Comments on the Presence Function of Gazalé†

This Letter is an extension of the paper published by Gazalé¹ in this Journal in April 1957.

Let ϕ be a (Boolean) function of the (Boolean) variables x_1, \dots, x_n . A finite system F_1, \dots, F_M of functions of the same variables will be termed a representation of ϕ if

$$\phi = F_1 + \dots + F_M \,, \tag{1}$$

identically in the variables x_1, \dots, x_n . A representation (1) will be termed *T-irredundant* (term-wise irredundant) if no proper subsystem of F_1, \dots, F_M is a representation of ϕ . In a variety of important situations, one has an initial representation F_1, \dots, F_M which is *not* known to be T-irredundant; and there arises the problem to find all those subsystems of F_1, \dots, F_M which do constitute T-irredundant representations for ϕ . Gazalé proposed an interesting approach (based on the use of a certain auxiliary function which he called the presence function) for the special case when F_1, \dots, F_M are products of x-literals. Now in some programs (related to the simplification of multiple-output networks) one has to deal with the more general case when F_1, \dots, F_M are not products of literals but quite general functions of x_1, \dots, x_n . Also, for purposes of actual programming it was found necessary to set up an explicit formula for the presence function. The purpose of this note is to present (and to prove) the results obtained by the writer after having studied the significant paper of Gazalé.

Definitions

We assume that an initial representation (see (1)) is given for ϕ . We first introduce an auxiliary Boolean function Δ of the auxiliary Boolean variables v_1, \dots, v_M by the formula

$$\Delta(v_1, \dots, v_M) = \begin{cases} 1 & \text{if } v_1 = \dots = v_M, \\ 0 & \text{otherwise.} \end{cases}$$
 (2)

This function is a generalization of the well-known Kronecker delta. Next, we put $K = 2^n$ (where n is the number of the x-variables), and enumerate (in any desired \bullet manner) the K possible substitutions (of

$$B_k = \Delta[F_1(\xi_k), \cdots, F_M(\xi_k)] + \sum_{m=1}^M F_M(\xi_k)\sigma_m$$
 (3)

$$S(\sigma_1, \cdots, \sigma_M) = \prod_{k=1}^K B_k.$$
 (4)

The theorem to be proved below will show that S corresponds to the presence function of Gazalé, extended to the general case considered here. Let us note that (2), (3), (4) yield an explicit formula for S; actual use (as a subroutine of larger programs) showed that this formula furnishes a fast program, adequate even for computers in the medium speed range.

Lemma 1

Let m_1, \dots, m_R be subscripts such that $1 \le m_1 < \dots < m_R \le M$ and

$$\phi = F_{m_1} + \dots + F_{m_R} \,. \tag{5}$$

Then the product

$$\sigma_{m_1}\cdots\sigma_{m_R}$$
 (6)

is an implicant of $S(\sigma_1, \dots, \sigma_M)$.

Proof

Consider any substitution σ^0 of (binary digits) σ_1^0 , \cdots , σ_M^0 for $\sigma_1, \cdots, \sigma_M$ such that

$$\sigma_{m_1}{}^0 \cdot \cdot \cdot \sigma_{m_R}{}^0 = 1. \tag{7}$$

We have to show that S=1 for this substitution. Consider any one of the expressions B_k (see (3)), and denote by B_k^0 the expression obtained by replacing $\sigma_1, \dots, \sigma_M$ by $\sigma_1^0, \dots, \sigma_M^0$.

• Case 1

 $\Delta[F_1(\xi_k), \dots, F_M(\xi_k)] = 1$. Then clearly $B_k^0 = 1$.

• Case 2

 $\Delta[F_1(\xi_k), \dots, F_M(\xi_k)] = 0$. Then $F_1(\xi_k), \dots, F_M(\xi_k)$ do *not* have the same value (see (2)). Hence there exists a subscript m such that $F_m(\xi_k) = 1$. We have then, by (1), $\phi(\xi_k) = 1$; hence, by (5), we have an r

binary digits) for the variables x_1, \dots, x_n as ξ_1, \dots, ξ_K . If ψ is any (Boolean) function of x_1, \dots, x_n , we shall denote by $\psi(\xi_k)$ the value of ψ for the substitution ξ_k . Next we introduce M auxiliary variables $\sigma_1, \dots, \sigma_M$ and put (for $1 \le k \le K$)

^{*} Department of Mathematics, Kansas State University of Agriculture and Applied Science, Manhattan, Kansas, and Ohio State University, Columbus. † This work was sponsored in part by the U.S. Army Research Office (Durham) under the Grant DA-ARO(D)-31-124-G53 with The Ohio State University Research Foundation.

such that $F_{m_r}(\xi_k) = 1$. But then the summation in (3) contains the term

$$F_{m_r}(\xi_k)\sigma_{m_r}$$
,

which has the value 1 by (7). Thus $B_k^0 = 1$ in Case 2 also.

Thus we see that $B_k^0 = 1$ for $1 \le k \le K$; hence, by (4), S = 1, and the lemma is proved.

Lemma 2

Let m_1, \dots, m_R be subscripts such that $1 \le m_1 < \dots < m_R \le M$, and $\sigma_{m_1}, \dots, \sigma_{m_R}$ is an implicant of S. Then

$$\phi = F_{m_1} + \cdots + F_{m_R}. \tag{8}$$

◆ Proof

Make, for the σ -variables, the substitution

$$\sigma_{m_1}^0 = \dots = \sigma_{m_R}^0 = 1, \ \sigma_m^0 = 0 \text{ for } m \neq m_1, \dots, m_R.$$
(9)

Then $\sigma_{m_1}^0 \cdots \sigma_{m_R}^0 = 1$; since, by assumption, $\sigma_{m_1} \cdots \sigma_{m_R}$ is an implicant of S, it follows that we have now S = 1. Using the notation B_k^0 as in the proof of Lemma 1, we have therefore (see (4))

$$B_{\nu}^{0} = 1 \text{ for } 1 \le k \le K$$
 (10)

Now, in view of (9),

$$B_k^0 = \Delta[F_1(\xi_k), \cdots, F_M(\xi_k)] + \sum_{r=1}^R F_{m_r}(\xi_k).$$
 (11)

Fix now k.

• Case 1

 $\Delta[F_1(\xi_k), \dots, F_M(\xi_k)] = 1$. Then $F_1(\xi_k), \dots, F_M(\xi_k)$ have the *same* value (0 or 1). By (1) we have then $\phi(\xi_k) = d$, and the summation in (11) also has the value d. Hence

$$\phi(\xi_k) = \sum_{r=1}^{R} F_{m_r}(\xi_k) . \tag{12}$$

• Case 2

 $\Delta[F_1(\xi_k), \dots, F_M(\xi_k)] = 0$. Then $F_1(\xi_k), \dots, F_M(\xi_k)$ do not have the same value. Hence there is a subscript m such that $F_m(\xi_k) = 1$. Hence, by (1), we have $\phi(\xi_k) = 1$. But, since $B_k^0 = 1$ by (10) and $\Delta[F_1(\xi_k), \dots, F_M(\xi_k)] = 0$ (by assumption), it follows that the summation in (11) has the value 1 also. Thus (12) holds in Case 2 also.

Now since k was arbitrary, it follows that (12) holds for $1 \le k \le K$; that is, (8) holds for *every* substitution for x_1, \dots, x_n , and Lemma 2 is proved.

Theorem

Let m_1, \dots, m_R be subscripts such that $1 \le m_1 \le \dots < m_R \le M$. Then the functions F_{m_1}, \dots, F_{m_R} yield a T-irredundant representation for ϕ if and only if $\sigma_{m_1} \dots \sigma_{m_R}$ is a prime implicant of S.

• Proof

Assume first that

$$\phi = F_{m_1} + \dots + F_{m_n} \tag{13}$$

is a *T*-irredundant representation for ϕ . By Lemma 1, $\sigma_{m_1}, \dots, \sigma_{m_R}$ is an implicant of *S*. Now, if $\sigma_{m_1} \dots \sigma_{m_R}$ were *not* a prime implicant of *S*, then we would have a subset μ_1, \dots, μ_t of the indices m_1, \dots, m_R such that t < R and $\sigma_{\mu_1} \dots \sigma_{\mu_t}$ is an implicant of *S*. By Lemma 2, we would have then

$$\phi = F_{\mu_1} + \cdots + F_{\mu_t},$$

contradicting the assumption that F_{m_1}, \dots, F_{m_R} constitute a *T*-irredundant representation for ϕ .

Assume next that $\sigma_{m_1}\cdots\sigma_{m_R}$ is a *prime* implicant of S. By Lemma 2, the functions F_{m_1},\cdots,F_{m_R} constitute then a representation for ϕ . If this representation were not T-irredundant, then we would have a subset μ_1,\cdots,μ_t of the indices m_1,\cdots,m_R such that t< R and $F_{\mu_1},\cdots,F_{\mu_t}$ constitute a representation for ϕ . But then (by Lemma 1) $\sigma_{\mu_1}\cdots\sigma_{\mu_t}$ would be an implicant of S, in contradiction with the assumption that $\sigma_{m_1}\cdots\sigma_{m_R}$ is a *prime* implicant of S. The proof of the theorem is now complete.

The prime implicants of S

Since, in computing S, the terms B_k in which $\Delta=1$ have the value 1 and can therefore be omitted, S appears as a product of sums of unbarred σ -variables. By a well-known theorem of Nelson, one finds then the prime implicants of S as follows. After the multiplication is carried out, one drops every σ -product which is a multiple of some other σ -product present; the surviving σ -products are then precisely the prime implicants of S.

Reference

1. M. J. Gazalé, IBM Journal 1, 171 (1957).

Received January 26, 1961