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Generalizations of Horner's  Rule 
for  Polynomial  Evaluation* 

Abstract: Polynomials are generally evaluated by  use of Horner's rule, sometimes referred to as the 
nesting rule. This rule is  sequential and  affords  no opportunity  for  parallel computation, i.e., completion 
of several ofthe  arithmetic operations simultaneously. Two generalizations of Horner's rule which allow 
for parallel computation are presented here. 

Schedules and, in some  cases, machine codes for evaluating a polynomial on a  computer with several 
parallel arithmetic units are developed.  Some  advantages of the generalized rules in sequential com- 
putations on a  computer with a single arithmetic  unit  are presented. 

1. Introduction 

The prospect of high-speed digital  computers 
possessing several arithmetic  units which may  operate 
simultaneously  requires a reappraisal of many of the 
standard  methods  and  techniques of numerical 
analysis. Indeed, these methods were all  developed 
with a sequential  mode of operation  in  mind. 
Classical numerical  methods were designed for an 
individual using either  paper  and pencil or a  desk 
calculator.  Even  modern refinements were tailored 
for digital  computers  in which only one  arithmetic 
operation  could  be  performed  at  any given time. 

Many of these classical methods  should  not be 
expected to be  welladapted to computers having several 
parallel  arithmetic units. The purpose of this  article 
is to investigate one classical problem-that of  the 
evaluation of a simple  polynomial  from  this  point of 
view. A  complete  analysis  is given for this  problem 
which is so prevalent  in  modern  computing. 

Polynomials  are usually evaluated by Horner's rule, 
sometimes referred to  as  the nesting rule. This  rule, 
however, is entirely sequential  in the sense that  none 
of its  arithmetic  operations  may be performed simul- 
taneously.  After a brief review of Horner's rule (Section 
2), two generalizations which allow for simultaneous 
arithmetic  are derived in Section 3. Schedules which 
evaluate  a  polynomial  in  minimum  time on computers 
with  two,  three or  four  arithmetic  units  are given in 
Section 4. Actual  machine  codes are written for a 
certain class of  parallel  computers, and estimates are 
given regarding  the  maximum  number of arithmetic 
units which may  be used efficiently. 
* Presented at the 16th National Conference of the Association for Computing 
Machinery, Los Angeles, California, September 5-8, 1961. 

Finally, Section 5 describes some  advantages that 
the generalized Horner's  rules  provide even for 
sequential  computers  with a single arithmetic  unit. 
In particular, the  problem of integrating a rational 
function by use of Gauss  quadrature  is  shown to 
require fewer arithmetic  operations if the generalized 
rule is utilized in  the  computation. 
2. Horner's  rule 

Consider a polynomial p(x )  of degree n 

p ( x )  = a, + U l X  + * + a,x" (2.1) 

and divide p(x)  by a linear  factor x - x. 
P ( X )  = (X - xo)(b, + bzx + . * + b,x"-l) + bo . (2.2) 

The remainder, bo, and  the coefficients, b, ,  b,, * * , b,, 
in  the  quotient  are readily  obtained by equating  the 
coefficients of like powers of x in (2.1) and (2.2) as 
follows: 

b, = U, (2.3) 

b j  = u j  + x o b j + l  j = n - l , . * . , O .  (2.4) 

The bj may  be  computed recursively from (2.3) and 
(2.4). Moreover,  it follows from (2.2) that 

P b O )  = bo * (2.5) 
This  method  for  evaluating  the  polynomial p(x )  at 
x = x. is Horner's rule and  may be expressed alter- 
natively by 

p(x0)  = t- xo{al + xo[az + * * * + xo(a,) * I} 
(2.6) 239 
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Horner's  rule  requires n multiplications  and n 
additions  for  the  evaluation of p(xo) .  

It  can be shown that  at least n additions  are  required 
to  compute p(xo). It is also generally accepted that a 
total of 2n operations  (additions and/or multipli- 
cations)  are necessary to compute p(xo). No proof of 
this  latter  fact exists, however, except for n 5 4 
(Ref. 1). 

The minimum  number of multiplications necessary 
to evaluate p(xo )  is likewise an  open  question.  Again 
for n 5 4 at least n multiplications are necessary.' 
Motzkin' has shown that for n = 6 only n /2  = 3 
multiplications  are  required.  Motzkin  does  not  state 
the number of additions  required by his algorithm. 

It is clear from (2.4) that Horner's  rule is sequential 
in  the sense that  for  any j ,  bj cannot be computed  until 
all theb,  for i = n, n - I ,  . . . , j  + 1 have been computed. 
It follows that none of the  arithmetic  operations may 
be performed in parallel. Thus  the availability of a 
computer with several arithmetic units which can 
operate simultaneously would not decrease the time 
in which p(xo)  could be calculated. 

In  the following section two generalizations of 
Horner's rule which allow for  simultaneous  operation 
of arithmetic  units will be developed. 

3. Generalizations of Horner's  rule 

TO obtain  Horner's rule the polynomial p(x )  was 
divided by a  linear  factor x - xo, and  the remainder 
was, therefore, p(xo).  An  obvious  generalization is to 
divide p ( x )  by a  polynomial q(x)  which has x. as a 
root, i.e., q(xo) = 0. Then  the remainder,  evaluated 
at x = xo, is p(xo) .  

In particular,  choose q(x )  = xk - xOk where k 2 1. 

p(X) = ( X k  - X;)(bk + bk+lX + * . ' + b n X n - k )  

bk-lXk-l + . . * + b l x  + bo . (3.1) 

By equating  the coefficients of like powers of x in 
(2.1) and (3.1) it follows that 

b j  = a j  ~ = n , * . .  , n - k + 1 (3.2) 

b j  = a j  + xokbj+k j = n - k ,  . , 0 . (3.3) 

Moreover, 

p(Xo)  = b,+1Xok-l + . + blxo + bo . (3.4) 

The  computation of the bj in (3.3) and  the subse- 
quent evaluation of p(xo) in (3.4) requires n additions 
and n + k - 1  multiplications. For k = 1  this re- 
duces to Horner's Rule. The generalized rule given by 
(3.2) and (3.3) will be referred to  as  the  kth order 
Horner's rule. 

Notice  now that once the bi have been computed 
for i = n ,  n -  l ; . * , j ( w h e r e j S n - k +   1 ) t h e n  
bj-l ,  bj - , ,  . * * , bj-k can all  be  computed simul- 
taneously. That is to say, k arithmetic  units  operating 
in parallel  could  compute k of the bj in  one  addition 

240 time  plus  one  multiplication time. 

For large n, the  time to  compute p(xo) on a  com- 
puter with k arithmetic  units which operate  in parallel 
is of the  order of n/k  multiplication  times  plus n/k  
addition times using the k*h order  Horner's  rule.  A 
detailed analysis of the exact time requirements for 
several values of k is given in Section 4. 

Another generalization of Horner's rule which 
allows for  parallel  computation  has been given by 
E ~ t r i n . ~  

First  compute 

C i ( 0 )  = ai + x0q+ 1 i = 0,  2, . . . ,2(n/2( (3.51 

where denotes  the largest integer less than  or  equal 
to y .  Then successively compute 

c y )  = Ci(0) + xo2ci+2(o) i = O,4, . . e ,  41n/41 
ci(2) = C , ( l )  + x04ci+4(1) i = 0 , 8 ; . . , 8 1 n / 8 )  

(3.6) 
Ci(m)  = C i ( m - l )  + X 0 2 m C ( m - l )  r + 2 m  i = 0, 2m+l, . . . 9 

2m+'[n /2m+q.  

The process will terminate when rn = log, nl and, 
moreover, 

p(xo)  = co(m) . (3 + 7) 

This  procedure  also  may be expressed by 

p(x0) = a. + alxO -t- xo2(az + a3xo) + xo4[a4 + a5XO 

+ xO2(a6 + a7xo)l  + xO8{a8 + agxo 

+ xo2(a10 + a11xo) + xO4Ca12 + a 1 3 x 0  

+ x02(a14 + a 1 5 x 0 ) 1 1  

+ x 0 1 6 ( a 1 6  + {[. * ' + ( a 3 0  + a31x0)11> 

+ . . -  (3.8) 

Now notice that  for each j all ci(j) may be computed 
simultaneously in  one  addition time plus  one multi- 
plication time. Since there are ]log, n1 + 1 values ofj, 
the  minimum  time to compute p(xo)  using this 
algorithm is 

T= (/log, n l +  l>( ta  + tm) 9 

where t, is the  time required  for  one  addition, and t,,, 
is the time for  one multiplication. 

In  order  to achieve this  minimum time, however, 
it is necessary that  the computer possess sufficient 
arithmetic  units to compute  all ci(j) simultaneously 
for  any j .  

The maximum  number of ci(i) for  any j occurs for 
j = 0, and there are Inial + 1 of the ci(O). If n is even 
the final ci(O) is 

cn(O) = a, 

and  does not require  any  computation. The  number 
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of ci(0)  which must be calculated,  therefore, is given by 
I(n + 1)/21. In  order  to calculate the c i ( ' ) ,  however, 
xo2 must  also be calculated.  This can be  done at  the 
same time as  the C / O )  are  computed. Thus \(n + 1)/21 
+ 1 = N arithmetic  units  must  be used initially. 
With N arithmetic units, all of c,(O) and xo2 can  be 
computed  in  one  addition  time  and  one  multiplication 
time. 

F o r j  2 1 the ci(j) are fewer than N - 1 in  number, 
so all of the c / j )  and  xo2'+1  can be calculated in  one 
addition  time  and  one  multiplication  time  on N 
parallel  arithmetic units. 

If fewer than N arithmetic units are available a non- 
trivial scheduling problem arises if the  computing 
time is to be minimized. This scheduling problem  is 
discussed elsewhere4 and will not be considered here. 

4. Schedules for parallel computers 

From  the discussion of the previous section it appears 
that  for a  computer with k parallel arithmetic  units 
the kth order  Horner's rule provides the fastest way to 
evaluate  a  polynomial. In general, it is to be expected 
that there will be relatively few arithmetic  units avail- 
able.  Therefore,  a  detailed analysis for  the case of 
two,  three or  four parallel  arithmetic  units will be 
given here. It will  be assumed that all  arithmetic  units 
are identical. 

A. Second-order Horner's rule 

The second-order  Horner's  rule is 

b,, = a,, 

bnVl = a,,-l (4.1) 

bj  = a j  + xO2bj+, j = n - 2 ; * * , 0  

and 

Ax,) = bo + b1xo . (4.2) 
This is equivalent to evaluating two polynomials  in x' 
of degree n/2  by a first-order Horner's  rule as follows 

Ax,) = (a0 + Xo"% + xozc. . . + XoZ(a21n/21)1>> 

+ xo<al + xoZ{a3 + X,'[+ xo2 

(4.3) 

The  formulation (4.3) was previously given by IS. 
Ralston (see,  e.g., Ref. 3) .  

If  two  parallel  arithmetic  units are available, the 
process is started by computing xo2 on one  unit while 
the second sits idle. Then xo2u,, and xo2u,,- are com- 
puted  simultaneously followed by b,,-, = + 
(xo2u,,) and b,,-3 = + (xo2a,,-1). The complete 
schedule is given in  Appendix I. Notice that  the ter- 
minal  steps  vary  depending on whether n is even or 
odd,  but  in either  case a total  of n + 2 steps is 
necessary. The  total time, T,, is given by 

Tz = (Jn/21 f l)t, + ( I ( .  + 1)/21 + l)t,,,, (4.4) 

where again t ,  and t ,  are  the  addition  and  multipli- 
cation  times respectively. If  the multiply and  add 
times  are  equal (t,,, = t ,  = t )  this reduces to 

T, = (n + 2) t .   (4 .5)  

The utilization U is defined to be 
total time  all  the  arithmetic  units  are  in  use  either 

individually or collectively 
= total time  all  the  arithmetic  units  are  available 

The utilization  then  is  a  measure of how efficiently the 
arithmetic  units  are used. A  utilization of 1 indicates 
no idle time on  any unit. The utilization, U,, of the 
schedule given in Appendix I is 

2n + 1 u, =- 
2(n + 2) 

for  the case t ,  = t,. 
For large n, T, approaches nt, and U,  approaches 1. 
Notice that  the foregoing discussion has neglected 

all hardware  considerations. For example, no  mention 
has been made of the number of memories  the  com- 
puter possesses or  the access to these memories. Such 
considerations  may significantly affect the validity of 
the  computing  time  stated  in (4.5). In order to deter- 
mine the effect of these factors  consider a mythical 
parallel  computer of the type described in  Appendix 
I1 with two  arithmetic units. Suppose  for the  moment 
that r = 1, i.e., the  arithmetic operations of addition 
and multiplication  require  1  time cycle, as do the FETCH 
and STORE operations. 

A  program  may be written for this  computer (see 
Appendix 111) which evaluates  the nth degree poly- 
nomial p ( ~ )  in 2n + 9 time cycles. The utilization is 

4n + 7 u=- 
4n + 18 * 

This  program uses the second-order  Horner's  rule. 
For comparison, a similar  computer with one  arith- 
metic  unit  requires 4n + 2 time cycles for a program 
based on  the first-order  Horner's  rule. The utilization 
for  this  latter  program is 1 .  

Thus  for large n, the  time required by two arith- 
metic units is one-half that required by one  arithmetic 
unit, and  the utilization in both cases is 1 .  

Additional  arithmetic units, however, will not serve 
to further decrease the computing  time.  A  justification 
and discussion of this  fact will be deferred until  the 
third-  and  fourth-order  rules  have  been  considered  in 
detail. 

B. Third-order Horner's rule 

The  third-order  Horner's  rule is 

bj = a j  j = n , n - l , n - 2  (4.7) 

b, = a, + ~ ~ ~ b ~ + ~  j = n - 3 ; * * , 0  241 
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which can be  expressed as 

p(X0) = a0 + X o 3 [ U 3  + Xo3(U6 + *)I 
+ X o { U l  + Xo3[U4 + Xo3(U7 + * *)I} 
+ xo2{az + xo3Cas + xo3(as + * .)]I. (4.8) 

For  a computer with three parallel arithmetic units 
a schedule can be constructed which evaluates p(xo) 
in a  total time of 

T~ = (n - 1./31 - 1./31 + l ) t ,  + (ln/31 + 2)t, , (4.9) 

where  is the smallest integer greater than  or equal 
to y and  it is  assumed that t ,  2 t,. If t,,, = t ,  = t then 

T3 = ( n  - 1./31 + 3)t (See Appendix IV). (4.10) 

The utilization in the latter case  is 

(4.11) 

which approaches 1  for large n. 
Consider now the parallel computer described in 

Section 4 A  but with three parallel arithmetic units 
(r = 1). The number of time cycles required to evalu- 
ate p(xo)  is  still of the order 2n, and  the maximum 
utilization for large n is 2/3.  That is to say, the addi- 
tion of the third arithmetic unit does not decrease the 
computing time.  This is due to the fact that when one 
of the three arithmetic units has completed an addition 
or multiplication it must stand idle for one time cycle 
awaiting a memory  access. This delay is necessary 
because there are now three units accessing the memory 
and only one may  have  access at any given  time. 

On the other hand, if r = 2 (addition and multi- 
plication require two  time  cycles each) then the time 
requirement is approximately one-third that of a com- 
puter with a single arithmetic unit, and the limiting 
utilization is  1. 

C. Fourth-order Horner’s rule 

A similar analysis  may  be  given for the fourth-order 
Horner’s rule. The schedule using this rule on a com- 
puter with four parallel arithmetic units requires a 
computing time of 

2-4 = (ln/41 + 2)t, + (ln/41 + 2)t,,  (4.12) 

where again t, 2 t, . 
For r, = r, = t this becomes 

T4 = (ln/41 + ln/4( + 4)t (4.13) 

and the utilization then is 

2n + 3 u -  
- 4(ln/41 + 1./41 + 4) ’  

242 Again for the parallel computer described in Section 
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4A (r = 1) but with four parallel arithmetic units, the 
number of time cycles required to evaluate p(xo)  is of 
the order of 2n. In this case  each unit is idle  two  time 
cycles after each arithmetic operation awaiting a 
memory  access, and the maximum utilization is 0.5. 
Not until r 2 3 will it be profitable time-wise to add 
the  fourth unit and use the fourth-order rule. 
5. Use of sequential computers 

The discussion thus far has been  directed toward 
polynomial evaluation on parallel computers with 
multiple arithmetic units. The generalized Horner’s 
rule also offers certain advantages for computation on 
sequential computers with a single arithmetic unit. 

Notice from (3.1) that 

P ( O j X 0 )  = r(Ojx0) 9 (5 .1)  
where 

r(x) = b k -  l X k - l  f * * + b1x + bo (5.2) 

and Oj are  the kth roots of unity.  Since O j ,  is in general, 
a complex number, additional k - 1 multiplications 
and k - 1 additions are all that  are required to evalu- 
ate p(Ojxo) for anyj  once the coefficients bk- 1, - , bo 
have  been computed. All  of the k values of p(Ojxo) 
can be obtained in n + k(k - 1) multiplications and 
n + (k  - 1)2 additions. In contrast, k applications of 
the first-order rule for complex Ojxo would require 
n + 2n(k - 1) multiplications and a like number of 
additions. 

Of particular interest is the case  where k = 2. Then 

p( - xo) = bo - b lx ,  . (5.3) 

Thus ifp(xo) has been computed using the second-order 
Horner’s rule, equations (4.1) and (4.2), then p ( - x , )  
is obtained by one addition and no multiplications. 

The evaluation of p(xo) and p ( - x , )  using the 
second-order Horner’s rule requires a  total of n + 1 
multiplications and n + 1 additions. By  way of com- 
parison, the first-order Horner’s rule requires 2n 
multiplications and 2n additions. 

In this same connection consider the problem of 
evaluating the definite integral of a rational function 
by Gauss quadrature. 

where x i  are  the roots of the Legendre polynomial of 
degree N 

and  the weights wi are defined as 

1 



Here  p(x)  and  q(x) will be assumed to be polynomials 
of degree n and rn, respectively. 

The  roots x i  of the Legendre polynomial PN(x)  are 
symmetrically placed about  the origin. To evaluate  the 
right-hand  member of (5.4) thenp(xi),  q(xi)  andp( - xi), 
q(-xi)  are required. Using the first-order  Horner's 
rule  requires 

N(nl + n + 1) multiplications 
N ( m  + n + 1) - 1 additions 
N divisions. 

On  the  other  hand, using the  second-order  Horner's 
rule requires 

( N  - IN/21)(m + n + 1) + 3 * IN/21 multiplications 
( N  - IN/21)(m + n) + N - 1 additions 
N divisions. 

For example,  for m = n = 4 and N = 10 the  number 
of arithmetic  operations  are 

First-order Second-order 
rule rule 

Multiplications 90 60 
Additions 89 49 
Divisions 10  10 

6. Conclusions  and remarks 

The schedules for  the  evaluation of a polynomial  in 
minimum  time  may be classified as follows : 

If the number of parallel  arithmetic  units,  k 2 1, is 
relatively small compared  with  the degree of the poly- 
nomial, n, then  the  kth-order Horner's  rule  should be 
used. 

If the  number of arithmetic units, k,  is of the  same 
order  as  the degree of the  polynomial, n, then  the 
generalization due  to Estrin,  equations (3.5) to (3.7), 
should  be  used. 

These are, however, only general guides, and a 
detailed analysis of the schedule on  the particular 
computer is necessary to assure efficient use. In parti- 
cular,  the timing of the memory accesses will dictate 
the  number of parallel  units which can  be used advan- 
tageously, and hence the  computational  rule  to  be 
used. In  the example considered in Section 4, only 
r + 1  arithmetic  units  could  be used if the  arithmetic 
operations  required r times the  time required by the 
memory accesses. 

Regardless of the  number of parallel  arithmetic 
units, the  kth-order Horner's  rule will complete  some 
computations  in  minimum time. Evaluation of the 
definite integral of a  rational  function by Gauss  quad- 
rature,  for example, can  be  most quickly computed by 
using an even-order  Horner's  rule as  demonstrated  in 
Section 5. Other  problems  requiring the evaluation of 
the same  polynomial at values  proportional  to  the kth 
roots of unity can be similarly speeded up by use of the 
kth-order rule. 

Appendix I: Schedule for second-order Horner's 

The schedule of operations on two  identical  arithmetic 
units which operate  in parallel  using the second-order 
Horner's  rule is: 

rule 

Step 
Number Unit 1 Unit 2 

"_  "_  "_  "_ "_ -__ -"  -" - -" -____ -""  -" - "_  _"  "_ 
n - 1 a2 + (b,xo2) = b, a, + (b3xo2) = bl 

xO2 . b, x0 * bl 
+ 1 a, + (b,xo2) = bo Idle 

n + 2 bo + (b,xo) = p(xo)  Idle 

xo2 * b2 

Idle 
= b1 a, + (b,xo2) = bo 

= p(xo)  Idle 

Appendix II: Description of  a  parallel computer 

Consider a computer with k  identical  arithmetic  units 
which operate  in  parallel  and with one  memory which 
is available to all  arithmetic  units. Only one of the 
arithmetic  units  may have access to  the memory at any 
given time. For example, if one  unit is in  the process of 
storing  a  word and a  second  unit  then  requests a word 
from  memory,  the  second  unit  must  wait  until  the 
store  operation is completed. 

The individual  arithmetic  units  operate  in  the follow- 
ing  way:  Each  unit possesses two registers, called A 
and B, which may  be  loaded from memory by the 
instruction FETCH (F)  or stored into memory by the 
instruction STORE (S ) .  The fetch  instruction  does  not 
destroy  the memory  contents, nor does the store 
instruction  destroy  the register contents. The instruc- 
tion MULTIPLY ( M )  forms  the  product of the  contents 
of registers A and B and places the result in register A .  
Similarly, the  instruction ADD ( A )  places the  sum of 
the  contents of the two registers in register A .  

The STORE and FETCH instructions  require  one cycle 
of time, and  the MULTIPLY and ADD instructions  each 
require r cycles of time. 243 
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The following table of instructions will  be used: 

S - A ,  m Store the contents of register A in location 
F - A ,  m Fetch the contents of memory location m of memory.  Leave  register A unaltered. 

m in memory to register A .  Leave location 
m unaltered: M ,  - Multiply the contents of registers A and 

B and place the product in register A .  

m in memory  register B. Leave location A ,  - Add the contents of registers A and B 
m unaltered. and place the sum in register A.  

F - B, m Fetch the contents of memory location 

Appendix 111: A program  for  a  parallel  computer 

Consider a computer of the type described in Appendix 
I1 with  two arithmetic units and with Y = 1. The 
following program evaluates an nth degree polynomial 
p(x )  = a, + a l x  + . - + a,x” using the second- 
order Horner’s rule. 

Let a,, a,, * , a ,  be stored in  memory locations A ,  
A + 1, , A + N respectively, and let x ,  be stored 
in memory location X.  

with  two  arithmetic units 

Time Unit I cycle Unit 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

F - A , X  
F -   B , X  
M ,  - 
S - A ,  X 2  
Idle 
Idle 
F - B , A + N  
M ,  - 
F - B , A + N - 2  
A ,  - 
F - B, X 2  

Idle 
Idle 
Idle 
Idle 
F - A ,  X 2  
F - B , A + N - I  
M,  - 
F - B , A + N - 3  
A ,  - 
F -  B, X 2  
M ,  - 

Time 
cycle Unit 1 Unit 2 

I 2n 
2n + 1 
2n + 2 

E 2 n + 3  
5 2 n + 4  
= < 2 n + 5  
2 2 n + 6  

2n + 7 
2n + 8 

\2n + 9 

M ,  - 
F - B , A + 2  
A ,  - 
F - B, X2  
M ,  - 
F -   B , A  
A ,  - 
F -   B , R  
A ,  - 
S -  A , R  

F -   B , A +  1 
A ,  - 
F -   B , X  
M ,  - 
S -  A , R  
Idle 
Idle 
Idle 
Idle 
Idle 

a 
‘4: 
8 
E 

L4 

\ 

(2n  
2n + 1 
2n + 2 
2n + 3 
2n + 4 
2n + 5 
2n + 6 
2n + 7 
2n + 8 

,2n  + 9 

A ,  - 
F - B, X2  
M ,  - 
F -   B , A +  1 
A ,  - 
F -  B , X  
M ,  - 
F -   B , R  
A ,  - 
S -   A , R  

F - B, X 2  
M,  - 

A ,  - 
S - A , R  
Idle 
Idle 
Idle 
Idle 
Idle 

F -   B , A  

The value of p(xo) is stored in memory location R. 

Appendix IV: Schedule for third-order Horner’s rule 

The schedule of operations on three identical arithmetic units which operate in parallel using the third-order Horner’s 
rule is : 

Step Number Unit I Unit 2 Unit 3 

1 x0 - x0 Idle  Idle 
2 x ,  . xo2 Idle Idle 
3 an xO3 an- 1 X O  
4 + (a,xO3) = bn-3  an-4 + (an- 1 ~ 0 ~ )  a n - 5  + (an-2x03)  

3 
4 - 2  X O  

3 

= bn-4 = b,,-5 
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Step Number Unit I Unit 2 Unit 3 

In  all  three cases the total number of time steps is: 
n - l n / 3 1 + 3 .  
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