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A Theoretical  Solution for the  Magnetic Field 
in  the  Vicinity of a Recording  Head  Air Gap 

The problem of determining  the characteristics of a 
magnetic field in  the vicinity of a recording head air 
gap  can  be idealized to represent  a  boundary-value 
problem, as shown in  Fig. 1. Here, the pole pieces are 
at potentials + x  and - x ,  respectively. A solution 
already exists for  those cases where 8 = 0 and 8 = 4 2 .  

This  paper will show the development of a  theoreti- 
cal  solution  for the case where 8 equals an arbitrary 
angle, so that  the effect  of the  variation of 8 on  the 
field at normal  recording distance can be calculated. 
The field intensity E at any  point  can  be  shown = 
1/(1 + e'")=, where a = 1 - (O/n). This  contradicts 
Booth's results' which state  that E is monotonic with 
respect to 8. The  numerical values of the field at  this 
distance have been calculated for 8 = 7118~  and 
compared  with  the fields for 8 = 0 and 8 = n/2. It 
seems that a  head  with f3 = 711871 is optimum  for 
field intensity at  the  normal recording  distance. 

Boundary value problem 

The potential field problem, as shown in  Fig. 1, is 
described by the  Laplace  equation 

vu,"24 = = 0 7 (Q = 4 + $) (1) 

where 4 is the  potential  function, $ is the flux function 
and is the  Laplace  operator referring to  the axes 
of u and 2). The permeability p of the magnetic circuit 
is assumed to be infinite compared  with  the permeabi- 
lity of air, which is 1. The  boundary  conditions  are 
defined by having one  pole piece at potential + x  and 
the  other at potential - x .  

Due  to  the symmetry of the  potential field, it is 
only necessary to solve for  the left half of the W plane 
( W  = u + iv) shown in Fig. 1. 

Following a procedure very similar to  that used by 
Booth,'  the region external to  the pole piece (shaded 
area)  and to the left of the zero  potential line is mapped 
on  the upper half of the z plane ( z  = x + iy) as shown 
in  Fig. 2; the points W,, W,, W,, W4 are  mapped into 
thecorrespondingpointsz, = -co,z2 = - 1,z3 = 0, 
z4 = + co, respectively. The mapping  function, ac- 
cording to  the Schwarz-Christoffel transformation, is 

w = A J [(z  + l)"/z]dz + B , (2) 

260 where CI = 1 - (O/n). 
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The  function ( z  + 1)" in Eq. (2) may be replaced by its 
binomial  expansion, valid for lz[ 5 1. From  the result- 
ing  equation  and  the  conditions, 

W = - h ,  when z = -1 

W jumps by h,  when z = 0 ,  

Figure 1 Schematic of left half of the W plane. 
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Figure 2 Upper half of the z plane. 

II L = x +  iy  

Figure 3 Region between the  two boundaries 
q = Oandq = x. 
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the two  constants A and B can be determined to  be 

A = ih /x  

B = - ( i h / x )  C (l/n)(;)(-l>” . 
00 1 (3) 

n= 1 

Hence, 

W = u + iu = ( i h / x )  J [(z  + I)b/z]dz 

- ( i h / x )  2 (Iln)C)(- 1)” . (4) 

The next step  is to  map  the  upper half z-plane into 
the region between the two  boundaries q = 0 and 
and q = x (Fig. 3). It  can  be shown’ that  the mapping 
function is : 

n= 1 

s = A’ f (dz/z)  + B’ . ( 5 )  

With  the conditions x = 0, when z = 1 and x = x i ,  
when  z = - 1 ,  it follows that 

s = & + i l f = l o g z  (6) 

or 

z = x + i y  = e’= ee(cos q + i sin q )  . (7) 

The  solution  for  the  parallel plate potential  problem 
in  the  S-plane is obviously 

Therefore, x and y are related to $ and t+b in the follow- 
ing  manner 

The dependence of u and v on 4 and  can  be ob- 
tained by expanding ( z  + l y ,  for 1/2 c( < 1 ,  in  a 
binomial series for each of the following conditions: 
IzI 1; 121 > 1 with 1x1 > IyI ; IzI > 1 with 1x1 < l y l ;  
and IzI > 1 with 1x1 = IyI, and  substituting this 
series into  Eq. (4). 

The resultant  equations and  that  for a = 1 represent 
a solution which permits  calculation of the field near 
the  gap of a magnetic head with an arbitrary pole 
piece angle 8. These solutions reduce to those of Booth 
for 8 = 0 and 8 = 4 2 .  

Using Eqs. (1 1) through (18), the  equipotential lines 
4 = 0, x/4, n/2, (3/2)7c, 7~ and the flux lines ($ = - 10, 
-9, -8, . 0, 1 ,  2, 3, 4) were calculated for  an angle 
8 = 7/187c, (c( = 11/18), and plotted  as  shown  in  Fig. 4. 

The variation of intensity ( E  = ldQ/dWl) along  the 
axis of symmetry ( v  axis) for  the present head  with 
c( = 11/18 and h = 7c is plotted as shown in Fig. 5 
together  with Booth’s results for  the parallel plate 
case (a = l),  and  the rectangular  gap  case (a = 1/2). 

The 7/18 angle head yields an intensity about 16.4 
per  cent higher than  that  for a  rectangular  gap head 
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Figure 4 Plot  of  equipotential and flux lines for 
an angle 8. 

Figure 5 Plot  of  variation  of  intensity  along  the 
axis of  symmetry  for  the present head, 
together  with Booth’s results for  the 
parallel  plate case and the  rectangular 
gap  case. 
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gap,  and 53.1 per cent higher at a distance of one gap 
width. These two distances are the limits of the  normal 
separation between the recording medium and  the 
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Figure 6 Plot of variation of intensity and $ 
with a. 

recording, the- rectangular head will  yield a higher 
intensity than  that from any head whose angle 8 is 
less than 4 2 .  

The expression for field intensity can be derived from 
Eq. (4), resulting in: 

E = 1/(1 + e@)" . (10) 

When a decreases, the intensity E at a particular point 
tends to increase; however, at  the same point,  the 
value of IC/ increases which tends to offset the increasing 
effect due  to decreasing a. Figure 6 shows the variation 
of the intensity E with a at a  point  on  the v-axis and 
at a distance of one-half the gap width in  front of the 
gap. It clearly shows that when Booth concluded that 
the intensity is monotonic  in a he had only calculated 
the  two cases CI = 1/2 and a = 1 and  that  the values of 
a and IC/ for these two cases  yield almost identical 
values of E. The above relationship is also responsible 
for  the intensity curve, for a = 1/2 drops below that 
for a = 1 in Fig. 5 at large distances in front of the gap. 

Reference 

1. A. D. Booth, Brit. J .  AppZied Physics, 3, 307 (1952). 

Received February 23, 1961 

262 

IBM JOURNAL APRIL 1962 


