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Abstract: The growth of a  bubble  within  a volume of isothermal viscous liquid containing uniformly distributed 

dissolved gas i s  considered. The problem of characterizing this growth-by-mass-transfer is  reduced fo an 

integro-differential  equation for the bubble radius as a function of time, and a computer  solution is obtained. 

The initial  and  final stages of  growth are treated  analytically. 

Introduction 

A technique now  being  considered for dry-process 
photography of documents involves the formation of 
light-scattering bubbles in a clear plastic medium.  The 
bubbles are formed when a supersaturated solution of 
gas  in the plastic medium  is brought to a critical tem- 
perature, whereupon nucleation and bubble growth 
occur. This supersaturated solution of gas  in plastic 
can be brought about in a number of  ways. In the 
dry-photographic process, the gas  is  formed by photo- 
decomposition of a diazo compound previously  dis- 
solved  in the plastic. It may also be formed by 
physically  dissolving the gas in the plastic film under 
high  pressures and then bringing the plastic to room 
pressure. 

Although the mechanism of nucleation is not yet 
fully understood, we know that once nucleation 
occurs, bubble growth is controlled by the classical 
laws of motion; the pressure of the gas  provides the 
driving force to expand the bubble while the inertia 
and viscosity  of the plastic, together with the inter- 
facial tension of the bubble wall, provide the resistance. 
The change in bubble pressure  with  time is governed 
by the rate at which  dissolved  gas can diffuse into the 
growing bubble; the initial or nucleation pressure  is 
determined experimentally. 

Thus, in a complete study of the bubble growth prob- 
lem the diffusion equation is  coupled to the equations of 
viscous  hydrodynamics. 

An informal analysis of the problem has been made 
by  W. L. Peticolas;' he calculated the limiting  cases of 
extremely rapid and extremely slow  gas  diffusion.  If 
the diffusion is  sufficiently rapid, the bubble pressure 
remains constant and the growth is determined by the 
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hydrodynamic equations alone. On the other hand, if 
the diffusion is  sufficiently  slow, hydrodynamic effects 
become  negligible; an asymptotic solution as  developed 
in  Section 6 then applies. 

From this analysis, together with  his experimental 
work on bubble growth, Peticolas found that cases of 
practical interest for his purposes lie  between the 
extremes,  being dominated neither by hydrodynamic 
effects nor by diffusion. Concluding that  a more 
extensive  analysis  would  prove  useful,  he  suggested to 
us the problem studied in  this report. 

In Section 1, we specify the physical assumptions 
behind our mathematical formulation of the bubble 
growth problem. Section 2 concerns the underlying 
hydrodynamics and Section 3 deals  with the diffusion 
of gas through the plastic melt. 

The general  analysis of the bubble growth problem, 
carried out in  Section 4, is based on the assumption 
that the significant variation of gas concentration is 
confined to a thin shell surrounding the bubble. The 
problem is reduced to a single  integro-differential 
equation for the bubble radius as a function of time. 

Sections 5 and 6 concern, respectively, the initial 
and final  stages of growth. We  find that, initially, the 
bubble radius grows  as a linear function of time; in 
the final  stage, it is proportional to the square root 
of time. 

In Section 7, we carry out the numerical solution 
for the growth of nitrogen bubbles in vinylidene 
chloride-acrylonitrile copolymer. The physical con- 
stants  for this combination of materials were deter- 
mined  experimentally by Peticolas. We find that the 
thin shell approximation used in Section 4 is justified, 
since,  even in the final  stages of growth, the radial 
variation of concentration is  negligible  except in a 329 
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region quite close to  the bubble. We also find, however, 
that  the initial-stage solution of Section 4 provides a 
useful approximation only for very small bubbles. In 
general, the initial stage passes after  a few micro- 
seconds and, in Peticolas’ work, the bubbles are 
allowed to grow for  about 500 milliseconds. Further- 
more, the final stage, analyzed in Section 6,  is not 
reached until several seconds have elapsed. Thus, in 
order  to provide a useful correlation between nuclea- 
tion size and final size  of the bubbles in Peticolas’ 
experiments, we must use the general analysis of 
Section 4, which leads to the numerical results of 
Section 7. 

1. The idealized problem 

To permit a mathematically tractable analysis, the 
actual conditions of bubble growth were somewhat 
idealized in defining the problem studied here. If we 
first specify the assumptions involved in this idealiza- 
tion,  the consequent limitations of the analysis can be 
understood a priori. 

We assume, first of all, that  a single bubble of gas 
is growing in an otherwise unlimited volume of liquid. 
Thus, we neglect interactions of the bubble with its 
neighbors and with the boundaries of the liquid 
volume. Since we find a posteriori that  the growing 
bubble is  influenced almost exclusively  by diffusion 
from  a  thin shell surrounding it, this assumption is 
satisfied almost until the bubbles grow into one 
another. 

We assume that  the liquid is a Newtonian fluid. Since 
it is, in fact, a molten plastic, it exhibits Newtonian 
behavior only at low rates of deformation; at some- 
what higher rates, Newtonian behavior can be assumed 
as  a first approximation. Virtually no data is available 
on  the rheological properties of the plastics being 
considered for dry-process photography. By analogy 
with better known polymeric systems, we expect that 
non-Newtonian effects  become important  at a  rate 
of deformation somewhere between reciprocal 
seconds and 1 reciprocal second. 

We also assume that  the liquid is incompressible and 
that  its viscosity is constant. If we ignore the effect  of 
the dissolved gas on the much greater density of the 
melt, the incompressibility assumption is quite well 
founded; since the viscosity  of the plastic is virtually 
independent of the  concentration of  dissolved gas, the 
assumption of constant viscosity is valid  if the tem- 
perature is  effectively uniform and  constant  throughout 
most of the bubble’s growth. The  condition may or 
may not be met, depending upon  the circumstances 
under which the melting of the plastic is carried out. 

Finally, we assume: 1) the gas is ideal, 2) it diffuses 
through  the melt according to Fick‘s law,2 3) the con- 
centration inside the bubble is related to the concen- 
tration  just outside according to Henry’s law,3 and 
4) only a negligible amount of gas is adsorbed on the 
bubble wall.  Henry’s law is not precisely  satisfied by 
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Figure I The coordinate system. 

approximation.  The  other assumptions are valid under 
the conditions which can be expected in dry-process 
photography. 

The mathematical approximations introduced to 
simplify the analysis will be discussed as they appear. 
2. Hydrodynamics of the problem 

Consider a spherical bubble of ideal gas with radius R 
growing in an otherwise unlimited volume of  viscous, 
incompressible liquid. The growing bubble generates a 
velocity  field within the liquid which, in  turn, generates 
a stress field tending to retard  the bubble’s growth. 

The spherical symmetry of the  situation makes it 
convenient to choose a spherical coordinate system 
with its origin at  the center of the bubble, as illustrated 
in Fig. 1. The velocity  field generated in the liquid will 
have only a  radial  component u(r, t), where t is time 
measured from  the  instant of bubble formation.  The 
pressure p at any point  in  the liquid is also a function 
of r and 2. The  equations of viscous flow4 then reduce 
to 

p[ (du /d t )  + (uau/ar)] = - (ap/ar) + p[(I/r)(a2ru/arz) 

In Eq. (2.1), p is the density and p the viscosity  of the 
liquid. Both are assumed uniform and constant. 

At  the bubble wall, the liquid velocity must equal 
k(t) where a superimposed dot denotes ordinary differ- 
entiation with respect to time. Thus,  integration of Eq. 
(2.2) yields 



Substituting Eq. (2.3) into Eq. (2.1) and integrating, 
we find 

( p  - p,)/p = (R/r)(2A2 + RR)  - (R4k2 /2r4 )  , (2.4) 

in  which pa is the pressure far from the bubble. 
The stress components for the velocity  field  given 

by Eq. (2.3) are4 

a,, = ” p  - (4,uR2R/r3) , 
= = - p  + ( 2 , u ~ ’ R p )  , (2.5) 

= abr = U,O = 0 

Within the bubble, 

Orr = aee = 044 = -p,(t) 3 

Oe4 = u+, = a,, = 0 , 
(2.6) 

in which p ,  is the pressure of the ideal  gas forming the 
bubble. 

The stress components 04, and Or, must be con- 
tinuous across the bubble surface. A comparison of 
Eqs. (2.5) and (2.6) reveals that this requirement is 
automatically satisfied. The stress component a,, must 
experience a  jump of magnitude 20lR, where o is the 
coefficient  of interfacial tension. The stress inside the 
bubble is lower (if both media  were  inviscid, this 
would  reduce to a statement that the pressure  inside 
the bubble is higher). Comparing the first of Eqs. (2.5) 
with the first of Eqs. (2.6), we find that the pressure 
just outside the bubble wall is  given  by 

p(R + 0, t )  = p,(t) - (20 + 4pR)/R . (2.7) 

By setting r = (R + 0) in Eq. (2.4), we obtain an 
ordinary differential equation for the bubble radius 
as a function of the pressure inside the bubble: 

Rfi  + (3R2/2) + (4pA/pR) + ( 2 ~ / p R )  = (p ,  - p,)/p . 
(2.8) 

A dimensionless form of this equation is obtained by 
setting 

t =z (2a/Pa)Jplpa z 9 (2.9) 

R = (24Pa)U 9 (2.10) 
so that 

UU + (31i2/2) + ( Q ~ / U )  + ( l / u )  - (p,/p,) + 1 = 0 , 
(2.11) 

in  which the superimposed dot now denotes differ- 
entiation with  respect to z and where 

Q = ( 2 ~ / 0 ) d a  (2.12) 
The dimensionless parameter Q is the reciprocal of 

a Reynolds number based upon (2a/p,) as a length 
scale and as a velocity  scale. Thus, for large 
values of Q, viscosity dominates over  fluid inertia in 
retarding the bubble growth. 

Heretofore, the pressure  inside the bubble has been 
considered an arbitrary function of  time.  The  size of 
the bubble is related to this pressure by Eq. (2.8) or 
its dimensionless equivalent, EC~.  (2.1 1). 

The bubble pressure p,(t) is related to the amount 
of gas  within the bubble at time t according to the 
ideal gas  law.  If we assume isothermal conditions, 

P,O> = Ac, ? (2.13) 

where cg is the concentration (density) of the gas 
forming the bubble, and where A is a constant given  by 

A = R,T/M . (2.14) 

In Eq. (2.14), R, is the universal  gas constant, Tis the 
absolute temperature, and M is the molecular  weight 
of the gas. Substituting Eq. (2.13) into Eq. (2.8), we 
obtain 

pRR + (3pR2/2) + ( 4 p k / R )  + (2a/R)  = Ac, - p a .  
(2.15) 

3. Diffusion of gas through the liquid 

Assume that at time 6 = 0 a homogeneous concen- 
tration c,, of gas  is  dissolved throughout the liquid. 
At any subsequent time, the concentration c obeys 
Fick‘s  law  of diffusion, 

Dc/Dt = D V C ,  (3.1) 

where D is the diffusion constant. The material 
derivative Dc/Db is used in Eq. (3.1) to account for 
convection of gas  by the moving liquid. In view  of 
the spherical  symmetry, Eq. ( 3 . 1 )  becomes 

(&/at) + u(ac/dr) = D[(a2c/ar2) f (2/r)(ac/i?r)] , (3.2) 

where, according to Eq. (2.3), 

v = R2R/r2  . (3.3) 

Equation (3.2) is subject to a boundary condition at 
the bubble wall.  Since buildup of adsorbed gas on the 
bubble wall  is  assumed  negligible, the rate of increase 
of gas  within the bubble equals the rate of  flow inward 
across the wall. Thus, 

d(4nR3cg/3)/dt = 4nRZD(ac/ar)lr=, , (3.4) 

At a sufficiently great distance from the bubble, the 
effect  of the growing bubble should be  negligible, so 
that the concentration at any time  is  nearly equal to 
the initial concentration. We therefore take, as our 
second boundary condition, 

lim c(r, t )  = co ( t  =- 0) . (3.5) 

The assumption of a homogeneous concentration of 
dissolved  gas at time t = 0 provides the initial condi- 
tion 

c(r, 0)  = co ( r  > R,) . (3.6) 

At any instant of time, the concentration just  out- 

r+m 
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side the bubble wall  is  related to the concentration In terms of the new variables, the nonlinear  convec- 
within the bubble through Henry's  law. We have tive  term disappears from Eq. (3.2), and we have 

c(R + 0, t )  = kcg(?) ( t  > 0) , (3.7) (ac/cW) = D(a/ah)[(l + 3h/R3)4'3(a~/ah)] . (3.10) 

where k is a constant. The boundary conditions (3.4) and (3.5) become 
This  completes the mathematical formulation of the aClahlh=, = [ d ( ~ 3 ~ , ) / d e - ~ / 3 ~  (3.11) 

bubble  growth  problem. In summary, we find that 
there are essentially three dependent variables: R(r), lim c(h, 8) = c, , (3.12) 
cg(t) and c(r ,  2). They  satisfy the ordinary differential h + -  

equation and the initial condition (3.6) becomes 

RR + (3A2/2) + (4&/pR) + (2o/pR) c(h, 0) = CO . (3.13) 

= ( 4  - P J P  9 (2.15) We can  now  proceed  as  if the diffusion  problem 

and the partial differential equation 

(&/at) + (R2A/r2)(dc/ar) = ~[(a 'c /ar ' )  

+ ~~/r)(ac/ar)l  (3 -2) 
subject to the boundary conditions 

dc/i3rlr=, = [1/3DR2][d(R3cg)/dt] , (3.4) 

lim c(r, t )  = c, , (3.5) 

to the initial condition 
r+ 03 

c(r, 0) = co Y (3.6) 
and to the matching condition 

c(R + 0, t )  = kcg( t ) .  (3.7) 

In the ensuing  analysis, we shall  find that  the bubble's 
initial radius and growth rate, or their equivalent, 
must  also  be  specified. 

Upon examining  this  system of equations, we find 
that both differential equations are nonlinear, as is 
the boundary condition (3.4). There  is the additional 
complication that Eqs. (3.4) and (3.7) apply on a 
boundary moving  in a manner not specified a priori. 

One  difficulty  associated  with a moving boundary 
problem can be  avoided by using a Lagrangian  descrip- 
tion. In this procedure, the independent  variables 
other than time are the initial coordinates of the fluid 
particles, rather than points in space.  Since in a con- 
tinuum theory, a fluid boundary always  consists of the 
same  particles, the Lagrangian coordinates describing 
the boundary do  not change  with  time. 

With the fluid  velocity  given  by  Eq. (3.3), any 
function of ( r3  - R3) could serve as a Lagrangian 
radial coordinate. We  find it most  convenient to 
choose (r3 - R3)/3. The equation system can be 
further simplified  by  changing the time  variable. Thus, 
we change  independent  variables from r and r to h 
and 8 according to 

were distinct from the hydrodynamics,  solving  Eq. 
(3.10), subject to the boundary conditions (3.11), 
(3.12) and to the initial condition (3.13), with R and 
cg retained  as arbitrary functions of 8. We can thus 
obtain c( +O, 0) in  terms  of R and cg; Henry's 
law, Eq. (3.7), then  yields a relation between R and cg. 
The concentration cg can  thereby be eliminated  from 
the hydrodynamic equation (2.15) and the resulting 
equation for R solved  numerically. 

The complicated form of the right  side of Eq. (3.10) 
makes  it  unlikely that  an exact solution to the diffusion 
problem can be obtained. We develop an approximate 
solution in the next  section. 

4. The  thin shell approximation 

Since we assume the bubble  nucleates  with a finite 
radius R,, there will  be a time interval during which 
the bubble radius is  much  larger than the diffusion 
length Jot. During this  time interval, the concen- 
tration of  gas in the liquid  is  significantly disturbed 
by the growing  bubble  only in a thin  shell surrounding 
the bubble.  Outside  this  shell, the concentration is 
virtually equal to c,. 

A similar thin shell approximation was  used  by 
Plesset and Zwick' in their study of thermal diffusion 
into a vapor bubble  within a volume  of superheated 
water. Their analysis  applies  directly to  our problem. 

In the thin shell,  where the important variation of 
concentration is  assumed to occur, h is  small compared 
with R3. Eq. (3.10) can therefore be  replaced  by 

aclae = ~ ( a ~ ~ / a h ~ )  . ( 4 4  

We  now let 

C(h, = = n c ( h ,  811 Y (4.2) 
where 9 denotes the Laplace transform, i.e., 

~ [ c ( h ,  e)] = Iom c(h, e)exp(- se)de . (4.3) 

With the initial condition (3.13), Eq. (4.1) transforms 

3h = r3 - [R(t)I3 , 
rt 

332 8 = R4(f)dt . Jo 
(3.8) 

to 

D(a'Cph2) = sc - c, I 

(3*9) The boundary condition (3.1 1) transforms to 

(4.4) 
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dc/ahlh=O =f(s) 3 (4.5) 
where 

f ( s )  = (1/3D>9[d(R3c,)/de].  (4.6) 

The  boundary  condition (3.12) must be carefully 
considered. Since it concerns the behavior of c(h, e) 
for large values of h, it  cannot, strictly speaking, be 
applied to Eq. (4.1), which holds only for values of h 
small compared with R3.  However, in writing Eq. (4.1), 
we assume that c(h, 0) is nearly equal to co outside 
the  thin shell. Thus, it is quite  proper to apply con- 
dition (3.12) to Eq. (4,1), provided we find aposteriori 
that the resulting solution  for c(h, e) decays rapidly 
toward co as h increases. Taking  the Laplace trans- 
form of Eq. (3.12), we obtain 

lim C(h, s) = co/s . 
h+ w 

(4.7) 

Integrating Eq. (4.4) subject to conditions (4.5) and 
(4.7) yields 

~ ( h ,  s) = (co/s) - Jo/sf(s)exp(- JS) . (4.8) 

The inverse transform of Eq. (4.8) can be obtained by 
convolution. Using Eq. (4.6), we find that  the con- 
centration of gas in the liquid is  given  by 

x so e (d/dA)(R3Cg)exp[ - h2/4D(0 - A)] 
J r n  dA . (4.9) 

For small values of 8 the  concentration,  as expected, 
differs appreciably  from co only in  a  thin shell about 
the  bubble, viz., when h is of order J z e  or smaller. 

We can now obtain  a relation between R and cs by 
setting h equal to zero in  Eq. (4.9). Using Henry's 
law, Eq. (3.7), we have 

(4.10) 

The  hydrodynamic  equation (2.15) provides an 
expression for cs in terms of R: 

C, = (l/A)[p,, + pRR 
+ (3pR2/2) + (4pRIR) + (24R). (4.11) 
If this expression for c, is substituted into Eq. (4.10), 
we obtain an integro-differential equation  for i i ( t ) .  
However, we note  that R will appear  in  the  integrand. 
This complication could be avoided by integrating 
Eq. (4.10) by parts, except that  this  procedure leads 
to  an indeterminate form of the type co - co: 

Observe, however, that 

Eq. (4.10) therefore becomes 

(4.13) 

(4.14) 

The problem of simplifying integrals similar to that 
appearing in Eq. (4.10) arises quite often in the 
linearized theory of supersonic aerodynamics. In  that 
context, procedures similar to  our derivation of 
Eq. (4.14) have been extensively studied. These studies 
of divergent integrals have led to  an  important con- 
cept, which Hadamard6 has termed the finite part of 
an integral. The  derivation of Eq. (4.14) from Eq. 
(4.10) is, in fact,  a special application of Hadamard's 
technique. 

We now integrate Eq. (4.14) over the interval (0, e) 
obtaining 

(klc,) le (1 + [R3/3kdnD(0 - A)l}c,dA 
0 -  

= (2R03/3k)  Je/nD + 0 . (4.15) 

With  Eq. (3.9), we can write Eq. (4.15) in terms of 
the original time variable. Thus, 

(k/co) 1: (1 + ([R(t')I3/3k[nD 1' 1' R4dt] "I) 
x [R(t')14c,(t')dt' 

= (2R03/3k)[(l/nD) 1: R4dt] ' + 0 R4dt . (4.16) 

Using the expression for c, given by Eq. (4.1 I), we  see 
that R(t) is determined by the  integro-differential 
equation 

(k/c0A)[' 0 ( 1  + [R3/3k(nD1' 1' R4dt)'] 

x {p, ,  +p[R# + (3k2/2)] 

+ (4pR1R) + (2a/R)}R4dt I 

= (2R03/3k)[(l/nD)J: R4d,]. 

+ 1; R4dt . (4.17) 

Eq. (4.17) can be rewritten in terms of the dimen- 
sionless variables z and u. According to Eqs. (2.9) 
and (2.10) 

T = C ( P , , / 2 4 J G l t  9 (4.18) 333 
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= NuO3(  Ji u4dr)' + (1/2)MN u4dt . (4.20) 1: 
In Eq. (4.20), M and N are dimensionless parameters 

defined by 

M = 3k[(nD/20)(pap)%]% , (4.21) 

N = 2Ac0/kpa . (4.22) 

Q is the reciprocal Reynolds number defined earlier 
(Eq. 2.12) by 

Q = ( 2 ~ / a ) J a  (4.23) 
and uo is the initial value of u,  i.e., 

u0 = p,,Ro/20 . (4.24) 

Superimposed dots now denote differential with res- 
pect to 2. 

In principle, the variation of u with z can be deter- 
mined by solving the nonlinear integro-differential 
equation (4.20) subject to  the initial  condition (4.24), 
together with an  appropriate initial condition  on u. 
Since it is unlikely that this solution can be found 
analytically, we turn first to approximate and then to 
numerical solutions. 

In the next section, we make use  of the high  viscosity 
of the plastic to determine  the bubble size during  the 
early stages of growth. In Section 6 we investigate the 
asymptotic behavior of the bubble at large times. In 
Section 7, we compare these approximate solutions 
with a numerical solution of Eq. (4.20). 

5. The  initial stage of growth at low Reynolds 
number 

We now consider the bubble growth  under  conditions 
such that  the reciprocal Reynolds number Q is large 
compared with unity. Because of the high viscosity of 
plastic melts, this case is quite important. 

The  approach used in this section is analogous 
to  that used by Plesset and Zwick' to simplify the 
integro-differential equation governing the early stages 
of bubble growth by thermal diffusion. 

We note first that,  for  a medium of finite density and 
infinitely large Q, Eq. (4.20) is  satisfied by u = 0, so 
that  the bubble never grows. If the medium has  a high 
but finite viscosity, the bubble grows quite slowly, so 
that the  bubble  radius remains near R, for quite some 
time. We can  obtain  a  perturbation solution to Eq. 
(4.20) for  this initial stage of growth by setting 

334 '('> = ',cl + 'g(')] D 
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where 

E = 1/Q , (5.2) 

i.e., E is a Reynolds number. 
Substitution of Eq. (5.1) into  Eq. (4.20) yields a much 

simpler integro-differential equation. By neglecting 
terms of the second degree or higher in E ,  

1; CM + (uo/J=) ld(~)~A 

= [(N/2) - 1 - (l/uo)][2uoJz + Mz] . (5.3) 
The initial condition (4.24) becomes 

g(0) = 0 . (5.4) 

Note that the second derivative in  Eq.  (4.20) is 
absent from Eq. (5.3). This second derivative origin- 
ated in the inertia term of the hydrodynamic equation 
(2. l),  and use of the Reynolds number  as  a  perturbation 
parameter suppresses the effect  of inertia. We can no 
longer impose an initial condition  on ti. Physically, 
the effects  of intertia  are quickly damped out when E is 
small. Thus, except for  thejirst instants of growth, the 
solution of Eq. (4.20) subject to Eq. (4.24) is  virtually 
independent of the value chosen for  zi(0). 

The solution of Eq. (5.3) subject to Eq. (5.4) is 

g(z) = C(N/2) - 1 - (wJ0)lz 9 (5.5) 

so that, with Eq. (5.1) and (5.2), the initial stage of 
bubble growth is governed by 

u = uO{l + Q"[(N/2) - 1 - (l/uO)]~} . (5.6) 

With Eqs. (4.18), (4.19), (4.22), (4.23) and (4.24), we 
obtain, in terms of the original variables, 

R/Ro = 1 + (o/2P)[(l/Rcrit) - (l/RO)lt s (5.7) 
where 

Rcrit = 2u/C(Aco/k) - pal * (5.8) 

If Ro = Rcrit, the bubble does not grow. The physical 
significance  of this can be  perceived by omitting  the 
inertia terms from Eq. (2.8). We  see that R(0) vanishes 
if 20/R0 is equal to p,(O) - pa,  i.e., if the pressure in- 
side the bubble just balances surface tension. Equation 
(5.8) is obtained  as  the criterion by using Eq. (2.13) and 
Eq. (3.7). When R, is smaller than Rcrir, the bubble 
shrinks. 

6. The asymptotic stage 

Since the liquid medium is unbounded,  and since an 
unlimited amount of dissolved gas i s  available, the 
bubble is free to grow indefinitely large. We now inves- 
tigate its growth behavior at times long after growth 
has begun. 

In view of the high viscosity of the plastic, we 
neglect inertia.  The hydrodynamic equation (2.8) then 
reduces to 



~ p B  approaches  the  ambient pressure. With Eqs. (2.13) 
, and (3.7), therefore,  the  concentration  just  outside  the 

bubble wall approaches 

ci = kp,/A . (6.2) 

At sufficiently large times, c(R + 0, t )  will differ 
from ci by a negligibly small amount.  In order to 
investigate the  bubble  growth  in  this  asymptotic stage, 
we note following Birkhoff et al.,’ that  the diffusion 
equation (3.2) has  a self-similar solution of the  form 

c(r, 0 = f W  9 (6.3) 
where 

s = r/JDt , (6.4) 

provided that  the bubble  radius is proportional to 
JE. Calling the  proportionality  constant y ,  

R = y J C ,  (6.5) 

and we find thatf(s) must satisfy the  ordinary differen- 
tial equation 

f ” ( s )  + [(s/2) + (2/s) - (y3/2sZ)]f‘(s) = 0 . (6.6) 

f ( s )  = A - W Y ( 4  9 (6.7) 

Thus, 

where A and B are  constants of integration, and 

(6.8) 

small compared with pa. In  other words, with R given 
by Eq. (6.5), the left side of Eq. (6.1) should be small 
compared with pa.  If we wish to determine  the influence 
of inertia on the  time when the  bubble  enters  the 
asymptotic stage, we use Eq. (2.8) instead of Eq. (6.1). 
Thus,  Eqs. (6.3) and (6.5) provide  a reliable solution 
to  the bubble  growth  problem only if 

(pr2D/8p,t) + (2p/pat) + (2a/pay Jot) 1 . (6.16) 
Because of the  dominance of viscosity over  inertia 

and surface  tension,  only  the middle term  is  important. 
Thus,  the criterion (6.16) is satisfied when 

t 9 2dPC (6.17) 
If pe - pa is small compared with pa, then 

c(R + 0, t )  - ci is small  compared with ci. Use of the 
boundary  condition (6.9) introduces only a negligible 
error. 

The criterion (6.17) is not a sufficient condition  for 
the  bubble to be in its  asymptotic  stage. Note  that 
Eqs. (6.3) and (6.13) allow for  no dependence on 
initial radius. If the bubble  starts out only slightly 
larger than  the critical radius given by Eq. (5 .8 ) ,  its 
growth will be extremely slow. Therefore, even if 
(6.17) is satisfied, the initial  condition  on R can  con- 
tinue  to  dominate  the  growth.  Therefore,  a  bubble 
enters  the  asymptotic  stage at a time  determined  both 
by the  criterion (6.17) and, with Eq. (5.7), by the 
requirement 

If we assume that  this self-similar solution  obtains Figure 2 Evaluation of proportionality constant 
during  the  asymptotic stage, the  constants of inte- y from Eq. (6.15). 
gration  are  determined by the  boundary  conditions 

f (Y) = c19 (6.9) 
3.0 

lim f(s) = co . (6.10) 

Sincef,(s) approaches  zero as s approaches infinity, 

- 
S+ m 

A = CO (6.11) 2.0 - 

and 

B = (co - C i ) / f 7 ( Y )  9 (6.12) 

f(s) = CO - C(c0 - cJfy(s>l/fy(~> * (6.13) 

- 

so that 
1.0 - 

The  one  boundary  condition still to be  used  is Eq. 
(3.4). Since in  the  asymptotic stage 

substitution of Eqs. (6.5) and (6.13) into Eq. (3.4) 4 
yields an implicit equation  for y : 0 1 2 3 4 5 6 7 

P 

1- 
cg = Pa/A ) (6.14) u 

0 

(pay/2A) + (CO - c J f ’ ( r > / f ( Y )  = 0 (6.15) Y 335 
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t 9 2@crit/aC1 - (&r i t /R0)1  * (6.18) 

7. The  numerical solution 

In  the range where neither the  initial  solution of Sec- 
tion 5 nor the  asymptotic  solution of Section 6 apply, 
we can  resort to a numerical solution of Eq. (4.20). 
In view of the very high viscosity of the plastic, how- 
ever, it is sufficient to consider instead the  equation 

= Nu,'( 1; u'dr)' + (1/2)MN  (7.1) 

which is obtained  from  Eq. (4.20) by omitting  the 
terms  arising  from fluid inertia. 

We employ a  time-sequential approach:  The solu- 
tion at any given time is calculated by numerical 
integration  from the solution at previous  times. We 
choose a mesh A fine enough that, in  the  interval 

(n  - 1)A 5 z 5 nA , (7.2) 

the  solution u(z) is adequately represented by 

u(z) = U, + S,[z - (n - 1)A] . (7.3) 

Thus, U, and S, signify, respectively, the value and 
the  slope of u(z) at  the mesh-point 7 = (n - 1)A. 
A finite difference equation which converges to  Eq. 
(7.1) as A approaches  zero is provided by 

MQ(Un4 - UI4)/4 + MQAU:Sn 

+ MA(ai4 '+  ai3') + ,/A 

+ 2 JZvn4(s, + u, + 1) 
= Nuo3 Jm' + (MN/~)AC,'~' , (7.4) 

in which 
n 

O,(k) = (U,k - U,k) + vi' (k = 3,4) . (7.5) 
i =  1 

Since Eq. (7.3) implies that 

U n =  Un- l  -t AS,-, , (7.6) 

Eq. (7.4) can be solved for Sn in  terms of Ut, U,, . - . , 
Un- , ,  S,, S2 ,  * . , Sn-l. The mesh point n = 1 cor- 
responds to 7 = 0, so that 

u1 = u g  . (7.7) 

Equation (5.6),  which applies during  the  initial  stage 
of growth, indicates that 

SI C(Nuo/2) - uo - l l /Q.  (7.8) 

336 Thus,  the values of U, and S, at t = A, 2A,3A, . ' 
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Figure 3 Bubble ratios vs time,  from  numerical 
solution. 
Dotted lines denote small-time solutions. 

can be calculated by repeated application of Eqs. (7.4) 
and (7.6)"a task evidently best done by digital com- 
puter.  This process was carried out  for values of the 
physical parameters  appropriate  for  the  growth of 
nitrogen  bubbles in vinylidene chloride-acrylonitrile 
copolymer at 100°C. For this  combination of materials, 
Peticolas  found  these values : 

Viscosity  of the  liquid, ,u = IO6 dyne-sec/cm; 
Density of the  liquid, 1.45 g/cm3; 
Coefficient of interfacial tension, a = 20 dynes/cm; 
Gas law constant, A = 1. I x lo9 dyne-cm/gm ; 
Henry's law constant, k = 3 x lov2;  
Diffusion coefficient, D = cm2/sec. 

Peticolas' experiments were carried out  at  an ambi- 
ent pressure of lo6 dynes/cm2  and with an initial  nitro- 
gen concentration of 2.7 x gm/cm. The critical 
radius,defined by Eq. ( 5 . Q  is therefore 4.07 x cm, 
and  the derived parameters M ,  N ,  Q, defined, respect- 
ively, by Eqs. (4.21),  (4.22),  (4.23) assume the  values: 

M = 2.78 x 10-5 ,  N = 2 0 0 ,  Q = 8.3 x 107. (7.9) 

The dimensionless initial radius uo, defined by Eq. 
(4.24), is related to the  actual initial radius  according to 

uo = 2.5 x 1 0 4 ~ ~ - 1 ~ ,  . (7.10) 

Computer  solution of Eqs. (7.4) and (7.6) provided 
the family of curves in Fig. 3. The  dotted  tangents to 
the curves represent the initial stage solution (Sec- 
tion 5), and  the bold-face curve represents the  asymp- 
totic  solution (Section 6) toward which all growing 
bubbles ultimately tend.  Note  that, except for very 
small bubbles, the initial stage solution is practically 
useless, describing the  growth  accurately  for only a 
few microseconds. Although  the  trend  toward  the 
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asymptotic  solution is evident, Fig. 3 confirms the 
indication  from  criterion (6.17) that  the  asymptotic 
stage  is not reached until t greatly exceeds 2 seconds. 
To carry  the numerical  solutions this far would require 
inordinate  amounts of computer time, since the  num- 
ber  of  arithmetic  operations increases roughly  as  the 
cube of the  number of mesh points. Since, in  practice, 
the growth process is stopped (by cooling  the plastic) 
after about half a  second,  the  asymptotic  solution is 
of theoretical  interest only. 
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