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Minimization Over Boolean Graphs®

Abstract: This paper presents a systematic procedure for the design of gate-type combinational switch-

ing circuits without directed loops. Each such circuit (Boolean graph) is in correspondence with a sequence

of decompositions of the Boolean function which it realizes. A general approach to functional decom-

position is given and, in terms of a convenient positional representation, efficient tests for the detection

of decompositions are derived. These results are employed in the development of an alphabetic search

procedure for determining minimum-cost Boolean graphs which satisfy any given design specifications.

Introduction

This paper presents a systematic procedure for the
design of economical gate-type combinational switch-
ing circuits. The procedure requires no restrictive
assumptions about the primitive gate elements used
and their costs, or about the manner in which they
may be interconnected, except that feedback loops are
not permitted. Thus the method is a general tool for
the design of digital circuits without memory, which
may be combined with conventional state-reduction
and state-assignment procedures to yield sequential
circuit designs as well. An example of a design pro-

* This is Part V of a series of papers!—+ devoted to the development of system-
atic procedures for the design of automata.

Figure 1 A two-out-of-five validity check circuit.
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duced by an IBM 7090 program realizing the procedure
is given in Fig. 1.

The algorithm which we present is in contrast with
most current synthesis work, which deals almost ex-
clusively with special problems such as the design of
two-level AND-OR circuits or of circuits composed of
threshold devices. If carried to completion, the al-
gorithm will yield a circuit of strictly minimum cost,
but the computation required will usually be exces-
sively long. The algorithm will, therefore, be used
principally for the rapid generation of circuits which
are economical, but not necessarily minimal.

A previous paper* gave a design algorithm for the
special case of Boolean trees, in which each primitive
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element has just one output, and there is a single
terminal output. The algorithm of the present paper,
while related to that of Ref. 4, is substantially different
both in concept and in technique.

Section I11, in which the algorithm is presented, is
preceded by two sections which provide the requisite
definitions and mathematical tools. The first section
begins by defining Boolean functions and showing how
they can be represented in a convenient positional
notation using so-called oN- and ofFF-arrays. Boolean
graphs are then defined and procedures are given for
determining the cost and output functions of a Boolean
graph. Finally, the concept of a Boolean graph satisfy-
ing a design specification is defined.

The mathematical results and computational tech-
niques underlying the synthesis algorithm are developed
in Section II, entitled “Decomposition”. This develop-
ment is, to a great extent, motivated by Ashenhurst’s
fundamental paper on the decomposition of switching
functions,® but the approach taken in the present
paper is in many respects more abstract and general.
A decomposition of a function F(x, y) isarepresentation
of the form z = F(x, y) = G(w, y), where w = a(x)
and w, x, y, and z are elements of arbitrary finite sets.
The function G is called the image of the decomposition.
Problems concerning the existence of decompositions
are formulated and solved in terms of a relation of
compatibility between specifications of x. Particular
attention is given to decompositions of the form
F(x’ y) = G(al(x)’ “2(x)a T at(x)’ y)’ where the
indicated functions are Boolean (perhaps incompletely
specified), and x and y represent possibly overlapping
sets of Boolean variables. Efficient computational pro-
cedures, employing operations on the on- and OFF-
arrays defined in Section I, are given for the detection
of such decompositions and the computation of their
images.

In Section III it is shown that any Boolean graph
may be described by a sequence of decompositions,
each, after the first, operating on the image of its
predecessor. This fact leads to an alphabetic search
procedure which is shown to encompass, but not to
treat independently, every valid sequence of decompo-
sitions, and hence to yield a Boolean graph of mini-
mum cost.

An IBM 7090 program for the synthesis of economi-
cal Boolean graphs has been written by Dr. J. R. Wilts
of IBM Endicott. The development of this program
was the joint effort of F. E. McFarlin, J. R. Wilts, and
the authors. The program produced the circuit of
Fig. 1 after a few seconds of computation but, in
almost an hour of further computation, failed either to
yield a less expensive circuit or to establish that the
given one is of minimum cost. Reference 6 describes
the status of this synthesis program.

I. The synthesis problem

The situation that we wish to treat may be represented
as in Fig. 2 by a black box having # input lines on
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which binary signals x,, x5, , X, may be impressed,
and m output lines carrying binary signals z;, z,," - -,
z,,. Our task is to construct the interior of this black
box by interconnecting primitive elements of given
types so that, at any time, the output signals depend
in a specified way on the inputs presently being applied.
We proceed to formalize some of the concepts needed
for the systematic performance of this task.

® 1.1 Boolean functions

Let V" be the set of all n-tuples (ordered sequences of
length n) of 0’s and 1’s. Such an »-tuple is sometimes
called a vertex, to connote the geometric picture of a
vertex of the unit n-cube. Each vertex corresponds
to a configuration of the inputs x,, x,,* -+, X,, and the
required dependence of a given output z; on the inputs
is specified by a Boolean function F' having as its
domain E, a subset of " and V! as its range. If
E = V" F'is called a total Boolean function; other-
wise F' is called a partial Boolean function, and the
set V® — E constitutes the DON'T-CARE conditions.

Most practical design problems require many out-
puts, and the associated Boolean functions usually have
DON’T-CARE conditions.

® 1.2 ON- and OFF-arrays

A Boolean function F of n variables may, of course,
be specified by giving a list of all vertices to which F
assigns the value 1 and a list of all those to which it
assigns the value 0. A more compact notation can be
obtained, however, by using n-tuples of symbols 0, 1,
and x; these n-tuples are called cubes, and represent
sets of vertices obtained by changing the x’s to 0’s and
1’s in all possible ways. For example, the cube Ox1x
represents the four vertices 0010, 0011, 0110, OI11; it
is said to cover these vertices. If W is a set of vertices,
and C, a set of cubes, C is said to be a cover of W if
(1) each vertex of W is covered by at least one cube of
C and (2) each cube of C covers only vertices of W.

We shall specify a Boolean function F by means of
two covers C; and C,, where C; covers the vertices
to which F assigns the value 1 and C, covers the
vertices to which F assigns the value 0. We call C; an
oN-array of F and C,, an OFF-array. The DON’T-CARE
conditions, if any, are thus not covered by either C; or
C,. Our computational procedures do not require that
they be specified explicitly.

Figure 3 gives oN- and orr-arrays for a Boolean
function F (a, b, ¢, d, €). Here each row is a cube, each

[
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Figure 2 Black-box interpretation of the syn-
thesis problem.




column corresponds to an argument. For instance, the
first row A = 10x11 may be thought of as standing for
the vertices 10011 and 10111. In this example there are
DON’'T-CARE conditions, among them the vertices of
110xx.

Qv TOwa

Figure 3 Example of a function defined by ON-
and OFF- arrays C; and C,.

In the terminology of logic, a cube corresponds to a
term, and a cover, to a normal-form expression. For
instance, the first row 4 = 10x11 stands for the term
abde. The oN-array C; corresponds to a normal form
expression consisting of the disjunction of four terms,
one for each cube:

abde v abc v bed v abéde .

Likewise C, defines a normal-form expression for a
function prescribing precisely the conditions for which
Fis 0.

The basic operations employed in the computational
procedures of the following sections are performed on
oN- and orFr-arrays. Two relations between cubes are
particularly important in these procedures. Cubes A4
and B are said to intersect if they cover a common
vertex. Cube A is said to subsume cube B if all the
vertices covered by A are covered by B. If 4 and B are
cubes in a cover, and 4 subsumes B, then the function
described by the cover is not changed by deleting A.

Since the length of the calculations grows rapidly
with the numbers of cubes in the ON- and OFF-arrays,
it is best to go through a preliminary calculation which
makes them as concise as possible. Procedures for
performing such simplifications are given in Refs. 1
and 2.

® 1.3 Boolean graphs

Boolean functions may be used to specify the required
external, or black-box, behavior of a circuit. We next
describe the internal structure of the circuits con-
sidered. It is assumed that a definite set B of primitive
elements is available for use in circuit construction.
Each primitive element may itself be viewed as a black
box, with specified numbers of inputs and outputs,
and with a set of Boolean functions giving the input-
output dependence. Most primitive elements used in
practice realize a single function (AND, OR, NOR, NAND,
MAJORITY, et cetera) which, however, may be “fanned

out” to several output lines, but we allow for the
possibility of an element which realizes several distinct
functions. A positive integral cost is associated with
each element of B.

It is convenient to exclude the NOT element from $B,
and instead to introduce into B all variants of the
primitive elements obtained by putting NOT elements
on some of their input and output lines. Sometimes it
is desirable to consider B as partitioned into sets of
elements having the same distinct output functions,
but differing in their fan-out properties and costs.
Each such set must then be accompanied by fan-out
restrictions specifying the permissible extent of fan-out,
and a specification of the dependence of cost on fan-
out.

The circuits which we construct from elements of B
are in correspondence with Boolean graphs, defined
as follows:

Definition 1. A Boolean graph is an acyclic directed
graph with its nodes and branches labeled as follows:

a) Any node v with s branches directed into it, and ¢
branches directed out, is labeled with the. name of an
s-input, f-output element o € B.

b) The names of the output functions of a are
associated in one-to-one fashion with the branches
directed out of v.

¢) The branches not labeled in (b) (i.e., the input
branches) are labeled with the names of primary input
variables.

A Boolean tree is a Boolean graph composed of
primitive elements having exactly one output line.

It follows from Definition 1 that the signals on the
output lines of a Boolean graph are Boolean functions
of the input signals. Thus, for the graph of Fig. 4 the
output functions are

F' = B1(xy(a, b), d)
F2 81(51((11(&, b)’ C)’ YI(aZ(aa b)’ C))

F? 51()’1(“2(% b), c), a, e) .
It is possible to give a systematic procedure (specifically

Figure 4 A Boolean graph with several outputs.
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the IT*-operation of Refs. 4 and 7) for computing
explicitly oN- and ofrF-arrays for the output functions
of a Boolean graph.”

® 1.4 The minimization problem

We have now shown, on the one hand, how a problem
may be specified by Boolean functions, and on the
other hand, how the output functions of a Boolean
graph are determined. In order to relate these two
types of information, some further definitions are
needed. If F is a Boolean function with domain E, let
F~1(1) and F~*(0) denote the subsets of E for which
Fis required to be, respectively, 1 and 0. Let G be
another Boolean function, with G~!(1) and G~*(0)
similarly defined. Then G is said to be an extension of F
if and only if G~ (1) 2 F~X(1) and G~ 1(0) =2 F~(0).
In other words, G is an extension of F if it agrees with
F wherever F is defined. Suppose we are given a
Boolean graph with output functions z{x;, x5, -"*,
x,), i =1, 2,---, m, and a design problem specified
by the functions wyxy, x5, *, X,), i=1,2,-, m.
Then the Boolean graph is said to satisfy the design
specification if, for each i, z; is an extension of w;.

Suppose further that we associate with any Boolean
graph a cost, such as the sum of the costs of the primi-
tive elements composing it. Then we may set the
following problem:

Problem: Devise an algorithm which efficiently com-
putes, for any design specification and given set B, a
Boolean graph which satisfies the specification and has
a minimum cost.

The present paper gives a solution to this problem.
The key to the solution lies in the theory of decompo-
sition, having its roots in the pioneering work of
Ashenhurst and in the study of projection operators
carried out in Refs. 3 and 4.

The following section, which is self-contained, pro-
vides a new formulation of functional decomposition.
The algorithms use covers of oN- and OFrF-arrays as a
base for computation. They constitute a substantial
improvement over previous procedures.

Il. Decomposition

The ways in which a Boolean graph satisfying given
design specifications may be constructed from primitive
elements are governed by certain decomposition
properties of the Boolean functions to be realized. The
present section gives a general discussion of these
properties.

® 2.1 Abstract decomposition

Let X, Y, Z, and W be arbitrary finite sets, and let E
be a subset of the Cartesian product X x Y. Then
given a function F mapping E into Z, denoted E 5 Z,
we may ask the following questions:
i) Given o, X % W, does there exist a function
G, W x Y S Z, such that,

for all (x, y)e E, F(x,y) = G(x(x), y)? )
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ii) Under what conditions do there exist functions
o, X5 W,and G, W x Y S Z, such that (1)
holds? The representation (1) is called a de-
composition of F; G is called the image of the
decomposition.

The answer to question (i) may be formulated in
terms of a relation of compatibility between elements of
X. We say that x; € X and x, € X are compatible with
respect to F (denoted x; ~ x,)if, for all y € Y such that
(x1, ¥)€Eand (x,, y) € E, F(xy, y) = F(x;,»); otherwise,
x, is incompatible with x,, denoted x; ~ x,.

Proposition 1. Given F and a, defined above, there
exists G such that (1) holds if and only if, forall x, e X
and x, e X,

a(x;) = a(X,) = X ~ X, 2(a)
or, equivalently,
Xy v Xy =>axy) # ox;) . 2(b)

Proof. Let ¥ W be in the range of «, and let
a Y%) = {x;, i=1,2,+ -, q} be the elements of X
mapping into %. Then, if (2a) holds, for each yeY
there exists a unique element {eZ such that, if
x;ea” ' () and (x;, y) € E, F(x;, y) = { (unless, for all
x;ea”1(%), (x;, y) ¢ E). Thus we may define G(%, y) = (;
the function G may similarly be defined consistently
for each element of W x Y. Conversely, if (2a) does
not hold, there exist (x;, y)eE, (x,, y)e Eand XeW
such that F(x,, y) # F(x,, y) and a(x;) = a(x,) = X.
Then G(X, y), however defined, cannot agree with
both F(x;, ¥) and F(x,, y).

The two situations considered in this proof are
depicted in Figure 5.

We may also give a simple answer to the second
question posed above, in which only F is given, and
both « and G are at our disposal. The crucial con-
sideration here is the number of elements in W, for if
W has too few elements it will not be possible to pro-
duce a function such that all elements of X mapping
into the same element of W are compatible. These
considerations are made precise in Proposition 2, which
follows easily from Proposition 1.

Proposition 2. If k is the least integer such that X
may be partitioned into k classes of mutually com-
patible elements, then there exist « and G such that (1)
holds if and only if W has at least k elements.

In order to apply Proposition 2, we must supply one
missing link—the determination of the number k.

Figure 5 Situations encountered in the proof of
Proposition 1.




If Fis total, this is particularly easy. For in this case,
x; ~ x,if and only if, forall y e ¥, F(x;, ) = F(x,, y).
Compeatibility is thus an equivalence relation, and k
is simply the number of maximal equivalence classes.
But if F is undefined for some elements of X x 7Y,
the following situation is possible:

Xy ~ X, X3 ~ X3, X; ~ x5. Compatibility is no longer
an equivalence relation, and the determination of a
minimum “cover” of X by sets of mutually compatible
elements is nontrivial. We shall return to this problem
in Section 2.2, where specific computational routines
are presented.

¢ 2.2 Decomposition tests for Boolean functions

At this point we depart from our general discussion of
decomposition, and make some specializations appro-
priate to the synthesis of Boolean graphs. We consider
decompositions of the form

F(xl’ x25 Tty xn) = G(dl(l)), o‘Z(U)a Y (1,(1)), W) > (3)

where

1) Each of the indicated functions is Boolean.

2) v and w, respectively, are specifications of subsets
A= {Ul’ Upy * " Ul} and k= {wh Wy, "%, wm} ofinput
variables, together exhausting x;, x,, * **, x,. The de-
composition is called disjunctive if 1 n p is empty
(ie., n =10+ m), and otherwise, nondisjunctive
n<l+m).

In the disjunctive case, (3) is a special case
of (1), with the sets and mappings specialized as
follows: X =V, Y=V" W=V',Z=V, V"5
prim G, 1oyl s V' where o is represented by the
t-tuple (o, oy, -, ®,) of Boolean functions. In the
nondisjunctive case (3) is not, strictly speaking, a
decomposition. For if we take X = V'and Y = V™,
then the domain of F is not X x Y. This difficulty
is easily surmounted. We first define a mapping S,
y* S pi*m o in which (x;, x5, ", x,) maps into
(Ul’ Dy, *t 05 Uy Wy, W, ° 00, Wm); thus, if A = (xl’ X2 X3)
and g = (x5, X3, x4), $(1,1,0,1) = (1, 1,0, 1, 0, 1).

Then we may define the function F(vy, v,, - -+, v}, Wy,
Wy, * 0, W,,) as follows: if (v, vy, = = <, v, Wi, Wy, =0,
Wm) = S(x1, X3, ***, X,), then F(vy, vy, -+, vy, Wy,

Wa sty W) = F(x;, x5,°*+, Xx,). Note that F is
necessarily a partial function, since ¥'*™ has more
elements than V", and S is one-to-one.

For example, again assuming that A = (x;, x,, Xx3)
and p = (x5, x3, x0), F(1, 1, 0, 0, 1, 1) is undefined,
since it could not have been derived from any specifica-
tion of (x;, x,, X3, X4). Such combinations are called
inconsistent. Instead of (3) we can now write F(v, w) =
G(oy(v), ay(®), - -+, afv), w), which is, in the strict
sense, a decomposition. But we shall refer to (3)
also as a decomposition, and shall show that it is
possible to test directly for such decompositions with-
out explicitly forming the artificial function F.

The class of decompositions defined by (3) is more
general than those treated by previous writers.
Ashenhurst, in Ref. 5, has made a thorough study of

disjunctive decompositions such that F is total and
t = 1. In unpublished papers Ashenhurst® and Curtis®
also considered the nondisjunctive case, but retained
their other assumptions.*

A decomposition of F is directly in correspondence
with a circuit realization of the type shown below, where
the blocks G and a represent Boolean graphs realiz-
ing, respectively, the functions G and o, a,, - - -, a,.

e

ay QA2 o v o |OY

In the synthesis algorithm of Section IIT we consider
only decompositions such that the block « can be
realized by a single element of $B, but it is also useful
to consider procedures in which this requirement is
not imposed.

Let us suppose that a given function Fis represented
by covers C; = {a’, i=1,2,-+-, n} and C, = {¥,
j=1,2,+-+, m}, where the a' and b’ are cubes, and
that A and p are specified. Then if Propositions 1 and 2
are to be employed for the detection of decompositions,
it is necessary to determine which specifications of 1 are
compatible. In the disjunctive case (1 n p empty),
any cube @ of C; or C, can be divided into a ‘‘A-part
a;,” and a “p-part” a,, which are, respectively, cubes
of V'and V™, by collecting coordinates associated with
elements of A and y, respectively. Thus, for the cube
205 vith 1 = {a ¢} and j = {b, d}, the L-partis
11, and the p-part is Ox, The covers C; and C, may
therefore be written as follows:

Cl = {(ai_b aip)li = 1’ 23 T n}9 and

C0={(b1b bju)l.]= 1’ 2’ T m}’

and in terms of these covers we may state the follow-
ing lemma, which follows directly from the definition
of compatibility.

Lemma 1. Given vy e V' and v, € V', vy ~ v, if and
only if there are cubes (a,, @',) € C, and (&'}, b’} e C,
such that

i) @', intersects b’, _ .
i) either a'; covers v, and &’; covers vy, or a’;
covers v; and b/, covers vg.

Example 2.1 Suppose F(a, b, ¢, d) is given by the
covers C; and C, shown below, and that A = {a, b}
and p = {c, d}.

® Note added in proof: In a recent paper, Curtis!? discussed disjunctive
decompositions of total functions, without requiring that t = 1.
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C

1 Co
abcd abcd
at 101 x bt 11 x1
a2 1x10 b 1 x 0 x
a® 01 xx P x00 x

Then, inspecting in turn each pair a’, b/, we find:

a', intersects b', 10 ~ 11

a’, intersects b', 01 ~ 11

a®, intersects b%, 01 ~ 1x (i.e., 01 ~ any vertex
covered by the cube 1x).

a®, intersects b°, 01 ~ x0

By the lemma, the above computation exhibits all
pairs of incompatible vertices. Propositions 1 and 2
may now be employed to answer various questions
concerning the existence of decompositions. For
example: .

1) Can F be written in the form F(a, b, c, d) =
G(ola, b), ¢, d), where a(a, b) = a-b? No, because
a(0, 1) = a(1, 0) = 0, but 01 ~ 10, contradicting the
condition of Proposition 1.

2) Does there exist any Boolean function o such
that F(a, b, ¢, d) = G(a(a, b,), ¢, d)? Since o is required
to be a Boolean function, its range is V', which has
two members. Thus, according to Proposition 2, a
decomposition of the type sought exists if and only if
V2 can be partitioned into two sets of mutually
compatible elements. The following diagram shows
the elements of V2, with lines connecting pairs of
compatible elements. It is clear that a suitable partition
cannot be found. We note in passing that 10 ~ 00,
00 ~ 11, but 10 ~ 11; this is an example of the non-
transitivity of the relation ~, which is possible
because F is a partial function.

@

O 0

Lemma 1, as stated, applies only to the disjunctive
case. In order to apply it to the nondisjunctive case,
one can form F(v, w) from F, and then test for dis-
junctive decompositions of F. This suggests the
following problem: given covers C; and C, defining
F, find covers €, and C, defining F. An obvious pro-
cedure is to replace each cube of C; or C, by a cube
in which the coordinates common to A and p are
repeated. Thus, if 4 = {a, b, ¢} and u = {c, d}, the
cube i 8 lc zwould be replaced by the cube Z ?) i i‘ i
This procedure is nearly correct, but there is a pitfall.
If we apply the procedure to the cube abed

10xx
obtain the cube ‘11 8 ; ; fc” which covers not only the

we
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consistent cubes 1000 x and 101 1 x, but also the
inconsistent ones 1001 x and 1 0 1 0 x, which should
not appear in C; (or C,). Thus, the situation is now
complicated by the presence of x’s in coordinates
common to 4 and u. If a cube in C,; has s such x’s, it
must be replaced by 2° cubes in C;, corresponding to
the 2° consistent assignments of the values O and 1 to
these coordinates. In practice €, and C, are not
actually formed, but certain columns in C; and C, are
thought of as appearing both in the A-part and in the
j-part.

Example 2.2 We consider the function F defined in
Example 2.1, but assume that 1 = {a, b}, and u =
{b, ¢, d}. Thus a', does not intersect blu, due to the
presence of the b-coordinate in the p-part. The
following incompatibilities are found:

01 ~ 11
i=3,j=2 0l~11 (N.B.:0l~ 10).

Since 00 ~ 01,00 ~ 10,and 01 ~ 10, F can be written
in the form F(a, b, ¢, d) = G(a'b, b, ¢, d).

There is an alternate way to reduce nondisjunctive
decompositions to disjunctive ones. One can simply
treat the variables in A n u as if they were Boolean
functions of one variable produced by the primitive
element associated with the decomposition. Thus the
decomposition of Example 2.2 may be interpreted in
two ways, as follows:

(@) A= {a, b},
p=1{b,c,d}, a: V?* % V' oaa, b)=a-b

() 2= {a, b},
p={c,d},a:V*> V2 aa, b)
=a-‘b, ay(a, b)=b;

in case (b), Proposition 1 can be applied directly,
without the construction (explicit or implicit) of an
artificial function F. The compatibility conditions of
Example 2.1 must be considered:

i=3j=1

10~ 11 (1, 0) # ay(1, 1)

01 ~ 11 2,00, 1) # a,(1, 1)

01~ 1x  2,(0, 1) # a,(1, 0); ¢,(0, 1) # ay(1, 1)
01 »x0  o,(0, 1) # a,(0, 0); 2,(0, 1) # a5(1,0) .

The inequalities show that any two incompatible
vertices are assigned different values of a = (oy, ),
and we have a second verification of the validity of the
decomposition.

In general, Lemma 1 can be applied in two ways:

a) In conjunction with Proposition 1, it can be
used to determine, given F, A, u, and {oy, o5, - * ,
a,}, whether there is a decomposition of the form
F = G(o,(v), o5(v), - - - a,(v), w). This is done simply
by determining which incompatibilities exist, and
ascertaining whether any of them violate the conditions
of Proposition 1.




b) In conjunction with Proposition 2, it can be
used to determine, given F, A, u, and ¢, whether there
exist functions a,, a,, * - -, «, such that (1) is satisfied.
In the language of Proposition 2, W, the range of
o = (o, &%y, "+ *, &), has at most 2° elements, and a
decomposition exists if and only if k¥ £ 2°, where k is
the minimum number of mutually compatible elements
into which V', the domain of a, can be partitioned.
Moreover, if k > 2%, all Finput, -output elements of
B are eliminated without the necessity of testing each
separately. The information conveyed by the value of
k is therefore considerable, and we next consider how
k can be calculated.

® 2.3 The determination of k

The first step of the calculation is to compute all
subsets S = V! having the properties that

1) Any two elements of S are compatible.

2) If S « T < V*, T does not satisfy (1).
The procedure used to compute these maximal com-
patible sets is analogous to one employed by R. E.
Miller!® in an algorithm for the reduction of states in
sequential machines. The sets will be represented by
sequences of ZEROS and ONEs, with a position for each
element of V'; the presence of a ONE signifies that the
corresponding element is contained in the subset
of V' represented by the sequence. Given C, =
{(ai).’ aiu)’ i=1,2--, n}a and Co = {(bj).,.bju)’jz 1,
2, -, m}, we define B’ to be the set of &7, such that
b/, intersects a’,. Then every vertex in a'; is incom-
patible with every vertex in B’; and no maximal com-
patible set can contain vertices from both sets. We
represent a‘; and B’, by ZERO-ONE vectors A’ and B!
having ONEs exactly in those positions not correspond-
ing to vertices in a‘; and B',, respectively. The com-
putation of the maximal compatible sets proceeds as
follows:

1) Let S° be a single vector having every element a

ONE, representing the set of all vertices of V.
2) Do the following successively for i =1, 2, -+ -,
n:

for each seS5*7!, form s-Af and s-B’, where

denotes logical intersection. From this set of

vectors, delete successively all vectors covered by

other vectors (V' covers W if V has a ONE where-

ever W does); the resulting set is S°.
3) The sets represented by elements of S” are the

maximal compatible sets.

Example 2.3
R SR Co
a, a, b, bj”
1 11 x01x0 O0x 1xx0x
2 01 O0xx1x 10 01xx0
3 11 x0x0x 11 x1101
4 x1 xxx11 0x 111x0
S 1x xx0x1 00 xxxx0O
6 11 xO0xxx 10 11100
00 1000x

i d', B, Al B S
00011011 00011011 00011011
1 11 0x 1110 0011 1110
00 0011
20110 1011 0101 1010
00 0011
0100
311 0x 1110 0011 1010
00 06100
00 0011
4 x1 00 1010 1111 1010
0100
0011
5 1x 0x 1100 0011 1000
00 0100
0011
6 11 0x 1110 0011 1000
00 0100
00 0011

The maximal compatible sets are: {00}, {01},
{10, 11}. Once the maximal compatible sets have
been obtained, it is necessary to select a minimum
cover of ¥, i.e., a minimum number of maximal com-
patible sets having ¥* as their union. This can be done
for example, by means of the general extraction
algorithm of Ref. 3. Given such a minimum cover con-
sisting of the sets N, N,, ' -+, N,, we may obtain a
cover with the same number of disjoint sets (and there-
fore a partition of V') as follows:

N =N, fori>1,
N’i=Ni—'(Nin(N1UN2U"'UNi_l).
® 2.4 Single-output decomposition

Usually a primitive element of the type encountered
in practice realizes a single output function, although
that function may be associated with several output
lines. Accordingly, decompositions of the form
F(v, w) = G(a(v), w) where « is a Boolean function,
have special importance, and a special procedure will
be given to determine whether they exist.

We shall take the existence of a single-output de-
composition as a hypothesis, and, if no decomposition
exists, will obtain a contradiction. It follows from this
hypothesis that ¥ can be partitioned into two sets of
mutually compatible elements, and the following
“antitransitivity” property is therefore implied: if
vy ~ vy, and v; ~ v,, then vy ~ v,.

We shall give a computational scheme based on
this assumed property, and requiring calculation of
the “incompatible pairs” a’,, B'; defined in 2.3.
In what follows, P* will denote a set {(pl, p}), (p3,
p?), -} of pairs of covers such that every element
of p} is incompatible with every element in p}. The
computation proceeds recursively according to the
following rules:

233
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1) P is empty.

2) If any cover pl in an element of P~ ! intersects
both a'; and B',, a contradiction has been found
and no decomposition exists. Otherwise, P’ is
formed from P~ ! as follows:

a) if B, is empty, P = P'™1,
b) if neither a’;, nor B, intersects any p,, the
new pair (a';, B',) is simply adjoined to the
list: PP = P~ U {(d',, B)).
¢) if some intersection does exist, all pairs
intersecting either o', or B’; are replaced by
a single pair (a’; U S%), (B!, U T"), where
S* = {p!|p} intersects a'; or p!_, intersects
B}
T* = {pl|p} intersects B, or p}_, intersects
a'l}.
If the process terminates without a contradiction,
then a decomposition exists for any Boolean function
a such that, if vye p} and v, e pl _, al(vg) # alvy).

Example 2.4

We treat the problem of Example 2.3:
i 4, B, P
1 11 0 x {(11, 0x)}
2 01 x 0

pl intersects both %, and B?,; no single-output de-
composition exists.

Example 2.5
C, Co

abcdef abcdef

1 xx01xx 0x000x
2 xx0x1x x1000x
3 xx100«x xx0000
4 1110 xx 101 x1x
5 01 x10x 1111 xx
6 10x10x 0x1011
x0101 x

x11110

a) A={a,b,cl,u=1{d e [}

i tzi,1 B, P

1 xx0 101 xx0 101
T (W]
x11

2 xx0 101 xx 0 0x1
111 {( xOl)}
0x1 x11
x01
x11

3 xx1 0x0 {{xx0 xx1)}
x10
xx0

4 111 0x0 x x 1 intersects both a*,
0x0 and B*;; no single-
xx0 output decomposition
101 exists.
0x1
x01
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b)A={a b, ch,u={def}

i a, B, P!
1 x x 0 empty empty
2 xx0 empty empty
3 xx1 empty empty
4 111 101 111,0x1
0x1 {( xOl)
x 01
5 0lx 111 111,0x1
x01)
6 10x 111 111,0x1
( xOl)

For any Boolean function ¢« such that «(0, 0, 1) =
(0,1, ) = (1, 0, 1) # a(l, 1, 1), there is a decom-
position of the form G(a(a, b, ¢), c, 4, e, f).

® 2.5 Vertex functions

Primitive devices constructed of diodes, transistors, or
vacuum tubes usually realize Boolean functions of a
particular type—the vertex functions; « is said to be a
vertex function if there is a distinguished vertex v, such
that a(v,) # a(v), where v is any other vertex. The
AND, OR, NAND, and NOR are vertex functions; the
EXCLUSIVE OR and MAJORITY are not. It is particularly
easy to give conditions for the existence of “vertex-
type”” decompositions.

Lemma 2. There exists a decomposition F(v, w) =
G(x(v), w), where o is a vertex function, if and only if
there is a vertex v, such that, whenever a'; and B, are
both nonempty, either a’, = v, or BY; = v,.

Thus, in Example 2.5a, @', = (x x 0),B'; = ()16 (1) i)’

we can assert, by Lemma 2, that no single-output
vertex-type decomposition exists. In Example 2.5b
there is a single-output vertex-type decomposition
withpy, =11 1.

Decompositions involving several vertex functions
are characterized by the following lemma.

Lemma 3. There exists a decomposition of the form
F(, w) = G(e;(v), a,(v), -+, a,v), w), in which the
a; are vertex functions, if and only if V' has a subset
of 2! — ¢ mutually compatible elements,

Proof. Let v; denote the distinguished vertex for a;.
Then two elements of V' yield the same values for
oy, oy, -+ + o, if and onlyif neither element is one of the
v;. By Proposition 1, therefore, the decomposition is
valid if and only if any two elements of V' — {v;}
are compatible. The given hypothesis is clearly
necessary and sufficient for the existence of a suitable
set of v;.

® 2.6 The image of a decomposition

Through the use of Propositions 1 and 2 it has been
possible to characterize decompositions of a function
F without explicitly specifying the image G. In the
synthesis algorithm of the next section, however, we
shall be concerned with sequences of decompositions,




each operating on the image of its predecessor, and
the computation of the image will therefore be an
essential link in the process. The computation of
covers D; and D, specifying G, given C; and C,,
covers for F, and the functions oy, a,, "+, a,, is a
simple mechanical process. First we consider the dis-
junctive case. For each cube (a';, a')) in C;, let 4, be
the set of values assumed by «ay, «,, -« - a, for argu-
ments in a';. Then D,, the oN-array for G, is given by
{4}, x a',}; Dy is formed in a similar way from C,,.
Example 2.6. The following function exhibits a de-
composition of the form F(a, b, ¢, d, ¢) = G(a,(a, b),
ay(a, b), ¢, d, e), where oy(a, b)=a'b, and
ay(a, b) = a-b.

G Co
abcecde abcde
1 xx00x 1 00x1x
2 01x1x 2 11x1x
3 10x1x 3 x110x
4 0010x 4 1 x10x
The computation of D, is as follows:
A A
ab oa,
1 x x 00
01
101 Ox
2 01 00( x0
3 10 00
4 00 01
D, is given by the following cover:
o a,c de
0x00«x
x000x
00x1«x
00x1x
01160 «x

Note that, although C, cannot be simplified, the third
and fourth cubes of D, are identical. In this example,
D, is as follows:

x010«x

The image of a nondisjunctive decomposition may
be computed by applying the above procedure to a
derived disjunctive problem, obtained either by forming
the function F or by treating the variablesin A n u as
functions «; associated with the decomposition. In
Example 2.2, we found a decomposition of the form
Fa, b, ¢, d) = G(a*b, b, ¢, d). Covers for the given
function F and the image G are as follows:

F

O ==
- Oo N
H o —_0
X X o8,
%X~ =8
oOx =N
SOSOxR o
X X =R

G
D, D,
abbcd abbcd
0 01 x 1 1x1
1 110 0 00 x
0 1 xx 1 10x

fli. The synthesis algorithm

The fundamental processes required to detect decompo-
sitions and to compute their images have now been
developed. In this section we show how these processes
can be employed as “‘subroutines” in the determina-
tion of minimum-cost Boolean graphs.

The first step is to establish precisely the description
of Boolean graphs by sequences of decompositions.
Since Boolean graphs are acyclic, any Boolean graph
must contain at least one primitive element for which
no input is the output of another element. Thus, any
Boolean graph may be shown schematically as in

Fig. 6.
lV] lvz e lvt

ay a2 <o |24

.-

Figure 6 Decomposition of a Boolean graph.

Here v;, vy, **, v; are the inputs to the element
o) o, &y, -, o, are the distinct output functions of «
(possibly fewer in number than the distinct output
lines, since fan-out is allowed), and wy, w,, * -, w,
are the distinct primary inputs to the elements of the
graph other than «. The indicated decomposition of
the graph is closely related to the algebraic decom-
positions of the output functions F'—for each such
function must be expressible as

Fi = Gi(dl(vl, v

Wi Wy ' "t Wp)

0, a(Ug, ),

Any Boolean graph may, in fact, be specified com-
pletely by a sequence of decompositions. Figure 7
shows a single-output Boolean graph, and (4) gives
a sequence of decompositions specifying the graph.

F(a, b, ¢, d) = G(as(a, b, d), b, ¢, d)
Gl(al’ b’ C, d) = GZ(ﬁl(b9 d)a ﬁZ(ba d)9 al; C)
Gy(By, B2 2y, €)= Ga(v1(21, B1)s B1s Bas c) 4

G3(Y11 ﬁb BZ, C) = G4(51(ﬂ2, C), Y1 ﬁl)
G4(d1, 15 B1) = j(es(y1» B> ), where j(x)=x.
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fa——— o~
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i} {7 2

Ty P

€

te

Figure 7 A single-output Boolean graph.

Each decomposition corresponds to “factoring off”
an element of the graph, and the successive G; are the
functions realized by the remaining subgraphs. There
are, altogether, four distinct sequences of decompo-
sitions which describe this graph, since the element
B could have been taken before o, or &, before y.
In general, a single-output Boolean graph can be
specified by a sequence (perhaps not unique) of the
form

F(vg, wo) = Gl(“i(”o), T 0‘:11 (v0), Wo)
G(vy, wy) = Gz(“% ), -, 05:22 (v)), wy) ()

G,,(U,,) = j(“1"+ 1(vn)) .

It can be shown by an inductive argument that any
sequence of the form (5) describes some Boolean graph
provided that

a) each set {ol, ob, - - - ai,} consists of the distinct
output functions of some element o’ € B,

b) fan-out restrictions are satisfied; this is easily
checked, since the number of lines on which a
given signal appears is just the number of v; in
which it occurs.

Any sequence of the form (5) satisfying (a) and (b) is
called admissible. A sequence satisfying all these con-
ditions, except that the final image is not of the form
J( "t Yv,)), is called an admissible subsequence.* An
admissible sequence or subsequence is called valid for a
given function F if and only if the indicated decompo-
sitions of F and its successive images G, G, -, G,
exist, according to the tests developed in Section II.
The determination of a minimum-cost Boolean graph
realizing F now reduces to the following: find a
minimum-cost sequence valid for F.

Before giving the synthesis algorithm, we make some
preliminary assumptions. We assume that each
primitive element has a positive integral cost, that the
cost of a Boolean graph is the sum of the costs of its

¢ édgnissible sequences and admissible subsequences are analogous, re-
spectively, to the projective words and partial projective words of Ref. 4.
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primitive elements, and that there is an a priori upper
bound M, on C(F), the minimum cost of realizing F.
We assume also the existence of some alphabetic
ordering of the possible decompositions of any given
function, (each specified by a triple (o, A, p). Finally,
we assume the existence of a means of obtaining, for
any Boolean function G, /(G;), a lower bound on
C(G)). Many such lower bounds are available:

1) IG) =0.

2) The bound obtained in Appendix A of Ref. 4,
which is determined by the number of variables
on which G, depends.

3) If G, is a function of three or fewer variables, the
value given in a table of optimum realizations of
three-variable functions, obtained either by the
algorithm to be presented, or by a procedure due
to M. H. McAndrew.'! McAndrew’s procedure
also gives lower bounds for the costs of many
functions of more than three variables.

4) I(G)) = max I(H), where L(G;) is the set of

HeL(Gy)
three-variable subfunctions of G; obtained by
setting primary inputs to constant values or
setting primary inputs equal to each other.
The synthesis procedure consists of a “tree search”,
which traces through the valid sequences in alphabetic
order, seeking a realization of minimum cost. These
sequences are built up one decomposition at a time.
Thus, at a general stage in the process, we consider
some valid subsequence S which may be represented
as follows:

(a!, Ag, wo) (a2, A1, 1)
F— 5 G ——G,—

(a*, Ak~ 1, - 1)
- Gk— 1 —_— Gk .
Certain tests can be applied to determine whether
sequences containing this subsequence need be con-
sidered. First, we wish to prevent the formation of
several different subsequences which specify the same
circuit structure, but take the primitive elements in
different orders. Simple tests can be given which
eliminate all but one member (the first alphabetically)
of such a class of equivalent sequences.
The second means of terminating subsequences is
through the use of cost bounds. Suppose that

cost (a') + cost(a?) + - -+ + cost(e*) + I(G) > M,

where M is the best available upper bound on C(F).
Then any valid sequence for F, obtained by extending
the subsequence .S, will yield a circuit costing more than
M, so that S need not be considered further. This use of
cost bounds is highly important; for the termination
of a subsequence at a relatively early point prevents
the formation of an enormous number of uneconomical
realizations of F.

Whenever a subsequence S is terminated, its final
decomposition (¥, A,_;, ) is deleted, and the next
decomposition in alphabetic order applicable to G,
is sought. If no such decomposition is found, the
process ‘‘backs up” to G, _,, and so on until some valid
decomposition is found; decompositions are then




sought which extend the subsequence terminating in
this new decomposition.

The synthesis procedure is clearly finite, since, under
the given cost assumptions, the number of subsequences
having costs < M, is finite. Moreover, the procedure
yields all Boolean graphs of minimum cost, since every
valid sequence is either generated or ruled out by a
cost bound when partially formed.

The minimization algorithm is indeed laborious,
but only to a degree commensurate with the difficulty
of the problem solved. The authors know of no other
systematic synthesis procedure which approaches the
generality of this algorithm. Moreover, the algorithm
is of definite practical value. When the program
described in Ref. 6 assumes its final form it is expected
to determine a minimum-cost circuit for nearly any
four-variable problem in less than ten minutes on the
IBM 7090. Many problems in five and six variables
should also admit of solutions in reasonable lengths
of time.

In larger problems it will usually be necessary to
accept an approximate solution. Fortunately, it is
possible to arrange the alphabetic ordering of decom-
positions so that good approximate solutions tend to
occur early in the computation. For example, priority
can be given to a decomposition represented by the
triple (o, 4, p) if the overlap between A and u is small,
or if « is an inexpensive element of B. Through the
use of such heuristics, it has proved possible in many
cases to obtain circuits which, although they are not
known to be of minimum cost, appear quite economical,
and could not have been obtained by any other
systematic procedures known to the authors.

The following simple example illustrates some
aspects of the algorithm,

Example 3.1. Suppose that the function F(a, b, ¢, d) to
be realized in the following:

% O8
= OQ-Q
—w o
SO
X =% 8
=% X SN
OO a°
8 OX =R

and that B is specified as follows:

Function  Cost
Xy
xy
Xy
xXuy
XUy
Xuy
xy
XUy

DR I M ™R
HPLWLWLWNDNODN -~

Clearly, any function of » variables requires at least
n — 1 elements for its synthesis, and a lower bound [/
on the cost of a function of » variablesis n — 1.

We assume that decompositions are considered in
increasing order of the number of variables in A N ,
and, within this criterion, in order of increasing cost.

Thus the first valid sequence of decompositions con-
sidered is the following:

F(a, b, ¢, d) = Gi(n(a, b), ¢, d)
= Gz(“(“(aa b)’ C), d) = j(oc(oc(cx(a, b)a C), d)) .

This sequence defines the Boolean graph of Fig. 8,
which has a cost of 3. Then M = 3 is an upper bound
on C(F), and the cost bound rules out all decom-
positions except those such that 1 n u is empty and
the primitive element is a. No further decompositions
of this kind can be found, and the circuit of Fig. 8 is
the unique minimum-cost realization of F.

b

Figure 8 A minimum-cost Boolean graph.

The synthesis procedure for Boolean graphs with
several terminal outputs follows the lines of the single-
output procedure, but is considerably more complex.
The essential reason for the increased complexity is
that, in general, each output function will not depend
on all the signals generated within the circuit. Thus,
in the Boolean graph of Fig. 4, the output function
F3 depends on a,, 7, and {;, but not on oy, f;, or ;.

Thus the influence of any given element must be
specified separately for each output function. This is
done through the use of multiple decompositions having
several components, which are themselves decom-
positions of individual output functions. All the com-
ponents of a given multiple decomposition specify the
same clement w € B applied to the same A-part, but the
u-part is specified independently for each component,
and a different subset of the outputs of @ may apply to
each terminal output. If this subset of outputs is
empty, for a given terminal output, then the associated
component simply represents an identity function, and
can be omitted. The Boolean graph of Fig. 4 is
described by the following sequence of multiple
decompositions:

Fl(a: b9 d) = Gl(al(a’ b)a d)
Fz(a’ b’ C) = G%(al(a, b)’ aZ(a: b)5 C)
F3(a, b, c, e) = Gi(a,(a, b), a, c, €)
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Gi(ay, d) = j(B(ay, D))

G%(alﬁ a2a C) = G%(?l(ab C)9 al; C)

Gi(al’ a, c, e) = Gg()’l(az, C), a, e)
G%(yl’ Ay, C) = Gg(él(ala C)7 V1)
G301, 70 = j(e1(61°71))

Gg('yb a, e) =j(€1(y1’ a, e)) .

A sequence of multiple decompositions is called
admissible if each of its component sequences is
admissible and fan-out restrictions are satisfied, and
valid if it is admissible and each of its component
sequences is valid for the associated terminal output.
The cost associated with such a sequence is not¢ the
sum of the costs of its component sequences, but
rather the sum of the costs of the primitive elements
associated with multiple decompositions in the
sequence.

The synthesis problem for Boolean graphs with
several outputs thus reduces to the determination of
all valid sequences of minimum cost. An alphabetic
search procedure patterned after the single-output
procedure can be used for this calculation. The
number of valid sequences of multiple decompositions
is very great, however, and hence the time required for
strict minimization tends to grow quite large.
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