorption 
line at zero frequency should be omitted. Detailed 
examination of these terms show that they arise 
entirely from diagonal matrix elements and  do  not 
correspond to actual  transitions. 

Linear polarization is  used in a typical experimental 
setup.  The intensities, width, and shift which the 
results above imply will now be given  explicitly for this 
case.' 

Equation (30) yields directly the  two second-order 
results for  the case  of the time varying field h(t) 
parallel to  the static field H,: intensity of the line3 
at wo 

L o  

L o  

dw(2/n)CuD0(w) = ( 2 / 3 ) ( A 0 2 ) ~ O ~ - 2  9 (32) 

intensity of the line3 at 20,  

dw(2/.)GaD0(w) = (2 /3) (A02)~W~-2 e (33) 

The discussion of Eq. (3.28) given in Section 3 shows 
that  the second-order perturbation calculation gives 
the exact total second moment;  and according to (30) 
this is 

= ( 1 0 / 3 ) ( A ~ ' ) ~ .  (34) 

The case of linear polarization with the time varying 
field h(t) perpendicular to  the static field H, requires 
the evaluation of G"". This is obtained by inverting the 
transformation (2.16), 

-.(-1)" 
S'"'(0 - a) , (28) 

- G"" = PY = (1/2)(G+ + G-) . (35) 

With the help of this transformation, (31) yields the 
following second-order perturbation results : 

intensity of the  Larmor line 

- 
(n  - l)!  

and 

6'"(w - a)f(o)g(w) = -f(')(a)g(w)b(w - a) 

+f(a)s(w)6(')(w + a) (29) 

the absorptive part of the spin-correlation function is L a o  
found  to be given  by 

d0(2/n)cU~""(w) = 1 - (5 /3) (A02) ,0~-2 ,  (36) 

shift toward higher frequency of the  Larmor line 
(I/n)Gu~o(o) = J(W) + (1/3)(Ao2)&Io-2 

L a o  
dw(w - wo)(2/.)G&""(w) = (2/3>(AO2>~Wo-' 

x {6(w + 20,) + 6(w + 00) + S ( 0  - 0 0 )  
(37) 

344 + S ( 0  - 20,) - 4S(w)) , (30) second moment of the  Larmor line4 
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The first step  in  the calculation of 1 the correlation s... 
1-0 

L o  

do(w - wO)2(2/71)GaD””(~) = (Am’),, (38) 

intensity of the line at  zero frequency2 

dO(2/71)caD””(0) = (Ao’)DwO 9 
- 2  (39) 

intensity of the line’ at  20, 

dW(2/71)Ga,””(0) = (2/3)(AO’)00-~ (40) 

The  absorptive part of the spin correlation  function 
is normalized as 

jOm dw(2/n)CaDx”(o) = 1 9 

and gives the exact total second moment 

(w’)”“ =sorn doo2(2/n)GaD””(o) 

= wO2 + (lO/3)(Aw2)D. 

Finally, we observe that with the inclusion of the 
neglected h and  the replacement of y by the  more 
conventional gp, where p is the Bohr magneton, 

(Am’), = (3/5)g4p4h-’I(I + 1)N-I E’ r i j -6  . (43) 

5. Spin  systems with quadrupole interactions 

In this section the electric quadrupole  interaction of a 
spin system with electric-field gradients will be con- 
sidered in addition to the magnetic dipole-dipole 
interaction worked out in the preceding section. The 
quadrupole  interaction will be treated as a second- 
order  perturbation in the formalism of the previous 
sections. This requires that  it is a weak interaction  in 
the sense that few spins are in such large field gradients 
that their  contribution to  an absorption line is split so 
far  from  the line as to be unobserved.’ The  calculation 
will be performed for powdered materials. If the 
electric potential at the position of the i’th spin is 
denoted by 4i, the “irreducible part” of the  gradient 
of the electric field strength at the i‘th spin is 

i j  

vi“’ = [V“VP - (1/3)6“’v’]+i = 4’“ . ( 1 )  

The  tensor V,olS is “irreducible” since it is symmetric 
and possesses a vanishing diagonal  sum, 

t p & =  v = o .  (2) 

The electric quadrupole  Hamiltonian is then” 
N 

where 

A:P = [eQ/21(21 - l)]v,Ors . (4) 

function, according to  the development at the begin- 
ning of Section 4, is the  evaluation of the  commutator 
of 2Q and S. After a  short  calculation,  one finds 

i[.%?~, SO’] = -E AiPVEvUc{SjB, Sj} , ( 5 )  
i  

where the curly brackets denote  the  anticommutator, 

{SIp, s f }  = Si%$ + s f q  . (6)  

It is shown in Appendix A that  the trace of three spin 
operators is a completely antisymmetrical tensor. 
Hence, the  linear  quadrupole  perturbation vanishes, 

T r [ Z Q ,  S ] S  N tr{s, s}s = 0 ,  

since it involves the  trace of three spin operators of 
which two occur in  a symmetrical form.  Furthermore, 
there is no interference between the dipole-dipole 
interaction  and  the  quadrupole  interaction  in second 
order. This interference would involve a  function 

~,-,“’(t - t’) = [~r(S’)~]-’~ri [&‘~,  Su(t)] 

and  a  function I,... of the same form  but with X Q  and 
X D  interchanged. With  the use of Eq. ( 5 )  for  the first 
commutator  appearing  above  and Eq. (4.10) for  the 
second, it is seen that Eq. (7) contains only terms of the 
form 

Trsi(t)si(t)sj(t’)s,(t’) with j =I= k 
which vanish in lowest order. 

Thus  our task reduces to the evaluation of 

The terms with i + j  in  Eq. (8) vanish,  for  they  are 
composed of two  factors, each of the  form 

This simply states that  the  quadrupole  interaction 
involves only a single spin. Accordingly, 

IQUB(t - t ‘ )  = [Tr(sY)’]l-l ApVAilK&vac&KBq(Tl/trl) 
i 

X t r { f ( t ) ,  s c ( t ) } { ~ A ( t r ) ,  syt ’ ) }e ( t  - t ’ )  . 
(9 )  

In lowest order, with t > t’, 

since both s(t) and G,(t - t’) satisfy the same equation 
of motion  for t > t’ and 345 
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t + t' + 0 : Go(t - t') + 1 . 
Equation (10) and  the following result from  Appen- 
dix  A, 

trs'srsAsq = (1/15)trlI(I + 1){6"'6Aq[(1/2) + 1(1 + l)] 

x 8%P[ -2 + 1(1 + l)] 

+ 6""6'"(1/2) + I ( I  + l)]} , ('4.4) 

reduce  Eq. (9), in lowest order,  to 

I,"'(t) = (1/5)[41(1+ 1) - 31 

x N" 1 tpGoJaAiGo(t)[Ai, JB] . (1 1) 

The correlation  function will be  evaluated only for 
the case of powdered  materials. It will be  found 
shortly that  the averaged quadrupole  function I, is 
directly  proportional to the  average  dipole-dipole 
function I, of Section 4. There we obtained 

i 

ID"'(?) = 3y41(1 + 1)N-l E' rij-6 
i j  

x tpGo(t)J"(PijPij)Go(t)[(PijPij), JB] . (4.14) 

Now,  according to Appendix B, 

(A:'Aiyd)av = (l/10)tpAi2 

x [6ay6'68d + 6a66BY - (2/3)SasSy6] (B.6) 
while 

((PijPij)"B(PijPij>'d)av = (1/15) 

x [day686 + 6"66BY + 6"@6Y6] . 

03.3) 
The last  term  in the square  brackets  in these equations 
does not  contribute  to  the average of (1 1) or (4.14) 
since it gives rise to a  term of the  form 

t p  . . [l, J,] = 0 . 
Hence 

f,"'(t) = (1/5)[4I(Z + 1) - 31N" (l/10)tpAi2 
i 

x [3y41(I + 1)N- l  E' rij-6(~/15)]  (12) 
i j  

x ID"'(t) . 
Recalling that 

= (3/5)y41(1 + 1 ) ~ -  E' rij  - 6  (4.23) 
i j  

and defining 

( A o ~ ) ,  = (3/50)[41(1+ 1) - 31N" E tpAi2, (13) 

Eq. (12) can be written as 
i 

Thus we find that  for powdered materials,  the results 
in second order  for  the  quadrupole  interaction  are 
identical with the  corresponding  second-order results 
for  the dipole-dipole  interaction  provided  only that 
(Am'), is replaced by (AO' )~ .  Since to this order of 
perturbation  there is no interference between the 
dipole-dipole and  quadrupole interactions, the com- 
plete second-order results for a spin system with both 
dipole-dipole and  quadrupole interactions  are given 
at the  end of Section 4 upon replacing ( A d ) ,  by 
(Ao'), where 
( A d )  = ( A d ) ,  + ( A W ' ) ~ .  (1  5) 

In terms of the electric field gradient, 

(Am2), = (3/200) - 
e2Q2 4Z(I+ 1) - 3 

h2 zy21  - 1)2 ( 1 / N )  tPVZ 
i 

where the neglected h has been restored, and, of course, 
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Appendix A: Spin traces 

The  trace  operation does not distinguish a  direction  in 
space.  Hence the  trace of the  product of n spin 
operators is an invariant  tensor of rank n. This  simple 
property will be used to evaluate  the spin traces below. 

Since no  invariant  vector exists, the  trace of a single 
spin vanishes, 

The 6 symbol is the only  invariant  second-rank 
tensor. Accordingly, the  trace of two spin operators is 

trsasB = 6aatr(sv)2 = 6"8(1/3)trs2 

= (1/3)1(1 + l)trlGaB 

= (1/3)1(1+ 1)(2Z + 1)6@ . (2) 

The  trace of three spin operators, which individually 
transform as pseudo-vectors, is an invariant  pseudo- 
tensor of rank three and hence is proportional to  the 
only  rank  three  invariant  pseudo-tensor E"'Y. Since 
E ~ ~ Y  is completely antisymmetric, the spin commutation 
relations and  the preceding result yield 

= (i/6)Z(I + l ) t r l~apy  . (3) 

The  trace of four spin operators  transforms as  an 
invariant  fourth-rank  tensor  and hence must  be related 
to  the  fourth-rank tensors which can  be  formed by 
taking  permutations of the indices of 6"B6Ya, 
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trs6saspsY = trsaspsYsd 

shows that  the coefficients a and c must be identical. 
The remaining coefficients a and b can be found by 
contracting various indices and using Eqs. (2) ,  ( 3 ,  

trs2sysa = I(I + 1)trsys' 

= (1/3)12(1 + 1)2tr16yd = (30 + b + a)dyd, 

trsaspsasd = trs2sasd + trsa[sB, sals6 

= (1/3)1(1+ l)trl[I(I + 1) - 1]6pd 

= [ a  + 3b + a]dpa. 

~ The  solution of these equations yields 

irsasBsYsd = (1/15)1(1 + l)trl{~5"~6~'[(1/2) + I(I + l)] 

+ 6 " W d [ -  2 + I(I  + l)] 

+ 6ad6q(1/2) + I (I  + l)]} . (4) 

Appendix 6: Tensor averages 

Consider various arbitrary vectors k, 1, which are 
fixed in a rigid body. The average of the  product of 
their  components, 

(k"la * * a)., , 
is obtained when the rigid body in which the vectors 
are fixed  is rotated over all possible orientations.  The 
averaging process does not distinguish a direction in 
space. Thus  the average of the  product of n vectors is 
an invariant tensor of rank n. This simple property will 
be used to evaluate the averages below in a  manner 
similar to  that used in the preceding appendix to 
evaluate spin traces. 

The average of the  product of two vectors must be 
proportional to  the invariant 6 symbol, 

(kalS),, = adap . 
The  constant a is determined by contracting ab, 

(k.1) av=  k.1 = 3~ , 
and  thus 

( k . Z p ) a V  = (1/3)k-16"' . (1) 

The average of  the  product of four vectors must be 
of the form 

(kalemYnd)Pv = aSaB6Ya + bdaydpd + ~ 6 ~ ~ 6 ~ ~  . 
The  constants a, b, c are determined by forming 
various contractions and using Eq. (l), 

(k-lrnYn6),, = (3a + b + c)Pd = k.1(1/3)m.n6Yd, 

(k.mlpnd)av = (a + 3b + c)Ssd = k.m(1/3)1.n6pd, 

(k.nlpmY),, = (a + b + 3c)607 = k.n(l/3)1.m6pY . 
These equations yield 

(kalpmYnd)av = (1/30){(4k.lm.n - kam1.n 

- k . nl  m)6ap6Yd 

+ (-k-lm.n + 4k.ml.n 

- k.nl-m)6aY6~d + ( -k. lm*n 

- kam1.n. + 4k.nl.m)6"y6pd} . (2) 

In Section 4 the average of four identical unit 
vectors is needed. It follows from  the previous result 
that this average is 

(P"PpPyPd),, = (1/15)(6as6yd + 6ay6pd + GadSsy) . (3) 

The  product of two second-rank tensors which are 
fixed in a rigid body transforms  as  the direct product 
kaPmYnd. Thus  Eq. (2) yields the average 

(AapBYd),, = (1/30){4tpAtpB - tpATB - tpAB)GapGYd 

+ (- tpAtpB + 4tpATB - tpAB)6aYdp6 

+ (- tpAtpB - tpATB + 4tpAB)6'd6sY} , 
(4) 

where 

tpA = A'", tpATB = ApaBBa, etc. ( 5 )  

This general result gives directly the average of the 
square of a symmetrical, traceless, second-rank ten- 
sor, such as  that needed in Section 5, 

(AapAyd),, = (1/15)tpA2 

X [(3/2)(SaYGpd + 6ad6py) - 6'p6yd] . ( 6 )  
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