W. S. Dorn

Generalizations of Horner's Rule
for Polynomial Evaluation®

Abstract: Polynomials are generally evaluated by use of Horner’s rule, sometimes referred to as the

nesting rule. This rule is sequential and affords no opportunity for parallel computation, i.e., completion

of several of the arithmetic operations simultaneously. Two generalizations of Horner’s rule which allow

for parallel computation are presented here.

Schedules and, in some cases, machine codes for evaluating a polynomial on a computer with several

parallel arithmetic units are developed. Some advantages of the generalized rules in sequential com-

putations on a computer with a single arithmetic unit are presented.

1. Introduction

The prospect of high-speed digital computers
possessing several arithmetic units which may operate
simultaneously requires a reappraisal of many of the
standard methods and techniques of numerical
analysis. Indeed, these methods were all developed
with a sequential mode of operation in mind.
Classical numerical methods were designed for an
individual using either paper and pencil or a desk
calculator. Even modern refinements were tailored
for digital computers in which only one arithmetic
operation could be performed at any given time.

Many of these classical methods should not be
expected to be welladapted to computers having several
parallel arithmetic units. The purpose of this article
is to investigate one classical problem-——that of the
evaluation of a simple polynomial from this point of
view. A complete analysis is given for this problem
which is so prevalent in modern computing.

Polynomials are usually evaluated by Horner’s rule,
sometimes referred to as the nesting rule. This rule,
however, is entirely sequential in the sense that none
of its arithmetic operations may be performed simul-
taneously. After a brief review of Horner’s rule (Section
2), two generalizations which allow for simultaneous
arithmetic are derived in Section 3. Schedules which
evaluate a polynomial in minimum time on computers
with two, three or four arithmetic units are given in
Section 4. Actual machine codes are written for a
cerfain class of parallel computers, and estimates are
given regarding the maximum number of arithmetic
units which may be used efficiently.

* Presented at the 16th National Conference of the Association for Computing
Machinery, Los Angeles, California, September 5-8, 1961.

Finally, Section 5 describes some advantages that
the generalized Horner’s rules provide even for
sequential computers with a single arithmetic unit.
In particular, the problem of integrating a rational
function by use of Gauss quadrature is shown to
require fewer arithmetic operations if the generalized
rule is utilized in the computation.

2, Horner’srule

Consider a polynomial p(x) of degree n
px)=as+ax+-+ax" 2.1)
and divide p{x) by a linear factor x—x,

p(x) = (x — xo)(by + byx + -+ + b,x" 1) + by . (2.2)

The remainder, by, and the coefficients, by, b,, - -, b,,
in the quotient are readily obtained by equating the
coefficients of like powers of x in (2.1) and (2.2) as
follows:

b,=a, (2.3)
j=n—1,---,0. 2.4

The b; may be computed recursively from (2.3) and
(2.4). Moreover, it follows from (2.2) that

p(xo) = by (2.5)

This method for evaluating the polynomial p(x) at
x = xo is Horner’s rule and may be expressed alter-
natively by

p(xo) = ag + Xofay + xolas + + +* + xoay) - - - 1}
(2.6)

b_] = aJ+ xObj+1

239

IBM JOURNAL * APRIL 1962

240

Horner’s rule requires » multiplications and »n
additions for the evaluation of p(x,).

It can be shown that at least # additions are required
to compute p(x,). It is also generally accepted that a
total of 2n operations (additions and/or multipli-
cations) are necessary to compute p(x,). No proof of
this latter fact exists, however, except for n < 4
(Ref. 1).

The minimum number of multiplications necessary
to evaluate p(x,) is likewise an open question. Again
for n £ 4 at least #n multiplications are necessary.!
Motzkin? has shown that for n = 6 only n/2 = 3
multiplications are required. Motzkin does not state
the number of additions required by his algorithm.

It is clear from (2.4) that Horner’s rule is sequential
in the sense that for any j, b; cannot be computed until
alltheb;fori=n,n—1,---,j+1have been computed.
It follows that none of the arithmetic operations may
be performed in parallel. Thus the availability of a
computer with several arithmetic units which can
operate simultaneously would not decrease the time
in which p(x,) could be calculated.

In the following section two generalizations of
Horner’s rule which allow for simultaneous operation
of arithmetic units will be developed.

3. Generalizations of Horner’s rule

To obtain Horner’s rule the polynomial p(x) was
divided by a linear factor x — x,, and the remainder
was, therefore, p(xy). An obvious generalization is to
divide p(x) by a polynomial g(x) which has x, as a
root, i.e., g(x,) = 0. Then the remainder, evaluated
at x = X, 1S p(x,).

In particular, choose g(x) = x* — x,* where k = 1.

p(x) = (x* = x")by + byyyx + -+ bx")
+ by x4 byx + by . 3.1

By equating the coefficients of like powers of x in
(2.1) and (3.1) it follows that

b;=a; j=n--,n—k+1 3.2)
b;=a;+ xo"bj+x j=n—k,-+-,0. (3.3)
Moreover,

P(X0) = by 1xo* "1+ -+ byxo + by . (3.4

The computation of the b; in (3.3) and the subse-
quent evaluation of p(x,) in (3.4) requires n additions
and n + k — 1 multiplications. For k = 1 this re-
duces to Horner’s Rule. The generalized rule given by
(3.2) and (3.3) will be referred to as the k™ order
Horner’s rule.

Notice now that once the b; have been computed
fori=n,n—1,---, j(wherej £ n — k + 1) then
bj_ys bj_3, * -+, bj_, can all be computed simul-
taneously. That is to say, &k arithmetic units operating
in parallel could compute k of the b; in one addition
time plus one multiplication time.

IBM JOURNAL * APRIL 1962

For large n, the time to compute p(x,) on a com-
puter with k arithmetic units which operate in parallel
is of the order of n/k multiplication times plus n/k
addition times using the k" order Horner’s rule. A
detailed analysis of the exact time requirements for
several values of & is given in Section 4.

Another generalization of Horner’s rule which
allows for parallel computation has been given by
Estrin.?

First compute
O =a;+xoa;,, i=0,2,-,2|n2 (3.5)
where lZ[denotes the largest integer less than or equal
to y. Then successively compute

i=0,4,"-,4|n/4

i=0,8---,8[n8

¢V = ¢ + xo%¢;1 ¥

2 1 4 1
ci(D= M+ xpte P

(3.6)

2m (m—1)

-1 , 1.,
™ ="V 4 x 2 i=0,2m+1 ,

2m+1ln/2m+1| .

The process will terminate when m = |log, n| and,
moreover,

plxo) = ™. (3.7
This procedure also may be expressed by
P(xo) = ag + ayxo + xo*(az + azxo) + Xo*[as + asxg
+ x0%(ag + a1%0)] + Xo*{ag + aoxo
+ %0%(810 + ay11%0) + Xo*[ag, + ag3xo
+ Xo™(a14 + a15%0)]}
+ x01%ags + {[- + (@30 + a31%0)1}>
4o (3.8)

Now notice that for each j all ¢¥) may be computed
simultaneously in one addition time plus one multi-
plication time. Since there are |log, n| + 1 values of j,
the minimum time to compute p(x,) using this
algorithm is

T= ([log, n| + 1)(t, + 1),

where ¢, is the time required for one addition, and ¢,
is the time for one multiplication.

In order to achieve this minimum time, however,
it is necessary that the computer possess sufficient
arithmetic units to compute all ¢;7 simultaneously
for any j. :

The maximum number of ¢, for any j occurs for
J =0, and there are |n/2| + 1 of the ¢,(%. If n is even
the final ¢ is

cn(O) =a,

and does not require any computation. The number

of ¢;© which must be calculated, therefore, is given by
|(n + 1)/2|. In order to calculate the c¢*), however,

Xo* must also be calculated. This can be done at the
same time as the ¢;¥ are computed. Thus |(n + 1)/2
+ 1 = N arithmetic units must be used initially.
With N arithmetic units, all of ¢® and x,% can be
computed in one addition time and one multiplication
time.

For j = 1 the ¢, are fewer than N — 1 in number,
so all of the ¢, and x,2’"" can be calculated in one
addition time and one multiplication time on N
parallel arithmetic units.

If fewer than N arithmetic units are available a non-
trivial scheduling problem arises if the computing
time is to be minimized. This scheduling problem is
discussed elsewhere* and will not be considered here.

4, Schedules for parallel computers

From the discussion of the previous section it appears
that for a computer with k parallel arithmetic units
the k™ order Horner’s rule provides the fastest way to
evaluate a polynomial. In general, it is to be expected
that there will be relatively few arithmetic units avail-
able. Therefore, a detailed analysis for the case of
two, three or four parallel arithmetic units will be
given here. It will be assumed that all arithmetic units
are identical.

® A. Second-order Horner’s rule

The second-order Horner’s rule is

b, =a,

b =a, (4.1)
b;=a; + xo°b;» j=n-=2,-++,0

and

p(xg) =bo + b1xg . 4.2

This is equivalent to evaluating two polynomials in x?
of degree n/2 by a first-order Horner’s rule as follows

P(xo) = <o + xo*{ay + xo°[- * + X0 (A2u2)]}>
+ xo<ay + xo*{as + xo’[+ Xo°
X (@z(m=1y2) + DI} (4.3)

The formulation (4.3) was previously given by K.
Ralston (see, e.g., Ref. 3).

If two parallel arithmetic units are available, the
process is started by computing x,Z on one unit while
the second sits idle. Then x,2a, and xy%a,_, are com-
puted simultaneously followed by b,_, = a,_, +
(xo2a,) and b,_; = a,_3 + (xo%a,_,). The complete
schedule is given in Appendix I. Notice that the ter-
minal steps vary depending on whether n is even or
odd, but in either case a total of n + 2 steps is
necessary. The total time, T,, is given by

T, = (|n2| + D, + (|(n + /2] + Dy, (4.9)

where again ¢, and ¢,, are the addition and multipli-
cation times respectively. If the multiply and add
times are equal (z,, = ¢, = f) this reduces to

T, =(n+2)t. (4.5
The utilization U is defined to be

total time all the arithmetic units are in use either
U= individually or collectively

total time all the arithmetic units are available

The utilization then is a measure of how efficiently the
arithmetic units are used. A utilization of 1 indicates
no idle time on any unit. The utilization, U,, of the
schedule given in Appendix I is

_ 2n +1
T 2(n+2)

for the case ¢, = t,.

For large n, T, approaches nt, and U, approaches 1.

Notice that the foregoing discussion has neglected
all hardware considerations. For example, no mention
has been made of the number of memories the com-
puter possesses or the access to these memories. Such
considerations may significantly affect the validity of
the computing time stated in (4.5). In order to deter-
mine the effect of these factors consider a muythical
parallel computer of the type described in Appendix
IT with two arithmetic units. Suppose for the moment
that r = 1, i.e., the arithmetic operations of addition
and multiplication require 1 time cycle, as do the FETCH
and STORE operations.

A program may be written for this computer (see
Appendix IIT) which evaluates the n™ degree poly-
nomial p(x) in 2n + 9 time cycles. The utilization is

U, 4.6)

_4n+7
T 4n+18°

This program uses the second-order Horner’s rule.
For comparison, a similar computer with one arith-
metic unit requires 4n + 2 time cycles for a program
based on the first-order Horner’s rule. The utilization
for this latter program is 1.

Thus for large n, the time required by two arith-
metic units is one-half that required by one arithmetic
unit, and the utilization in both cases is 1.

Additional arithmetic units, however, will not serve
to further decrease the computing time. A justification
and discussion of this fact will be deferred until the
third- and fourth-order rules have been considered in
detail.

® B. Third-order Horner’s rule
The third-order Horner’s rule is
b;=a; j=nn—-1,n-2 4.7

bj=aj+x03bj+3 j=n—3,"',0

291

IBM JOURNAL » APRIL 1962

242

which can be expressed as
(o) = ag + xo°[as + xo>(ag + - *)]
+ xo{ay + xo3[dq + %53 @ + - -)1}
+ XOZ{az + x03[a5 + xoa(as +-9]. 4.8

For a computer with three parallel arithmetic units
a schedule can be constructed which evaluates p(x,)
in a total time of

Ty=(n—|nf3] = [23] + Dt, + ([n3] + D1, (4.9)

where I;l is the smallest integer greater than or equal
to y and it is assumed that ¢,, = ¢,. If ¢,, = ¢, = r then

Ty =(n— |n/3| + 3)t (See Appendix IV). (4.10)
The utilization in the latter case is

U. = 2n+2
* 73— [nf3] +3)

which approaches 1 for large ».

Consider now the parallel computer described in
Section 4A but with three parallel arithmetic units
(r = 1). The number of time cycles required to evalu-
ate p(x,) is still of the order 2a, and the maximum
utilization for large n is 2/3. That is to say, the addi-
tion of the third arithmetic unit does not decrease the
computing time. This is due to the fact that when one
of the three arithmetic units has completed an addition
or multiplication it must stand idle for one time cycle
awaiting a memory access. This delay is necessary
because there are now three units accessing the memory
and only one may have access at any given time.

On the other hand, if r = 2 (addition and multi-
plication require two time cycles each) then the time
requirement is approximately one-third that of a com-
puter with a single arithmetic unit, and the limiting
utilization is 1.

(4.11)

® C. Fourth-order Horner’s rule

A similar analysis may be given for the fourth-order
Horner’s rule. The schedule using this rule on a com-
puter with four parallel arithmetic units requires a
computing time of

T, = (|n/4] + 2)t, + ([n]4] + 2)1,,, 4.12)

where again¢, = ¢,.
For t, = t, = t this becomes

T, = (|n/4] + [n/4] + 4t (4.13)
and the utilization then is
U 2n+3

T + 4]+

Again for the parallel computer described in Section

IBM JOURNAL » APRIL 1962

4A (r = 1) but with four parallel arithmetic units, the
number of time cycles required to evaluate p(x,) is of
the order of 2a. In this case each unit is idle two time
cycles after each arithmetic operation awaiting a
memory access, and the maximum utilization is 0.5.
Not until » = 3 will it be profitable time-wise to add
the fourth unit and use the fourth-order rule.

5. Use of sequential computers

The discussion thus far has been directed toward

polynomial evaluation on parallel computers with

multiple arithmetic units. The generalized Horner’s

rule also offers certain advantages for computation on

sequential computers with a single arithmetic unit.
Notice from (3.1) that

p(0;x0) = r(0;x,) » (5.1
where
r(x) = b x* 14+ byx + by (5.2)

and 6, are the k™ roots of unity. Since 0, is in general,
a complex number, additional k¥ — 1 multiplications
and k — 1 additions are all that are required to evalu-
ate p(0,x,) for any j once the coefficients b,_,, - - -, b,
have been computed. All of the k values of p(8;x,)
can be obtained in n + k(k — 1) multiplications and
n + (k — 1) additions. In contrast, k applications of
the first-order rule for complex 0;x, would require
n + 2n(k — 1) multiplications and a like number of
additions.

Of particular interest is the case where k¥ = 2. Then

p(—xo) = by — byX . (5.3)

Thus if p(x,) has been computed using the second-order
Horner’s rule, equations (4.1) and (4.2), then p(—x,)
is obtained by one addition and no multiplications.

The evaluation of p(x,) and p(—x,) using the
second-order Horner’s rule requires a total of n + 1
multiplications and » + 1 additions. By way of com-
parison, the first-order Horner’s rule requires 2n
multiplications and 2» additions.

In this same connection consider the problem of
evaluating the definite integral of a rational function
by Gauss quadrature.

RPN S () 5.4
.[—1 gq(x) dx = iZIWl q(x;) ’ ¢4

where x; are the roots of the Legendre polynomial of
degree N

1 a4, N
a0 = a1 e & D

and the weights w, are defined as

1 1

W= —""" N
I[]Gi—x)| JI@=xpde.
J=1 7=1
J#i =1 j#i

Here p(x) and g(x) will be assumed to be polynomials
of degree n and m, respectively.

The roots x; of the Legendre polynomial P,(x) are
symmetrically placed about the origin. To evaluate the
right-hand member of (5.4) then p(x;), g(x;) and p(— x}),
g(—x,) are required. Using the first-order Horner’s
rule requires

Nm+n+ 1) multiplications
Nm+n+1) —1 additions
N divisions.

On the other hand, using the second-order Horner’s
rule requires
(N — |N2Dpm + n + 1) + 3 - |N/2| multiplications
(N—|N2)m +n) + N—1 additions
N divisions.
For example, for m = n = 4 and N = 10 the number
of arithmetic operations are

First-order Second-order

rule rule
Multiplications 90 60
Additions 89 49
Divisions 10 10

6. Conclusions and remarks

The schedules for the evaluation of a polynomial in
minimum time may be classified as follows:

If the number of parallel arithmetic units, & = 1, is
relatively small compared with the degree of the poly-
nomial, n, then the k'*-order Horner’s rule should be
used.

If the number of arithmetic units, k, is of the same
order as the degree of the polynomial, », then the
generalization due to Estrin, equations (3.5) to (3.7),
should be used.

These are, however, only general guides, and a
detailed analysis of the schedule on the particular
computer is necessary to assure efficient use. In parti-
cular, the timing of the memory accesses will dictate
the number of parallel units which can be used advan-
tageously, and hence the computational rule to be
used. In the example considered in Section 4, only
r + 1 arithmetic units could be used if the arithmetic
operations required r times the time required by the
mMemory accesses.

Regardless of the number of parallel arithmetic
units, the k™-order Horner’s rule will complete some
computations in minimum time. Evaluation of the
definite integral of a rational function by Gauss quad-
rature, for example, can be most quickly computed by
using an even-order Horner’s rule as demonstrated in
Section 5. Other problems requiring the evaluation of
the same polynomial at values proportional to the k™
roots of unity can be similarly speeded up by use of the
k™-order rule.

Appendix I: Schedule for second-order Horner’s
rule

The schedule of operations on two identical arithmetic
units which operate in parallel using the second-order
Horner’s rule is:

Step . ,
Number Unit 1 Unit 2
1 X * Xo Idle
2 xo® - a, Xo? dyy
3 ay_2 + (anxoz) a,_3 + (an—lxoz)

= bn—2 = bn—3

|
—_

‘122+ (baxo?) = by ay + (b3xo?) = by

Xo bz Xo * b1

S I

n+ 2 by + (byxo) = p(x,) Idle

5

>

S\n4+1 ay + (byxo?) = by I1dle

Cln+2 by + (byxo) = plxo) Idle

g’n_l xOZ‘b3 xoz'bz

g n ay + (bsxo®) = by ay + (byxo?) = by
— n+ 1 xo * bl Idle

£

PR

Appendix II: Description of a parallel computer

Consider a computer with k identical arithmetic units
which operate in parallel and with one memory which
is available to all arithmetic units. Only one of the
arithmetic units may have access to the memory at any
given time. For example, if one unit is in the process of
storing a word and a second unit then requests a word
from memory, the second unit must wait until the
store operation is completed.

The individual arithmetic units operate in the follow-
ing way: Each unit possesses two registers, called A4
and B, which may be loaded from memory by the
instruction FETCH (F) or stored into memory by the
instruction STORE (S). The fetch instruction does not
destroy the memory contents, nor does the store
instruction destroy the register contents. The instruc-
tion MULTIPLY (M) forms the product of the contents
of registers A and B and places the result in register 4.
Similarly, the instruction ADD (A) places the sum of
the contents of the two registers in register A.

The STORE and FETCH instructions require one cycle
of time, and the MULTIPLY and ADD instructions each
require r cycles of time.

243

IBM JOURNAL * APRIL 1962

The following table of instructions will be used:

. S — A, m Store the contents of register 4 in location
F — A4,m Fetch the contents of memory location m of memory. Leave register A unaltered.
m in memory to register A. Leave location
m unaltered. M, — Multiply the contents of registers 4 and
- B and place the product in register A.
F — B,m Fetch the contents of memory location
m in memory register B. Leave location A, — Add the contents of registers A and B
m unaltered. and place the sum in register A.
Appendix IlI: A program for a parallel computer
with two arithmetic units
Consider a computer of the type described in Appendix]
II with two arithmetic units and with r = 1. The Time Unit 1 Unit 2
following program evaluates an n'® degree polynomial cycle
p(x) =ag + ay;x + -+ + a,x" using the second-) M. — F—B A+ 1
order Horner’s rule, 2” i ?
Let a4, a4, * - -, a, be stored in memory locations 4 7+ 1 F-BA+2 4,-
0> @1, """ 5 ; y : m+2 A - F-BX
A+ 1,---, A+ N respectively, and let x, be stored £ |2 3 F’— B. X2 M. - ?
in memory location X. g |t ’ ’
o<2n+4 M, — S— AR
] S\2n+5 F—-B A Idle
Time 1 1 Unit 2 S |2m+6 4- Idle
cycle 2n+7 F-BR Idle
2n + 8 A, — Idle
1 F-A4,X Idle 2n + 9 S—A,R Idle
2 F-BX Idle
3 M, - Idle 2n A, — F—- B, X2
4 S—A4,Xx2 Idle 2n + 1 F— B, X2 M, —
5 Idle F—A4,Xx2 2n + 2 M, — F—B, A
6 Idle F—-—B A+ N-1 B {2m+3 F—BA+1 A4, —
7 F—-—B, A+ N M, — :<2n+4 A, — S— AR
8 M, - F—B A+ N-3 o (2n+5 F-B X Idle
9 F—-BA+N-2 A - £ |2n+6 M, — Idle
10 4, - F—- B, X2 2n + 7 F—- B,R Idle
11 F- B X2 M, — 2n + 8 A, — Idle
. . 2n+ 9 S— AR Idle

The value of p(x,) is stored in memory location R.

Appendix 1V: Schedule for third-order Horner’s rule

The schedule of operations on three identical arithmetic units which operate in parallel using the third-order Horner’s

ruleis:
Step Number Unit 1 Unit 2 Unit 3
1 Xp * Xo Idle Idle
2 Xo * X2 Idle Idle
3 a,* Xo Aoy " X Ap-2 " %o
4 ap-3 + (anxos) = bn—3 ap-a + (an—'lxoa) ap-s + (an—zxos)
= bn—4 = Up-5

244

IBM JOURNAL * APRIL 1962

Schedule for third-order Horner’s rule (continued)

Step Number Unit 1

Unit 2

Unit 3

Casel,n = 3m

2m as + (b6x03) = b,

m + 1 by - xp>

2m + 2 ay + (b3xy®) = by

2m + 3 bo + (byxo + byxo%)
= p(xo)

a, + (b5x03) =b,
b, - xo*

(b1xo) + (b2x0%)
Idle

ay + (baxo®) = b,

Idle
Idle

Case 2, n=3m+1

2m a, + (b1x,>) = b,

2m + 1 by x3

2m + 2 a; + (byxy®) = by

2m + 3 by - xo

2m + 4 bixo + (b + byxo?)
= p(xo)

a + (b4x0 =0,
b2 * XO

Idle

Idle

Idle

Case3,n=3m+ 2

2m as + (bsx0) = bs

2m + 1 bs - xo°

2m + 2 a2+(b5x0)—b2

2m + 3 by - xo?

2m + 4 (b1xo) + (b2xo?)

2m + 5 bo + (byxe + b3xp?)
= p(xo)

as + (b5x°) =bs
by - xo®

ag + (b3x0°) = b,
Idle

Idle

1dle

In all three cases the total number of time steps is:

n— |n/3] + 3.

References

1. A. M. Ostrowski, ““On Two Problems in Abstract Algebra
Connected With Horner’s Rule,” in Studies in Mathematics
and Mechanics Presented to Richard von Mises, Academic
Press, 1954, pp. 40-48.

2. T. S. Motzkin, “Evaluation of Polynomials,” Bull. Amer.
Math. Soc., 61, 163 (1955).

3. G. Estrin, “Organization of Computer Systems—The Fixed
Plus Variable Structure Computer,” Proceedings Western
Joint Computer Conference, May, 1960, pp. 33-40.

4, W. S. Dorn, N, C. Hsu and T. J. Rivlin, Some Mathematical
Problems in Parallel Computation, IBM Research Report

(forthcoming).

Received September 20, 1961

245

IBM JOURNAL & APRIL 1962

