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Approximate Methods for a M ultiqueueing  Problem 

Abstract: Two approximate methods are described  and used to obtain the stationary distribution of 
the length of a queue  which i s  a small part of a system of many queues. The methods are based on  an 
analogy to statistical mechanics,  and  give simple approximate solutions of a problem whose exact 
handling would be extremely complex and would require much more information than is  available. 

Introduction 

In this  paper we discuss the following queueing problem: 
M queues are served by a single server. The  number of 
items in each queue is unlimited, losses are  not allowed. 
The server moves around  from  queue i to queue i + 1 
mod M at a  constant speed, regardless of whether it 
serves a  queue or  not. If the server is free when it arrives 
at a  queue,  and if that queue is not empty, then  its first 
item will be picked up by the server, which holds it  for 
some time, while moving along  unhindered  from  queue 
to queue. When the service of an item terminates, the 
server takes its next item from  the next non-empty 
queue it encounters. On each pass of the server, at most 
one  item is taken  from each queue. 

The concrete setup in which this  situation  arose was 
part of a  proposed TELE-PROCESSING* system’ and only 
very little information was available about  the input 
and  output processes. We had to find approximations 
for  the equilibrium distribution of any of the individual 
queues’ length, with only minimal hypotheses about 
these processes. 

Approximate  techniques were, however, necessary 
not merely for  this reason alone. Even in the simplest 
cases of well-specified input  and  output distribution, 
the exact calculations would require the  determination 
of the joint distribution of the lengths of all queues, 
although  one is usually (as in our case) interested only 
in  the  distributions describing any single queue. Since 
the  number  of  parameters in the  joint  distribution is 
very large, it is practically impossible to find the exact 
solution. We shall fix our  attention  at a given queue 
and  assume that  the average arrival  rate at  this  one 
is much less than  that at  all  the M queues taken  to- 
gether. This  assumption permits us to use approximate 
methods which are  motivated by an analogy to Gibbs’ 
method  in  statistical mechanics. In  that theory  a small 
system is considered as being in weak interaction with 
a  large  one, in such  a way that  the interaction is con- 

246 sidered on  the one  hand  strong  enough to equalize the 

temperature,  but  on  the  other  hand so weak as  to 
permit consideration of the  two systems as being 
mechanically independent in equilibrium. 

Thus,  the  above  assumption on  the arrival  rates will 
be replaced by certain independence assumptions. 
These make  the  mathematical problem fully deter- 
mined and serve as approximations to the physical 
situation. Two different approximate  methods will be 
described and used to treat  the  problem. In  both of 
them  a discrete time scale is used, the time between two 
successive arrivals of the server at a given queue being 
the  unit of time. I t  is also assumed that either  none or 
only one  item  can  arrive at each queue  in  unit time. 
The existence of a  stationary  state of the whole system 
is also  taken  for  granted with both methods. About  the 
service times we assume only that each one  has  the 
same expected value. 

In  the case of the first method,  the following further 
assumptions  are  made:  First,  the  probability of a  unit 
arriving at any of the queues at any  time does not 
depend on  that time. Second, the  three  random 
variables describing (a) whether at any time i a  unit 
arrives at the given queue, (b) the  number of items in 
the same queue at time i - 1, and (c) the  state of the 
server (busy or not) at time i, are  independent of each 
other. 

It is important to point out  that we do not  require 
the independence of the  inter-arrival times and of the 
service times. In this  application  the  arrivals were 
certainly not  independent. 

In  our second method  the following hypotheses differ 
from  those of the first method.  First we take  the arrival 
distribution at  each  queue as given  by the probability 
f ( i )  of having a time interval i between the  arrival of 
any  two consecutive units.  This implies the assumption 
made in the first method, that  the probability of a 
unit’s arrival at any time does not depend on  that time, 
but in addition to  that,  it requires somewhat more. 
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The  inter-arrival times, although identically distri- 
buted,  are still not required to be independent.  The 
second assumption, differing from  the  corresponding 
one in the first method is that (a)  any given inter- 
arrival time (b) the  number of items in the selected 
queue at the beginning of that time, and (c) the  state of 
the server at every later time are independent of each 
other. In the first method we compute  the  stationary 
distribution of the selected queue’s length at any 
time, and in the second method, at the time of 
arrivals at  that queue. Both these methods lead to 
equations that  are  standard in the  theory of queues. 
The  above  conditions, however, are entirely different 
from  those  under which they have been deduced in 
the literature,’ and give the  solution of different 
problems. 

A concrete  model 

The abstract queueing problem described in  the 
Introduction  can be illustrated by the following 
concrete example. 

Let us say a  shop  manufactures M different 
products;  for instance, screws of different sizes. They 
wish to pack them in boxes with L screws of the same 
size in each box. They have a revolving circular con- 
veyor partitioned  into M sections s,, j = 1, * - - , M .  
M is assumed to be a  number of the order of 10 
or 100. Each Si contains boxes labelled j .  There  are 
M + 1 workers  around  the conveyor with M of them 
making screws. The j t h  worker makes the jth kind of 
screw, and  puts each screw into a box labelled j ,  when 
Si is next to him. He  starts  a new box when, and only 
when, one gets filled. (In  the following we shall often 
use the  term  “units” to refer to the full boxes in the 
queue.) The ( M  + ])Ih worker  puts  the full boxes into 
a machine A whenever a full box passes by him if 
machine A is not still occupied by a previous unit. 
If machine A is occupied, he does nothing. 

The problem is to determine  the  probability  distribu- 
tion of the  number of units in Si as a  function of 
some  parameters describing the  distribution  of  the 
arrival  rates of the screws to each S, and  the speed of 
the machine A which handles  the full boxes. 

Method 1 

In all that follows, we consider only one  arbitrarily 
chosen section S,, which we.call simply S.  

We also use the following notations: 
i denotes  the measure of time in units of revolutions 

of  the conveyor, with increments occurring when 
section S leaves output A .  i = 0, 1,2, * - 

n(i) represents the  number of full boxes in S at time 
i ,  or more precisely, the  number immediately after  the 
instant when S has left the  output A for  the ith time. 
n(i) is a  random variable which may take the values 
0, 1, 2, * - * 

N(i) is a  random variable which is 0 if no unit 
arrives at  S during  the cycle  which ends when S leaves 
A for  the ith time, and which  is 1 if a  unit does arrive 

in  this cycle.  (We assume that only one screw can  enter 
S in a cycle, so no  more  than  a single unit can arrive 
at a time.) 

We consider finally a  random variable [(i) which  is 
0 if A is busy and  1 if A is free when S arrives at A 
for  the ith time. 

We assume a  stationary  distribution  for N(i),  i.e., 
one  independent of time, and use the following 
notation  for  the probabilities of the states of N(i): 
P [N( i )  = 13 = pN andP[N(i) = 01 = 1 - pN = qN. We 
assume that if a sufficient time has elapsed after  the 
start of the  operation,  the process C(i) also becomes 
stationary,  and  its  distribution may be given as 
P[[( i )  = 11 = pr  and P[C(i) = 01 = 1 - p s  = qs. 

Finally, we assume that  on  the average, at least MpN 
units would arrive on  the whole conveyor during  a 
cycle, that is, the chosen S carries on  the average at 
most 1/M of the total traffic. This, however, does not 
imply that all S i s  are  equivalent; we only want to 
insure that S is a small part of the system. 

Consider now the question how can n(i + 1) = 
m 2 1 be realized from different states at time i. This 
can  happen in four mutually exclusive ways: 
1. n(i) = m - 1, and  at time i + 1 one box gets filled 

2.  n(i) = m, and  at i + 1 nothing  happens. 
3. n(i) = m, and at i + 1 one box gets filled and 

4. n(i)  = m + 1, and at i + 1  nothing comes in, and 

This gives us the following relation: 

and  none leaves S. 

immediately departs. 

one box departs. 

P[n(i + 1) = m] = P[n(i) = m - 1, N(i + 1) 

+ P[n(i) = m, N(i + 1) = 0, C(i + 1) = 01 
+ P[n(i) = m, N(i + 1) = 1, C(i + 1) = 11 
+ P[n(i) = m + 1, N(i + 1) = 0, [(i + 1) = 1 1  

= 1, C(i + 1) = 01 

for m 2 1 . ( 1 )  

We now make  the  approximation that the variables 
n(i), N(i + 1) and [(i + 1) are independent.  This may 
be justified by the following argument: 

First, we have assumed that S carries, on  the average, 
at  most  one MIh of the  total traffic. Thus, if M is a 
large  number,  then [(i + 1) can  depend only very 
weakly on  the  state of S, that is on n(i) and N(i + 1) 
since many of the Si will  be competing  for  the use of A .  

Second, the  fact whether something arrives at time 
i + 1 at S, that is, the value of N(i + I), is determined 
by causes external to the system. It can, however, 
depend on  the time of the previous arrivals at S. These, 
on  the  other  hand, partially determine n(i). Thus, 
N(i + 1) is related to n(i) through  the latter’s depend- 
ence on  the  arrivals at S prior to i + 1. If N(i + 1) is 
independent of the earlier arrivals,  then it is also 
independent of n(i). But even  if N(i + 1) does depend 
on  the earlier arrivals,  its dependence on n(i) must be 
considerably weaker than  that.  This is so, because the 
previous arrivals do  not determine n(i) completely, as 247 
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n(i) depends strongly on the previous values of (this, 
of course, does not contradict the weak dependence 
of n(i) on [(i + l), postulated earlier) determined 
primarily by the other queues of the system. If the 
mutual dependence of the arrivals is such that  an 
arrival at time i makes other arrivals close to  that time 
unlikely (as in  the case of our model), then  the 
assumption of independence attributes greater prob- 
abilities than  the  actual ones to the  arrival  of  a  unit 
if the queue in S is long. The reason for this is the 
following. In  the case of such dependence, the con- 
ditional probability P[N(i + 1) = lln(i) = m], of a 
unit arriving at S if there are m units there, has to 
decrease monotonically with increasing m, since the 
more units there are  in S, the  more likely it is that  the 
last  one  has  just arrived, and then  for  a considerable 
time no new unit will arrive. Now the assumption of 
the independence of N(i + 1) and n(i) means that we 
replace each P[N(i  + 1) = lln(i) = m] for every m 
by their mean value 

P [ N ( ~  + 1) = 11 = P [ N ( I  + 1) = Iln(i) = m] 
m 

m = O  

x P[n(i)  = m] . 
Thus, by making this assumption we increase the 
probabilities of long queues, and this makes the design 
more conservative, that is, the  error  introduced by the 
approximation is in the admissible direction. 

The  joint probabilities in Eq. (1) may now be written 
as  products of the individual probabilities. Moreover, 
in  the  stationary limit these probabilities do not depend 
on i. Thus, writing P[n(i) = k] = P k ,  Eq. (1) becomes 

p~ PNqcPm- 1 + (qNq< + P N P < ) p m  

+ qNp$m+ for m 2 1 . (2) 

Similarly for m = 0, 

= (qN + P N P ( ) p O  f qNPSpl - (3) 
We also have the condition 

m 

The solution of the infinite system (2), (3), and (4) is 

Pm = (1 - X)Xm, ( 5 )  

where 

Let us see now what conclusions we can draw for 
the design  of the system. First of all, in view of (5 ) ,  
the series in (4) converges only if x < 1. With (6) this 
gives 

This is, of course, intuitively rather  obvious:  The 
248 probability of finding the  output A empty when S 
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arrives there in any cycle has to be greater than  the 
probability of the arrival of a unit  at S during  a cycle, 
if the queue is not  to grow without limit. The  in- 
equality (7) does not tell, however, how long  the 
queues will grow. Evidently, the nearer p s  is to p N ,  
the  more  probable long queues will become. 

From ( 5 )  it follows that 
m 

P[n(i) 2 k] = Pm = 2 .  
m = k  

That is, the probability of obtaining queues longer than 
or  equal  to k units is the kth power of the  parameter x, 
which is  given by Eq. (6). 

The probability qS of A being  busy can be ex- 
pressed in terms of the average number N of units 
arriving per cycle at each of the M sections of the 
conveyor (N is  now taken equal for every section), and 
the average time T(in  units of number of  cycles) spent 
by each box in A ,  as 

On  the other  hand, 

N = l p N + O q N = p , .  ( 10) 

Therefore, x can also be  expressed for MNT 5 1 as 

Substituting this back into Eq. (8), we can see how 
extremely  sensitive that probability is to changes in 
p N .  For example, p N  need be only very  slightly under 
the blowup value of l/MT to make  long queues 
almost impossible. 

Method 2 

We now turn  to another method of solving the same 
problem. It is applicable only to those cases in which 
the  input process is such that  the probability of having 
a time interval i between the  arrival of any two 
consecutive units  at S is known and is the same. We 
denote it by f(i). However, the independence of these 
time intervals is not required. 

Stationary  operation of the system is assumed again. 
Furthermore, we make the following independence 
assumptions. If a  unit arrives at S at time io, then the 
variables [(i) for all i 2 io, n(io), and  the  arrival time 
of the next unit  at S are independent of each other. 
This assumption is reasonable either if, due  to the  total 
traffic from the M sections, the probability p c  that A is 
empty is  very small, or if Tis much less than  a cycle time. 
For  in the first case regardless whether at a time i A is 
free or busy, there is a  good chance that, if it gets 
empty, it will pick up a new item from  one of the 
queues before the time i + 1 , since these queues will 
be very  likely non-empty, because ofthe high probability 
that A was busy at  the time of its previous arrivals 



at these queues. In  the second case T 4 1 means 
that regardless whether A is free or busy at time t, 
it will be free very soon  after i. Then  the  states of 
the queues encountered between that time and i + 1 
will determine c(i + 1). These arguments justify the 
independence assumption  for  the [(i)'s. Their in- 
dependence for i > io of n(io) and  the next arrival at S 
is based again on the admissible neglect of the influence 
of S on A ,  as compared to  that of the  other queues. 
The  argument  for  the independence of n(io) of the 
next arrival's time is exactly the same as the corres- 
ponding  argument in the first method. 

The stationary  distribution of the  queue lengths in S 
at the times of arrivals can be computed on the basis of 
these assumptions  as follows : 

Let R,, denote  the  conditional  probability of having 
n units in S when one arrives, if there were m there at 
the  arrival of the previous unit.  Let k = m - n + 1 .  
It is  easy to see that if n > 0, R,, depends on m - n 
only. Thus, writing R,, = Rk-  we get for n > 0 

Rk.-l = 2 ( h ) p t q t - Y ( i )  for k = 0, 1,2, - . 
i = k  

(12) 

This is so because the general term in the  sum is 
the  probability of A being empty at exactly k occasions 
out of i independent  trials, multiplied by the  prob- 
ability of having i trials. Since at each  trial only one 
unit may be removed from S, the  probability of re- 
moving k units is  given  by the sum of these terms with 
i running  from k to infinity. 

Let P,  denote  the  stationary  probability of having 
n units in S when a new one arrives. This  situation 
can arise from  and only from  the  states of S with 
n + k - 1  units at the time of the previous arrival, 
with k = 0, 1, . . With  the  transition probabilities 
computed  above, we have thus 

m 

k = O  

Substituting  from (12) into (13) we obtain 

We may seek the  solution of Eq. (14) in  the  form 
Pk = cxk. Substituting  this  into (14), and interchanging 
the  order of the  summations we get 

Summing over k, we have 
m 

x = C (qr + P r M 9  
i = O  

If there exists a positive solution of this  equation 
which is  less than 1, then that x generates the Pk's. It 

is not difficult to see that such a  solution exists when- 
ever ps i f  (i) > 1 .  From  the  normalization  con- 
dition,  it follows that c = 1 - x. Thus 

Pk = (1 - X ) X k  9 (17) 

but x is now given  by  (16) instead of (6). 

bution 
As an example, consider the  particular  input distri- 

where p = 1 - q is the  probability of a unit's arrival at 
S if the previous one has arrived at  leastj cycles earlier. 
Then (16) becomes 

In  order  to compare  the  two  methods, we observe 
that  the probability p N ,  for  the  distribution (18) of the 
arrival of a  unit  during  a cycle,  is  given  by 

We give now a numerical example to illustrate  the 
relation of the two methods  and  the  remark about the 
sensitivity of the  solution to changes in p N ,  which 
also holds in the case of the second method. 

Let M = 32, T = 3.125. Then if p N  = 0.01,  we get 
from (9) and (10) that qr = 1, and  according to 
Eqs. (6)  and (8), the  queue blows up. Taking 
p N  = 0.0097, we get from (9) and (10) (which are valid 
for both methods), that qr = 0.97. Then  the first 
method gives from  Eq. (6) x = 0.31. The second 
method,  for  the  distribution (18) with j = 65 and p 
expressed from (20), gives x = 0.1 as the  solution of 
(19). Then,  for example, the  probability of finding 
queues longer than five units  in S is from  Method 1 
by Eq. (8) equal to 8.8 x and is equal to 
from  Method 2. 
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