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T. Rado*

Comments on the Presence Function of Gazaléf

This Letter is an extension of the paper published by
Gazalé! in this Journal in April 1957.

Let ¢ be a (Boolean) function of the (Boolean)
variables x;, - -+, x,. A finite system F,, - -, Fy of
functions of the same variables will be termed a
representation of ¢ if

¢=Fi+ - +Fy, M

identically in the variables x, - - -, x,. A representation
(1) will be termed T-irredundant (term-wise irredundant)
if no proper subsystem of Fy, - -+, Fy is a representa-
tion of ¢. In a variety of important situations, one has
aninitial representation Fy, - - - , Fy; which is nof known
to be T-irredundant; and there arises the problem to
find all those subsystems of Fy, - - -, Fy, which do con-
stitute 7-irredundant representations for ¢. Gazalé
proposed an interesting approach (based on the use of
a certain auxiliary function which he called the presence
Junction) for the special case when F;,---, Fy are
products of x-literals. Now in some programs (related
to the simplification of multiple-output networks) one
has to deal with the more general case when Fy, « - -, Fy
are not products of literals but quite general functions
of xi, -+, x,. Also, for purposes of actual program-
ming it was found necessary to set up an explicit
formula for the presence function. The purpose of this
note is to present (and to prove) the results obtained
by the writer after having studied the significant paper
of Gazalé,

Definitions

We assume that an initial representation (see (1)) is
given for ¢. We first introduce an auxiliary Boolean
function A of the auxiliary Boolean variables
vy, * * *, Uy by the formula

1 ifl)1="'=vM,
0 otherwise .

Mos -+ o) = | @
This function is a generalization of the well-known
Kronecker delta. Next, we put K = 2" (where n is the
number of the x-variables), and enumerate (in any
desired * manner) the K possible substitutions (of
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binary digits) for the variables x,, - -+, x,as &4, *, &k
If y is any (Boolean) function of x4, - - -, x,, we shall
denote by y(&,) the value of y for the substitution &,.
Next we introduce M auxiliary variables a4, * - *, oy
and put (for 1 £ k £ K)

By = A[F (&), * * + 5 Fa&W)] +m21 Frl&o,, - €))

K
S(o-l’ T O-M) =k1_=11 Bk . (4)

The theorem to be proved below will show that S cor-
responds to the presence function of Gazalé, extended
to the general case considered here. Let us note that
(2), (3), (4) yield an explicit formula for S; actual use
(as a subroutine of larger programs) showed that this
formula furnishes a fast program, adequate even for
computers in the medium speed range.

Lemma 1

Let my, - -+, mg be subscripts such that 1 < m; <
‘- <mp < Mand

¢=F, +  +F,,. (5)
Then the product

Oy """ Omg ©
is an implicant of S(g,, - -+, op).

® Proof

Consider any substitution ¢° of (binary digits) o,°,

<+ -, 0y for 6, -, o such that
0 g 0=1. Q)

We have to show that S = 1 for this substitution.
Consider any one of the expressions B, (see (3)), and
denote by B,° the expression obtained by replacing
01, , 0 by 0%, op°

Oy

® Case 1
A[F (€D, -+, Fy(&)] = 1. Then clearly B,° = 1.
® Case 2

AfFi(&, -+ Fu(&)] = 0. Then Fy(&), - - -, Fu(&
do not have the same value (see (2)). Hence there

exists a subscript m such that F,(¢) = 1. We have
then, by (1), ¢(&,) = 1; hence, by (5), we have an r




such that F, (£,) = 1. But then the summation in (3)
contains the term

F m,(fk)o-m,. s

which has the value 1 by (7). Thus B,° = 1 in Case 2
also.

Thus we see that B,° = 1 for | £ k £ K; hence, by
(4), S = 1, and the lemma is proved.

Lemma 2

Let m,, - - -, mg be subscripts such that 1 < m; <

v <mg < M,and o, ", 0, is an implicant of S.

Then

¢=F, + +F,.. 8)

S Proof

Make, for the g-variables, the substitution

opl="""=0,"=1 06=0form#m, -, mp.
®

Then o,,° - 0,." =1; since, by assumption,

Om, ' * " Omgisanimplicant of S, it follows that we have

now S = 1. Using the notation B,° as in the proof of
Lemma 1, we have therefore (see (4))

Bl=1for1 £k<K. (10)

Now, in view of (9),
R
B = A[F(&), -, Fu(E0] + ;1 Fr (80 - (11)

Fix now k.
& Case 1

AlF(80), * * s Fa(8)] = 1. Then F((&), - - -, Fal&0)
have the same value (0 or 1). By (1) we have then
¢(&,) = d, and the summation in (11) also has the
value d. Hence

R
¢ = ;Fm,(ék) . (12)

& Case 2

A[F1(&), -+, Fy(E)] = 0. Then Fy(&), -+, Fu(&)
do not have the same value. Hence there is a subscript

m such that F,(£) = 1. Hence, by (1), we have
&(&) = 1. But, since B® =1 by (10) and A[F,
&), * -, Fu(€)] = 0 (by assumption), it follows that
the summation in (11) has the value [ also. Thus (12)
holds in Case 2 also.

Now since k was arbitrary, it follows that (12) holds
for 1 £ k £ K; that is, (8) holds for every substitution
for x,, - -, x,, and Lemma 2 is proved.

Theorem

Let my, - - -, my be subscripts such that 1 < m; £
-+ <mp £ M. Then the functions F,, -, F,

yield a T-irredundant representation for ¢ if and or;'l';
if 6,,, * * * 0, is a prime implicant of S.

& Proof

Assume first that

¢=F, + - +F,, (13)

is a T-irredundant representation for ¢. By Lemma 1,
Omes " " * 5 Omy is an implicant of S. Now, if o, * - 6,,,
were not a prime implicant of S, then we would have
a subset py, -+ -, y, of theindices my, - * -, myg such that
t < Randg,, - - 0,,is animplicant of S. By Lemma?2,

we would have then
¢=Fﬂ1+'“+Fu:’

contradicting the assumption that F,, -, F,, con-
stitute a 7-irredundant representation for ¢.

Assume next that ¢,,, * * * 7, is a prime implicant of
S. By Lemma 2, the functions F,,,, - -, F,,, constitute
then a representation for ¢. If this representation were
not T-irredundant, then we would have a subset
Uis - * 5 i, Of the indices my, - - -, mg such that r < R
and F,,, - - -, F,, constitute a representation for ¢. But
then (by Lemma 1) o, - * - 6, would be an implicant
of S, in contradiction with the assumption that
Om, """ Omg is a prime implicant of S. The proof of
the theorem is now complete.

The prime implicants of §

Since, in computing S, the terms B, in which A = 1
have the value 1 and can therefore be omitted, S ap-
pears as a product of sums of unbarred o-variables.
By a well-known theorem of Nelson, one finds then
the prime implicants of .S as follows. After the multi-
plication is carried out, one drops every o-product
which is a multiple of some other g-product present;
the surviving o-products are then precisely the prime
implicants of S.
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