
Letter to the Editor 

T. Rado* 

Comments on the Presence Function of Gazalet 

This Letter is an extension of the  paper published by 
GazalB' in this Journal  in April 1957. 

Let 4 be a (Boolean) function of the (Boolean) 
variables x,, * , x,. A finite  system F,, * , FM of 
functions of the same variables will  be termed a 
representation of 4 if 
$ = F , + . * ' + F M ,  (1 )  

identically in the variables xl, . * , x,. A representation 
(1) will be termed T-irredundant  (term-wise irredundant) 
if no  proper subsystem of F,, * * , FM is a representa- 
tion of 4. In a variety of important  situations,  one  has 
an initial representation F,,  . , F, which  is  not known 
to be  T-irredundant;  and  there arises the problem to 
find all those subsystems of F,, * * , FM which do con- 
stitute T-irredundant representations for 4. GazalC 
proposed an interesting approach (based on the use  of 
a certain auxiliary function which he called thepresence 
function) for  the special case when F, ,  * , F M  are 
products of x-literals. Now in some programs (related 
to the simplification of multiple-output networks) one 
has to deal with the more general case  when F,, . , F M  

are not products of literals but quite general functions 
of x,, , x,. Also, for purposes of actual program- 
ming it was found necessary to set up  an explicit 
formula  for the presence function. The purpose of this 
note is to present (and to prove) the results obtained 
by the writer after having studied the significant paper 
of GazalB. 
Definitions 

We assume that  an initial representation (see (1)) is 
given for 4. We first introduce an auxiliary Boolean 
function A of the auxiliary Boolean variables 
v, ,  * * , uM by the formula 

binary digits) for  the variables x,, - - , x, as <,, , tK. 
If I) is any (Boolean) function of x,, , x,, we shall 
denote by $(&.) the value of I) for  the substitution < k .  

Next we introduce M auxiliary variables o,, , aM 
and  put (for 1 S k K) 

M 

Bk = A I F l ( < k ) ?  * ? F M ( < k ) l  + 1 F M ( e k ) a m  * (3) 
m =  1 

K 
s(o,, ' ' ' O M )  = fl Bk. (4) 

k =  1 

The theorem to be proved below  will show that S cor- 
responds to the,presence function  of  GazalC, extended 
to  the general case considered here. Let us note that 
(2), (3), (4) yield an explicit  formula for S ;  actual use 
(as a subroutine of larger programs) showed that this 
formula furnishes a fast program,  adequate even for 
computers in  the medium speed range. 
Lemma 1 

Let m,, . - , mR be subscripts such that 1 5 m, < .. .  < mR 5 M and 

4 = F m , + . . * + F m , .  ( 5 )  

Then the  product 

O m  1 o m ,  (6) 
is an implicant of S(al, * * * , oM). 

Proof 

Consider any substitution a' of (binary digits) u,', 

. . .  

. . .  , aM0 for u,, * * * , cM such that 

O m  3 

We have to show that S = 1 for this substitution. 
Consider any one of the expressions Bk (see (3)), and 
denote by Bko the expression obtained by replacing 

0.. . gmRo = 1 .  (7) 

61, * * * , OM by CT,', * * a ,  OM . 0 

This function is a generalization of the well-known case 
Kronecker delta. Next, we put K = 2" (where n is the 
number of the x-variables), and enumerate (in any A[F,(< k ) ,  , F M ( t k ) ]  = 1. Then clearly B: = 1. 
desired manner) the  K possible substitutions (of Case 
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such that Fm,(lk) = 1. But then the summation in (3) 
contains the term 

Fm,(t k )a m, Y 

which has the value 1 by (7). Thus Bko = 1 in Case 2 
also. 

Thus we  see that &' = 1 for  1 S k S K ;  hence, by 
(4), S = 1, and  the lemma is proved. 

Lemma 2 

kt m, ,  . * e ,  mR be subscripts such that  1 5 m, < 
- * . mR 5 M ,  and a,,, - . . , a,, is an implicant of S. 
Then 

4 = F , , + - . * + F , , .  (8) 

Proof 

Make,  for  the a-variables, the substitution 
amlo = . * . = a,,' = 1, a,' = Ofor m z m , ,  * * . , mR. 

(9) 

am I urn, is an impllcant of S, it follows that we have 
Then a,,' * a,,' .= 1 ; since,  by assumption, 

now s = 1. Using the  notation Bk' as in the proof of 
Lemma 1, we have therefore (see (4)) 

B k o = l f o r l ~ k ~ K .  (10) 

Now, in view of (9), 
R 

= A[Fl(<k), ' * ' > F M ( t k ) ]  + Frn,(tk) . (1 1) 
r =  1 

Fix now k. 
Case 1 

A[F,( tk) ,  . 5 F"(t,J] = 1. Then Fl((k), * * > F d l k )  
have the same value (0 or 1). By (1) we have then 
4(ck) = d, and the summation  in (11) also has  the 
value d. Hence 

Case 2 

A[Fl( tk) ,  ' * F d t k ) ]  = 0. Then Fl(tk), * * , F M ( c k )  
do not have the same value. Hence there is  a subscript 
m such that F,(tk) = 1. Hence, by (l), we have 
4 ( c k )  = 1. But, since Bko = 1 by  (10) and A [F, (ek), * * , F,(<,)] = 0 (by assumption), it follows that 
the  summation in (1 1) has  the value 1 also. Thus (12) 
holds in Case 2 also. 

Now since k was arbitrary, it follows that (12) holds 
for  1 k 5 K ;  that is, ( 8 )  holds for every substitution 
for x,, . - , x,, and Lemma 2 is proved. 

Theorem 

Let ml,  , mR be subscripts such that 1 5 m,  5 

yield a T-irredundant representation for 4 if and only 
if a,, * * . am, is a prime implicant of S. 

Proof 

Assume first that 

4 = F,, + * . + F,, (13) 

is a T-irredundant representation for 4. By Lemma 1, 
a,,, - , IS,, is an implicant of S.  Now, if a,, * . * a,,,, 
were not a prime implicant of S, then we would have 
a subset p l ,  - * * , p t  of the indices m , ,  , mR such that 
t R and all, alrr is an implicant of S.  By Lemma2, 
we would have then 

. . .  < mR 5 M .  Then the functions F,,, . * , F,,, 

4 = F , , + . * . + F , t ,  
contradicting  the assumption that F,,, * . , FmR con- 
stitute  a T-irredundant representation for 4. 

Assume next that urn, * * u,, is a prime implicant of 
S. By Lemma 2, the functions F,,, * . , F,, constitute 
then  a representation for 4. If this representation were 
not T-irredundant, then we would have a subset 
p,, * e ,  pt of the indices rn,, * * . , mR such that t < R 
and F,,,, . . , FUt constitute  a representation for 4. But 
then (by Lemma 1) alCl - aPc would be an implicant 
of S, in  contradiction with the assumption that 
IS,, . amR is a prime implicant of S. The  proof of 
the  theorem is  now complete. 
The  prime  implicants of S 
Since,  in computing S, the terms B, in which A = 1 
have the value 1  and  can therefore be omitted, S ap- 
pears as  a product of sums of unbarred a-variables. 
By a well-known theorem of Nelson, one finds then 
the prime implicants of S as follows. After the multi- 
plication is carried out, one drops every a-product 
which is a multiple of some other  a-product  present; 
the surviving a-products  are  then precisely the prime 
implicants of S. 
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