
Letter  to the Editor 

P. Huard* 

Dual Programs 

This letter is motivated by a  theorem of W. S. Dorn’ 
concerning the  dual of a mini-convex program (i.e., a 
program whose minimal economic function is convex) 
under  linear  constraints. We prove this theorem  for 
the  more general case of convex nonlinear  constraints. 

Dorn  obtains his theorem by generalizing the result 
of J. B. Dennis.’ We  give here a  proof which is some- 
what  different: Relying on  the  conditions of Kuhn  and 
T ~ c k e r , ~ . ~  we obtain,  in  the  particular case of linear 
constraints,  an easier demonstration of the second half 
of Dorn’s theorem. 
Notations 

C is a  matrix 
J the set of indices of the  components 

of x 
are complementary subsets of J 

In addition we use the following matrix  notation : 
xK Column vector whose components have indices 

xk Similar definition as  above with K substituted 

dfldx A row vector, whose components have the 
same indexing set as  the components of x, and 
whose jth component is given  by af(x)/axj 

daldx A  matrix where the rows have the  same indexing 
set as  the components of the  column vector a, 
and where the  columns have the  same indexing 
set as  the components of the  column vector x. 
The (i, j)th term is given by: 

consisting of the set K(K c J )  

by 

aai(x> 
ax 

d(aT) da dX=[zl ’ 
the superscript T being used for  transpose. 

Every sign (e.g., hat,  bar) placed on a  variable 
(scalar, vector, matrix) indicates the  substitution of the 
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variable by a  constant. Also, to simplify notation 
we set 

and so forth. 

Dual programs 

Let f(x) and a(x) be respectively a scalar and a 
. column vector, both being convex functions of the 

column x and having continuous derivatives. 

We call Problem I the following program: 

To minimize f(x) under 
the  condition a(x) < 0. (1) 

) Problem I 

The necessary and sufficient conditions for % to  be 
an optimal  solution of Problem I are given by  Kuhn 
and  Tucker : 

9 8 0  
Necessary and sufficient 

9* - + - = 0 (3) K-T conditions relative 
to Problem I. 

da df 
dx dx 

A A  (21 9 T L  = 0 ; (4) 

where v is called the dual  variable (vector whose com- 
ponents have the  same indexing set as  the  components 
of a). 

We call Problem 11 the following program: 

To maximize g(x, v) = f(x) + v’a(x) 
under  the  conditions 

da df  
v T - + - = O  

dx dx 

v > o .  
Problem I1 is said to be  a dualprogram of Problem I. 

Duality  theorem 

1) If there exists a vector j z  that minimizes f(x) in 
Problem I,  then  the  vectors 2 and 9 maximize g(x, v) 
in Problem II. 1 37 
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2) Conversely, i fx  = E and v = i; maximize g(x, v) 
in Problem 11 and if in addition the matrix 

- 
a .da d2f ax (v z)+2 

has  an inverse, then  the vector x = E minimizes f(x) in 
Problem I. In both cases, we have: 

minimum f(x) = maximum g(x, v) , 

Proof 

1) Let us first observe that  from (2) and (3) we have 
x = S and v = 8 as feasible solutions of Problem 11. 
On  the  other  hand if x, v are  any feasible solutions of 
Problem 11, we have 

g(2, 8)  - g(x, VI 

= 2 -f(x) + - vTa(x> 

3 - (2 - x) - vTa(x) df from (4) and f 
dx convex 

for a is convex and 
from (6) v 3 0 

2 0 .  

Finally, we have 

from (1) and (6). 

s(% 8)  - g(x, v) 3 0 (7) 

for all  pair x, v satisfying ( 5 )  and (6), which proves 
that  the feasible solution S, 8 of Problem I1 is optimal. 
In addition 

g(S, 8)  = f(%) + BTI = f(S) (8) 

from (4), which concludes the  proof of the first half 
of the  theroem. 

2) Let the vectors E, i; be an  optimal solution of 
Problem I1 and call the  corresponding dual variable. 
We write the necessary5 K-T conditions, relative to 
Problem I1 : 

-7-%20 
da 
dx 

i necessary K-T 

to  Problem 11. [& (vT 2) + $1 7 = 0 (10) conditions relative 

We must  introduce here an additional  hypothesis: 
the  square  matrix which multiplies on  the left in 
Eq. (10) is presumed to have an inverse;6  this implies 
that: 

138 j = O .  (12) 
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Therefore it is easy to observe that  the  Eqs. (5) and (6) 
for Z and i; and  the Eqs. (9), (1 1) and (12) imply the 
Eqs. (1) to (4) for R = E and 8 = i;. 

Thus : 

(9) and (12) * (1) 
(6) * (2) 
( 5 )  * (3) 

(1  1) and (12) e (4), 

and  therefore R = Z is an optimal  solution of Problem 
I, since the  conditions (1) to (4) are sufficient (f and a 
being convex). 

In  addition,  from (1 1) and (12) we obtain f(Z) = 
g(Z, i;), which completes the second half of the  proof. 

The case where f and a are  partially linear 

By partially linear functions we mean  functions such 
that: 

f(x) E h(XK) + ITXE (13) 

a(x) E b(xK) + Cxz - c , (14) 

where K and R are  complementary subsets of the  set 
indexing the  components of x. 

h(XK) is a  scalar  function of xK 
b(XK) is a vector function of xK 
1 is a  constant vector 
C is a  constant  matrix 
C is a  vector. 

Under these conditions,  the  matrix  in (10) becomes 

Since this matrix is clearly singular, the hypothesis 
which was introduced  in  the proof of the second half 
of the  theorem fails to be satisfied. 

Let us consider first the extreme case where K = 4, 
i.e., a  program which is purely linear:  Problem I1 and 
its Kuhn  and Tucker  conditions become 

To maximize -vTc 

vTC + 1' = 0 (16)] 
Problem I1 

V 3 0 (17) 

c y - c z + c  3 0  (18) 

oxy = o  (19) 

i;T[CY - CE + c] = 0 * (20) 

By observing that  Problem I1 has thus become 
independent of x, we could set Z = 0 and conse- 
quently Eqs. (16) to (20) immediately imply that 
-x = 9 is an optimal  solution of Problem I .  In  other 
words - y  has replaced x in the reciprocal theorem. 



In the case where f(x) and a(x) are partially linear, 
and defined by (13) and (14), we can show easily that 
the reciprocal theorem in the next section follows as a 
consequence. 

The modified theorem 

Second half-Reciprocally, if x = E and v = V maxi- 
mize g(x, v) in Problem 11, and if in addition  the 
matrix 

- 
a d2h 

has an inverse, the vector E defined  by 

minimizes f(x) in Problem I. (We have j;, = 0 and 
EK = 0). 

Remarks 

In  order to prove the second half of the theorem (in 
the case where a(x) is linear) Dorn introduces  the 
following additional hypothesis (modified notations) : 

Calling tT the  derivative of f(x) with respect  to x, let 

t T = ” .  df 
dx 

Let us consider the inverse function x(t) defined 
implicitly by  (21) and  suppose  that  the matrix dxldt 
exists. This hypothesis is equivalent to saying (as was 
observed by Dorn)  that  the matrix d2fldx2  has an 
inverse, which is  precisely our supposition (in this case 
it is well understood that a(x) is linear). This equiva- 
lence could be shown in the following fashion: 

From (21) we have 

dt d2f dx 
dt  dx2  dt 

I = - = (where I is the  identity matrix) , (22) 

which in  turn implies that 

dx d2f x= [ Z I  
Note added in proof 

I recently saw the  report of P. Wolfe “A duality 
theorem  for  nonlinear programming,”7 which I had 
not yet seen when I  wrote  the  Letter.  Taking into  con- 
sideration  the very full  report of P. Wolfe, the con- 
tribution  of my Letter is reduced to the second part 
of the  theorem. 
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