Dual Programs

This letter is motivated by a theorem of W. S. Dorn!
concerning the dual of a mini-convex program (i.€., a
program whose minimal economic function is convex)
under linear constraints. We prove this theorem for
the more general case of convex nonlinear constraints.

Dorn obtains his theorem by generalizing the result
of J. B. Dennis.? We give here a proof which is some-
what different: Relying on the conditions of Kuhnand
Tucker,®>* we obtain, in the particular case of linear
constraints, an easier demonstration of the second half
of Dorn’s theorem.

Notations

a, b, ¢, x, y,} are column vectors

Lv t

C 1s a matrix

J the set of indices of the components
of x

K R are complementary subsets of J

j;g)’)g V), } are scalar functions of vector argument.
K

In addition we use the following matrix notation:

Xg Column vector whose components have indices
consisting of the set K(K = J)

Xz Similar definition as above with K substituted
by K

dfldx A row vector, whose components have the
same indexing set as the components of x, and
whose j™ component is given by 9f(x)/0x;

da/dx A matrix where the rows have the same indexing
set as the components of the column vector a,
and where the columns have the same indexing
set as the components of the column vector x.
The (i, j)th term is given by:

da(x)

0x;
w-lal
dx  lax|’

the superscript 7 being used for transpose.
Every sign (e.g., hat, bar) placed on a variable
* (scalar, vector, matrix) indicates the substitution of the
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variable by a constant. Also, to simplify notation
we set

a®) =4; f®) =T; [de(x)]xj B [ﬂ]

dx? dx?

and so forth.

Dual programs

Let f(x) and a(x) be respectively a scalar and a
column vector, both being convex functions of the
column x and having continuous derivatives.

We call Problem I the following program:

To minimize f(x) under
the condition a(x) < 0. )

The necessary and sufficient conditions for X to be
an optimal solution of Problem I are given by Kuhn
and Tucker:

Problem I

$=0 2
2; ;} Necessary and sufficient
V' —+—=—=0 (3)} K-T conditions relative
dx  dx to Problem I.
$Ta=0, 4

where v is called the dual variable (vector whose com-
ponents have the same indexing set as the components
of a).

We call Problem II the following program:

To maximize g(x, v) = f(x) + v7a(x)
under the conditions

VT da + a _ 0 ) Problem II
dx dx
v=0. (6)

Problem 11 is said to be a dual program of Problem 1.

Duality theorem

1) If there exists a vector X that minimizes f(X) in
Problem I, then the vectors & and § maximize g(X, v)
in Problem II.
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i 2) Conversely, if x = X and v = ¥ maximize g(x, v)
in Problem II and if in addition the matrix

2 d 27

ox \ dx/  dx*

has an inverse, then the vector x = X minimizes f(x) in
Problem I. In both cases, we have:

minimum f(x) = maximum g(x, v) .

Proof

1) Let us first observe that from (2) and (3) we have

X = R and v = ¥ as feasible solutions of Problem II.

On the other hand if x, v are any feasible solutions of
Problem 11, we have

g(i’ 0) - g(x9 V)
=f—f(x) + 73 — v7a(x)

> ifi @& — x) — v7a(x) from (4) and f
dx convex
af da for a is convex and
> (= T%% e _ R X an
(dx Ty dx)(X x)—-va from(6) v=0
= —v'a from (5)
=0. from (1) and (6).
Finally, we have
g(i9 9) - g(xs V) = 0 (7)

for all pair x, v satisfying (5) and (6), which proves
that the feasible solution &, ¥ of Problem II is optimal.
In addition

IR’ N =A%) + 94 = (%) ®)

from (4), which concludes the proof of the first half
of the theroem.

2) Let the vectors X, ¥ be an optimal solution of
Problem I and call § the corresponding dual variable.
We write the necessary® K-T conditions, relative to
Problem II:

T da E’ necessary K-T
[_ (VT __.) + _._] §=0 (10) conditions relative
to Problem II.

vf[j—:y—a] =0. (11)

We must introduce here an additional hypothesis:
the square matrix which multiplies ¥ on the left in
Eq. (10) is presumed to have an inverse;® this implies
that:

y=0. (12)
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Therefore it is easy to observe that the Eqs. (5)and (6)
for % and ¥ and the Egs. (9), (11) and (12) imply the
Egs. (1)to (4) fork = Xand ¥ = V.

Thus:
(9) and (12) = (1)
6 = (2)
(5) = (3)

(11) and (12) = (4),

and therefore & = X is an optimal solution of Problem
I, since the conditions (1) to (4) are sufficient (fand a
being convex).

In addition, from (11) and (12) we obtain f(X) =
g(X, ¥), which completes the second half of the proof.

The case where f and a are partially linear

By partially linear functions we mean functions such
that:

f(x) = h(xg) +1"xg (13)
a(x) = b(xy) + Cxg — ¢, (14

where K and K are complementary subsets of the set
indexing the components of x.

h(xg) is a scalar function of xy

b(xy) is a vector function of xg
is a constant vector

C is a constant matrix

c is a vector.

Under these conditions, the matrix in (10) becomes

0 [, db d*h

5 (ada) T _| o \" g g
2 yT 22 hadCARP O Y ¢ K K 1
ox (v dx) + dx? -(13)
0 0

Since this matrix is clearly singular, the hypothesis
which was introduced in the proof of the second half
of the theorem fails to be satisfied.

Let us consider first the extreme case where K = ¢,
i.e., a program which is purely linear: Problem II and
its Kuhn and Tucker conditions become

To maximize —v'e

VIC+1T=0 (16)

v S0 a7 Problem II
Cy—Cx+¢c =0 (18)
0xy -0 (19)
VI[C§y—Cx+¢]=0. (20)

By observing that Problem II has thus become
independent of x, we could set X = 0 and conse-
quently Egs. (16) to (20) immediately imply that
—x = ¥ is an optimal solution of Problem I. In other
words —y has replaced x in the reciprocal theorem.




In the case where f(x) and a(x) are partially linear,
and defined by (13) and (14), we can show easily that
the reciprocal theorem in the next section follows as a
consequence.

The modified theorem

Second half—Reciprocally, if x = X and v = ¥ maxi-
mize g(x, v) in Problem II, and if in addition the
matrix

ENRE Y
dxg) = dxg?

Oxg
has an inverse, the vector X defined by

= (25

minimizes f(x) in Problem I. (We have §x = 0 and
Xz = 0).

Remarks

In order to prove the second half of the theorem (in
the case where a(x) is linear) Dorn introduces the
following additional hypothesis (modified notations):

Calling t7 the derivative of f(X) with respect to x, let

r_4
t et (21)

Let us consider the inverse function x(t) defined
implicitly by (21) and suppose that the matrix dx/dt
exists. This hypothesis is equivalent to saying (as was
observed by Dorn) that the matrix d2f/dx?> has an
inverse, which is precisely our supposition (in this case
it is well understood that a(x) is linear). This equiva-
lence could be shown in the following fashion:

From (21) we have

1= % 8L X here I the identity matrix) , (22)
== C re I is the identity matrix) , (

which in turn implies that

[
dt  |ax*
Note added in proof

I recently saw the report of P. Wolfe “A duality
theorem for nonlinear programming,””? which I had
not yet seen when I wrote the Letter. Taking into con-
sideration the very full report of P. Wolfe, the con-
tribution of my Letter is reduced to the second part
of the theorem.
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