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L. S. Brown *

Spin Absorption Spectra

Abstract: Spin systems exhibit a whole spectrum of absorption lines when in small constant external
magnetic fields giving Zeeman energies comparable to internal interaction energies. With such small
constant magnetic fields, power is absorbed from an alternating magnetic field at zero frequency, at
the Larmor frequency, and at harmonics of the Larmor frequency, both for perpendicular- and parallel-
field configurations. The calculation of this spectrum for spin systems in powdered materials is the main
purpose of this paper. Both magnetic dipole-dipole and electric quadrupole internal interactions are
considered and treated as second-order perturbations on the Zeeman interaction. The intensities of
the two absorption lines that occur at the Larmor frequency and double the Larmor frequency are
obtained for the parallel-field case. The intensity, frequency shift, and second moment of the Larmor
line, and the intensities of the lines that occur at zero frequency and double the Larmor frequency, are
obtained for the perpendicular-field case. The second-order calculation for powdered materials gives
results which are identical within a constant factor for both dipole-dipole and quadrupole interactions.

1. Introduction

The phenomenon of magnetic resonance in spin
systems characterized by the use of applied constant
magnetic fields giving Zeeman energies which are very
large in comparison with internal energies, and by
absorption of energy from an alternating magnetic
field at the Larmor frequency, has been extensively
investigated. The situation in which the Zeeman energy
is only slightly larger than the internal energy is con-
sidered in this paper. As a result of internal interactions
in the spin system, such as the magnetic dipole-dipole
interaction or the electric quadrupole interaction of
the spin system with the crystalline lattice, the mag-
netic resonance absorption spectrum changes markedly
as the constant magnetic field becomes small. At low
constant magnetic fields a whole spectrum of absorp-
tion lines occurring at zero frequency and at the
Larmor frequency and its harmonics can be observed,
both when the alternating field is perpendicular to the
constant field and when they are parallel.

It was shown some time ago by Waller! that a spin
system in the absence of an external magnetic field
should absorb energy from low-frequency alternating
magnetic fields. Broer? then considered the problem
for non-vanishing external fields and found that
absorption should occur at all the various harmonics
of the Larmor frequency with the increasingly higher
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frequency lines decreasing rapidly in intensity. His
work, together with the later work of Wright,? yielded
the intensity of the lines at zero frequency, at the
Larmor frequency, and at double the Larmor fre-
quency, for both perpendicular- and parallel-field
configurations. The second and fourth moments of the
high-field Larmor line have been calculated by Van
Vieck.* Recently, the second moments of all the lines
mentioned in the penultimate sentence were obtained
by Cheng.® Only the magnetic dipole-dipole internal
interaction was considered in these papers. It is the
purpose of the present study to present a uniform
account of all the results which are obtained in the
second order of perturbation, including both the
magnetic dipole-dipole interactions among the spins
and their electric quadrupole interactions with the
crystalline lattice in which they are fixed.

The general properties of the susceptibility tensor
and the intimate relation of this quantity to experi-
mental measurements are discussed in Section 2. The
quantum-mechanical formulation of the susceptibility
is given in Section 3, and it is related to a spin correla-
tion function in a manner amenable to calculation. In
Section 4 this correlation function is calculated for a
spinsystem in a powdered material, taking into account
the magnetic dipole-dipole interaction as a second-
order perturbation on the Zeeman energy. In the
parallel-field case this calculation yields the intensities




of the two absorption lines that occur at the Larmor
frequency and double the Larmor frequency. For
the perpendicular-field case the calculation gives the
intensity, frequency shift, and second moment of the
Larmor line, and the intensities of the lines that occur
at zero frequency and double the Larmor frequency.
Spins with angular momentum greater than one-half
can possess an electric quadrupole moment and thus
interact with electric-field gradients. A noncubic
crystalline lattice structure, imperfections, or impuri-
ties in a cubic lattice give rise to such electric-field
gradients at spin sites. This quadrupole interaction, in
addition to the dipole-dipole interaction, is considered
in Section 5. The calculation is carried out in the
fashion of the previous dipole-dipole case, treating the
quadrupole interaction as a second-order perturbation.
This requires that the quadrupole interaction be a weak
perturbation in the sense that few spins are in such
large field gradients that their contribution to the
absorption is split far from the center of a line. The
results of the second-order quadrupole calculation for
powdered materials are identical with those of the
preceding second-order dipole-dipole calculation,
except for a change in an over-all constant factor. The
two interactions do not interfere in second order so
that the combination of quadrupole and dipole-dipole
interactions gives the same results as the pure dipole-
dipole interaction case, except for the change of an
over-all constant factor.

2. General properties of the susceptibility

A brief review will be given in this section of some
general properties of the susceptibility tensor which
will be used in subsequent calculations. The assumption
of a linear causal connection between the induced
magnetization and an applied spatially uniform mag-
netic field is conveyed in

m(t) = J- " drg( O) b )

We shall limit our discussion to time-independent
systems so that the real tensor (or dyadic) suscepti-
bility y is invariant under time translations,

X )y=x0—-1). ?

For the case of a monochromatic magnetic field,

h(t) = hme—imt + hw*e+imt , (3)

the integral connection (1) becomes

m(t) = 7(w) hye " + x(w)*-h,*e", C))

where y(w) is the Fourier transform of %(?),

) =J dte'y(0) , (5)
4]

and

ww)* =y(~0), (6)

as x(?) is real. The average energy density stored in the
system, E, is

E, = (w/2n) f ™ 4eihe) -m(12
0

=h," 1 (@) h, , (M
where () is the Hermitian part of the susceptibility
tensor y(w),

%s(@) = [x(@) + x(@)']/2 . €))
The cyclic energy density gain of the system, AE, is

AE = JZW dth(t)- d[m(t)]/dt

0
= 4nh,* -1 () b, , ©®)

where iy (w) is the skew-Hermitian part of the suscep-
tibility tensor,

(@) = [x(®) — 2(w)']/2i . (10)

A general symmetry property that we shall use in our
calculations is obtained from the requirement of time
reversal invariance, We must now state that we are
considering systems in a time-independent, spatially

uniform, external magnetic field H,, and indicate the

dependence of the susceptibility on this field explicitly,

%) = x(w; Hy) .

Upon time reversal the external magnetic field reverses
direction, the frequency changes sign, the stored
energy remains the same, and the cyclic energy gain
changes sign,

T: Ci) - ——CU s Ho - ‘—Ho
| E, - E;, AE - —AE.
Inspection of the relations for the energy stored and

gained by the system, (7), (9), shows that this invariance
property requires

2(@; Ho) = y(—w; —Ho)' (1)
and, according to the reality property (6),
2w; Ho) = x(w; —Hp)" . (12)

Hence, reversing the direction of the external magnetic
field H, is equivalent to the mathematical operation of
transposing the susceptibility tensor.

The calculations in subsequent sections deal for the
most part with powdered materials. In the case of
powdered materials, the only distinguished direction
in space is that of the external magnetic field H,. On
choosing this direction to be along the z axis, the
susceptibility y is invariant under the symmetry opera-
tions of arbitrary rotations about the z axis and a
rotation of 7 about the x or y axis coupled with the
reversal of the direction of Hy. These symmetries
require that the susceptibility tensor possess only three
independent components and be of the form
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Xxx Xxy 0

x=|-xr r= o ] (13)
O 0 XZZ

for powdered materials, and that the time reversal in-

variance statement (12) be satisfied.

This form of the susceptibility tensor can be diagonal-
ized by the introduction of a complex ‘“‘angular
momentum” coordinate system corresponding to a
change of emphasis from linear to circular polarization.
The rotation operator J has the j = 1 representation in
Cartesian coordinates

() = ig8 (14)

where 7 is the completely antisymmetric pseudo-
tensor of rank three with ™% = + 1. The properties of
this tensor allow the powder form of the susceptibility
to be written as

X =11+ P8 + (0 = 2 (13)

This demonstrates that in the coordinate system in
which J* is diagonal g is also diagonal, with elements

=T+,

2 =1, (16)
P Al

In this coordinate system the time reversal symmetry
(12) states that

2*(0; Ho) = ¥ (0; —Hy),

x%(@; Ho) = x%(w; —Hy) . (17)

3. Quantum-mechanical formulation of the sus-
ceptibility

The quantum-mechanical expression for the suscepti-
bility is obtained by calculating the expectation value
of the magnetization, treating the time-dependent
magnetic field h(?) as a linear perturbation.

Before the application of the magnetic field h(¢) the
system is described by a time-independent Hamiltonian
M and a statistical distribution p, of the eigenstates
of the Hamiltonian |n>. A density operator p, which
commutes with the Hamiltonian 5, can be defined by

p=Y |ndp.n|. 6}

The density operator is normalized to the reciprocal
volume of the system

Trp=Y p,=1/V. 2

The application of a time-dependent magnetic field
h(#) which vanishes in the remote past gives rise to a
magnetization

m(t) =) p,n, t; hMin, t; b, 3)

where ]n, t; iy moves under the action of the complete
Hamiltonian,
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i(djdt)|n, t; B = [# — h(t)-M]|n, t; b, )

and approaches the eigenstate |n, t) in the remote past.
Here M is the magnetic-moment operator of the
system, and we use natural units in which # = 1. The
dependence of |n, t; by on h(s) is displayed by the
introduction of an interaction representation state
[, t; i) which is defined by

[n, t;i> = e"|n, 1; b (5)
and satisfies

i(dfdo|n, t; iy = =M -h(®)|n, t; i), 6)
t—> —00: |n, ;8> > |n>, )
where

M(t) = e'Me™ " (8)

This differential equation, with its accompanying
boundary condition, is equivalent to the integral
equation

|n,t;i>=|n>+if
“h(t)|n, t'; i) . 9)

Performing a single iteration of the integral equation,
inserting the resulting expression for the state vector
|n, t; k> in the formula for the magnetization (3),
and identifying the dynamic susceptibility with the
linear dependence of the magnetization on the time-
dependent field h(?) gives

2t ') = iTrp[M*(t), MP(£)16(t ~ ') . (102)

Here the step function 6(¢) has been included to indi-
cate explicitly the retarded, casual, nature of x(z, '),

0, t<0
9(‘)={1 t>0.

t
d'M(t’)

bl ]

11

The time independence of the system, and the invari-
ance of the trace under cyclic permutations of the
operators it contains, give the alternate form

x4t — t') = iTr[p, M () IMP(¢)0(t — ') . (10b)

The general expression for the susceptibility will now
be applied to a spin system consisting of N identical
spins s; with gyromagnetic ratio y and spin /. The
magnetic-moment operator is now given explicitly by

M=1S, (12)

where S is the total spin operator of the system,
N

S = Z Si, Siz = I(I + 1) . (13)
i=1

The spin system will be assumed to be initially in
thermal equilibrium with a large temperature T so that
the statistical distribution operator

p=Ae ¥/ (14)




can be approximated by
p=A[l— (H#[kT)]. 15

The Hamiltonian 5 has a vanishing trace for the
systems to be considered. Accordingly, to first order in
1/kT, the normalization constant is given by

A=WTr) ' =[VQI+ D)L . (16)

In the high-temperature limit the expression for the
susceptibility (10b) reduces to

Xt ~ t) = —iAYkT)Tr[o#, SIS0t — t')
= A(Y¥kT){TrS*SP6(t — t') (17)

—[d[dt][TrS*(®)SP(t)0(t — t)]1} .
Now
TrS*S? = NTri(tr1) ™ “trs®s? (18)

where tr denotes the trace in the space of a single-spin
operator. Using a result of Appendix A, Eq. (A.2), the
previous equation becomes

TrS*S? = (1/3)NI(I + 1)(2I + 1)V . (19)
Introducing the spin-correlation function®
G¥(t — t) = [TH(S") ] ' TrS*(OSH(t)O(t — 1),  (20)

we obtain an expression for the susceptibility in a
form suitable for calculation,’

X2t ~ 1) = go{6%6(t — v') — [d[d][G*(t — 1)1},
@y

where

Xo = y2NI(I + 1)[3kTV (22)

is the static susceptibility of the spin system.

The Fourier transform of the susceptibility is the
quantity that is usually of experimental interest be-
cause it describes directly the energy stored and gained
by a spin system in a monochromatic field h(?),

(w) = Jw dte 'y (1) = 1o[0” + iwG¥(@)] . (23)
0

The absorptive part of the susceptibility is

1A (@) = wyoG,H(w) , (24
where
G.# () = (112[G*(w) + G*(w)*] . (25)

According to the time translational invariance of the
trace and its invariance under cyclic permutations,

TrSP()S%0) = TrS%—1)S%(0) , (26)

and the absorptive part of the spin-correlation function
may be written

G, (o) = (1/2)[Tr(S")*]™ lr AL TrS*(1)S(0)
* b e TS(1)SY0)]
= (1/D[Tr(S)2]" lf " e TrsH()SH0)
o 27

Although an exact calculation of the spin-correlation
function is in general impossible, the complete
moments {w") of its absorptive part can be obtained
by the following manipulation:

(@™ = (Un)jw 006, #w)
— ([ THSY T
x J ) dwr AL /iNdJdDT e}

x TrS*()S*(0)
= (120)[Tr(S")°17"

v J: dt [ f : dwe"“"] [i(d/d5)]"

x TrS*(1)S*(0)
= [Tr()*] " '[i(d/d)]"TrS*()SP(0)];=0, (28)

and the repeated use of the Heisenberg equation of
motion,

i(d/dn)S*(t) = [S%(¥), #] . 29)
Examination of Eq. (27) verifies that the diagonal
elements of G,(w) are real, even functions of w.

Accordingly, the odd diagonal moments {w?"*1)*
vanish, while

(W™ = (2/n) J. ) don?G,*(w) . 30)

The simplest moment, the zero’th moment or normali-
zation, can be obtained directly from Eq. (28)

(o> = f ® (dom)G.Hw) = 67 . (31)

-

This section will be concluded with the calculation of
the “unperturbed” correlation function G, for a spin
system interacting with an external constant magnetic
field H, but with no internal interactions. Taking H,
along the z direction, the Zeeman Hamiltonian

Hy= —yHy2-S= —wy2'S (32)
yields the equation of motion

(d]dDS(t) = —iwe[2-S, S(f)] = —we2 x S(t) . (33)
Recalling that,

@dno—-t)y=46t-1), (34)

34
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the “unperturbed” correlation function

Go(t — t') = [Tr(S*)*]~ ' TrS(H)S(t")0(t — 1) (20)
is seen to satisfy

[@/dt) + w2 x ]Gt — ') = 6(t — 1)1 . (35a)
On introducing the rotation operator J,,

J,=1i4x%, (36)

the previous equation becomes
[(d/dt) — iwod, - JG(t — ) = 6(t — )1 . (35b)

This equation has the obvious solution, in the “angular
momentum” coordinate system which diagonalizes J,,

Go™ (t — 1) = & gm0t =10g(¢ — 1') . 37

The Fourier transform of this solution is

©
Go™ (@) = 5™ f dteimesie=

0
= & (i/(w + ie + mwy)), (38)

where a convergence factor ™% has been inserted in
the integrand, and the limit ¢ — +0 is implied.
Explicitly, Eq. (38) is to be used in integrals in the
following fashion

/(@ +ie+ a)=P/(w + a) — nid(w + a), (39

where P indicates that the principal part of the integral
is to be taken. Thus the absorptive part of the un-
perturbed correlation function is given by

G, (w) = 8™ nd(e + ma) . (40)

This result expresses, in the language of spin correla-
tion functions, the well-known fact that a spin system
with no internal interactions in an external field H,
absorbs energy only from those circularly polarized
magnetic fields

h.(?) = h(£cos wyt + §sin wet) 41)
that diagonalize the rotation operator J, and are of the
resonance frequency w, = yH,.

4. Spin systems with dipole-dipole interactions

In this section 2 homogeneous spin system with internal
magnetic dipole-dipole interactions in addition to an
interaction with an external field H, will be considered.
The dipole-dipole interaction

#p=(1/2)y ;/ rij_s(si'sj — 3f;;08ifi508)) €8
J

will be treated as a perturbation on an unperturbed

system which has only the Zeeman interaction

#o= _‘yHoz'S: ‘—wOE'S, (2)

and the correlation function G will be calculated to
second order in #;, for powdered materials.
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Before considering the specific case of the dipole-
dipole interaction, a general method of calculating G
to second order in an arbitrary perturbation 5, on
the Zeeman interaction #, will be given. With this
division of the Hamiltonian,

H=Ho+ H,y,

the equation of motion of the spin operator becomes
(d]dnS() = —we2 xS(1) + i[s£,(D), S(H)], ()]
giving

[(d]dt) + w2 x ]Gt — 1) = 6(t — )1

+ [Tr(S*)*]™ ' Tri[ £ ,(f), S(t)]IS(t)0(t — 1) . 4)

Performing the same operations on S(¢'), and observing
that in the applications that follow

Tr[#,,S]S =0 (5
so that the linear perturbation term vanishes, yields
[(d/dt + w2 x)YG(t— t') — 5(t — 1]

“dT]dt’ — xB5we) =1t —1t), 6)
where
I(t — t') = [Tr(S)*] ' Tri[o#,(D), S()]
<o, (1), S()16(e — 1) . 0]

In Eq. (6), d7/dt’ signifies a derivative operating to the
left on the variable ¢. Since G depends only upon the
time difference ¢+ — ¢/, the interaction function I must
also depend only on this difference. Using the unper-
turbed correlation function G, introduced in Section
3, the differential operations in Eq. (6) can be inverted.
One obtains

G(t—t) =Gyt - 1) +f

Xty — 1) Got, — 1), ®)

as the application of the differential operators occurring
in Eq. (6) to this result, and the use of the Eq. (3.35a)
for G, and its transpose, demonstrates. In Fourier
space this equation becomes the simple algebraic
relation

G(w) = Go(@) + Go(w) L) Go(w) . ®

The calculation of the interaction function I with the
spin operators moving only under the application of
the Zeeman interaction 3, yields the correlation
function G to second order in the perturbation #,.

The preceding development wilt now be applied to
the calculation of the correlation function for a spin
system with dipole-dipole interactions. The commuta-
tor required for the evaluation of the interaction
function I, is

i[‘#D’ S] = 3'))2 z' r,-j_3?,-jxsi?ij'sj . (10)
ij ’

dtldtzco(t - tl)

— 0

It can now be verified that the linear perturbation




term (5) vanishes, for this entails
Tr[.#b, S]SNTrSiSjSk,=0, l#j

On inserting the commutator (10) in the definition (7)
of the interaction function I, and introducing the now
familiar and useful operator expression for the cross
product,

(JP),, = i, (2.14)
we obtain

ID'p(t — t') = —‘9‘}’4 Z/ Z; rij—srk,_s[Tr(Sv)z]'l
ij kI

. 0(1‘ - t')Trﬂj . si(t)?ij -J*- Sj(t)?kl

syt I -s(t) . (11)
Now, with the neglect of the dipole-dipole interaction,
[er(s")?T Lrs(Ds(t)0(t — 1)) = Gyt — 1) . (12)

Accordingly, the trace occurring in (11) can be evalu-
ated in zero’th order

ixjk=xl:
[Tr(S")*1™ * Trs(t)s f(9)s (¢ )s,(¢)B(t — t')
= [I(I + 1)/3N][840,,Go™(t — t')Go*(t — 1)
+ 840 4Go™(t — 1)GP'(t ~ 1], (13)
yielding the desired second-order expression
I =310 + DN Y r,; 76
X tpGo (I (P, ) Go(DI(Py;#), 1. (14)

A compact and useful notation has been achieved here
with the introduction of the symbol ¢p which denotes
the diagonal sum of tensor indices.

We shall now specialize the calculation to the case of
powdered materials since this considerably reduces
the number of algebraic manipulations and gives the
results of most experimental interest. The interaction
function I for a powdered material is obtained by
averaging (14) over all crystal orientations. This
averaging, according to Appendix B, gives

(PURBPIPOy = (1/15)(8%887% + 59158% + 59567y . (B.3)

Thus, keeping in mind the antisymmetrical nature of
the operator J, one obtains

Ity = A5y 1T + DN~ Y ry~°
i

x {tpGo(DtpI*Go()I? + tpI*Gy(H)tpI° G (D)
+ tpJ Go(NLI* Go(1) + Go(1)I?]} . (15)

It is now convenient to work in the “angular momen-
tum” coordinate system, for, as was shown in Section 2
for the susceptibility tensor, the only nonvanishing
components of the spin correlation function of a

powdered material are G*, G°, G~, with

G (t—t;H)y=G*'¢t—1t; —H,). 16)

Since the unperturbed correlation function G, is
diagonal in this coordinate system, the interaction
function I is also diagonal, and, according to (16), only
the components I*, I° need be calculated. Recalling
the discussion that led to the diagonal form (2.13) of
the susceptibility given in Section 2 and the transforma-
tion (2.16), one finds that these components are

L) = (1/5y*I(I + N1 Z, "ij_6
ij

X {tpGo(DtpF*Go(D)I* + tpI*Gy(HtpI*Gy(1)

+ tpJ*Go()[I*Go(t) + J*Go(D1} an
and

Iy () =5y 1A + DN71 3 7y m°

x {tpGo(D)tp2~ I~ G2~ 3 *
+ tp27 %I~ Go(D1p2 ™ 2T Go(1)
+ 2™ %2J 7 Gy(h)
c[27%2IT Go() + Go(1)27 %I ]}, (18)
where
JE=J+il. (19)

Since the trace is invariant under unitary transforma-
tions, the terms appearing above can be evaluated in
the ‘“angular momentum” coordinate system. This
greatly facilitates computation. With the use of the
familiar properties of the rotation operator

Jm) = mlm) ,

_[mt1>, Imzi<t,

27RIE Imy = iy m+1]>1,

(20)

the cyclic symmetry of the trace, and the result of
Section 3

Go™ (1) = 8™ emootg(y) (3.37)
WeE securc
I%(1) = (13 Aw?> p[4e% 4 goo*

+ et 4 4o~ 2wor)g(s) | 1)
and
Ip () = (1/3)Aw?>p[2e?90 4 3¢ivot

+ 3 4 2e700(1) (22)
where
{(Aw?yp = GB/5)*II + DN ! ,Z ry 8. (23)

J

The Fourier transform of the “powder correlation
function”, G(w), is obtained from the Fourier trans-
form of 1,
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I(w) =f dte''e "I (1), (24)
1]
according to
Gp’(0) = Go(®) — G (@) ()G ()
i i
o+ic o+ie

{(1/3)<Aw2>,,

[ 4 1
X - + -
w+ic+2w, o+ic+ w,

+ 1 + 4 ]} 1
o+ie—w, o+ic—2w]) o+ ic’

(25)
and
- i
Gp(w) = 1/3){Aw?
00 = o+ e (D0
[ 2 3 3
w+iet2w, w+ictw, o+ ie
2
|l @
o+ieF wy]] w+iet w,

where the symmetry property (16) is indicated in the
last equation.

The quantity of usual experimental interest is the
cyclic energy gain of the system which is proportional
to the absorptive part of the spin-correlation function.
In the case of the diagonal form under consideration,
this absorptive part is simply the real part of the
correlation function,

G.™ (w) = ReG™ () . @7

Upon making use of the symbolic relations which
obtain validity in integrations

1 n d\"
Im T~ =D (_E) ¥w—a)
_=n(=1)" .,
TENT 8w — a), (28)

and
Mo — a)f(w)g(w) = —fMa)g(w)d(w — a)
+ f(@)g(@)6V(w + a),  (29)

the absorptive part of the spin-correlation function is
found to be given by

(1/m)Gop’(@) = 8(w) + (1/3)XA0?>pwo ™2
x {8(w + 2w,) + 6w + we) + (w — wy)
34 + o — 2m,) — 46(w)} , (30)
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(1/M)Gop* () = 8o £ o) + (1/3){A0*>pw, ™?
x [26(c> £ 20) + 36(e)
+ (1/2)0(0 F o) — (11/2)é(w + o)
+ 20,0 (@ F wy)
+ (320> (@ £ we)] - (31)

The 6(w) terms of Eq. (30) which give an absorption
line at zero frequency should be omitted. Detailed
examination of these terms show that they arise
entirely from diagonal matrix elements and do not
correspond to actual transitions.

Linear polarization is used in a typical experimental
setup. The intensities, width, and shift which the
resulgs above imply will now be given explicitly for this
case.

Equation (30) yields directly the two second-order
results for the case of the time varying field h(?)
parallel to the static field H,: intensity of the line?
at wy

J- dw(2/n)G,p° (@) = (2/3){Aw?>pw, ™2, (32)

intensity of the line® at 2w,

f do(2/r)G,p°(w) = (2[3){A0*dpwe ™2 . (33)
~2a0

The discussion of Eq. (3.28) given in Section 3 shows
that the second-order perturbation calculation gives
the exact total second moment; and according to (30)
this is

(oY = r d00*2Jr)G’(@)
0

= (10/3)XAw*>p . (39

The case of linear polarization with the time varying
field h(#) perpendicular to the static field H, requires
the evaluation of G**. This is obtained by inverting the
transformation (2.16),

G*=G”=(1/2(G"+G). (35)

With the help of this transformation, (31) yields the
following second-order perturbation results:

intensity of the Larmor line

do2/m)G,p™ (@) = 1 — (5/3)(Aw*)pw, ™2, (36)

J ~oo
shift toward higher frequency of the Larmor line

r

do( — wo)(2/m)Gop™ (@) = (2/3)Aw? ) pwo ™
(37

J ~ao

second moment of the Larmor line*



f do(w — 00)*(2/m)Gap™ (@) = (A0™)p (3%)
intensity of the line at zero frequency?

f . do(2/m)Gp™ (@) = (Aw?dpwo ™2, (39)
intensity of the line? at 2w,

f ) do2/m)Gp™ (@) = (2/3Aw*ya, ™2 . (40)

The absorptive part of the spin correlation function
is normalized as

fwdw(Z/n)(_;,,D""(co) =1, (41)

0

and gives the exact total second moment

(W)™ =j dww?(2/m)G,p™(w)
0
= w2 + (10/3)CA0?y . “2)
Finally, we observe that with the inclusion of the
neglected # and the replacement of y by the more
conventional g, where 8 is the Bohr magneton,

Ay = (3[Sg*B*H 1T+ DN Y 76 . (43)
ij

5. Spin systems with quadrupole interactions

In this section the electric quadrupole interaction of a
spin system with electric-field gradients will be con-
sidered in addition to the magnetic dipole-dipole
interaction worked out in the preceding section. The
quadrupole interaction will be treated as a second-
order perturbation in the formalism of the previous
sections. This requires that it is a weak interaction in
the sense that few spins are in such large field gradients
that their contribution to an absorption line is split so
far from the line as to be unobserved.® The calculation
will be performed for powdered materials. If the
electric potential at the position of the i'th spin is
denoted by ¢;, the “irreducible part” of the gradient
of the electric field strength at the i'th spin is

Vit = [VVP — (1/3)57V21¢, = VI @

The tensor V## is “irreducible” since it is symmetric
and possesses a vanishing diagonal sum,

tpV,=V*=0. 2

The electric quadrupole Hamiltonian is then'®

N

Hg =73 A"sssP, G
i=1

where

A = [eQ[2I(2I - 1)]V* . @

The first step in the calculation of the correlation
function, according to the development at the begin-
ning of Section 4, is the evaluation of the commutator
of #, and S. After a short calculation, one finds

i[#g, S 1=~ AMe{s/, s}, &)

where the curly brackets denote the anticommutator,
{s#, s*y = sfsf + sfs . )

It is shown in Appendix A that the trace of three spin
operators is a completely antisymmetrical tensor.
Hence, the linear quadrupole perturbation vanishes,

Tr[#y, SIS ~ tr{s,s}s =0,

since it involves the trace of three spin operators of
which two occur in a symmetrical form. Furthermore,
there is no interference between the dipole-dipole
interaction and the quadrupole interaction in second
order. This interference would involve a function

Io-p™(t — t') = [Tr(S)*1~ ' Tril# ¢, S())]
x i[H#p, S(E)10( — 1), M

and a function I, _, of the same form but with #°; and
# , interchanged. With the use of Eq. (5) for the first
commutator appearing above and Eq. (4.10) for the
second, it is seen that Eq. (7) contains only terms of the
form

Trs(Ds(Ds,(t)s(t) with j+k

which vanish in lowest order.
Thus our task reduces to the evaluation of

It —1)= [Tr(S7)* 1™ ' Tri[# o, S*(D)]
x i[.# g, S(E)I0( — 1)
— [Tr(S)’)Z] -1 Z AiuvAjlxsvalexﬂn

x Tr{s#(t), s{(D}
x {s(t), s (N0 — 1) . ®)

The terms with i & j in Eq. (8) vanish, for they are
composed of two factors, each of the form

AP tr{sh, 85} ~ AV =0 .

This simply states that the quadrupole interaction
involves only a single spin. Accordingly,

It — ) = [Tr(s")?17 L Y AP A e (Trltrl)
e 7

x tr{s"(), sS(OHsAE), S"()}0( — 1) .
)]
In lowest order, with ¢ > ¢/,
s(t) = Go(t — t')-s(t) , (10

since both s(¢) and G,(¢ — ¢') satisfy the same equation
of motion for ¢ > ¢ and

345

IBM JOURNAL s JULY 1962




346

to>t +0:  Golt—1t)—>1.

Equation (10) and the following result from Appen-
dix A,

trs®sts*s" = (1/15)trLI(I + D{6°"6*[(1/2) + I(I + 1)]
x §7*6M[—2 + I(I + 1)]
+ 8767 [(1/2) + I(I + )]}, (A4
reduce Eq. (9), in lowest order, to
151 = (1/5)[41(I + 1) - 3]
x N~1 Z tpGoJ*A,G(D[A,, J] . (11)
The correlation function will be evaluated only for
the case of powdered materials. It will be found
shortly that the averaged quadrupole function I, is

directly proportional to the average dipole-dipole
function I, of Section 4. There we obtained

IO =3 1T + DN Y r;;76
ij

x tpGo(OF (PP GoOL(Fy#:), I°1 . (4.14)
Now, according to Appendix B,
(AP A7, = (1/10)tpA;?
x [6%16%° 4 57657 — (2/3)6*%5""] (B.6)
while
<(?ij?ij)aﬂ(?ij?ij)76 Yav = (1/15)
x [6458° 4 5%08P7 + 58577 .
(B.3)

The last term in the square brackets in these equations
does not contribute to the average of (11) or (4.14)
since it gives rise to a term of the form

tp---[1,J;]1=0.
Hence
TQ“”(t) =(1/5)[4IJ +1)—-3]N"1 Z (1/10)tpA >

x By + DNT Y r o117 (12)

x I, .
Recalling that
Aoy = GBS II + DN~ Y r;; =8 (4.23)
ij

and defining
{Aw?*dy = (3/50)[4I(I + 1) — 3]N~! Z tpA;2,  (13)

Eq. (12) can be written as

<Aw2>Q
(Aw?>,

I%() = I"(1) . (14)
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Thus we find that for powdered materials, the results
in second order for the quadrupole interaction are
identical with the corresponding second-order results
for the dipole-dipole interaction provided only that
{Aw?), is replaced by (Aw?»,. Since to this order of
perturbation there is no interference between the
dipole-dipole and quadrupole interactions, the com-
plete second-order results for a spin system with both
dipole-dipole and quadrupole interactions are given
at the end of Section 4 upon replacing {(Aw?), by
{Aw?>, where

(Aw?) = (A*)p + (Aw?), . (15)
In terms of the electric field gradient,
20?411+ 1)-3

Aw®>, =(3)2 1N)Y 1pV3
(16)
where the neglected # has been restored, and, of course,
tpV2 =Y Vv fa=% (V) . (17
ap af
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Appendix A: Spin traces

The trace operation does not distinguish a direction in
space. Hence the trace of the product of n spin
operators is an invariant tensor of rank ». This simple
property will be used to evaluate the spin traces below.

Since no invariant vector exists, the trace of a single
spin vanishes,

trs*=0. 1)

The & symbol is the only invariant second-rank
tensor. Accordingly, the trace of two spin operators is

trss? = 5"Ptr(s")? = 6*4(1/3)trs?
= (/3T + 1)tr15*
= (1/3)I(I + 1)2I + 1)6*. @

The trace of three spin operators, which individually
transform as pseudo-vectors, is an invariant pseudo-
tensor of rank three and hence is proportional to the
only rank three invariant pseudo-tensor &*’. Since
%7 is completely antisymmetric, the spin commutation
relations and the preceding result yield

trs®sPs? = (1/2)tr[s%, sf1s" = (i[2)e* trs’s”
= G/O)I(I + Dtrle . 3)

The trace of four spin operators transforms as an
invariant fourth-rank tensor and hence must be related
to the fourth-rank tensors which can be formed by
taking permutations of the indices of §2#6?,




trs*sPs’s® = ad* 9" + b55# + c5%587

The cyclic trace property

trs’s*sfs? = trs*sPs?s’

shows that the coefficients a and ¢ must be identical.

The remaining coefficients @ and & can be found by
contracting various indices and using Egs. (2), (3),

trs?s?’s® = I(I + Dtrs"s®
= (131X + 1)%r16” = B3a + b + a)6”,

trs®sPs®s® = trs?sPs® + trs’[sP, 5°]s°
= (1/3)I{ + Verl[I( + 1) — 1]6%
= [a + 3b + a16% .
The solution of these equations yields
trs*sfs’s® = (1/15)I(I + D)tr1{6*57[(1/2) + I(I + 1)]
+ 89 =2 + I(I + 1)]
+ 6%5°(1/2) + I(I + 1)1} . ©)

Appendix B: Tensor averages

Consider various arbitrary vectors k, 1, - - - which are
fixed in a rigid body. The average of the product of
their components,

KK Dy,

is obtained when the rigid body in which the vectors
are fixed is rotated over all possible orientations. The
averaging process does not distinguish a direction in
space. Thus the average of the product of n vectors is
an invariant tensor of rank n. This simple property will
be used to evaluate the averages below in a manner
similar to that used in the preceding appendix to
evaluate spin traces.

The average of the product of two vectors must be
proportional to the invariant § symbol,

kB, = ad* .

The constant a is determined by contracting «f,
&D,,=kl=3a,

and thus

kB, = (1/3)k-16% . ¢

The average of the product of four vectors must be
of the form

kP, = ad®5" + b6 4 59587 .

The constants @, b, ¢ are determined by forming
various contractions and using Eq. (1),

Cklm?n®y,, = (3a + b + 6" = k-1I(1/3)m né*
<k-ml®n?y,, = (a + 3b + c)3% = k-m(1/3)1-n6* ,

<knlPm?,, = (a + b + 3¢)6%" = k-n(1/3)]- mo?" .
These equations yield
ke PPmn®y,, = (1/30){(4k-Im'n — k-ml-n
— k-nl-m)5*457°
+(~k-lm-n+ 4k -ml-n
— k- nl'm)6*6%° + (—k-lmn
—k'ml-n. + 4k-nl-m)676%%} . (2)

In Section 4 the average of four identical unit
vectors is needed. It follows from the previous result
that this average is

PpbpTedy,, = (1/15)(6%P67° + 67582 + 6*%5%7) . 3)

The product of two second-rank tensors which are
fixed in a rigid body transforms as the direct product
k*IPmn®. Thus Eq. (2) yields the average

CA®BS = (1/30){4tpAtpB — tpATB — tpAB)s*5"
+ (~tpAtpB + 4tpATB — tpAB)6V5#

+ (—tpAtpB — tpATB + 41pAB)5*5P'}
0]

where
tpA = A**, tpATB = AP*BF*, etc. 5)

This general result gives directly the average of the
square of a symmetrical, traceless, second-rank ten-
sor, such as that needed in Section 5,

(AP A, = (1/15)tpA?
x [(3/2)(876%% + §%°6P7) — 661 . (6)
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