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Approximate Methods for a Multiqueueing Problem

Abstract: Two approximate methods are described and used to obtain the stationary distribution of
the length of a queue which is a small part of a system of many queues. The methods are based on an
analogy to statistical mechanics, and give simple approximate solutions of a problem whose exact
handling would be extremely complex and would require much more information than is available.

Introduction

In this paper we discuss the following queueing problem:
M queues are served by a single server. The number of
items in each queue is unlimited, losses are not allowed.
The server moves around from queue i to queue i + 1
mod M at a constant speed, regardless of whether it
serves a queue or not. If the server is free whenitarrives
at a queue, and if that queue is not empty, then its first
item will be picked up by the server, which holds it for
some time, while moving along unhindered from queue
to queue. When the service of an item terminates, the
server takes its next item from the next non-empty
queue it encounters. On each pass of the server, at most
one item is taken from each queue.

The concrete setup in which this situation arose was
part of a proposed TELE-PROCESSING® system* and only
very little information was available about the input
and output processes. We had to find approximations
for the equilibrium distribution of any of the individual
queues’ length, with only minimal hypotheses about
these processes.

Approximate techniques were, however, necessary
not merely for this reason alone. Even in the simplest
cases of well-specified input and output distribution,
the exact calculations would require the determination
of the joint distribution of the lengths of all queues,
although one is usually (as in our case) interested only
in the distributions describing any single queue. Since
the number of parameters in the joint distribution is
very large, it is practically impossible to find the exact
solution. We shall fix our attention at a given queue
and assume that the average arrival rate at this one
is much less than that at all the M queues taken to-
gether. This assumption permits us to use approximate
methods which are motivated by an analogy to Gibbs’
method in statistical mechanics. In that theory a small
system is considered as being in weak interaction with
a large one, in such a way that the interaction is con-
sidered on the one hand strong enough to equalize the
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temperature, but on the other hand so weak as to
permit consideration of the two systems as being
mechanically independent in equilibrium.

Thus, the above assumption on the arrival rates will
be replaced by certain independence assumptions.
These make the mathematical problem fully deter-
mined and serve as approximations to the physical
situation. Two different approximate methods will be
described and used to treat the problem. In both of
them a discrete time scale is used, the time between two
successive arrivals of the server at a given queue being
the unit of time. It is also assumed that either none or
only one item can arrive at each queue in unit time.
The existence of a stationary state of the whole system
is also taken for granted with both methods. About the
service times we assume only that each one has the
same expected value.

In the case of the first method, the following further
assumptions are made: First, the probability of a unit
arriving at any of the queues at any time does not
depend on that time. Second, the three random
variables describing (a) whether at any time i a unit
arrives at the given queue, (b) the number of items in
the same queue at time i — 1, and (c) the state of the
server (busy or not) at time i, are independent of each
other.

It is important to point out that we do not require
the independence of the inter-arrival times and of the
service times. In this application the arrivals were
certainly not independent.

In our second method the following hypotheses differ
from those of the first method. First we take the arrival
distribution at each queue as given by the probability
(i) of having a time interval i between the arrival of
any two consecutive units. This implies the assumption
made in the first method, that the probability of a
unit’s arrival at any time does not depend on that time,
but in addition to that, it requires somewhat more.




The inter-arrival times, although identically distri-
buted, are still not required to be independent. The
second assumption, differing from the corresponding
one in the first method is that (a) any given inter-
arrival time (b) the number of items in the selected
queue at the beginning of that time, and (c) the state of
the server at every later time are independent of each
other. In the first method we compute the stationary
distribution of the selected queue’s length at any
time, and in the second method, at the time of
arrivals at that queue. Both these methods lead to
equations that are standard in the theory of queues.
The above conditions, however, are entirely different
from those under which they have been deduced in
the literature,”? and give the solution of different
problems.

A concrete model

The abstract queueing problem described in the
Introduction can be illustrated by the following
concrete example.

Let us say a shop manufactures M different
products; for instance, screws of different sizes. They
wish to pack them in boxes with L screws of the same
size in each box. They have a revolving circular con-
veyor partitioned into M sections S;, j=1,--+, M.
M is assumed to be a number of the order of 10
or 100. Each S; contains boxes labelled j. There are
M + 1 workers around the conveyor with M of them
making screws. The /™ worker makes the j™ kind of
screw, and puts each screw into a box labelled j, when
S; is next to him. He starts a new box when, and only
when, one gets filled. (In the following we shall often
use the term ‘“‘units™ to refer to the full boxes in the
queue.) The (M + 1)** worker puts the full boxes into
a machine 4 whenever a full box passes by him if
machine A4 is not still occupied by a previous unit.
If machine 4 is occupied, he does nothing.

The problem is to determine the probability distribu-
tion of the number of units in S; as a function of
some parameters describing the distribution of the
arrival rates of the screws to each S; and the speed of
the machine 4 which handles the full boxes.

Method 1

In all that follows, we consider only one arbitrarily
chosen section S;, which we-call simply S.

We also use the following notations:

i denotes the measure of time in units of revolutions
of the conveyor, with increments occurring when
section S leaves output 4.i =0,1,2,---

n(i) represents the number of full boxes in S at time
i, or more precisely, the number immediately after the
instant when S has left the output 4 for the i™ time.
n(i) is a random variable which may take the values
0,1,2,---

N() is a random variable which is 0 if no unit
arrives at S during the cycle which ends when S leaves
A for the i time, and which is 1 if a unit does arrive

in this cycle. (We assume that only one screw can enter
S in a cycle, so.no more than a single unit can arrive
at a time.)

We consider finally a random variable {(i) which is
0 if 4 is busy and 1 if A4 is free when § arrives at 4
for the i'® time.

We assume a stationary distribution for N(i), i.e.,
one independent of time, and use the following
notation for the probabilities of the states of N(i):
P[N(j) = 1] = pyand P[N(i) = 0] = 1 — py = qy. We
assume that if a sufficient time has elapsed after the
start of the operation, the process {(i) also becomes
stationary, and its distribution may be given as
P[{(i) = 1] = p; and P[(i) = 0] = 1 — p; = ¢;.

Finally, we assume that on the average, at least Mpy
units would arrive on the whole conveyor during a
cycle, that is, the chosen § carries on the average at
most 1/M of the total traffic. This, however, does not
imply that all S;’s are equivalent; we only want to
insure that .S is a small part of the system.

Consider now the question how can n(i + 1) =
m = 1 be realized from different states at time i. This
can happen in four mutually exclusive ways:

1. n(i)= m — 1, and at time { + 1 one box gets filled

and none leaves S.

2. n(i) = m, and at i + 1 nothing happens.

3. n(i) =m, and at i + 1 one box gets filled and
immediately departs.

4. n(}) = m + 1, and at i + | nothing comes in, and
one box departs.

This gives us the following relation:

Pn(+1)=ml=Pni)=m—- 1, Ni+1)
=1.{i+1)=0]
+ P[n(i) = m, NG + 1) = 0, {(i + 1) = 0]
+Pu()=m NG+ 1) =1L{i+1=1]
+ Py =m+ 1L,NG+ 1) =0, +1)=1]
form=>1. 0

We now make the approximation that the variables
n{i), N(i + 1) and {(i + 1) are independent. This may
be justified by the following argument:

First, we have assumed that S carries, on the average,
at most one M'™® of the total traffic. Thus, if M is a
large number, then {(i + 1) can depend only very
weakly on the state of S, that is on n({) and N + 1)
since many of the S; will be competing for the use of 4.

Second, the fact whether something arrives at time
i + 1 at S, that is, the value of N(i + 1), is determined
by causes external to the system. It can, however,
depend on the time of the previous arrivals at S. These,
on the other hand, partially determine n(i). Thus,
N( + 1) is related to n(i) through the latter’s depend-
ence on the arrivals at S priortoi + 1. If NG + 1) is
independent of the earlier arrivals, then it is also
independent of n(i). But even if N(i + 1) does depend
on the earlier arrivals, its dependence on s(i) must be
considerably weaker than that. This is so, because the
previous arrivals do not determine n(i) completely, as
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n(i) depends strongly on the previous values of { (this,
of course, does not contradict the weak dependence
of n(i) on {(i + 1), postulated earlier) determined
primarily by the other queues of the system. If the
mutual dependence of the arrivals is such that an
arrival at time i makes other arrivals close to that time
unlikely (as in the case of our model), then the
assumption of independence attributes greater prob-
abilities than the actual ones to the arrival of a unit
if the queue in S is long. The reason for this is the
following. In the case of such dependence, the con-
ditional probability P[N(i + 1) = 1|n(i) = m], of a
unit arriving at S if there are m units there, has to
decrease monotonically with increasing m, since the
more units there are in S, the more likely it is that the
last one has just arrived, and then for a considerable
time no new unit will arrive. Now the assumption of
the independence of N(i + 1) and »(i) means that we
replace each P[N(i + 1) = 1|n(i) = m] for every m
by their mean value

PING+1)=1]= 3 P[NG + 1) = 1]n(i) = m]
m=0
x P[n(i)=m].

Thus, by making this assumption we increase the
probabilities of long queues, and this makes the design
more conservative, that is, the error introduced by the
approximation is in the admissible direction.

The joint probabilities in Eq. (1) may now be written
as products of the individual probabilities. Moreover,
in the stationary limit these probabilities do not depend
on i. Thus, writing P[n(i) = k] = P, Eq. (1) becomes

Pm = quCPm—l + (qNQ§ + pr;)Pm

+ GnpPm+ 1 for m=>=1. 2)

Similarly for m = 0,
Py =(qy + pxp)Po + qnpP: . 3)
We also have the condition
Y P.=1. @
k=0
The solution of the infinite system (2), (3), and (4) is
P,=(1—-x)x", %
where

Pnd;
X ===, ©6)

anD;

Let us see now what conclusions we can draw for
the design of the system. First of all, in view of (5),
the series in (4) converges only if x < 1. With (6) this
gives

P> DPn- @)

This is, of course, intuitively rather obvious: The
probability of finding the output A empty when S
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arrives there in any cycle has to be greater than the
probability of the arrival of a unit at S during a cycle,
if the queue is not to grow without limit. The in-
equality (7) does not tell, however, how long the
queues will grow. Evidently, the nearer p, is to py,
the more probable long queues will become.

From (5) it follows that

x*. (8)

Pln() = K]= 3. P,

That is, the probability of obtaining queues longer than
or equal to & units is the k' power of the parameter x,
which is given by Eq. (6).

The probability g, of A being busy can be ex-
pressed in terms of the average number N of units
arriving per cycle at each of the M sections of the
conveyor (N is now taken equal for every section), and
the average time T (in units of number of cycles) spent
by each box in A4, as

1 if
MNT if MNT <
On the other hand,

1
&= 1. ®

N =1py +0qy = py. (10)
Therefore, x can also be expressed for MNT < 1 as
Mp*T

X = — 11

(1 — py)(1 — MpyT)* an
Substituting this back into Eq. (8), we can see how
extremely sensitive that probability is to changes in
py. For example, py need be only very slightly under
the blowup value of 1/MT to make long queues
almost impossible.

Method 2

We now turn to another method of solving the same
problem. It is applicable only to those cases in which
the input process is such that the probability of having
a time interval i between the arrival of any two
consecutive units at .S is known and is the same. We
denote it by f(i). However, the independence of these
time intervals is not required.

Stationary operation of the system is assumed again.
Furthermore, we make the following independence
assumptions. If a unit arrives at S at time iy, then the
variables ((i) for all i = i, n(iy), and the arrival time
of the next unit at S are independent of each other.
This assumption is reasonable either if, due to the total
traffic from the M sections, the probability p, that 4 is
empty is very small, or if Tis much less than a cycle time.
For in the first case regardless whether at a time i 4 is
free or busy, there is a good chance that, if it gets
empty, it will pick up a new item from one of the
queues before the time 7 + 1, since these queues will
be very likely non-empty, because of the high probability
that 4 was busy at the time of its previous arrivals




at these queues, In the second case T < | means
that regardless whether 4 is free or busy at time i,
it will be free very soon after i. Then the states of
the queues encountered between that time and i + 1
will determine {(i + 1). These arguments justify the
independence assumption for the {(i)’s. Their in-
dependence for i > i, of n(i,) and the next arrival at S
is based again on the admissible neglect of the influence
of S on A, as compared to that of the other queues.
The argument for the independence of n(i,) of the
next arrival’s time is exactly the same as the corres-
ponding argument in the first method.

The stationary distribution of the queue lengths in S
at the times of arrivals can be computed on the basis of
these assumptions as follows:

Let R,,, denote the conditional probability of having
# units in S when one arrives, if there were m there at
the arrival of the previous unit. Let k = m — n + 1.
It is easy to see that if n > 0, R, depends on m — n
only. Thus, writing R, = R;_,, we get forn > 0

Ry = Zk (,i)ngCI;i_kf(i) for k=0,1,2,---.
(12)

This is so because the general term in the sum is
the probability of 4 being empty at exactly k occasions
out of 7/ independent trials, multiplied by the prob-
ability of having i trials. Since at each trial only one
unit may be removed from S, the probability of re-
moving £ units is given by the sum of these terms with
i running from k to infinity.

Let P, denote the stationary probability of having
n units in S when a new one arrives. This situation
can arise from and only from the states of S with
n 4+ k — 1 units at the time of the previous arrival,
with k = 0, 1, - - - . With the transition probabilities
computed above, we have thus

P"= Rk—IPk+n-—1 n=1,2,"'. (13)

=
gk

Substituting from (12) into (13) we obtain

Fo= kZO izk (;C)p{chi—ly(i)P"“‘l : (14

We may seek the solution of Eq. (14) in the form
P, = cx*. Substituting this into (14), and interchanging
the order of the summations we get

x=3 3 (1)piai 0. 15)

=0

Summing over k, we have

x= 3 (a+ PG, (16)

If there exists a positive solution of this equation
which is less than [, then that x generates the P,’s. It

is not difficult to see that such a solution exists when-
EVer p; Y26 if (i) > 1. From the normalization con-
dition, it follows that ¢ = 1 — x. Thus

P, = (1 —x)x*, an

but x is now given by (16) instead of (6).

As an example, consider the particular input distri-
bution

, 0 if  i<j
fo=" J (18)
pg“™? i izj,

where p = 1 ~ g is the probability of a unit’s arrival at
S'if the previous one has arrived at least j cycles earlier.
Then (16) becomes

i
_ p(g; + prx) ) (19)
1 —(q;+ px)q
In order to compare the two methods, we observe

that the probability p,, for the distribution (18) of the
arrival of a unit during a cycle, is given by

1

= ) 20
j+alp (20)

Py

We give now a numerical example to illustrate the
relation of the two methods and the remark about the
sensitivity of the solution to changes in py, which
also holds in the case of the second method.

Let M = 32, T = 3.125. Then if py = 0.01, we get
from (9) and (10) that ¢, = 1, and according to
Egs. (6) and (8), the queue blows up. Taking
pn = 0.0097, we get from (9) and (10) (which are valid
for both methods), that g, = 0.97. Then the first
method gives from Eq. (6) x = 0.31. The second
method, for the distribution (18) with j = 65 and p
expressed from (20), gives x = 0.1 as the solution of
(19). Then, for example, the probability of finding
queues longer than five units in S is from Method 1
by Eq. (8) equal to 8.8 x 10™%, and is equal to 10~
from Method 2.
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