D. C. Mattis

On the Influence of Free Path on the Meissner Effect

In an article bearing the same title which appeared in the previous issue of this Journal, von Hagenow and Koppe¹ published a calculation which was intended to prove that the electron mean free path has no influence on the free energy or the Meissner effect. However, besides being in contradiction with a consensus of theoretical and experimental evidence,^{2,3} their calculation contains errors which we shall discuss below.

We start with their Eq. (6), which gives the secondorder effect of the scattering centers on the free energy:

$$u^{(2)} = \frac{1}{2\Omega^2} \sum_{\substack{\mathbf{k}, \mathbf{k}' \\ j, j'}} |v(\mathbf{k} - \mathbf{k}')|^2 \times \exp[i(\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_j - \mathbf{r}_{j'})] L(\varepsilon, \varepsilon').$$
 (1)

Because \mathbf{r}_j is a stochastic variable, nonvanishing contributions arise only from terms with j=j'. The sums over \mathbf{k} and \mathbf{k}' contribute a factor Ω^2 , and therefore $u^{(2)}$ is correctly proportional to n_I (the number of impurity or scattering centers) and to a volume-independent energy. Next, we perform the following steps:

(a) Integrate over the angles of k and k'.

(b) Use the formula of Ref. 1 for $L(\varepsilon, \varepsilon')$, simplify by using the symmetry of the summand under interchange of k and k', so that

$$L(\varepsilon, \varepsilon') = \frac{-2}{\varepsilon' - \varepsilon} \frac{\varepsilon}{E} \tanh \frac{E}{2kT}.$$
 (2)

(c) Obviously, only the difference between normal and superconducting free energies is of interest. Denoting this by $\Delta u^{(2)}$, it is readily found to be

$$\Delta u^{(2)} \sim \frac{n_I}{\varepsilon_F^2} \int_{-\hbar\omega}^{+\hbar\omega} d\varepsilon \int_{-\hbar\omega}^{+\hbar\omega} d\varepsilon' \langle |v|^2 \rangle_{\theta,\theta'} \times \frac{1}{\varepsilon' - \varepsilon} \left[\tanh \frac{\varepsilon}{2kT} - \frac{\varepsilon}{E} \tanh \frac{E}{2kT} \right]. \tag{3}$$

This integral can be evaluated if $\langle v^2 \rangle = \text{constant}$, and it follows that although $\Delta u^{(2)}(T_c) = 0$, that $\Delta u^{(2)}(T) \neq 0$ for $T < T_c$ in contradiction with the remark in Ref. 1.

Thus, the free path *does* influence thermodynamic properties of a superconductor. Another criticism of the method of calculation¹ is that the particular truncation of \mathcal{H} which results in the BCS "reduced" Hamiltonian had not been intended to be valid in the presence of scattering,^{2,3} and was not valid in the *approach* in Ref. 1 to the problems of dirty superconductors.

References

- 1. K. U. von Hagenow and H. Koppe, IBM Journal 6, 12 (1962.)
- J. Bardeen and J. R. Schrieffer, Chapter VI, Vol. III of Progress in Low Temperature Physics, C. J. Gorter, Editor, North-Holland Publishing Co., Amsterdam, 1961.
- 3. D. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).

Received February 23, 1962