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L. Esaki

Characterization of Tunnel Diode Performance
in Terms of Device Figure of Merit
and Circuit Time Constant

Abstract: Tunnel diode oscillation, flip-flop switching and Goto twin operation have been characterized

on the basis of numerical integration of a nonlinear differential equation representing transient behavior

in the simplified, lumped equivalent circuit. The results have provided some information for the

maximum utility of a tunnel diode having a given figure of merit. A useful relationship is given for

single diodes, in which switching time vs external-circuit time constant L/R is shown for various

device figures of merit. Another relationship is given for twin diodes in plots of cut-off frequency vs L/R.
The study is then extended to the case of oscillator diodes.

Introduction

Since negative resistance was originally observed in a
tunnel junction,’ considerable progress has been made
toward the development of a high-figure-of-merit
tunnel diode. From these attempts has arisen a con-
siderable body of literature showing various fabrica-
tion methods and giving diode performance data. At
this time, it might be worth while to analyze the
capabilities of this simple two-terminal device.

The systems development engineer might be inter-
ested in the limitations of power and of switching time.
Suppose a circuit engineer plans to use a given type
of tunnel diode. He certainly has to know the maximum
usage of a tunnel diode having a certain figure of
merit. Would it be reasonable, for example, to expect
a tunnel diode oscillator to deliver a considerable
amount of power at 10 gigacycles? Or would it be
physically possible to obtain a 0.1 nanosecond switch-
ing circuit with a diode of advanced design? The
purpose of the present paper is to consider these kinds
of problems on the basis of numerical calculation of
the simplified, lumped equivalent circuit, in a way
somewhat similar to Schuller-Girtner’s method.? The
results of this analysis will clarify diode operation and
show the necessary conditions, viz., requirements for
both the diode and the circuit, in order to attain a
certain goal of system capability. The analysis will
also provide us with a useful rule of thumb for the
relation between the device’s figure of merit and the
external circuit time constant. This relation is given in

IBM JOURNAL * APRIL 1962

terms of the switching time, for the single diode, and
in terms of the cut-off frequency, for the twin diode.
The oscillation behavior, including output power of
the fundamental, the second and third harmonics, is
also investigated at the various bias-point load con-
ditions for a diode having a given figure of merit. The
result can easily be extended to the general case.

The figure of merit of the diode will be mostly
expressed by the ¢{r) time constant, where ¢ and {r)
are the capacitance and the average negative resistance,
respectively. This purely mathematical approach,
without any physical consideration of the detailed
mechanism of tunneling, may be entirely justified
because of the far smaller time constant of the tunnel-
ing (probably much less than 107!3 sec) than that of
the c{r) time constant of the diode (larger than 10™*2
sec). In other words, the capacitance-resistance parallel
equivalent circuit of the diode is valid over the wide
frequency range of interest.

Formulation

Now let us consider such a greatly simplified circuit
common to various applications, as shown in Fig. 1(a).
The diode which is shown with a parallel circuit of
nonlinear conductance g and capacitance ¢, could be
an amplifier, oscillator or switching element, according
to the given values of the dc source voltage V,, the
external resistance R, and the inductance L. When we
define the currents /, i, and j as indicated in Fig. 1(a),




the behavior can be written by the following two
fundamental loop equations,

jfgdt+v=0
C
i
p+Ri+LE =y,
di

where v is a terminal voltage of an ideal diode, ex-
cluding the voltage drop due to series resistance. Also
we can write the relations

ig=j—i
j=j®
and

-
c=c0(1—E1) ,

g

where the energy gap E, is taken as 0.6v for ger-

manium, and a step junction is assumed. Eliminating 7

from the above equations, we obtain a nonlinear
second-order differential equation,?

d%v dj dv dc dv)
— L—+ Re L— =V.—Rj.
Lcdt2+( " )dt+ v (dt Fo=YoR
1)

We can put any diode characteristics j(v) in this
equation. For the numerical integration, a current-
voltage curve was chosen which closely approximates
experimentally observed Ge tunnel diode character-
istics. It is composed of three components: the
tunneling, the excess current and the diffusion com-
ponent. We employ Kane’s theoretical expression for
the tunneling (direct tunneling case),® one-tenth of the
peak current /, for the excess current and diffusion
current of the form K exp(40 v). This curve is always
used in the present study, as illustrated in Fig. 2.

It should be mentioned that Eq. (1) is invariant in
the following substitutions,

L/2 R/2

- Vjcos
(2nft)
Vo=
e AW
L/2 R/2

(a) (b}

Figure 1 Simplified equivalent single diode cir-
cuit (a), and twin diode circuit (b).

L R
¢ =uoc,j =0, L=—and R =— (2a)
o o

or
¢ =fc, =BLand ¢’ = fit, (2b)

where « or f is a numerical constant. Therefore we
may deal only with a particular diode, of which
¢o = 107'% farad and 7, =1 ma, without losing
generality.

The fundamental circuit of Goto’s twin diode switch-
ing may be represented by the circuit in Fig. 1(b). The
following nonlinear simultaneous equations describe
the circuit:

d*v, dj(v,) dv, de (dv\?

Lege * (L ar TR ) @ +Ldvl(dt)

+ Rj(vy) + vy + vy, = Vy — V| cos(2nft) ,

d’v, dj(v,) dv, de (dv,
Le —- L—=+R L
“ar +( v, )dt+ dvz( )

+ Rj(v,) + vy + v, = Vy — V, cos(2nft) , 3)

where notations are indicated in the Figure. A
sinusoidal power source — V; cos(2nft) for excita-
tion is employed together with dc bias V, instead
of pulse wave, where ¥, and V| are 0.22 and 0.14 v,
respectively.

In the linear approximation that both ¢ and g are
constant, where g is a negative conductance, we obtain

from Eq. (1),
d2
d2+(X+Y)—+(XY+1)v—const )

where

T=wl, W= :7ij;

The same type of equation will also be written for the
current i. The solutions are, obviously,

vori= Aexp(e,;1) + Bexp(x,t) + const. , (3)

where o; and a, =3 - (X +Y) + /(X — Y)T— 4].
The dimensionless parameters X and Y, of which the
inverses represent the device time constant and the
external-circuit time constant, respectively, will deter-
mine all behaviors of v(¢) or i(r). For example, the
conditions for the standing sinusoidal oscillation are
easily derived as

X+Y=0 XY+1>0,
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that is,
R g

, 1 R>0,
L ¢ t9

and the frequency fis obviously given by the following
well-known equation:

2nf = /1 - X?
1 .
= ﬁ\/l +gR. 6)
Results

& Flip-flop switching

The bistable switching operation is obtained with
suitable choice of ¥V and R for a given diode. The
value L will have a large effect on the transient
behavior. We obtained v and i as functions of time
through the numerical integration of the Eq. (1).
Figure 2 shows a conventional plot of v versus i of the
switching transient at three values of L. In this Figure,
we started from 4’ instead of 4 to eliminate the trigger-
ing. The switching time is customarily defined by the

time when either the voltage change or the current
change reaches 909, of the total change expected.
Therefore we drew two lines g-a’ and b-b’ at the
places of 909 change in the current and the voltage,
respectively. The o-i trajectory starting from A’,
initially, hits the voltage line b-b' and then hits the
current line a-a’. However, the current switching
time may be more significant than the voltage one
from a practical viewpoint, because of output power
considerations, though the two switching times are
practically the same in the case of small L or small
L/R as in the case of L = 1078 h in Fig. 2.

The choice of triggering is very important in order
to obtain the proper switching time. We chose rather
arbitrarily a bias point 4 of 0.95 ma and 0.06 v to
begin with, while the peak point is 1 ma and 0.075 v.
The triggering voltage V), or current I, should be
large enough to surmount the peak point; that is,
Vi > 0.038 v or I, > 0.075 ma for R = 500 ohms.
The triggering voltage and current are defined here
as step-function voltage and current sources connected
in series and parallel, respectively, with the power
supply. Figure 3 shows the transient behavior in the
switching at triggering voltages 0.043, 0.063, 0.083,

Figure 2 Diode current-voltage characteristic v-j and switching transient v-i for L =10, 160 and 1000 nh

(R =500 ohms, ¢y =1 pf).
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0.103 and 0.123 v from right to left respectively, given
by step functions for the case of L = 107® h and
R = 500 ohms in Fig. 2. The excess voltage or current
above the required minimum triggering input always
plays a dominant role, whatever the bias point. The
upper curve in Fig. 4(a) indicates how the switching
time depends on the triggering voltage V', in the terms
of the ratio V,,, to V,, (voltage gain). We would like
here to introduce a concept which we call the intrinsic
switching time, that is, the transition interval, which is
the time required for from 109/ to 909, change in
output voltage or output current. The lower curve in
Fig. 4(a) is this switching transition time, which does
not seem to vary strongly with the triggering voltage
and therefore is used in the following analysis. Figure
4(b) shows the intrinsic current switching time versus
the load resistance R, which indicates a broad maxi-
mum around R = 350 ohms. The reverse switching
behavior was analyzed in the same way. No significant
difference was noticed.

We next calculate the intrinsic current switching
time over the wide range of the inductance L at the
fixed resistance R (= 500 ohms). The results are
shown with curves indicated as “‘single’ in Fig. 10,
where the switching time was plotted against L/R on
the logarithmic graph. Once we get one curve for the
diode of c{r) = 107!° sec, we can obtain a curve for
a diode having any figure of merit simply with parallel
transfer, using the substitutions (2b). The figure of
merit is frequently indicated by the ratio of the capaci-
tance ¢ to the peak current /,. The ¢{r) product 107'°
sec approximately corresponds to 1 pf/ma in the
germanium tunnel diode. It is notable that the curves
in Fig. 10 consist of flat regions and 45° slope regions.
In the former region, the switching time is determined
by the device time constant ¢{r), while in the latter
region, that is subject to the external time constant
L/R.

® Oscillation

One can expect a sine-wave oscillation when the diode
is biased at the negative resistance region, and the
following inequalities are satisfied:

« Figure 3 Switching transient v(t) for various

triggerings in the case of L =10 nh and
R =500 ohms.

Figure 4 (a) Switching time (the upper curve) and
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intrinsic switching time (the lower
curve) versus voltage gain V,,./Vin.

(b) Switching time versus load resist-
ance R.
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Table I Oscillation frequencies calculated for bias
points o, B, and v in Fig. 2; oscillation powers
dissipated in resistance R for fundamental
frequency and for 2nd and 3rd harmonics.

a-point  f-point y-point
r =80Q r —-90Q r —110Q

R =200
Osc. Frequency (Gc) 1.36 1.39 1.40
Osc. Power (uw)
fundamental 13.52 13.76 19.88
2nd harmonic 0.123 0.063 0.023
3rd harmonic 0.0095 0.0019 0.0143
= 40Q
Osc. Frequency (Ge) 1.28 1.30 1.31
Osc. Power (uw)
fundamental 16.89 19.43 22.52
2nd harmonic 0.097 0.040 0.003
3rd harmonic 0.0135 0.0162 0.0152
= 60Q
Osc. Frequency (Ge) 1.10 1.11 1.12
Osc. Power (uw)
fundamental 14.89 16.62 18.55
2nd harmonic 0.062 0.027 0.006
3rd harmonic 0.0157 0.0172 0.0135
0zZX+7Y
and
2>Y—-X,

according to the solution (5) of the linear approxima-
tion. We made a numerical integration of the nonlinear
equation for the biased points «, § and y of the negative
resistance region in Fig. 2. The inductance, L = 1078
h, is fixed and the three resistances, R = 20, 40 and
60 ohms, are employed. The oscillation was sinusoidal,
mixed with higher harmonics. The fundamental
oscillation frequencies are listed in Table 1, together
with the oscillation powers dissipated in the resistance
R for the fundamental, the second and the third
harmonic. One can see that the oscillation power in
the fundamental frequency increases from the a-point
toward the y-point, while the power in the second
harmonic decreases by such movement of the bias
point, because of the decrease of the curvature radius
in our diode characteristics. Also one can get the
maximum power when the load resistance R is about
half the negative resistance r. 1t is clear from Eq. (6)
that R should be small in order to get really high-
frequency oscillation. The actual diode, however, must
have some series resistance R, which may depend on
174 the structure and the substrate material. The ratio of
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the average negative resistance {r) to R, may be 10
in an ordinary diode and may be much less in the
high-figure-of-merit diode. Therefore R in Fig. 1
should be divided into two components, the load
resistance R, and the series resistance R, and the
really available output power may be only that
dissipated in R,. This sort of argument clearly informs
us that the ratio {r)/R, should increase in order to get
high oscillation power at the high frequency. However,
in most cases, we see the very small ratio <{r)/R; in
the extremely high-figure-of-merit diode because of
the small junction area. We carried out the output
power calculation in the case of R, = 10 ohms for the
same diode (/, = 1 ma, ¢, = 107'%farad and {r) ~
100 ohms) at various inductance and load resistance
values, which determine the frequency. The output
power was plotted against the frequency in Fig. 5. A
slotted envelope indicates the maximum power output
attainable by choosing suitable L and R,. As long
as {r)/R; remains constant, this diagram can be
simply extended to diodes having other peak cur-
rents or figures of merit by shifting the power
level or the frequency according to the rules (2a)
and (2b).

We get interesting oscillation performance, unpre-
dictable from linear theory, if the diode was biased
at the o-point in Fig. 2, a little beyond the negative-
resistance region. Generally speaking, a standing-wave
oscillation of the tunnel diode in such a circuit as
as shown in Fig. 1 should satisfy the following
equation:

t+T
f (vj + Ri%dt =0,
t

from the requirement of rf energy conservation, where
T is the period of one cycle. One may get a set of the

IOIO
CUT OFF AT Rg = 10 OHMS
///”’;L 10 Rg = 10 OHMS
/ﬁ R = 30 Rg = 10 OHMS
/
/]
107k R = 50 Rg = 10 OHMS
-
b
- 1
o ]
> i
v }
. 1
> |
(o]
z
I
pol
o
: 8
w D I
10-5 1076 1077
WATT

Figure 5 Oscillation power versus frequency for
I, =1 ma, ¢,=1 pf and R, =10 ohms
(c<r> ~ 1019 sec).
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Figure 6 Transient v-i of the ““Class C oscillation” at large and small triggering kicks.

unique solutions () and v(f) satisfying the above
equation if the diode is biased just inside the negative-
resistance region, while one can obtain two sets of the
solutions #,(9), v,(f) and (1), v,(¢) if that is biased at
the voltage range from 0.18 through 0.24 v at the end
of, or beyond, the negative-resistance region. One set
of the solutions 7,(f) and v,(?), represents a metastable
state, while the other set i (r) and v,(7) is a stable
solution. Figure 6 shows the »-i trajectories of the
transient, the final state [i,(f), v,(t)] and the metastable

state [i,,(2), v,,(£)], which were obtained from Eq. (1) for
V, =022 v, R =20 ohms, and L = 1078 h. If the
trigger kick is inside the i,.-v,, orbit, it will “die out”,
while, if it extends to the outside of that orbit, a
sustaining oscillation of 1.5 x 10° cycles will be
obtained after a few turns, of which the rf power dis-
sipated in the load R is about 35 x 107° w, a relatively
large quantity. Figure 7 illustrates the behavior of both
the “building-up” and the “dying-out” modes, accord-
ing to the magnitude of the triggering kick. This type
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Figure 7 Transient v(t) of the ‘“Class C oscil-
lation” at large and small triggering
kicks.

of oscillation was first found experimentally by R. F.
Rutz,* who called it “Class C oscillation”. This pheno-
menon was later studied on a mathematical basis by
Flatto and Miranker.?
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Figure 8§ Output pulse shape v;—v; of Goto’s twin

diode circuit at rf exciting frequencies
200 mc and 500 mc for L =40 nh and
R =10 ohms.

Figure 9 Maximum output pulse voltage at the initial cycle versus the rf exciting frequency at L — 160

40, 10, 1 and 0.1 nh. (R = 10 ohms).
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Figure 10 Intrinsic switching time for single diode and reciprocal cut-off frequency for twin diodes
versus L/R at various figure-of-merit diodes.

& Goto twin switching diodes

The fundamental circuit of the Goto’s twin-diode may
be drawn as shown in Fig. 1(b).® The purpose of our
present analysis is to obtain a cut-off frequency f. in
this rf excitation scheme by means of the numerical
integration of the nonlinear simultaneous equations
(3). One might expect f, to depend not only on the
figure of merit of the device but also on R and L in the
external circuit. The definition of such a cut-off fre-
quency and the triggering condition also may admit
of some discussion.

First of all, let us assume that the two diodes are
exactly identical and the external circuit is also sym-
metrical. If the current level of either one, for instance,
J(,), is raised by 109 peak current, that is, 0.1 ma,
by triggering, one can get a pulse-like repetition output
voltage v, — v, at the middle point between both
diodes, as shown in Fig. 8. The larger pulse and the
smaller one represent the cases of R = 10 ohms,
L=4x10"%h, f=2 x 10% sec™! and the same
values of R and L, f = 5 x 10® sec™!, respectively,
where the time scale is normalized in the Figure. The
output voltage v; — v, at the initial cycle was then
plotted. The wave shape was not much different, even
after a number of cycles, unless the frequency is
extremely high. Small variations of the triggering depth

and the external resistance R (including the series
resistance R,) did not greatly affect the general switch-
ing performance, so the above-mentioned depth (10%))
and resistance (10 ohms) are kept constant in the
following analysis.

We will now determine the cut-off frequency f, over
the wide range of the inductance L from 10~ '° through
1075 h. Figure 9 shows the maximum of the difference
vy — v, at the initial cycle versus the exciting frequency
f for various values L. The cut-off frequency may be
determined by the requirement that v; — v, should be
greater than a certain level in order to transfer properly
the signal pulse to the next stage. Here, let us tentatively
define the cut-off frequency f, as that frequency at
which v; — v, is reduced to 0.707 of its low-frequency
value. The other requirement for f, may be that the
maximum of the output pulse should come at the
proper time, for example, before the lapse of two-
thirds of one cycle, which was verified to be satisfied
under our definition. The results are illustrated with
curves indicated as “‘twin”, where 1/f, was plotted
against L/R on the logarithmic graph of Fig. 10.
Each curve consists of two regions, flat and slope. In
the former region, f. is determined by the device’s
figure of merit ¢{r) or ¢/I, (pf /ma), while, in the slope
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region, f. is proportional to R/L. Furthermore, it
should be mentioned that 1/f, is approximately equal
to the intrinsic switching time in the single diode
flip-flop at the device-limited condition (flat region)
and also £, is just about half the frequency for oscilla-
tion given by formula (6)

(fc~0.5 - JE Jm)

at the circuit-limited condition (slope region).

Conclusion

The ¢{r) time constant or ¢/I, of the device figure of
merit may be determined by only the impurity con-
centrations of both p and » sides for a certain semi-
conductor material if the ideal sharp step-junction is
assumed. This, of course, depends very much on
metallurgical processes (heavily doped crystal growing,
alloying, et cetera) in diode fabrication. The highest
value in germanium tunnel diodes of practical use
may be 107! sec (0.1 pf/ma). For several promising
compound semiconductors, InSb, InAs, GaSb and
GaAs, the limit would seem to be considerably extended.
Though the present analysis is based on the germanium
tunnel diode, it can easily be extended, with minor
modifications, to other materials. The relationship
between the ¢{r) product and c/I, does depend on the
material,

Now we can answer the questions raised at the
beginning of this paper. If we can get a germanium
tunnel diode of I, = 1 ma, ¢, = 0.1 pf and R, = 10
ohms (¢{r) ~ 107! sec), the power output dissipated
in the load resistance R; = 10 ohms is approximately
10 uw at 10 Ge, from Fig. 5. With the same tunnel
diode, 0.1 nsec switching may be predicted with the
inductance less than 10 nh at R = 500 ohms, from
Fig. 10.7 :

Of course, many complications occur in actual
computer switching circuits, especially because of
coupling one to the next, the distributed nature of
both the circuit and the device, the tolerance of the
diode characteristics, et cetera. Even so, it might be
worth while to analyze the performance of each unit
carefully and to determine whether the circuit switch-
ing time is device-limited or circuit-limited. Finally,
the author would like to point out the desirability of
choosing tunnel diodes of which the figure of merit is
well matched with the system requirement.
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