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A Theoretical Solution for the Magnetic Field
in the Vicinity of a Recording Head Air Gap

The problem of determining the characteristics of a
magnetic field in the vicinity of a recording head air
gap can be idealized to represent a boundary-value
problem, as shown in Fig. 1. Here, the pole pieces are
at potentials +n and —mn, respectively. A solution
already exists for those cases where § = Oand 6 = =n/2.

This paper will show the development of a theoreti-
cal solution for the case where 6 equals an arbitrary
angle, so that the effect of the variation of 6 on the
field at normal recording distance can be calculated.
The field intensity F at any point can be shown =
1/(1 + %)%, where o = 1 — (0/n). This contradicts
Booth’s results! which state that E is monotonic with
respect to . The numerical values of the field at this
distance have been calculated for 6 = 7/18n and
compared with the fields for § = 0 and 6 = =/2. It
seems that a head with 8 = 7/18x is optimum for
field intensity at the normal recording distance.

Boundary value problem

The potential field problem, as shown in Fig. 1, is
described by the Laplace equation

Vo' =V, Y =0, (Q@=¢+ i) M

where ¢ is the potential function, ¥ is the flux function
and V, 2 is the Laplace operator referring to the axes
of v and v. The permeability 4 of the magnetic circuit
is assumed to be infinite compared with the permeabi-
lity of air, which is 1. The boundary conditions are
defined by having one pole piece at potential +x and
the other at potential —7.

Due to the symmetry of the potential field, it is
only necessary to solve for the left half of the W plane
(W = u + iv) shown in Fig. 1.

Following a procedure very similar to that used by
Booth,! the region external to the pole piece (shaded
area) and to the left of the zero potential line is mapped
on the upper half of the z plane (z = x + iy) as shown
in Fig. 2; the points W,, W,, W,, W, are mapped into
the corresponding pointsz; = —o0,z, = —1,z; = 0,
z, = + 00, respectively. The mapping function, ac-
cording to the Schwarz-Christoffel transformation, is

W=Af[(z+1)z]dz + B, )
where s = 1 — (/7).
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The function (z + 1)* in Eq. (2) may be replaced by its
binomial expansion, valid for |z| < 1. From the result-
ing equation and the conditions,

W= —h,whenz = —1
W jumps by h, whenz =0,

Figure 1 Schematic of left half of the W plane.
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Figure 2 Upper half of the z plane.
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Figure 3 Region between the two boundaries
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the two constants 4 and B can be determined to be

A=ih/n

= ~Ghjm) ¥ AmE1 |- G
Hence,
W = u + iv = (ih/n) | [(z + 1)*/z]dz
- Ghjm) 3 AmGH=17 - @

The next step is to map the upper half z-plane into
the region between the two boundaries n = 0 and
and n = = (Fig. 3). It can be shown' that the mapping
function is:

S=A'[(dz[z)+ B . %)
With the conditions x = 0, when z = 1 and x = 7i,
when z = —1, it follows that

S=¢+in=logz ©)
or

z=x+iy=e" =e'(cosn +isinn). 0

The solution for the parallel plate potential problem
in the S-plane is obviously

¢=n}
=2

Therefore, x and y are related to ¢ and  in the follow-
ing manner

x = e cos d)}

y = ¢e¥sin ¢

®)

©)

The dependence of u and v on ¢ and ¥ can be ob-
tained by expanding (z + 1)%, for /)2 £ a < I, in a
binomial series for each of the following conditions:
|lz| £ 1; |z > 1 with |x| > |¥]; || > 1 with Ix| < [»l;
and |z| > 1 with |x| = [y|, and substituting this
series into Eq. (4).

The resultant equations and that for & = 1 represent
a solution which permits calculation of the field near
the gap of a magnetic head with an arbitrary pole
piece angle 0. These solutions reduce to those of Booth
for 8 = 0 and 6 = n/2.

Using Egs. (11) through (18), the equipotential lines
¢ = 0,7/4,n/2, (3/2)n, = and the flux lines (y = —10,
-9, —8,---0,1,2, 3, 4) were calculated for an angle
6 = 7/18x, (@ = 11/18), and plotted as shown in Fig. 4.

The variation of intensity (E = IdQ/dWI) along the
axis of symmetry (v axis) for the present head with
a = 11/18 and & = = is plotted as shown in Fig. 5
together with Booth’s results for the parallel plate
case (« = 1), and the rectangular gap case (x = 1/2).

The 7/18 angle head yields an intensity about 16.4
per cent higher than that for a rectangular gap head
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Figure 4 Plot of equipotential and flux lines for
an angle 6.

Figure 5 Plot of variation of intensity along the
axis of symmetry for the present head,
together with Booth’s results for the
parallel plate case and the rectangular
gap case.
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(based on the intensity of the rectangular head), at a
distance of one-half of the gap width in front of the
gap, and 53.1 per cent higher at a distance of one gap
width. These two distances are the limits of the normal
separation between the recording medium and the
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Figure 6 Plot of variation of intensity and ¢
with a.
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recording head. It should be noted also that at distances
less than 0.43 gap width, as can be realized in contact
recording, the rectangular head will yield a higher
intensity than that from any head whose angle 8 is
less than /2.

The expression for field intensity can be derived from
Eq. (4), resulting in:

E=1/1+e"". (10)

When « decreases, the intensity E at a particular point
tends to increase; however, at the same point, the
value of i increases which tends to offset the increasing
effect due to decreasing . Figure 6 shows the variation
of the intensity E with « at a point on the v-axis and
at a distance of one-half the gap width in front of the
gap. It clearly shows that when Booth concluded that
the intensity is monotonic in « he had only calculated
the two cases @ = 1/2 and o« = 1 and that the values of
o and Y for these two cases yield almost identical
values of E. The above relationship is also responsible
for the intensity curve, for o = 1/2 drops below that
for« = 1in Fig. 5 at large distances in front of the gap.
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