E. J. Barlow *
W. E. Langlois

Diffusion of Gas from a Liquid

into an Expanding Bubble

Abstract: The growth of a bubble within a volume of isothermal viscous liquid containing uniformly distributed
dissolved gas is considered. The problem of characterizing this growth-by-mass-transfer is reduced fo an
integro-differential equation for the bubble radius as a function of time, and a computer solution is obtained.

The initial and final stages of growth are treated analytically.

Introduction

A technique now being considered for dry-process
photography of documents involves the formation of
light-scattering bubbles in a clear plastic medium. The
bubbles are formed when a supersaturated solution of
gas in the plastic medium is brought to a critical tem-
perature, whereupon nucleation and bubble growth
occur. This supersaturated solution of gas in plastic
can be brought about in a number of ways. In the
dry-photographic process, the gas is formed by photo-
decomposition of a diazo compound previously dis-
solved in the plastic. It may also be formed by
physically dissolving the gas in the plastic film under
high pressures and then bringing the plastic to room
pressure.

Although the mechanism of nucleation is not yet
fully understood, we know that once nucleation
occurs, bubble growth is controlled by the classical
laws of motion; the pressure of the gas provides the
driving force to expand the bubble while the inertia
and viscosity of the plastic, together with the inter-
facial tension of the bubble wall, provide the resistance.
The change in bubble pressure with time is governed
by the rate at which dissolved gas can diffuse into the
growing bubble; the initial or nucleation pressure is
determined experimentally.

Thus, in a complete study of the bubble growth prob-
lem the diffusion equation is coupled to the equations of
viscous hydrodynamics.

An informal analysis of the problem has been made
by W. L. Peticolas;! he calculated the limiting cases of
extremely rapid and extremely slow gas diffusion. If
the diffusion is sufficiently rapid, the bubble pressure
remains constant and the growth is determined by the
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hydrodynamic equations alone. On the other hand, if
the diffusion is sufficiently slow, hydrodynamic effects
become negligible ; an asymptotic solution as developed
in Section 6 then applies.

From this analysis, together with his experimental
work on bubble growth, Peticolas found that cases of
practical interest for his purposes lie between the
extremes, being dominated neither by hydrodynamic
effects nor by diffusion. Concluding that a more
extensive analysis would prove useful, he suggested to
us the problem studied in this report.

In Section 1, we specify the physical assumptions
behind our mathematical formulation of the bubble
growth problem. Section 2 concerns the underlying
hydrodynamics and Section 3 deals with the diffusion
of gas through the plastic melt.

The general analysis of the bubble growth problem,
carried out in Section 4, is based on the assumption
that the significant variation of gas concentration is
confined to a thin shell surrounding the bubble. The
problem is reduced to a single integro-differential
equation for the bubble radius as a function of time.

Sections 5 and 6 concern, respectively, the initial
and final stages of growth. We find that, initially, the
bubble radius grows as a linear function of time; in
the final stage, it is proportional to the square root
of time.

In Section 7, we carry out the numerical solution
for the growth of nitrogen bubbles in vinylidene
chloride-acrylonitrile copolymer. The physical con-
stants for this combination of materials were deter-
mined experimentally by Peticolas. We find that the
thin shell approximation used in Section 4 is justified,
since, even in the final stages of growth, the radial
variation of concentration is negligible except in a
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region quite close to the bubble. We also find, however,
that the initial-stage solution of Section 4 provides a
useful approximation only for very small bubbles. In
general, the initial stage passes after a few micro-
seconds and, in Peticolas’ work, the bubbles are
allowed to grow for about 500 milliseconds. Further-
more, the final stage, analyzed in Section 6, is not
reached until several seconds have elapsed. Thus, in
order to provide a useful correlation between nuclea-
tion size and final size of the bubbles in Peticolas’
experiments, we must use the general analysis of
Section 4, which leads to the numerical results of
Section 7.

{. The idealized problem

To permit a mathematically tractable analysis, the
actual conditions of bubble growth were somewhat
idealized in defining the problem studied here. If we
first specify the assumptions involved in this idealiza-
tion, the consequent limitations of the analysis can be
understood a priori.

We assume, first of all, that a single bubble of gas
is growing in an otherwise unlimited volume of liquid.
Thus, we neglect interactions of the bubble with its
neighbors and with the boundaries of the liquid
volume. Since we find a posteriori that the growing
bubble is influenced almost exclusively by diffusion
from a thin shell surrounding it, this assumption is
satisfied almost until the bubbles grow into one
another.

We assume that the liquid is a Newtonian fluid. Since
it is, in fact, a molten plastic, it exhibits Newtonian
behavior only at low rates of deformation; at some-
what higher rates, Newtonian behavior can be assumed
as a first approximation. Virtually no data is available
on the rheological properties of the plastics being
considered for dry-process photography. By analogy
with better known polymeric systems, we expect that
non-Newtonian effects become important at a rate
of deformation somewhere between 10~2 reciprocal
seconds and 1 reciprocal second.

We also assume that the liquid is incompressible and
that its viscosity is constant. If we ignore the effect of
the dissolved gas on the much greater density of the
melt, the incompressibility assumption is quite well
founded; since the viscosity of the plastic is virtually
independent of the concentration of dissolved gas, the
assumption of constant viscosity is valid if the tem-
perature is effectively uniform and constant throughout
most of the bubble’s growth. The condition may or
may not be met, depending upon the circumstances
under which the melting of the plastic is carried out.

Finally, we assume: 1) the gas is ideal, 2) it diffuses
through the melt according to Fick’s law,? 3) the con-
centration inside the bubble is related to the concen-
tration just outside according to Henry’s law,® and
4) only a negligible amount of gas is adsorbed on the
bubble wall. Henry’s law is not precisely satisfied by
the gas-polymer system, but it does provide a good
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Figure 1 The coordinate system.

approximation. The other assumptions are valid under
the conditions which can be expected in dry-process
photography.

The mathematical approximations introduced to
simplify the analysis will be discussed as they appear.

2. Hydrodynamics of the problem

Consider a spherical bubble of ideal gas with radius R
growing in an otherwise unlimited volume of viscous,
incompressible liquid. The growing bubble generates a
velocity field within the liquid which, in turn, generates
a stress field tending to retard the bubble’s growth.

The spherical symmetry of the situation makes it
convenient to choose a spherical coordinate system
with its origin at the center of the bubble, as illustrated
in Fig. 1. The velocity field generated in the liquid will
have only a radial component v(r, ), where ¢ is time
measured from the instant of bubble formation. The
pressure p at any point in the liquid is also a function
of r and ¢. The equations of viscous flow* then reduce
to

p[(8v/dt) + (vdv[dr)] = —(3pfdr) + u[(1/r)(@ruv/or?)
—(2v/r?)], (0 R))
(60/6r) + (20/r) = 0. 2.2)

In Eq. (2.1), p is the density and u the viscosity of the
liquid. Both are assumed uniform and constant.

At the bubble wall, the liquid velocity must equal
R(#) where a superimposed dot denotes ordinary differ-
entiation with respect to time. Thus, integration of Eq.
(2.2) yields

u(r, £) = 1/rH[ROTPR() . 2.3)




Substituting Eq. (2.3) into Eq. (2.1) and integrating,
we find

(p — p)lp = (R[N(2R? + RR) — (R*R¥/2rY),  (2.4)

in which p, is the pressure far from the bubble.
The stress components for the velocity field given
by Eq. (2.3) are*

Op=—P~— (4[1R2R/7‘3) »

oo = Gp = —P + (QuR*R[?), (2.5)
Opp =04y =0, =0.

Within the bubble,
O = Ogg = Oy = _Py(t) » (26)

Ogp = Ogr = w=0,

in which p, is the pressure of the ideal gas forming the
bubble.

The stress components o, and 6, must be con-
tinuous across the bubble surface. A comparison of
Egs. (2.5) and (2.6) reveals that this requirement is
automatically satisfied. The stress component o,, must
experience a jump of magnitude 2¢/R, where ¢ is the
coefficient of interfacial tension. The stress inside the
bubble is lower (if both media were inviscid, this
would reduce to a statement that the pressure inside
the bubble is higher). Comparing the first of Egs. (2.5)
with the first of Egs. (2.6), we find that the pressure
just outside the bubble wall is given by

PR+ 0,1 =p,(5) — (20 + 4uR)/R . 2D
By setting r = (R + 0) in Eq. (2.4), we obtain an

ordinary differential equation for the bubble radius’

as a function of the pressure inside the bubble:
RR + (3R%/2) + (4uR/pR) + (20/pR) = (p, — Po)lp .
(2.8)

A dimensionless form of this equation is obtained by
setting

t = Q0/pNpIPat, 9

R =(2a/pu, (2.10)

so that

uii + (36%/2) + (Qifu) + (1/u) — (p,/p) +1 =0,
(2.11)

in which the superimposed dot now denotes differ-
entiation with respect to r and where

0 = (2uloNpalp - (2.12)

The dimensionless parameter Q is the reciprocal of
a Reynolds number based upon (20/p,) as a length
scale and \/p,/p as a velocity scale. Thus, for large
values of Q, viscosity dominates over fluid inertia in
retarding the bubble growth.

Heretofore, the pressure inside the bubble has been
considered an arbitrary function of time. The size of
the bubble is related to this pressure by Eq. (2.8) or
its dimensionless equivalent, Ec,. (2.11).

The bubble pressure p,(7) is related to the amount
of gas within the bubble at time ¢ according to the
ideal gas law. If we assume isothermal conditions,

p,(t) = Ac,, (2.13)

where ¢, is the concentration (density) of the gas
forming the bubble, and where 4 is a constant given by

A=R,T/M. (2.14)

In Eq. (2.14), R, is the universal gas constant, 7 is the
absolute temperature, and A is the molecular weight
of the gas. Substituting Eq. (2.13) into Eq. (2.8), we
obtain

pRR + (3pR?/2) + (4uR/R) + (20/R) = Ac, — p, .
(2.15)

3. Diffusion of gas through the liquid

Assume that at time ¢ = 0 a homogeneous concen-
tration ¢, of gas is dissolved throughout the liquid.
At any subsequent time, the concentration c¢ obeys
Fick’s law of diffusion,

Dc/Dt = DV?c, 3.D)

where D is the diffusion constant. The material
derivative Dc/Dt is used in Eq. (3.1) to account for
convection of gas by the moving liquid. In view of
the spherical symmetry, Eq. (3.1) becomes

(0c/ot) + v(dc/dr) = D[(d%c/or?) + (2/r)(éc/or)], (3.2)
where, according to Eq. (2.3),
v=R*R/r?. 3.3)

Equation (3.2) is subject to a boundary condition at
the bubble wall. Since buildup of adsorbed gas on the
bubble wall is assumed negligible, the rate of increase
of gas within the bubble equals the rate of flow inward
across the wall. Thus,

d(4nR3c,/3)/dt = 4nR2D(c/0r)),—x . (3.4)

At a sufficiently great distance from the bubble, the
effect of the growing bubble should be negligible, so
that the concentration at any time is nearly equal to
the initial concentration. We therefore take, as our
second boundary condition,

lim e(r, 1) = ¢, (t>0). (3.5)

r—+ao

The assumption of a homogeneous concentration of
dissolved gas at time ¢t = 0 provides the initial condi-
tion

c(r,0) =c, (r > Ry). 3.6)

At any instant of time, the concentration just out-
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side the bubble wall is related to the concentration
within the bubble through Henry’s law. We have

o(R+ 0,1 = ket >0, 3.7

where k is a constant.

This completes the mathematical formulation of the
bubble growth problem. In summary, we find that
there are essentially three dependent variables: R(?),
¢,(f) and c(r, 7). They satisfy the ordinary differential
equation

RR + (3R?/2) + (4uR/pR) + (20/pR)
= (Ac, — plp, (2.15)
and the partial differential equation
(8c/ot) + (R*R/r*)(0c/or) = D[(6*c/or?)
+ 2/r)(@c/or)] 3.2

subject to the boundary conditions

dc/or|,—g = [1/3DR*][d(R3cy)/d1] , (34
lim c(r, t) = ¢4, 3.5)

to the initial condition

c(r, 0) =€, (3'6)
and to the matching condition
o(R+0,0 =ke,(t). 3.7

In the ensuing analysis, we shall find that the bubble’s
initial radius and growth rate, or their equivalent,
must also be specified.

Upon examining this system of equations, we find
that both differential equations are nonlinear, as is
the boundary condition (3.4). There is the additional
complication that Egs. (3.4) and (3.7) apply on a
boundary moving in a manner not specified a priori.

One difficulty associated with a moving boundary
problem can be avoided by using a Lagrangian descrip-
tion. In this procedure, the independent variables
other than time are the initial coordinates of the fluid
particles, rather than points in space. Since in a con-
tinuum theory, a fluid boundary always consists of the
same particles, the Lagrangian coordinates describing
the boundary do not change with time.

With the fluid velocity given by Eq. (3.3), any
function of (r* — R®) could serve as a Lagrangian
radial coordinate. We find it most convenient to
choose (r* — R%)/3. The equation system can be
further simplified by changing the time variable. Thus,
we change independent variables from r and ¢ to &
and @ according to

3h=r3 — [ROT, (3.8)

Y
0= fo R4(H)dt . (3.9)
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In terms of the new variables, the nonlinear convec-
tive term disappears from Eq. (3.2), and we have

(0c/06) = D(@/om)[(1 + 3h/R3)*/*(0c/on)] . (3.109)
The boundary conditions (3.4) and (3.5) become

dc/ohly=o = [d(R?c,)[d0]/3D 3.1y
}.1_{11 c(h, 0) =cq, (3.12)

and the initial condition (3.6) becomes
c(h,0) =c, . (3.13)

We can now proceed as if the diffusion problem
were distinct from the hydrodynamics, solving Eq.
(3.10), subject to the boundary conditions (3.11),
(3.12) and to the initial condition (3.13), with R and
c, retained as arbitrary functions of 6. We can thus
obtain ¢(+0, 6) in terms of R and c,; Henry’s
law, Eq. (3.7), then yields a relation between R and c,.
The concentration ¢, can thereby be eliminated from
the hydrodynamic equation (2.15) and the resulting
equation for R solved numerically.

The complicated form of the right side of Eq. (3.10)
makes it unlikely that an exact solution to the diffusion
problem can be obtained. We develop an approximate
solution in the next section.

4. The thin shell approximation

Since we assume the bubble nucleates with a finite
radius R,, there will be a time interval during which
the bubble radius is much larger than the diffusion
length /Dt. During this time interval, the concen-
tration of gas in the liquid is significantly disturbed
by the growing bubble only in a thin shell surrounding
the bubble. Outside this shell, the concentration is
virtually equal to ¢,.

A similar thin shell approximation was used by
Plesset and Zwick® in their study of thermal diffusion
into a vapor bubble within a volume of superheated
water. Their analysis applies directly to our problem.

In the thin shell, where the important variation of
concentration is assumed to occur, 4 is small compared
with R3. Eq. (3.10) can therefore be replaced by

8c/00 = D(6%c/oh?) . “4.1)
We now let
C(h, s) = Z[c(h, 0)], 4.2)

where # denotes the Laplace transform, i.e.,
ZLle(h, 6)] = fw c(h, O)exp(—s0)do . 4.3)
0

With the initial condition (3.13), Eq. (4.1) transforms
to
D(0*C[oh?) = sC — ¢y . 4.4)

The boundary condition (3.11) transforms to




aC/ahlh=o = f(s), (4.5)
where
Jis) = (1/3D)5f[d(R3cg)/d0]. (4.6)

The boundary condition (3.12) must be carefully
considered. Since it concerns the behavior of c(h, 6)
for large values of h, it cannot, strictly speaking, be
applied to Eq. (4.1), which holds only for values of h
small compared with R*. However, in writing Eq. (4.1),
we assume that c(h, 0) is nearly equal to ¢, outside
the thin shell. Thus, it is quite proper to apply con-
dition (3.12) to Eq. (4.1), provided we find a posteriori
that the resulting solution for c¢(4, 6) decays rapidly
toward ¢, as A increases. Taking the Laplace trans-
form of Eq. (3.12), we obtain

lim C(h, s) = ¢y/s . 4.7
h—co

Integrating Eq. (4.4) subject to conditions (4.5) and
(4.7) yields

C(h, 5) = (co/s) — /D]sf(s)exp(—h+/s/D) . (4.8)

The inverse transform of Eq. (4.8) can be obtained by
convolution. Using Eq. (4.6), we find that the con-
centration of gas in the liquid is given by

1

C(h, 0) = Cqg — Q;—B

" I ? (d/dAYR*C,Jexp[ ~ h?/4D(0 — N)]
0 N

For small values of 8 the concentration, as expected,
differs appreciably from ¢, only in a thin shell about
the bubble, viz., when h is of order \/ DO or smaller.

We can now obtain a relation between R and ¢, by
setting /1 equal to zero in Eq. (4.9). Using Henry’s
law, Eq. (3.7), we have

1 b d(R3c,)|dA
3JnD Jo JO—4
The hydrodynamic equation (2.15) provides an
expression for ¢, in terms of R:
¢y = (1A)[p, + pRR
+ (3pR?/2) + (4uR/R) + (20/R). 4.11)
If this expression for ¢, is substituted into Eq. (4.10),
we obtain an integro- dlfferentlal equatlon for R(?).
However, we note that R will appear in the integrand.
This complication could be avoided by integrating

Eq. (4.10) by parts, except that this procedure leads
to an indeterminate form of the type co — co:

® d(R3c,)/dA CoR,3 R
7 4 - 2 1i —f
f NCEY k0 +,in3[\/9~z

1 9—e R3
—-ifo = /'l.)%dﬁ] (4.12)

dl. (4.9

ke, = co — di. (4.10)

A=0-¢

Observe, however, that

R3 1 60—z R3
1 . 3 dl]
,1“3[\/0 7 |im0- 2L @ "

] 3
_ ij Ry 40 (4.13)

00— 4
Eq. (4.10) therefore becomes

1 iJ’ R3cd/l CoR,?
3 /7D df )o /0 — A " 3k JmDo

The problem of simplifying integrals similar to that
appearing in Eq. (4.10) arises quite often in the
linearized theory of supersonic aerodynamics. In that
context, procedures similar to our derivation of
Eq. (4.14) have been extensively studied. These studies
of divergent integrals have led to an important con-
cept, which Hadamard® has termed the finite part of
an integral. The derivation of Eq. (4.14) from Egq.
(4.10) is, in fact, a special application of Hadamard’s
technique.

We now integrate Eq. (4.14) over the interval (0, )
obtaining

ke (4.14)

g = Co—

(]
(kleo) f {1 + [R3/3k/aD(0 — A)}c,dA
0
= (2R,*/3k)\/0/nD + 0 . (4.15)

With Eq. (3.9), we can write Eq. (4.15) in terms of
the original time variable. Thus,

t t Y4
(k/CO),[ <1 + {[R(t')]3/3k|:7'cDJ‘ R4dt] }>
0 v
x [R(t")J*c (t)dt’
t 1 t
=(2R03/3k)[(1/1tD) f R“dt] + j R*t.  (4.16)
0 0

Using the expression for ¢, given by Eq. (4.11), we see
that R(#) is determined by the integro-differential
equation

(k/coA) f; {1 + [R3/3k(nD Jt R‘*dt) /]}

x {ps +p[RR + (3R?*2)]
+ (4uR/R) + (26/R)}R*dt’

Y%

= (2R,%/3k) [(1/nD)£ R‘dt]

t
+J Rt . 4.17)
0

Eq. (4.17) can be rewritten in terms of the dimen-
sionless variables ¢ and u. According to Egs. (2.9)
and (2.10)

t = [(Pa/20) PdlP]t (4.18)
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u = (p,/20)R, (4.19)
so that

Jolo /([ a)

x {1 + uii + (302/2) + (Qufu) + (1/u)}utdr’

= Nu(f'(fr u‘*dﬂc)y2 + (1/2)MNJ‘t utdr.  (4.20)

0 0

In Eq. (4.20), M and N are dimensionless parameters
defined by

M = 3k[(zD/20)(p.p)*1% , (4.21)
N =2Ac¢,/kp, . (4.22)

Q is the reciprocal Reynolds number defined earlier
(Eq. 2.12) by

Q = (2u/oN palp , (4.23)
and u, is the initial value of u, i.e.,
uo = paRo/ZG' N (4.24)

Superimposed dots now denote differential with res-
pect to 7.

In principle, the variation of u with t can be deter-
mined by solving the nonlinear integro-differential
equation (4.20) subject to the initial condition (4.24),
together with an appropriate initial condition on 4.
Since it is unlikely that this solution can be found
analytically, we turn first to approximate and then to
numerical solutions.

1In the next section, we make use of the high viscosity
of the plastic to determine the bubble size during the
early stages of growth. In Section 6 we investigate the
asymptotic behavior of the bubble at large times. In
Section 7, we compare these approximate solutions
with a numerical solution of Eq. (4.20).

5. The initial stage of growth at low Reynolds
number

We now consider the bubble growth under conditions
such that the reciprocal Reynolds number Q is large
compared with unity. Because of the high viscosity of
plastic melts, this case is quite important.

The approach used in this section is analogous
to that used by Plesset and Zwick’ to simplify the
integro-differential equation governing the early stages
of bubble growth by thermal diffusion.

We note first that, for a medium of finite density and
infinitely large Q, Eq. (4.20) is satisfied by @4 = 0, so
that the bubble never grows. If the medium has a high
but finite viscosity, the bubble grows quite siowly, so
that the bubble radius remains near R, for quite some
time. We can obtain a perturbation solution to Eq.
{4.20) for this initial stage of growth by setting

u(t) = ug[1 + eg(7)1, (5.1
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where

e=1/Q, (5.2)

i.e., ¢ is a Reynolds number.

Substitution of Eq. (5.1) into Eq. (4.20) yields a much
simpler integro-differential equation. By neglecting
terms of the second degree or higher in e,

f [M + (o7 — g’ (R)dA

= [(NJ2) — 1 — (1/u)][2ue/T + M1] . (5.3)
The initial condition (4.24) becomes
g(0)=0. (5.4)

Note that the second derivative in Eq. (4.20) is
absent from Eq. (5.3). This second derivative origin-
ated in the inertia term of the hydrodynamic equation
(2.1), and use of the Reynolds number as a perturbation
parameter suppresses the effect of inertia. We can no
longer impose an initial condition on #. Physically,
the effects of intertia are quickly damped out when ¢ is
small. Thus, except for the first instants of growth, the
solution of Eq. (4.20) subject to Eq. (4.24) is virtually
independent of the value chosen for u(0).

The solution of Eq. (5.3) subject to Eq. (5.4) is

9(®) =[(N/2) - 1 = (Aug)Iz, (5.5

so that, with Eq. (5.1) and (5.2), the initial stage of
bubble growth is governed by

u=uo{l + Q7'[(N/2) — 1 = (1ug)]} . (5.6)

With Egs. (4.18), (4.19), (4.22), (4.23) and (4.24), we
obtain, in terms of the original variables,

R/Ry =1 + (6/2)[(1/R,,:r) — (1/Ro)]¢t, (5.7
where
R . = 20/[(Aco/k) — p,] - (5.8

If R, = R, the bubble does not grow. The physical
significance of this can be perceived by omitting the
inertia terms from Eq. (2.8). We see that R(0) vanishes
if 26/R, is equal to p,(0) — p,, i.e., if the pressure in-
side the bubble just balances surface tension. Equation
(5.8) is obtained as the criterion by using Eq. (2.13) and
Eq. (3.7). When R, is smaller than R,,;, the bubble
shrinks.

6. The asymptotic stage

Since the liquid medium is unbounded, and since an
unlimited amount of dissolved gas is available, the
bubble is free to grow indefinitely large. We now inves-
tigate its growth behavior at times long after growth
has begun.

In view of the high viscosity of the plastic, we
neglect inertia. The hydrodynamic equation (2.8) then
reduces to




(4uR/R) + (20/R) = p, — p, - (6.1)

Unless the ultimate growth rate is exponential or faster,
p, approaches the ambient pressure. With Eqgs. (2.13)
and (3.7), therefore, the concentration just outside the
bubble wall approaches

¢, = kpJA . (6.2)

At sufficiently large times, ¢(R + 0, f) will differ
from ¢; by a negligibly smail amount. In order to
investigate the bubble growth in this asymptotic stage,
we note following Birkhoff et al.,® that the diffusion
equation (3.2) has a self-similar solution of the form

e(r,)=1(), (6.3)
where
s=r/J/Dt, 64

provided that the bubble radius is proportional to
\/Dt. Calling the proportionality constant y,

R=y/Dt, (6.5)

and we find that f{(s) must satisfy the ordinary differen-
tial equation

179+ [(s/2) + 2fs) — (1251 f () = 0. (6.6)
Thus,
f(s)=A—Bf(s), (6.7)

where 4 and B are constants of integration, and
£,6) =J 1~ expl—(2*/4) + (720 1dy - (6.8)
If we assume that this self-similar solution obtains

during the asymptotic stage, the constants of inte-
gration are determined by the boundary conditions

S =e, (6.9)
lim f(s)=c¢q. (6.10)

Since f,(s) approaches zero as s approaches infinity,

A=cy (6.11)
and

B =(co — c)/f\(¥), (6.12)
so that

() =co = [(co — c) S/ 1,(») - (6.13)

The one boundary condition still to be used is Eq.
(3.4). Since in the asymptotic stage
¢, =PpJA, (6.14)

substitution of Egs. (6.5) and (6.13) into Eq. (3.4)
yields an implicit equation for y:

(Pa¥/24) + (co — ) f' W f(y) =0. (6.15)

Birkhoff et al.® have solved this equation numeric-
ally, obtaining the curve shown in Fig. 2.

The asymptotic stage is attained when p, — p, is
small compared with p,. In other words, with R given
by Eq. (6.5), the left side of Eq. (6.1) should be small
compared with p,. If we wish to determine the influence
of inertia on the time when the bubble enters the
asymptotic stage, we use Eq. (2.8) instead of Eq. (6.1).
Thus, Eqgs. (6.3) and (6.5) provide a reliable solution
to the bubble growth problem only if

(p¥2D/8p.0) + Qu/pt) + Qafpy /DO < 1. (6.16)

Because of the dominance of viscosity over inertia
and surface tension, only the middle term is important.
Thus, the criterion (6.16) is satisfied when

t> 2u/p, . 6.17)

If p, —p, is small compared with p, then
(R + 0, 1) — ¢; is small compared with c;. Use of the
boundary condition (6.9) introduces only a negligible
error.

The criterion (6.17) is not a sufficient condition for
the bubble to be in its asymptotic stage. Note that
Egs. (6.3) and (6.13) allow for no dependence on
initial radivs. If the bubble starts out only slightly
larger than the critical radius given by Eq. (5.8), its
growth will be extremely slow. Therefore, even if
(6.17) is satisfied, the initial condition on R can con-
tinue to dominate the growth. Therefore, a bubble
enters the asymptotic stage at a time determined both
by the criterion (6.17) and, with Eq. (5.7), by the
requirement

Figure 2 Evaluation of proportionality constant
y from Eq. (6.15).
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t> 2.uRcrit/o'[l - (Rcrit/RO)] . (618)
7. The numerical solution

In the range where neither the initial solution of Sec-
tion 5 nor the asymptotic solution of Section 6 apply,
we can resort to a numerical solution of Eq. (4.20).
In view of the very high viscosity of the plastic, how-
ever, it is sufficient to consider instead the equation

' M+ [ ru“dr * {00 + u + 1}ude’
Joloo Lo f [ eae) )

T L7 T
= Nu03(J‘ u4dt) + (1/2)MNI utdr (7.1)
[} 0
which is obtained from Eq. (4.20) by omitting the
terms arising from fluid inertia.

We employ a time-sequential approach: The solu-
tion at any given time is calculated by numerical
integration from the solution at previous times. We
choose a mesh A fine enough that, in the interval

m—DALTEnA, (7.2)
the solution u(r) is adequately represented by
wrny=U,+ S,[t—(n—1DA]. (1.3)

Thus, U, and S, signify, respectively, the value and
the slope of u(r) at the mesh-point © = (n — DA.
A finite difference equation which converges to Eq.
(7.1) as A approaches zero is provided by

MQ(U,* — U,*)/4 + MQAU,S,
+ MA(@,®+ 6,) + JA

y ;1{ USOS; + U, + 1) / [(U,,“/2) oy lU,.'*] %}

Jj=it
+2JAUAS, + U, + 1)

= NugJAo,® + (MN/2)Ao,® | (7.4)

in which

o, ¥=UF~UMH+ Y U} k=34. (@15
i=1

Since Eq. (7.3) implies that
Un = Un—l + Asn—-l s (7'6)
Eq. (7.4) can be solved for S, in terms of Uy, U,, - - -,

U,-1, S1, Sy, ¢+, S,—1. The mesh point » = 1 cor-
responds to t = 0, so that
U1 = uo . (77)

Equation (5.6), which applies during the initial stage
of growth, indicates that

Sy =[(Nug/2) —us —11/Q . (7.8)
Thus, the values of U, and S, at © = A, 2A, 3A, - - -
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Figure 3 Bubble ratios vs time, from numerical
solution.
Dotted lines denote small-time solutions.

can be calculated by repeated application of Eqs. (7.4)
and (7.6)—a task evidently best done by digital com-
puter. This process was carried out for values of the
physical parameters appropriate for the growth of
nitrogen bubbles in vinylidene chloride-acrylonitrile
copolymer at 100°C. For this combination of materials,
Peticolas found these values:

Viscosity of the liquid, u = 10° dyne-sec/cm;
Density of the liquid, 1.45 gfcm?;

Coeflicient of interfacial tension, ¢ = 20 dynes/cm;
Gas law constant, 4 = 1.1 x 10° dyne-cm/gm;
Henry’s law constant, k = 3 x 1072;

Diffusion coefficient, D = 107° cm?/sec.

Peticolas’ experiments were carried out at an ambi-
ent pressure of 10 dynes/cm? and with an initial nitro-
gen concentration of 2.7 x 1072 gm/cm. The critical
radius, defined by Eq. (5.8), is therefore 4.07 x 107 cm,
and the derived parameters M, N, Q, defined, respect-
ively, by Egs. (4.21), (4.22), (4.23) assume the values:

M=278x10"%*, N=200, Q0=83x10". (79

The dimensionless initial radius u,, defined by Eq.
(4.24), is related to the actual initial radius according to

uy = 2.5 x 104cm ~'R, . (1.10)

Computer solution of Eqs. (7.4) and (7.6) provided
the family of curves in Fig. 3. The dotted tangents to
the curves represent the initial stage solution (Sec-
tion 5), and the bold-face curve represents the asymp-
totic solution (Section 6) toward which all growing
bubbles uitimately tend. Note that, except for very
small bubbles, the initial stage solution is practically
useless, describing the growth accurately for only a
few microseconds. Although the trend toward the




asymptotic solution is evident, Fig. 3 confirms the
indication from criterion (6.17) that the asymptotic
stage is not reached until ¢ greatly exceeds 2 seconds.
To carry the numerical solutions this far would require
inordinate amounts of computer time, since the num-
ber of arithmetic operations increases roughly as the
cube of the number of mesh points. Since, in practice,

the growth process is stopped (by cooling the plastic)

after about half a second, the asymptotic solution is
of theoretical interest only.
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