
J. 
R. 

Minimization  Over  Boolean 

Paul Roth 
M. Karp 

G rap hs* 

Abstract: This paper presents a systematic procedure for  the design of gate-type combinational  switch- 
ingcircuitswithoutdiredtedloops. Eachsuchcircuit(Boo1eangraph) is  in correspondencewithasequence 
of decompositions of  the Boolean function which it realizes. A general approach to  functional decom- 
position i s  given and, in terms  of a convenient positional representation, efficient tests for  the  detection 
of decompositions are derived. These results are employed in the development of an alphabetic search 
procedure for  determining  minimum-cost Boolean graphs which satisfy any given design  specifications. 

~ Introduction 

This  paper presents a systematic procedure for  the 
design of economical gate-type  combinational switch- 
ing circuits. The procedure requires no restrictive 
assumptions about  the primitive gate elements used 
and their costs, or  about  the  manner  in which they 
may be interconnected, except that feedback loops are 
not permitted.  Thus  the  method is a general tool  for 
the design of digital circuits without  memory, which 
may  be  combined  with  conventional  state-reduction 
and state-assignment  procedures to yield sequential 
circuit designs as well. An example of a design pro- 

1 * This is Part V of a series of papers"' devoted to the development of system- 
atic proccdures for the design of automata. 

' Figure 1 A two-out-of-five validity check circuit. 

duced by an IBM 7090 program realizing the procedure 
is given in Fig. 1. 

The  algorithm which we present is in  contrast with 
most  current synthesis work, which deals almost ex- 
clusively with special problems  such  as  the design of 
two-level AND-OR circuits or of circuits  composed of 
threshold devices. If carried to completion, the al- 
gorithm will yield a  circuit of strictly minimum  cost, 
but  the  computation  required will usually be  exces- 
sively long. The algorithm will, therefore, be  used 
principally for  the  rapid  generation of circuits which 
are economical, but  not necessarily minimal. 

A previous paper4 gave a design algorithm  for  the 
special case of Boolean trees, in which each primitive 

i OR 

a 

b 

e 

a 

b 

AND  AND 

C - 
d 

OR AND . 
C 

d 
OR 

221 

IBM JOURNAL APRIL 1962 



228 

element has  just  one  output,  and there is a single 
terminal output.  The algorithm of the  present  paper, 
while related to  that of Ref. 4, is substantially different 
both in  concept and in technique. 

Section 111, in which the  algorithm is presented, is 
preceded by two sections which provide the requisite 
definitions and mathematical  tools.  The first section 
begins by defining Boolean functions and showing how 
they can be represented in a convenient positional 
notation using so-called ON- and  ow-arrays. Boolean 
graphs are then defined and procedures are given for 
determining  the  cost and  output functions of a Boolean 
graph.  Finally, the concept of a Boolean  graph satisfy- 
ing  a design specification is defined. 

The mathematical results and  computational tech- 
niques underlying the synthesis algorithm  are developed 
in Section 11, entitled “Decomposition”.  This develop- 
ment is, to a  great  extent,  motivated by Ashenhurst’s 
fundamental  paper  on  the  decomposition of switching 
functions,’ but  the  approach  taken in the present 
paper is in  many respects more  abstract  and general. 
A decomposition of a function  F(x, y )  is a representation 
of the  form z = F(x, y )  = G(w, y) ,  where w = .(X) 
and w, x, y, and z are elements of arbitrary finite sets. 
The  function G is called the image of the  decomposition. 
Problems  concerning  the existence of decompositions 
are formulated and solved in terms of a relation of 
compatibility between specifications of x .  Particular 
attention is given to decompositions of the  form 

indicated  functions  are Boolean (perhaps incompletely 
specified), and x and y represent possibly overlapping 
sets of Boolean variables. Efficient computational  pro- 
cedures, employing  operations on  the ON- and OFF- 
arrays defined in Section I,  are given for  the detection 
of such decompositions and  the  computation of their 
images. 

In Section I11 it is shown that  any Boolean graph 
may be described by a sequence of decompositions, 
each,  after  the first, operating on the  image of its 
predecessor. This  fact  leads to  an alphabetic search 
procedure which is shown to encompass, but  not  to 
treat  independently, every valid sequence of decompo- 
sitions, and hence to yield a  Boolean  graph of mini- 
mum cost. 

An TBM 7090 program  for  the synthesis of economi- 
cal Boolean graphs  has been written by Dr. J. R. Wilts 
of IBM Endicott. The development of this  program 
was the  joint effort of F. E. McFarlin, J. R. Wilts, and 
the  authors.  The  program produced  the  circuit of 
Fig. 1 after a few seconds of computation  but,  in 
almost an hour of further  computation, failed either to 
yield a less expensive circuit or  to establish that  the 
given one  is of minimum cost. Reference 6 describes 
the  status of this synthesis program. 

1. The synthesis problem 

The  situation  that we wish to treat  may be represented 
as in Fig. 2 by a black box having n  input lines on 

F(x, .Y) = G(aI(x),  a2(x), ... 9 at(x), V I ,  where the 

[BM JOURNAL APRIL 1962 

which binary signals xi,  x2, , x,, may be impressed, 
and m  output lines carrying binary signals zl, z2,  * * , 
z,. Our  task is to construct  the  interior of this black 
box by interconnecting primitive elements of given 
types so that,  at  any time, the  output signals depend 
in a specified way on the  inputs presently being applied. 
We proceed to formalize some of the  concepts needed 
for  the systematic performance of this  task. 

1.1 Boolean functions 

Let V” be the set of all n-tuples (ordered sequences of 
length n)  of 0’s and 1’s. Such an n-tuple is sometimes 
called a vertex, to connote  the geometric picture of a 
vertex of the  unit n-cube. Each vertex corresponds 
to a configuration of the  inputs  xi,  x2, - * * , x,,, and  the 
required dependence of a given output zi ‘on the  inputs 
is specified  by a Boolean  function F’ having  as  its 
domain E, a subset of V”, and V’ as its range. If 
E = V”, F’ is called a total Boolean function;  other- 
wise F’ is called a partial  Boolean  function, and  the 
set V” - E constitutes  the DON’T-CARE conditions. 

Most  practical design problems  require  many  out- 
puts, and  the associated Boolean  functions usually have 
DON’T-CARE conditions. 

1.2 ON- and OFF-arrays 

A Boolean  function F of n variables may, of course, 
be  specified  by giving a list of all vertices to which F 
assigns the value 1 and a list of all those to  which it 
assigns the value 0. A more  compact  notation  can  be 
obtained, however, by using n-tuples of symbols 0, 1, 
and x ;  these n-tuples are called cubes, and represent 
sets’of vertices obtained by changing  the x’s to 0’s and 
1’s in all possible ways. For example, the  cube  Oxlx 
represents the  four vertices 0010,  0011,  0110,  0111 ; it 
is said to cover these vertices. If W is a set of vertices, 
and C, a set of cubes, C is said to be a cover  of W if 
( I )  each vertex of W is covered by at least one  cube of 
C and (2) each  cube of C covers only vertices of W. 

We shall specify a Boolean function E; by means of 
two covers C1 and C,, where C1 covers the vertices 
to which F assigns the value 1 and C, covers the 
vertices to which F assigns the value 0. We call C1 an 
owarray of F and C,, an  owarray.  The DON’T-CARE 
conditions, if any, are  thus  not covered by either C1 or 
C,. Our  computational  procedures do  not require that 
they be specified explicitly. 

Figure 3 gives ON- and  ow-arrays  for a Boolean 
function F (a, b, c, d, e). Here  each  row is a cube,  each e 
Figure 2 Black-box interpretation of the syn- 

thesis problem. 



column  corresponds to  an argument. For instance,  the 
first row A = 10x1 1 may be  thought of as  standing  for 
the vertices 1001 1 and 101 11. In this example there are 
DON'T-CARE conditions,  among  them  the vertices of 
1  1  oxx. 

a b c d e  
A 1 0 x 1 1  
B O l l x x  

D 0 0 0 0 0  

E 0 1 0 1 0  
F O x O x l  C, 
G 1 1 1 1 1  

c x 0 1  l x  c, 
""""- 

Figure 3 Example of a function defined by ON- 
and OFF- arrays C, and CO. 

In the terminology of logic, a cube  corresponds to a 
term,  and a cover, to a  normal-form expression. For 
instance,  the first row A = 10x1 1  stands  for  the  term 
alide. The  owarray C, corresponds to a normal  form 
expression consisting of the  disjunction of four  terms, 
one  for each cube: 

alide v abc v 6cd v ab&&. 
Likewise C,  defines a normal-form expression for a 
function prescribing precisely the  conditions  for which 
F is 0. 

The basic operations employed in  the  computational 
procedures of the following sections are  performed on 
ON- and  ow-arrays. Two  relations between cubes  are 
particularly important  in these procedures.  Cubes A 
and B are said to intersect if they cover a common 
vertex. Cube A is said to subsume cube B if all the 
vertices covered by A are covered by B. If A and B are 
cubes in  a cover, and A subsumes B, then  the  function 
described by the cover is not changed by deleting A .  

Since the  length of the  calculations grows rapidly 
with the  numbers of cubes  in  the ON- and OFF-arrays, 
it is best to go  through a preliminary  calculation which 
makes them  as concise as possible. Procedures  for 
performing such simplifications are given in Refs. 1 
and 2. 

1.3 Boolean graphs 

Boolean functions  may be used to specify the  required 
external, or black-box, behavior of a circuit. We next 
describe the  internal  structure of the circuits con- 
sidered. It is assumed that a definite set 23 of primitive 
elements is available for use in  circuit  construction. 
Each primitive element may itself be  viewed as a black 
box,  with specified numbers of inputs  and  outputs, 
and with a set of Boolean functions giving the  input- 
output dependence. Most primitive elements used in 
practice realize a single function  (AND, OR, NOR, NAND, 
MAJORITY, et  cetera) which, however, may be "fanned 

out" to several output lines, but we allow for  the 
possibi!ity  of an element which realizes several distinct 
functions.  A positive integral cost is  associated with 
each element of 8. 

It is  convenient to exclude the NOT element from 23, 
and instead to introduce  into 23 all  variants of the 
primitive elements obtained by putting NOT elements 
on some of their  input and  output lines. Sometimes it 
is desirable to consider 8 as partitioned into sets of 
elements having the  same  distinct output functions, 
but differing in  their  fan-out  properties and costs. 
Each such set must  then  be  accompanied by fan-out 
restrictions specifying the permissible extent of fan-out, 
and a specification of the  dependence of cost on fan- 
out. 

The circuits which we construct  from elements of 23 
are  in  correspondence with Boolean graphs, defined 
as follows : 

Definition 1. A  Boolean  graph is an acyclic directed 
graph with its  nodes and branches labeled as follows: 

a) Any node v with s branches directed into  it,  and t 
branches directed out, is labeled with the. name of an 
s-input,  t-output element tl E 23. 

b)  The  names of the  output functions of tl are 
associated in one-to-one  fashion with the  branches 
directed out of v. 

c)  The  branches  not labeled in (b) (i.e., the  input 
branches)  are labeled with the  names of primary  input 
variables. 

A Boolean tree is a Boolean graph  composed of 
primitive elements having exactly one  output  line. 

It follows from Definition 1 that  the signals on the 
output lines of a Boolean graph  are Boolean functions 
of the  input signals. Thus,  for  the  graph of Fig. 4 the 
output  functions  are 

F' = D,(a,(a, b), 4 
F 2  = &1(6,(a,(a, b), c), y , ( ~ z ( a ,  b), c)) 

F3 = C~(YI(U~(~, b), c), a, e)  
It is possible to  give a systematic procedure (specifically 

Figure 4 A Boolean  graph with several  outputs. 

1 1 
F3 229 

IBM JOURNAL APRIL 1962 



the  ll*-operation of Refs. 4 and 7) for  computing 
explicitly ON- and OFF-arrayS for  the output functions 
of a Boolean  graph.7 

1.4 The minimization problem 

We have now shown, on  the  one  hand, how a problem 
may  be specified  by Boolean functions, and  on  the 
other  hand, how the  output  functions of a Boolean 
graph  are  determined. In  order  to relate these two 
types of  information, some further definitions are 
needed. If F is a Boolean function with domain E, let 
F-'(l)  and F"(0) denote  the subsets of E for which 
F is  required to  be, respectively, 1 and 0. Let G be 
another Boolean function, with G-'(l) and G"(0) 
similarly defined. Then G is said to  be an extension of F 
if and only if G-'(l) 2 F-'(I) and G"(0) 2 F"(0). 
In  other words, G is an extension of F if it agrees with 
F wherever F is defined. Suppose we are given a 
Boolean graph with output  functions zi(xl,  xz, * * , 
x,), i = 1, 2, . . . , m, and a design problem specified 
by the  functions wi(x l ,  x2, * , x,), i = 1, 2, * , m. 
Then  the Boolean  graph is said to satisfy the design 
specification if, for each i, zi is an extension of wi .  

Suppose  further that we associate with any Boolean 
graph  a cost, such as  the  sum of the  costs of the  primi- 
tive elements composing it. Then we may set the 
following problem : 

Problem : Devise an algorithm which efficiently com- 
putes, for  any design specification and given set b, a 
Boolean graph which satisfies the specification and has 
a minimum  cost. 

The present  paper gives a  solution to this problem. 
The key to the  solution lies in  the  theory of decompo- 
sition,  having  its  roots  in the pioneering  work of 
Ashenhurst and  in  the study of projection  operators 
carried out in Refs. 3 and 4. 

The following section, which is self-contained, pro- 
vides a new formulation of functional  decomposition. 
The  algorithms use covers of ON- and  omarrays as a 
base for  computation. They constitute  a  substantial 
improvement  over  previous  procedures. 

II. Decomposition 

The ways in which a Boolean  graph satisfying given 
design specifications may be constructed  from primitive 
elements are governed by certain  decomposition 
properties of the  Boolean  functions to be realized. The 
present section gives a general discussion of these 
properties. 

2.1 Abstract decomposition 

Let X ,  Y,  2, and W be  arbitrary finite sets, and let E 
be a subset of the Cartesian  product X x Y. Then 
given a function F mapping E into Z, denoted E 4 2, 
we may  ask  the following questions: 

i) Given a, X % W, does  there exist a function 
G, W x Y 5 2, such that, 

230 for all (x, y) E E, F(x, y) = G(a(x), y)? (1) 

ii) Under  what conditions do there exist functions 
a, X 3 W, and G, W x Y 5 Z, such that (1) 
holds?  The representation (1) is called a de- 
composition of F ;  G is called the image of the 
decomposition. 

The answer to question (i) may be formulated  in 
terms of a relation of compatibility between elements of 
X .  We say that x1 E X and x 2  E X are compatible with 
respect to F (denoted x 1  - xz) if, for ally E Y such that 
( x , , y ) ~ E a n d ( x , , y ) ~ E , F ( x ~ , y )  = F(x,,y);otherwise, 
x1 is incompatible with x 2 ,  denoted x1  * xz. 

Proposition I .  Given F and a, defined above,  there 
exists G such that (1) holds if and only if, for all  x1 E X 
and xz E X ,  

4x1) = 4x2) * x1 - x2 9 2(a) 

x1 * x2 * a(x1) # a(xz) . 2(b) 

or,  equivalently, 

Proof. Let 1 E W be in  the  range of a, and let 
a"(X) = {xi, i = 1,  2, . , q }  be  the elements of X 
mapping  into 1. Then, if (2a) holds, for each y E Y 
there exists a unique element i E Z  such  that, if 
xi E a-1 (2)  and (x i ,  y )  E E, F(xi,  y) = [ (unless, for all 
x i ~ a - ' ( 2 ) ,  (x i ,  y )  E). Thus we maydefineG(1,y) = C ;  
the  function G may similarly be defined consistently 
for each element of W x Y. Conversely, if (2a) does 
not  hold,  there exist (x1, y )  EE, (xz, y )  E E and 1 E W 
such that F(xl ,  y )  # F(x,, y )  and a(xl )  = a(xz) = 1. 
Then G(I, y ) ,  however defined, cannot  agree with 
both F(xl ,  y )  and F(xz,  y). 

The two situations  considered in this  proof  are 
depicted in Figure 5. 

We may also give a simple answer to  the second 
question  posed  above, in which only F is given, and 
both a and G are at our disposal. The crucial  con- 
sideration here is the number of elements in W, for if 
W has too few elements it will not be possible to  pro- 
duce a function such that all elements of X mapping 
into  the  same element of W are  compatible.  These 
considerations  are  made precise in  Proposition 2, which 
follows easily from  Proposition 1. 

Proposition 2. If k is the least  integer  such that X 
may be partitioned  into k classes of mutually  com- 
patible elements, then  there exist a and G such that (1) 
holds if and only if W has at least k elements. 

In  order  to apply  Proposition 2, we must  supply one 
missing link-the determination of the number k. 

Figure 5 Situations encountered in  the proof of 
Proposition 1. 

IBM JOURNAL APRIL 1962 



If F is  total,  this is particularly easy. For in this case, 
x ,  N xz  if and only if, for  all y E Y,  F(x,,  y )  = F(x2, y). 
Compatibility is thus an equivalence relation, and k 
is simply the number of maximal equivalence classes. 
But if F is undefined for  some elements of X x Y, 
the following situation is possible: 
x,  - x2, xz  - x3 ,   x1  N x 3 .  Compatibility is no  longer 
an equivalence relation, and the  determination of a 
minimum "cover"  of X by sets of mutually  compatible 
elements is nontrivial. We shall  return to this  problem 
in Section 2.2, where specific computational  routines 
are presented. 

2.2 Decomposition tests  for Boolean functions 

At  this  point we depart  from  our general discussion of 
decomposition, and  make some specializations appro- 
priate to the synthesis of Boolean graphs. We consider 
decompositions of the  form 

F(x1, * * * 3 x,) = G(al(~), ~ 2 ( u ) ,  . . * at(u)7 w) (3) 
where 

1 )  Each of the  indicated  functions  is  Boolean. 
2) u and w, respectively, are specifications of subsets 

1 = {u l ,  uz ,  . . , vi} and y = {wl, wz,  . . . , w,} of input 
variables, together exhausting xl, x 2 ,  , x,. The de- 
composition is called disjunctive if A n y is empty 
(i.e., n = I + m),  and otherwise, nondisjunctiue 
(n < I + m).  

In  the disjunctive case, (3) is a special case 
of ( l ) ,  with the sets and mappings specialized as 

V t + ,  VI ,  V' % V', where a is represented by the 
t-tuple (a,, az,  . , a,) of Boolean functions. In the 
nondisjunctive case (3) is not, strictly speaking, a 
decomposition. For if  we take X = V' and Y = V'", 
then  the  domain of F is not X x Y.  This difficulty 
is easily surmounted. We first define a mapping S, 
V" 3 V",, in which (xl, x z ,  . , x,) maps  into 
( u l ,  uz ,  * e ,  u', w,, w2, * , w,); thus, if A = (xl, x z ,  x 3 )  
and y = (xz ,   x3 ,   x4) ,   S(1 ,  L O ,  1 )  = ( 1 ,   1 ,  0, 1 ,  0, 1 ) .  
Then we may define the function P(ul ,  uz, * . , u l ,  w,, 
wz, * . . , w,) as follows: if (u,, uZr*  * . , u I ,  wl, w2, - * . , 
w,) = S(x,, x z ,  . . , x,), then F(u,, u2, * * . , U',_wl, 
wz, . . , w,) = F(x,,  x2 ,  , x,). Note  that F is 
necessarily a partial  function, since V'+, has more 
elements than V", and S is one-to-one. 

For example, again _assuming that A = ( x , ,   x z ,  x3 )  
and p = (xz ,  x 3 ,  x& F(1, 1 ,  0, 0, 1 ,  1 )  is undefined, 
since it  could  not have been derived from  any specifica- 
tion of (x1 ,  x2, x 3 ,  x4).  Such  combinations  are called 
inconsistent. Instead of (3) we can now write E(u, w) = 
G(a,(u), a,(u), * , a,(u), w), which  is, in  the strict 
sense, a decomposition.  But we shall refer to (3) 
also  as a decomposition, and shall show that  it is 
possible to test directly for such decompositions with- 
out explicitly forming  the artificial function E. 

The class of decompositions defined by (3) is more 
general than those  treated by previous writers. 
Ashenhurst, in Ref. 5,  has  made a thorough  study of 

follows: x = V', Y = V", w = V', 2 = V1, V" 4 V', 

disjunctive decompositions such that F is total  and 
t = 1 .  In unpublished  papers Ashenhurst' and Curtis' 
also considered the nondisjunctive case, but retained 
their  other  assumptions.* 

A decomposition of F is directly in  correspondence 
with a circuit realization of the type  shown below, where 
the blocks G and a represent Boolean graphs realiz- 
ing, respectively, the  functions G and al,   aZ, e e . 7 at. 

V l  v z  . . . ' 4  

I a 

W l  w z  .. . wm 
a1 a2 ... at 

G 

1 
In  the synthesis algorithm of Section I11  we consider 
only  decompositions such that  the block a can be 
realized by a single element of 123, but it is also useful 
to consider  procedures in which this  requirement is 
not  imposed. 

Let us suppose that a given function F is  represented 
by covers C, = {u', i = 1, 2, - , n}  and C, = {bj, 
j = 1, 2, , m } ,  where the u' and bj are cubes, and 
that 1 and y  are specified. Then if Propositions 1 and 2 
are to be employed for  the  detection of decompositions, 
it is necessary to determine which specifications of 1 are 
compatible. In  the disjunctive case (A n p empty), 
any  cube a of C, or C, can be divided into a "&part 
a," and a "y-part" a,, which are, respectively, cubes 
of V' and V", by collecting coordinates associated with 
elements of 1 and p, respectively. Thus, for  the cube 

l O l X ,  a with A = {a, c} and p = {b,  d } ,  the  1-part is 

1 1 ,  and  the  y-part is Ox, The covers C, and C, may 
therefore  be  written  as  follows: 
C,  = { ( u ' ~ ,  uiJ i  = 1,2 ,  - - , n}, and 
C, = {(bj,, b J J j  = 1, 2, * . . , m}, 
and in  terms of these covers we may  state  the follow- 
ing lemma, which follows directly from  the definition 
of compatibility. 

Lemma 1. Given uo E V' and u, E V',  u, * u1 if and 
only if there  are  cubes (ai,,  a',) E C, and (bjA,  bj,) E C, 
such that 

i) aip intersects bj, 
ii) either a', covers u, and bj, covers u l ,  or a', 

covers u, and bj, covers u,. 

Example 2.1 Suppose F(a, 6, c, d )  is given by the 
covers C, and C, shown below, and  that 1 = {a, b }  
and p = {c, d } .  

Nore added in proof: In a recent paper, Curtis" discussed disjunctive 
decompositions of total functions, without requiring that t = 1 .  231 

IBM JOURNAL APRIL 1962 



C1 CO 
a b c d  u b c d  

a’ l 0 l x  b’ 1 1 x 1  
a2 1 x 1 0  b2 l x O x  
a3 O l x x  b3 X O O X  

Then, inspecting in turn each pair ui, bj, we find: 
a‘, intersects b’ 10 N 1 1  
a3 intersects b lP  01 * 1 1  
a3L intersects b2L 01 N lx (i.e., 01 N any vertex 

covered by the  cube 1 x). 
a’,, intersects b3, 01 * x0 
By the  lemma,  the  above  computation exhibits all 
pairs of incompatible vertices. Propositions 1 and 2 
may now be employed to answer various  questions 
concerning  the existence of decompositions. For 
example : 

1) Can F be written  in  the  form F(a, b, c, d )  = 
G(a(a, b), c, d), where a(a, b)  = a .  b ? No, because 
a(0, 1) = a(1, 0)  = 0, but 01 N 10, contradicting  the 
condition of Proposition 1. 

2) Does  there exist any Boolean function a such 
that F(u, b,  c, d )  = G(a(a,  b,), c, d)? Since a is required 
to be a Boolean function,  its  range is V’, which has 
two members. Thus,  according to Proposition 2, a 
decomposition of the type sought exists if and only if 
V 2  can be partitioned  into two sets of mutually 
compatible elements. The following diagram shows 
the elements of V 2 ,  with lines connecting  pairs of 
compatible elements. It is clear that a suitable  partition 
cannot be found. We note in passing that 10 - 00, 
00 - 1 1 ,  but 10 N 1 1  ; this is an example of the  non- 
transitivity of the  relation -, which is possible 
because F is a  partial  function. 

Lemma 1, as  stated, applies only to the disjunctive 
case. In  order to apply it  to  the nondisjunctive case, 
one  can  form E(u,  w) from F, and  then test for dis- 
junctive  decompositions of E. This suggests the 
following problem: given covers C, and C, defining 
F, find covers e, and e, defining E. An  obvious  pro- 
cedure is to replace each cube of C, or C, by a cube 
in which the  coordinates  common to A and p are 
repeated.  Thus, if A = {a, b, c} and p = {c, d} ,  the 

x 0 1 x a would be replaced by the  cube x x. a b c c d  

This procedure is nearly correct, but there is a pitfall. 

If we apply  the  procedure to the  cube o x  x, we a b c d  

232 obtain  the  cube a x x x, which covers not only the 

consistent cubes 1 0 0 0 x and 1 0 1 1 x, but also the 
inconsistent  ones 1 0 0 1 x and 1 0 1 0 x, which should 
not  appear  in e, (or e,). Thus,  the  situation is now 
complicated by the presence of x’s in  coordinates 
common  to i and p. If a  cube in C, has s such x’s, it 
must be replaced by 2s cubes in C,, corresponding to 
the 2” consistent assignments of the values 0 and 1 to 
these coordinates.  In  practice e, and e, are  not 
actually  formed,  but  certain  columns in C, and C, are 
thought of as  appearing  both  in  the A-part and in  the 
p-part. 

Example 2.2 We consider the  function F defined in 
Example 2.1, but assume that A = {a, b},  and p = 
{b, c, d}. Thus alp does  not intersect blP,  due to the 
presence of the b-coordinate in  the  p-part.  The 
following incompatibilities  are  found : 

i = 3 , j = 1  0 1 ~ 1 1  

i = 3, j = 2 01 N 11 (N.B.: 01- 10). 

Since 00 - 01,OO - 10, and 01 - 10, F can  be written 
in  the  form F(a, b, c, d )  = G(u.b,  b, c, d). 

There is an alternate way to reduce nondisjunctive 
decompositions to disjunctive ones.  One can simply 
treat  the variables in A n p as if they were Boolean 
functions of one  variable  produced by the primitive 
element associated with the decomposition.  Thus  the 
decomposition of Example 2.2 may be interpreted  in 
two ways, as follows: 

(a) A = {a, b} ,  

(b) 2 = {a ,  b}, 

p = {b ,  c, d } ,  CI: F/’ % F/’, a(a, b) = a . b  

p = { c ,  d} ,  a :  v2 + v2, a,(a, b) 
= a * b ,  C I ~ ( U ,  b)  = b ;  

in case (b), Proposition 1 can be applied directly, 
without  the  construction (explicit or implicit) of an 
artificial function E .  The compatibility  conditions of 
Example 2.1 must be considered: 

10 * 11 a,(l,O) # a1(1,  1) 

01 * 11 a,(O, 1) # q(1, 1) 

01 ,+d lx az(0, 1) f a2(1,0); a,(O, 1) # @,(I, 1) 

01 * x0 az(0, 1) # Cr,(O,O); az(0, 1) # CIZ(1, 0)  . 
The inequalities show that  any two incompatible 
vertices are assigned different values of a = (a,, a2), 
and we have a second verification of the validity of the 
decomposition. 

In general, Lemma 1 can be  applied in two ways: 
a)  In conjunction  with  Proposition 1, it can be 

used to determine, given F, A, p, and {a,, a2, . . , 
a,}, whether  there is a decomposition of the  form 
F = G(a,(u), a2(u),  a,(u), w). This is  done simply 
by determining which incompatibilities exist, and 
ascertaining whether  any of them violate the  conditions 
of Proposition 1.  

IBM JOURNAL APRIL 1962 



exist functions a,, a,, e . . , a, such that (1) is satisfied. 
In the language of Proposition 2, W, the  range of 
a = (a1, a2, . - , a,), has at most 2' elements, and a 
decomposition exists if and only if k 5 2', where k is 
the  minimum  number of mutually  compatible elements 
into which V', the  domain of a, can  be  partitioned. 
Moreover, if k > 2', all 1-input, t-output elements of 
B are  eliminated  without the necessity  of testing each 
separately. The  information conveyed by the value of 
k is therefore considerable, and we next consider how 
k can be calculated. 

2.3 The determination of k 

The first step of the  calculation is to  compute all 
subsets S G V' having the  properties that 

1) Any  two elements of S are  compatible. 
2) If S c T c V', T does  not satisfy (1). 

The  procedure used to compute these maximal com- 
patible  sets is analogous to one employed by R. E. 
Miller" in an algorithm  for  the  reduction of states in 
sequential machines. The sets will be represented by 
sequences of ZEROS and ONES, with a  position  for  each 
element of V ' ;  the presence of a ONE signifies that  the 
corresponding element is  contained in  the subset 
of V' represented by the sequence. Given C, = 
{(u',, uiJ ,  i = 1 ,  2 , ?}, and Co = { (b jA,   b jJ , j  = 1 ,  
2,. - . , m},  we define B', to be  the  set of bj, such that 
b', intersects aif l .  Then every vertex in a', is incom- 
patible with every vertex in B', and  no maximal com- 
patible set can  contain vertices from  both sets. We 
represent a', and B', by ZERO-ONE vectors A' and B' 
having ONES exactly in those  positions not correspond- 
ing to vertices in a', and BiA, respectively. The com- 
putation of the maximal compatible sets proceeds as 
follows : 

1) Let So be a single vector having every element a 
ONE, representing the set of all vertices of VI. 

2) Do the following successively for i = 1 ,  2, * , 
n: 
for each .YES'-', form PA' and SOB', where 
denotes logical intersection. From this set of 
vectors, delete successively all vectors covered by 
other vectors ( V  covers W if V has  a ONE where- 
ever W does); the resulting set is Si. 

3) The sets represented by elements of S" are  the 
maximal compatible sets. 

Example 2.3 

. c0 
a', a: b j ,  b j ,  

1 1 1  X O l X O  o x   l X X O X  
2 0 1  O x x l x  1 0  O l X X O  
3 1 1  x o x o x  1 1  x 1 1 0 1  
4 x 1  x x x l l  o x  1 1 1 x 0  
5 l x  X X O X l  0 0  x x x x o  
6 1 1  X O X X X  1 0  1 1 1 0 0  

0 0  l O O O x  

1 1 1 o x   1 1 1 0   0 0 1 1   1 1 1 0  
0 0  0 0 1 1  

2 0 1 1 0   1 0 1 1   0 1 0 1   1 0 1 0  
0 0  0 0 1 1  

0 1 0 0  
3 l l O x   1 1 1 0   0 0 1 1   1 0 1 0  

0 0  0 1 0 0  
0 0  0 0 1 1  

4 x 1 0 0   1 0 1 0  1 1 1 1  1 0 1 0  
0 1 0 0  
0 0 1 1  

5 l x O x   1 1 0 0   0 0 1 1   1 0 0 0  
0 0  0 1 0 0  

0 0 1  1 
6 l l O x   1 1 1 0   0 0 1 1   1 0 0 0  

0 0  0 1 0 0  
0 0  0 0 1  1 

The maximal compatible sets are: {00}, {Ol}, 
{lo, 1 l}. Once the  maximal  compatible sets have 
been obtained,  it is necessary to select a minimum 
cover of VI, i.e., a  minimum  number of maximal com- 
patible sets having V' as their  union.  This  can be done 
for example, by means of the general extraction 
algorithm of Ref. 3. Given such a  minimum cover con- 
sisting of the sets N,,  N,, * * - , Nk, we may  obtain a 
cover with the  same  number of disjoint sets (and there- 
fore a partition of V')  as follows: 

N', = N ,  ; for i > 1 , 

N ' i = N i - ( N i n ( N ' u N 2 u . . . u N i - 1  1 .  
2.4 Single-output decomposition 

Usually a primitive element of  the type encountered 
in  practice realizes a single output function,  although 
that  function may be associated with several output 
lines. Accordingly, decompositions of the  form 
F(v, w) = C(a(v), w) where a is a Boolean function, 
have special importance, and a special procedure will 
be given to determine  whether they exist. 

We shall take  the existence of a  single-output de- 
composition as a hypothesis, and, if no decomposition 
exists, will obtain a contradiction. It follows from  this 
hypothesis that V' can be  partitioned  into  two sets of 
mutually  compatible elements, and  the following 
"antitransitivity" property is therefore implied : if 
v,, r c ~  v,, and v1 r ~ ,  v,, then vo N v,. 

We shall give a  computational scheme based on 
this assumed property, and requiring  calculation of 
the "incompatible pairs" u',, B', defined in 2.3. 
In what follows, Pi will denote a set { ( P A ,  p i ) ,   (p ,",  
p:) ,  . a }  of pairs of covers such that every element 
of p i  is incompatible with every element in p i .  The 
computation  proceeds recursively according to  the 
following rules : 233 

,PRIL 1962 IBM JOURNAL P 



I) Po is empty. 
2) If any cover p: in an element of Pi-' intersects 

both a', and B',, a contradiction  has  been  found 
and  no decomposition exists. Otherwise, P i  is 
formed  from Pi-' as  follows: 
a) if B', is empty, P i  = Pi - ' .  
b) if neither a', nor B', intersects any p i ,  the 

new pair (a',, Bi,) is simply adjoined to  the 
list: P i  = Pi-'  u {(a',, B',)}. 

c)  if some intersection does exist, all pairs 
intersecting either a', or B', are replaced by 
a single pair (a', u Si), (B', u Ti), where 
Si = {qLlpL intersects a', or p i - k  intersects 

Ti = {pkJp: intersects B', or intersects 

If  the process terminates  without a contradiction, 
then a decomposition exists for  any Boolean function 
cx such that, if vo and v1 EP; - k ,  a(v0) # cl(vl). 

Example 2.4 
We treat  the  problem of Example 2.3: 

i a', B', P i  

2 0 1  x 0  

B', 1 

a',}. 

1 1 1 0 x ( ( 1 1 ,  Ox)} 

p t  intersects both a', and B',; no single-output de- 
composition exists. 

Example 2.5 
CI CO 

a b c d e f  a b c d e f  
1 x x o  1 x x  o x o o o x  
2 X X O X l X  x 1.0 0 0 x 
3 X X l O O X  x x o o o o  
4 1 1  l 0 x x  l 0 l x l x  
5 O l X l O X  l l l l x x  
6 l O X l O X  O x l O l l  

X O l O l X  
X I  1 1  1 0  

a) 1 = {a,   b,  c},  P = { d l   e , f  1. 
i a', B', 

1 x x o  1 0 1  
1 1 1  
X I  1 

2 x x o   1 0 1  
1 1 1  
0 x 1  

x 0  1 
X I  1 

3 x x l   o x o  
x 1 0  
x x o  

4 1 1 1  o x o  
o x o  
x x o  
1 0 1  
0 x 1  

~ 234 x 0  1 

K x  O O l)) 

P i  

X I  1 

{ (x  x 0 x  x I)} 

x  x 1 intersects both a4A 
and B4,; no single- 
output decomposition 
exists. 

b) A = {a, b, cl, P = ( 4  e, SI 
i a 5. B', 
1 x  x 0 empty 
2 x  x 0 empty 
3 x  x I empty 
4 1 1 1  1 0 1  

0 x 1  
x 0  1 

5 0 1 x  1 1 1  

6 l o x  1 1 1  

For  any Boolean function M such that a(0, 0, 1 )  = 
~ ( 0 ,  1 ,  1) = c l ( 1 ,  0, 1 )  # ~ ( 1 ,  1, I), there is a decom- 
position of the  form G(cx(a, b, c), c, d ,   e , f ) .  

2.5 Vertex functions 

Primitive devices constructed of diodes, transistors, or 
vacuum  tubes usually realize Boolean functions of a 
particular type-the vertex functions; M is  said to be a 
vertex  function if there is a distinguished vertex vo such 
that a(v0) # ~ ( u ) ,  where v is any  other vertex. The 
AND, OR, NAND, and NOR are vertex functions;  the 
EXCLUSIVE OR and MAJORITY are not. It is particularly 
easy to give conditions for  the existence of "vertex- 
type" decompositions. 
Lemma 2. There exists a decomposition F(v, w) = 
G(M(u), w), where M is a vertex function, if and only if 
there is a vertex vo such that, whenever a', and B', are 
both nonempty,  either a', = vo or B', = vo .  

Thus,  in Example 2Sa, a', = ( x  x O),B', = (;A i); 
we can assert, by Lemma 2, that  no single-output 
vertex-type decomposition exists. In Example 2.5b 
there is a single-output vertex-type decomposition 
with vo = 1 1 1. 

Decompositions involving several vertex functions 
are characterized by the following lemma. 

Lemma 3. There exists a decomposition of the  form 
F(v, w )  = G(a,(v), a2(v), , clt(v), w), in which the 
cli are vertex functions, if and only if V i  has a subset 
of 2' - t mutually  compatible elements. 
Proof. Let vi denote  the distinguished vertex for ai. 
Then two elements of V' yield the  same values for 
cxl, a', * * , a, if and  only if neither element is  one of the 
v i .  By Proposition 1 ,  therefore, the decomposition  is 
valid if and only if any  two elements of V' - {vi} 
are compatible. The given hypothesis  is clearly 
necessary and sufficient for  the existence of a suitable 
set of vi. 

2.6 The image of a decomposition 

Through  the use of Propositions 1 and 2 it  has been 
possible to characterize  decompositions of a function 
F without explicitly specifying the image G.  In  the 
synthesis algorithm of the next section, however, we 
shall be concerned with sequences of decompositions, 

IBM JOURNAL APRIL 1962 



each  operating on the  image of its predecessor, and 
the  computation of the  image will therefore be an 
essential link in the process. The  computation of 
covers Dl and Do specifying G, given C, and C,, 
covers for F, and  the functions a,, u2, - - , a,, is a 
simple mechanical process. First we consider the dis- 
junctive case. For each cube (ai,, aip) in c,, let A’, be 
the set of values assumed by a l ,  a2,  . - a, for  argu- 
ments in aiA. Then Dl, the ON-array for G, is given by 
{ A i A  x aip} ;  Do is formed in a similar way from C,. 
Example 2.6. The following function exhibits a de- 
composition of the  form F(u, b, c, d, e) = G(a,(a, b), 
a2(u, b), c, d, e), where a,(u, b) = aab, and 
a2(a, b) = 5.6. 

C1 co 
a b c d e  a b c d e  

1 x x o o x  1 O O x l x  
2 O l x l x  2 l l x l x  
3 l 0 x l x  3 X l l O X  
4 O O l O x  4 l x l 0 x  

The  computation of Dl is as follows: 
i a’, A’, 

a b a1 a2 
1 x x  0 0  

2 3 0 1  1 0  Ai]=:: 0 0  

4 0 0   0 1  
Dl is given by the following cover: 

a1 a2 c d e 
o x o o x  
x o o o x  
O O x l x  
O O x l x  
0 1  l o x  

Note  that,  although C, cannot be simplified, the  third 
and  fourth cubes of Dl are identical. In this example, 
Do is as  follows: 

al a2 c  d  e 
O l x l x  
l 0 x l x  
x 0 l O x  

The  image of a nondisjunctive  decomposition  may 
be computed by applying  the  above  procedure to a 
derived disjunctive problem,  obtained  either by forming 
the  function E or by treating  the variables in A n ,u as 
functions ai associated with the  decomposition. In 
Example 2.2, we found a decomposition of the  form 
F(a,  b,  c, d )  = G(a.b, b, c, d). Covers for  the given 
function F and  the image G are as follows: 

F 
Cl CO 

a b c d  a b   c d  
1 0 1 0  1 1 x 1  
l x l x  l X O X  
O l x x  x o o x  

G 
Dl DO 

a.b  b c d a * b  b  c  d 
0 0 1 x  1 1 x 1  
1 1 1 0  0 o o x  
0 l x x  1 l o x  

111. The synthesis algorithm 

The  fundamental processes required to detect  decompo- 
sitions and  to  compute their images have now  been 
developed. In this section we show how these processes 
can be employed as  “subroutines”  in  the  determina- 
tion of minimum-cost  Boolean  graphs. 

The first step is to establish precisely the  description 
of Boolean graphs by sequences of decompositions. 
Since Boolean graphs  are acyclic, any  Boolean  graph 
must  contain  at least  one primitive element for which 
no  input is the output of another element. Thus,  any 
Boolean graph may be shown schematically as  in 
Fig. 6. 

V I  v 2  ... V L  

[1 l o  ‘ I 
a1 PZ . . . at 

w1 w 2  .. . Wrn 

G 

IFI I F 2  ... IF‘ 
Figure 6 Decomposition of a Boolean  graph. 

Here v, ,  v2 ,  * , v l  are  the  inputs  to  the element 
a ;  xl, a2 ,  - . , a, are  the  distinct output functions of a 
(possibly fewer in number than  the distinct output 
lines, since fan-out is allowed), and w,, w2,  - . , w, 
are  the distinct primary  inputs to the elements of the 
graph  other  than x .  The indicated  decomposition of 
the  graph is closely related to  the algebraic decom- 
positions of the output functions Fi-for each such 
function  must be expressible as 

F’ = Gi(a,(ol, * , q), , at(ul, * , ul), 

w1, w2, * * - wm) 
Any Boolean graph  may,  in  fact,  be specified com- 

pletely by a sequence of decompositions.  Figure 7 
shows a  single-output Boolean graph,  and (4) gives 
a sequence of decompositions specifying the  graph. 

F(u,  b,  C, d )  = Gl(a,(a,  b, 4 ,  b,  C, d )  

G,(a,,  b, c, 4 = G2(P1(b, 4 ,  P 2 @ ,  4, a,, c) 

G2(P,, P2,  a,, 4 = G , ( Y I ( ~ I ,  P I ) ,  PI,  Bz,  c) (4) 

G3(~1 ,  P i ,  B 2 ,  C) = G4(61(P2, C), YI, PI) 
235 

IBM JOURNAL APRIL 1962 



a b d   b d  C 

1 1  
0 8 

“ 1 4  481 8 2 4  , 
Y 6 

81 

Y1J , i d 1  

€ 

€1  

Figure 7 A single-output Boolean graph. 

Each  decomposition  corresponds to “factoring off” 
an element of the  graph,  and  the successive Gi are  the 
functions realized by the  remaining  subgraphs.  There 
are,  altogether,  four  distinct sequences of decompo- 
sitions which describe this graph, since the element 
/3 could have been taken before a, or 6, before y .  
In general, a single-output Boolean graph  can be 
specified  by a sequence (perhaps not unique) of the 
form 

F(uo* wo) = G1(4(UO), . . * 3 4 ,  (UO), wo) 

Gl(U1, w1) = GZ(4 ( U d ,  * . . , a; ( U l ) ,  W l )  ( 5 )  

Gn(Un) = j W +  ’<~,,>> . 
It  can be  shown by an inductive  argument that  any 

sequence of the  form ( 5 )  describes some Boolean graph 
provided  that 

a) each set {ai, ai, . ai,} consists of the distinct 
output functions of some element a i  E B, 

b)  fan-out  restrictions  are satisfied; this is easily 
checked, since the number of lines on which a 
given signal appears  is  just  the  number of v i  in 
which it occurs. 

Any sequence of the  form ( 5 )  satisfying (a) and (b) is 
called admissible. A sequence satisfying all these con- 
ditions, except that  the final image is not of the  form 

j(a;+l(u,,)), is called an admissible subsequence.* An 
admissible sequence or subsequence is called valid for  a 
given function F if and only if the  indicated  decompo- 
sitions of F and its successive images GI, G,, * . * , G, 
exist, according to  the tests developed in Section 11. 
The determination of a minimum-cost Boolean graph 
realizing F now reduces to the  following: find a 
minimum-cost sequence valid for F. 

Before giving the synthesis algorithm, we make some 
preliminary  assumptions. We assume that each 
primitive element has  a positive integral  cost, that  the 
cost of a Boolean graph is the  sum of the  costs of its 

236 SpectivelY, to the Projective words and partial projective words of Ref. 4. 
Admissible sequences and admissible subsequences are analogous, re- 

IBM JOURNAL * APRIL 1962 

primitive elements, and  that there is an a priori upper 
bound Mo on C(F), the minimum cost of realizing F. 
We assume  also  the existence of some  alphabetic 
ordering of the possible decompositions of any given 
function, (each specified  by a triple (a, 2, p). Finally, 
we assume the existence of a means of obtaining,  for 
any Boolean function G,, Z(Gi), a lower bound on 
C(G,). Many such lower bounds  are  available: 

1) I(Gi) = 0. 
2) The  bound  obtained  in  Appendix  A of Ref. 4, 

which is determined by the  number of variables 
on which Gi depends. 

3) If G, is a function of three or fewer variables, the 
value given in a table of optimum realizations of 
three-variable functions,  obtained  either by the 
algorithm to be presented, or by a  procedure  due 
to M. H. McAndrew.“ McAndrew’s procedure 
also gives lower bounds  for  the  costs of many 
functions of more than three variables. 

4) Z(G,) = max Z(H), where L(Gi) is the set of 

three-variable subfunctions of Gi obtained by 
setting primary  inputs to  constant values or 
setting primary  inputs  equal to each other. 

The synthesis procedure consists of a “tree  search”, 
which traces through  the valid sequences in alphabetic 
order, seeking a realization of minimum cost. These 
sequences are built up  one  decomposition at a time. 
Thus, at a general stage in  the process, we consider 
some valid subsequence S which may be represented 
as follows : 

H E L ( G ~ )  

( d ,  l o ,  BO) (a2,11, P I )  
F - G l - G z + . . * + G k - l - G k ,  
Certain tests can be applied to determine  whether 
sequences containing  this subsequence need be con- 
sidered. First, we wish to prevent  the  formation of 
several different subsequences which specify the same 
circuit  structure,  but  take  the primitive elements in 
different orders. Simple tests can  be given which 
eliminate all but  one member  (the first alphabetically) 
of such a class of equivalent sequences. 

The second means of terminating subsequences is 
through  the use of cost  bounds.  Suppose that 

cost ( d )  + cost(az) + * * + cost(ak) + Z(Gi) > M ,  

where M is the best available upper  bound on C(F). 
Then  any valid sequence for F, obtained by extending 
the subsequence S, will  yield a circuit costing  more than 
M ,  so that S need not  be considered further. This use of 
cost  bounds  is highly important;  for  the  termination 
of a subsequence at a relatively early  point  prevents 
the  formation of an enormous  number of uneconomical 
realizations of F. 

Whenever a subsequence S is terminated,  its final 
decomposition (ak, I k - 1 ,  pk-l) is deleted, and  the next 
decomposition  in  alphabetic  order  applicable to Gk-l 
is sought.  If no such decomposition is found,  the 
process “backs  up” to Gk- , ,  and so on until  some valid 
decomposition is found; decompositions are  then 

(akplk-  1, Bk-  1) 



sought which extend  the subsequence terminating  in 
this new decomposition. 

The synthesis procedure is clearly finite, since, under 
the  givencost  assumptions,  the  number of subsequences 
having costs Mo is finite. Moreover,  the  procedure 
yields all Boolean graphs of minimum  cost, since every 
valid sequence is  either  generated  or  ruled out by a 
cost  bound  when  partially  formed. 

The  minimization  algorithm is indeed laborious, 
but only to a degree commensurate with the difficulty 
of the  problem solved. The  authors know of no  other 
systematic synthesis procedure which approaches  the 
generality of this  algorithm.  Moreover, the algorithm 
is of definite practical value. When  the  program 
described in Ref. 6 assumes its final form  it is expected 
to determine a minimum-cost circuit for nearly any 
four-variable  problem  in less than  ten minutes on the 
IBM 7090. Many  problems  in five and six variables 
should also admit of solutions  in  reasonable  lengths 
of time. 

In larger  problems it will usually be necessary to 
accept an approximate  solution.  Fortunately,  it is 
possible to  arrange  the alphabetic  ordering of decom- 
positions so that good approximate  solutions  tend to 
occur  early in  the  computation.  For example, priority 
can be given to a decomposition  represented by the 
triple (a, I, p) if the  overlap between A and p is small, 
or if CI is an inexpensive element of 23. Through  the 
use of such heuristics, it  has  proved possible in  many 
cases to obtain circuits which, although they are  not 
known to be  ofminimum  cost,  appear  quite economical, 
and could not have been obtained by any  other 
systematic procedures known to  the  authors. 

The following simple example illustrates some 
aspects of the  algorithm, 
Example 3.1. Suppose  that the function F(a, b, c, d )  to 
be realized in the following: 

C1 co 
a b c d  a b c d  
0 0 x 0  x x x l  
X X l O  1 x o x  

X l O X  
and  that B is specified as follows: 

Function Cost 
U 27 1 
B x7 2 
Y ZY 2 
6 x v y  2 
E x u 7  3 
c 2 U Y  3 
v XY 3 e a u ~  4 

Clearly, any  function of variables requires at least 
n - I elements for  its synthesis, and a lower bound I 
on the  cost of a function of n variables is n - 1. 

We assume that decompositions are considered  in 
increasing order of the  number of variables in A n p, 
and, within this  criterion, in order of increasing cost. 

Thus  the first valid sequence of decompositions  con- 
sidered is the  following: 

This sequence defines the Boolean graph of Fig. 8, 
which has  a  cost of 3. Then M = 3 is an upper  bound 
on C(F) ,  and  the  cost  bound rules out  all decom- 
positions except those such that /z n p is empty and 
the primitive element is a. No further  decompositions 
of this kind can be found,  and  the circuit of Fig. 8 is 
the  unique  minimum-cost realization of F. 

/ F  

Figure 8 A minimum-cost Boolean graph. 

The synthesis procedure  for Boolean graphs with 
several terminal  outputs follows the lines of the single- 
output procedure, but is considerably more complex. 
The essential reason  for  the increased complexity is 
that,  in general, each output function will not  depend 
on all  the signals generated within the circuit. Thus, 
in  the Boolean graph of Fig. 4, the  output  function 
F3 depends on az, y l ,  and [,, but  not  on a,, Dl, or 6, .  

Thus  the influence of any given element must  be 
specified separately for each output function.  This is 
done  through  the use of multiple  decompositions having 
several components, which are themselves decom- 
positions of individual output functions. All the com- 
ponents of a given multiple  decomposition specify the 
same element o E 23 applied to  the same A-part, but  the 
p-part  is specified independently for each  component, 
and a different subset of the  outputs of o may  apply to 
each  terminal output. If this subset of outputs is 
empty, for a given terminal output, then the associated 
component simply represents an identity  function, and 
can be  omitted. The Boolean graph of Fig. 4 is 
described by the following sequence of multiple 
decompositions : 

237 

IBM JOURNAL APRIL 1962 



G : h ,  a, e> =j (c l (YI ,  0, e>> ’ 
A sequence of multiple  decompositions is called 

admissible if each of its  component sequences is 
admissible and  fan-out restrictions are satisfied, and 
valid if it is admissible and each of its  component 
sequences is valid for  the associated terminal output. 
The cost associated with such a sequence is not the 
sum of the costs of its  component sequences, but 
rather  the  sum of the  costs of the primitive elements 
associated with multiple decompositions in  the 
sequence. 

The synthesis problem  for Boolean graphs with 
several outputs  thus reduces to  the determination of 
all valid sequences of minimum  cost.  An  alphabetic 
search  procedure  patterned after the single-output 
procedure  can be used for  this  calculation.  The 
number of valid sequences of multiple decompositions 
is  very great, however, and hence the time required  for 
strict  minimization  tends to grow quite large. 

Acknowledgments 

The  authors would like to express their  thanks  to 
M. H. McAndrew,  who  made  substantial  contribu- 
tions to the developments reported  in this paper,  and 
to F. E. McFarlin  and J. R. Wilts, who suggested 
many  improvements and innovations. 

References 
1.  J. P. Roth, “Algebraic Topological Methods for the Synthesis 

of Switching Systems. I,” Transactions of American Mathe- 
matical Society, 88, 301-326 (1958). 

2. J. P. Roth, “Algebraic Topological Methods in Synthesis,” 
Proceedings of an International Symposium on the Theory 
of  Switching, Harvard University, April 2-5, 1957. The 
Annals of the Haruard Computation  Laboratory, X X I X ,  
Harvard University Press, Cambridge, Massachusetts, 1959, 
pp. 57-73. 

3. J. P. Roth  and E. G. Wagner, “Algebraic Topological 
Methods for the Synthesis of Switching Systems 111. 
Minimization of Non-Singular Boolean Trees,” IBM 
Journal, 4, No. 4, 326-344, (1959). 

4. J. P. Roth, “Minimization over Boolean Trees,” IEM 
Journal, 4, No. 5, 543-558, (1960). 

5. R. L. Ashenhurst, “The Decomposition of Switching Func- 
tions,” Proceedings of an International Symposium on the 
Theory of Switching, Harvard University, April 2-5, 1957. 
The Annals of the Haruard Computation  Laboratory X X I X ,  
Harvard University Press, Cambridge, Massachusetts, 1959, 
pp. 74-116. 

6. R. M. Karp, F. E. McFarlin, J. P.  Roth,  and J. R. Wilts, 
“A Computer Program for the Synthesis of Combinational 
Switching Circuits,” Proceedings of the Second AIEESympo- 
sium on Circuit Switching Theory and Logical  Design, Octo- 
ber, 1961, pp. 182-194. 

7. Addedinproof: Cf. J. M. Galey, R. E. Norby, and J. P. Roth, 
“Techniques for  the Diagnosis of Switching Circuit 
Failures,” Proceedings of the Second AIEE  Symposium on 
Switching Circuit Theory and Logical Design, October 1961, 

8. R. L. Ashenhurst, “Non-Disjoint Decomposition,” Harvard 
Computation  Laboratory  Report  No. BL-4,  Sec. IV, 1953. 

9. H. A. Curtis, “Simple Non-Disjunctive Decomposition,” 
Harvard Commtation Laboratory  Report No. BL-19, 

pp. 152-162. 

Sec. 11, 1958. 

IBM Research Reoort RC-121. June 15, 1959. 
10. R. E. Miller, “State Reduction for Sequential Machines,” 

11.  M. H. McAndrew; private communication. 
12. H. A. Curtis, “A Generalized Tree Circuit,” Jour. ACM, 8, 

484-496 (1961). 

Received April 14, 1961 

238 

IBM JOURNAL APRIL 1962 


