126

Associative Memory
with Ordered Retrieval

R. R. Seeber
A. B. Lindquist

Abstract: A basic associative memory utilizing cryogenic circuitry is described and its functions are
compared with those of previously published associative memory descriptions. The ordered-retrieval
sorting algorithm is described, along with its implementation by means of a ternary interrogating
counter. A sorting example is given. The sorting efficiency is discussed and an efficiency formula is
given. The required additions to the basic memory are outlined. Finally, some of the basic cryotron

circuits are illustrated and their operation described.

Introduction

The sorting of data for processing is a recurring
problem of major proportions, particularly in business
data processing. The concept of an associative memory
somewhat reduces the need for sorting. For example,
when a binary search is employed in a table look-up
operation, the data must be in sorted order so that the
search may be made; with an associative memory we
may have direct access to items in a table by associa-
tion without regard to the order in which they are
stored, thus eliminating the need for sorting. But there
are still many places where sorting is necessary,
particularly in preparing data for output. The associa-
tive memory system proposed here applies to any
sorting operation that involves a high-speed internal
sort. An implementation is shown using a cryogenic
memory, but the principles can be applied also to other
technologies.

Earlier papers' ™ on associative memory have dealt
with storage and retrieval of information and, with one
exception, have not dealt with the sorting problem.
The “Associative Self-Sorting Memory”® permitted
data entering memory to be sorted in order during the
entering operation. However, this operation required
substantial additional hardware beyond that required
for a conventional associative memory in that double
registers were provided for buffering of data and
transfer circuits were provided between each pair of
registers. In the present proposal, Associative Memory
with Ordered Retrieval, in addition to the circuits
of a conventional associative memory there is required
only one relatively simple circuit extending through-
out memory plus additional logic in the control circuits.

IBM JOURNAL * JANUARY 1962

An efficient algorithm enables the locating of the
lowest-ranking word in memory, where the words
may be in any random order and the sorting field may
be selected at the time of sorting.

With an associative memory, one may retrieve
randomly stored words in order by using a counter to
establish the interrogating tag. For example, if 90
employees have employee numbers consisting of two
decimal digits and we wish to retrieve their records in
employee-number order, we can start by retrieving
employee number 00, then 01, 02, ..., 99. On ten of
these retrieval tries, no retrieval will be made since
only 90 of the codes have been used. But by advancing
a counter a unit at a time, we have, in this case, a
highly efficient ordered retrieval, since for 100 retrieval
tries, we have succeeded in 90 cases. But if our
sorting key was such that we had a non-dense set to be
sorted, our efficiency would be quite different. For
example, a ten-digit part number might be used where
there were only 1000 part numbers. Employing the
above method would require 10*° retrieval tries for 103
successful retrievals.

For non-dense keys we need a more efficient
algorithm which will permit us to find the lowest-
ranking key without examining all possible combina-
tions. That is what the algorithm provides. Consider
how the human brain approaches the problem of
sorting the following four keys:

2634

5
1
1
7

oo
~N AN
[V I~)
(SRR S

By looking only at the first digit we could complete
our sort except for the second and fourth keys, which
both begin with 4. In these two cases we need look at
only one more digit to determine their correct order.
Thus the sort can be completed without any reference
to the right-hand digits. The following shows this
separation into the digits used for the sort, to the left
of the line, and those not used.

21634

5
1
1
7

0o
~J| N
W B\
N3N

The ordered-retrieval algorithm operates on a similar
basis, working on the binary bits of the key. An
interrogation starts with the leftmost bit, associatively
separating the words in memory into those that
match and those that do not match an interrogating
zero in that single bit position. If there is more
than one match, we must analyze the matching
words further to the right to the point where there
is usually but a single match. Having retrieved the
lowest-ranking word, we can then proceed to the
next higher word in much the same fashion. This
will be more fully explained in the section on auto-
matic ordered retrieval after a review of cryotron
associative memories.

This paper, then, gives an algorithm for use with
an associative memory. With this algorithm a set of
randomly ordered words is retrieved in order by some
non-preassigned key. This scheme is in contrast to the
operation of table look-up, where usually the words
are in order and we desire to retrieve only one of them.

Cryotron associative memories

Before we consider the automatic ordered retrieval
properties, it is desirable to discuss the salient features
of the associative portion and to indicate how they differ
from other such memories. Figure 1 shows a simplified
block diagram of a cryogenic implementation of the
associative portion of the memory with ordered
retrieval,

The memory cycle consists of two phases established
by the memory controls. During the first phase the
contents of the unmasked positions of the interroga-
tion register condition the comparing circuits to their
corresponding positions in the memory. For the
positions that were masked, a mask signal is sent
through the memory. A mask signal forces that position
in memory to indicate an equal condition.

In the memory, a comparing current is established
on an equal line going into the high-order position of
each word. As long as the memory positions are equal
to their corresponding positions in the interrogation
register or are masked, the comparing current will
remain on the equal line. If at any position there is an
unequal condition, the comparing current will be
diverted to the unequal line. At the end of each word
register in memory, an indicator bit is set to “1” by

current on the equal line, indicating an equal word
register, or to a “0” by current on the unequal line.
The indicator bit is part of the register select controls
and is referred to as the equal bit. An equal word is
defined as having its tag equal to the interrogating tag.

During the second phase of the memory cycle, the
equal-word register is read out of or written into, de-
pending upon the operation desired. These operations
are performed by the memory control, register select
control, and the READ-WRITE circuits. Details of some
of these circuits will be discussed in the section on
circuitry.

In this memory system provision is made for stor-
age of data into the first vacant word register. A
vacancy bit in each register is used to indicate whether
that register is occupied or vacant. A “0” or “1” in
the vacancy bit may respectively represent a vacant or
occupied word register. The vacancy bit is designed so
that it is possible to write into it during a READ opera-
tion as well as during a WRITE operation. Thus writing
a “0” into the vacancy bit of a word register while
reading that register results in a destructive READ
operation. Notice in Fig. 1 that in order to accomplish
the WRITE WHILE READ operation, the READ line con-
nects to the wWrITE line before going into the vacancy bit.

Provision is also made in this memory for handling
multiple-matched words. When a plurality of matched
words results, the first matched word register is read
and marked. By definition a matched word is an un-
marked equal word. The matched and marked word
registers are identified by match and mark bits re-
spectively. These bits, like the equal bit, are part of the
register select controls. Therefore, during the next
memory cycle, using the same tag, the next matched
word is read and marked. This time the matched word
is the second equal word. After all matched words have
been read and marked, the mark bits are reset for all
equal words.

In summary we would like to point out some of the
systems differences between this associative memory
and the others discussed in the literature.!™® First of
all, this associative memory uses a parallel-by-bit,
parallel-by-word approach which differs from the
serial-by-bit, parallel-by-word method of Petersen?;
the parallel-by-bit search of the present system results
in a more efficient sort than the serial-by-bit approach.
Second, with regard to sensing, indicator bits on each
word indicate as to whether that word was a match or
no-match during an interrogation; these indicator bits
differ from the YES, No answer of Slade’s catalog
memory.!'? Finally, the readout of this associative
memory differs from both those of Petersen and Slade.
In our ordered-retrieval system the direct operation of
the output circuits results in a parallel readout. Petersen
accomplishes the readout through an encoding from
the detector plane which, by decoding, activates the
X and Y READ drivers resulting in a parallel destructive
or nondestructive READ. Slade’s readout is a serial-by-
bit system.

127

IBM JOURNAL ¢ JANUARY 1962

Automatic ordered retrieval
A. Basic algorithm

The object of the sorting mechanism is to generate
an interrogating tag which will result in an ordered
retrieval of the desired data. This mechanism should
accomplish this object in a minimum number of
memory interrogations. The mechanism capable of

doing this is similar to a ternary counter, although
logic operating on a mask register (see References 3
and 5) would also suffice.

The three states of each ternary counter position are
designated as .#, “0”, and “1” representing mask,
binary “0” and binary “1”’. When a counter position
is in the .# state, matching of the word is not required
in that bit position. When a counter position is in the

Figure 1 Block diagram of an associative memory.

INTERROGATION REGISTER
01 0 ol 1 0|1 N 0l 1 of 1
MEMORY
CONTROLS
MASK REGISTER
MO M 0] 1 T M|
= % %= = :% = % 4 a3 R I = = =
. READ
VACANCY [DATA-TAG " DATA-TAG WRITE REGISTER
SELECT
OROER - 2 BIT BT 1 . BT e UNEQUAL CONTROL
n -] "]
* EQUAL
il ":
. READ
WRITE
VACANCY y DATA-TAG 2 DATA-TAG REGISTER
WORD ACAN BIT 1 BIT p UNEQUAL SELECT
BIT 2 CONTROL
REGISTER n =~ 1 r* I
* EQUAL
—ad &
. READ
WRITE
CANCY DATA-TAG " DATA-TAG REGISTER
WORD VACAN BIT 1 BIT p UNEQUAL SELECT
REGISTER n BIT » CONTROL
[| | [|
.
EQUAL
— 2

128

IBM JOURNAL * JANUARY 1962

"

—{l

QUTPUT REGISTER

“0” state, a binary “0” is searched for in that position
and similarly for a binary *“1”.

Except at the start of the sort operation, the rules
for the operation of the ternary counter are a function
of the match indicator. This indicator tells how many
registers in memory match the setting of the ternary
counter, but only in abbreviated form as indicated
below.

Match Indicator: 0 = no matches

1 = one match
P = more than one match

At the start of the sort operation, all the positions of
the ternary counter are reset to the .# state and a
fixed tag identifying the data to be sorted is placed in
the interrogation register. The first interrogation of
the memory, using the all-# state of the ternary
counter and the fixed tag in the interrogation register,
determines whether there are any words to be sorted;
then the highest ordered position of the sorting field
in the ternary counter is located and advanced to the
next state. The cycle of a ternary counter position is
from ., to 07, to 1’ and then back to the .# state.
The rightmost position of the ternary counter is
defined as the lowest-ordered position of the sorting
field, and thereafter, each position to the left is con-
sidered the next higher ordered position. Thus, in the
memory, if a field to be sorted consists of ten positions,
the rightmost ten positions of the ternary counter will
be used as the sort-interrogating tag.

After each of the remaining memory interrogations,
the match indicator (M) is consulted to determine
the next state of the ternary counter. Before stating the
rules for establishing the next state of the ternary
counter, it is desirable to mention two definitions.
First, the lowest-ordered position of the ternary
counter whose state is either a “0’, or a ““1”° will be
defined as the operating position (OP). Second, the
position immediately to the right (that is, the next
lowest order) of the OP will be defined as the next
position (NP). The rules that are now stated tell not
only how to advance the ternary counter, but they
also tell when to select a matched word from memory
so that it will be retrieved in the desired order.

Rule I When the MI = P, if the OP is the lowest-
order position of the ternary counter, in-
dicating multiple like sorting keys, select
the first matched register and mark the
selected register; otherwise do not select.
Also when the MI = P, the NP is to be
advanced in preparation for the succeeding
interrogation. It should be observed that
when the OP is the lowest-order position of
the ternary counter, the state of the ternary
counter does not change until all multiple
like sorting keys have been selected, at
which time the mark bits are reset.

Rule 2 When the M1 = 1, select the matched word
and advance the OP.

Rule 3 When the M1 = 0, do not select, but ad-
vance the OP.

In addition to the above ordered-retrieval rules,
when a ternary counter position is advanced from the
“1” state to the .# state, a carry is produced and
directed into the next higher ordered position. A carry
generated in the highest-order position of the sorting
field indicates the end of the sort operation.

Table 1 shows the detailed steps involved in sorting
a six-bit key. Only six bits of the ternary counter and
the sorting key of the memory register data words are
shown. Since all data words are to be sorted, no fixed
tag is necessary.

The interrogations are numbered 1 through 15, and
the states of the ternary counter and match indicator
are shown for each interrogation. Inaddition theruleis
shown that is applied to obtain the state of the ternary
counter for the next interrogation. There is also shown,
to the right of each sorting key, a number which in-
dicates the interrogation when this key, along with its
data, was retrieved.

Note that at the start of the sort operation, the
ternary counter is set to the all-.# state. Then, after the
first interrogation, the high-order bit position of the
sorting field in the ternary counter, bit position 1
in this example, is advanced to a “0”. Thereafter
the match indicator dictates how the ternary counter
is to be advanced. For example, after the seventh
interrogation using a tag of 001.#.#.4, the MI = 0,
which according to Rule 3 tells us to advance the OP.
The OP, as defined for interrogation 7, is bit
position 3. Since bit position 3 is in the “1”’ state, it is
advanced to the .# state which results in a carry into
bit position 2. Bit position 2 is thus advanced from the
“0” state to the “1” state. As a result, the new tag for
the next interrogation, interrogation 8, is Ol.Z MMM .

In summary, we first see if there are any words to be
sorted. This is the interrogation with the ternary
counter set to the all-.# state; if MT is “0”, no sort
need be done; if MIis 17, that one word is the only
word to be “sorted” and it is immediately retrieved;
but if M1 is a plurality, P, we must proceed to a binary
subdivision in our interrogation by interrogating on
“0” in the highest-order bit in seeking for the lowest-
ranking word. Each setting of the ternary counter
{except the final all-.# setting) constitutes at least one
interrogation, that is, retrieval try; if there are n
multiple like tags, » interrogations or tries (all success-
ful) would be made with the OP in the lowest-order
counter position without changing the setting of the
ternary counter. When the last word has been found,
the algorithm usually requires additional retrieval tries
to prove that there are no more words in the sort.
Some of these steps could be avoided if we knew in
advance how many words were in our sort, but we
consider the more general case where the size of the
group is unknown, counting these retrieval tries as
part of the cost of the sort.

129

IBM JOURNAL s JANUARY 1962

Table I Example of an ordered-retrieval sort.

State of the Ternary Counter State of Rule
Interrogation Bit Positions MI Applied
1 2 3 4 5 6
1 M M M M MM P Start of Sort
2 0 MM M MM P 1
3 0 0 MM MM P 1
4 0 0 0 MMM P 1
5 0 0 0 0 MM 1 2
6 0 0 0 1 MM 1 2
7 0 0 1 M M M 0 3
8 0 1 MM MM 1 2
9 1 M M M M M P 1
10 1 0 MM M M P 1
11 1 0 0 MMM 0 3
12 1 0 1 M M M P 1
13 1 0 1 0 MM 1 2
14 1 0 1 1 MM 1 2
15 1 1 M M MM 1 2
M M M M M M End of Sort
Register Register Bit Positions Interrogation
No. 1 2 3 4 5 6 When Retrieved
1 1 0 1 1 0 1 14
2 1 1 0 1 0 1 15
3 0 0 0 1 0 1 6
4 0 1 1 0 0 1 8
5 1 0 1 0 1 1 13
6 0 0 0 0 1 0 5
In the example, the two lowest-order positions of Case II Randomly weighted: where each set of
the sorting field did not enter into the sort operation; sorting keys is counted with the appropriate
it is the generalization of this aspect that gives the frequency on the assumption that they
algorithm its efficiency. Fifteen retrieval tries were occur as random combinations with the
required to retrieve the six words, an average of two- “0” and “1” equally likely in any given
and-one-half retrieval tries per successful retrieval. position of the key.

This ratio of two-and-one-half falls within the range

of two to three found by experiment on small random- Under these assumptions we have:

sample sorts that have been tried. However, “‘worst 1 1(t — H?
case” situations can be constructed in which this ratio R(b,w)=—{(t+w—1)+ T
of retrieval tries to successful retrievals is somewhat e
greater than the number of bits in the sorting key. 2t 2 Nwe —; A[w
By counting all the retrieval tries required for re- T Z (w(t — 2) T 4 274 = 29
trieving all possible sets of sorting keys, a mathe- =1
matical formula* has been derived for this ratio, where ¢t = 2° and the square brackets for exponents
R(b, w), of the number of retrieval tries to the number have different meanings for the two cases, viz..

of successful retrievals as a function of the number of
bits, b, in the sorting key and the number of words, w,

to be retrieved. M =x(x+ D)x+2)...(x+w—1).
We further distinguish two cases:

Case I Equally weighted: ascending factorial; i.e.,

. . 1 ighted: simple power; i.e.,
Case I Equally weighted: where each set of sorting Case /I Randomly weig piep

keys is counted only once. x = xv

130 * The derivation of this formula is available from the authors on request. Table 2 and Table 3 show the evaluation of this

IBM JOURNAL ¢ JANUARY 1962

formula for a selection of values of & and w for Case I
and Case 17, respectively. Note that the limiting values
are the same for the two cases.

B. Modifications to the algorithm

The circuit descriptions will be given for the ordered-
retrieval algorithm as described above. However, there
exist modifications of that basic algorithm which
are applicable to different hardware configurations.
We now briefly describe some of these modifications.

By adding some logic to the ternary counter, we may
save an occasional interrogation by noting that if the
match indicator gives a “0” indication on the inter-
rogation following a P indication, we may simul-
taneously advance both the OP and the NP, thus
saving one interrogation. Also, if we have a more
elaborate match indicator circuit which gives the
indications, “0”, <1, “2”, P where P is now greater
than two, then we can save an occasional interrogation
by designing the ternary counter to “remember’ the
setting when the first of a series of MI’s equal to “2”
was indicated. Then when a retrieval is made, the
second of the two matches can be retrieved from
that remembered setting, thus eliminating going
through some of the intermediate steps of the normal

Table 2 R(b, w) equally weighted.

sequence of the algorithm when retrieving the next
following, i.e., third, word. Incorporating these two
modifications into our system would yield the improved
ratio R*(b, w), as indicated in Table 4 for the equally
weighted case only.

Where the serial-by-bit interrogation is available,
as in Petersen,® the modification becomes much less
efficient, since after each successful retrieval or indica-
tion of a *“0” by the M1, the entire serial interrogation
must be started over from the highest-order bit
position, because the mismatch indicator bits must be
reset. However, the algorithm does assure that the
interrogation proceed to the right only so far as is
necessary for each interrogation sequence and that all
words be retrieved.

In the case of the parallel interrogation with the
YES, NO response as in Slade,!*? the algorithm modifica-
tion provides a means of reading out all words (in
order) including the case of multiple like tags. Here
the sort must proceed to the lowest-order bit in each
case but need not return to the highest-order bit after
a successful retrieval.

Although the parallel-by-bit, parallel-by-word
approach of our proposed system leads to a more
efficient use of the ordered-retrieval algorithm, it

b
k 1 2 3 4 5 6 7 ..
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.8333 2.3000 2.5000 2.5588 2.5606 2.5462 2.5310 2.5000
3 1.5000 2.0000 2.3556 2.5359 25989 2.6070 2.5968 2.5556
4 1.3500 1.8071 2.6310
5 1.2667 1.6714 2.6838
6 1.2143 1.5714 2.7188
7 1.1786 1.4952 2.7430
8 1.1528 1.4356 2.7607
© 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Table 3 R(b, w) randomly weighted.
b
w 1 2 3 4 5 6 7 .. o

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.7500 2.1250 2.3125 2.4063 2.4531 24766 2.4883 2.5000
3 1.4167 1.8958 2.2031 23737 24632 2.5090 2.5322 2.5556
4 1.2813 1.7539 2.6310
5 1.2125 1.6398 2.6838
6 1.1719 1.5457 2.7188
7 1.1451 1.4691 2.7430
8 1.1260 1.4075 2.7607
w 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 131

IBM JOURNAL * JANUARY 1962

Table 4 R*(b, w) equally weighted.

132

b
k 1 2 3 4 5 6 7 ...

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.8333 2.2000 2.2679 2.2942 2.2878 2.2769 2.2675 2.2500
3 1.5000 1.9333 2.1333 2.2190 2.2425 2.2414 2.2323 2.2083
4 1.3500 1.7642 2.2478
5 1.2667 1.6428 2.2881
6 1.2143 1.5517 2.3192
7 1.1786 1.4810 2.3421
8 1.1528 1.4250 2.3596
o0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

should be noted that the approaches of Petersen
and of Slade require a technology much more nearly
available than the technology which we require.

C. Additional functlonal Sfeatures

In data processing type problems, the data record is
usually defined by more than one field. For example,
a payroll record might be defined by specifying an
employee number, name, age, department, rate of pay,
et cetera. In certain applications it might be desirable
to retrieve these payroll records in ascending order by
employee number. In another application the order of
retrieval might be by department and by man number
in ascending order. Still another job might call for the
records to be retrieved in descending order by age and
in ascending order by department and man number.

To provide this flexibility, a character-select matrix
has been designed. This matrix directs, by character,
the outputs from the ternary counter into the desired
character positions in the memory. This feature thus
allows, in memory, minor sorting keys to be placed
physically to the left of major keys and allows any key
to appear in nonconsecutive character positions. In
addition, the matrix will furnish the complement out-
put of any character position in the ternary counter
that is desired. The complement of 4, “0” and “1” is
defined to be .#, “1” and ““0” respectively. The only
change that is required in order to perform a descend-
ing sort on a desired field is to complement the output
of that field as it comes from the ternary counter. Thus
this feature provides for ascending and descending
ordering or any combmatlon thereof of the desired
sorting fields.

Another feature which is very powerful and yet very
simple to achieve in the AMOR system is the next
higher or next lower value retrieval feature. By pro-
viding circuits for storing a number into the ternary
counter, the AMOR system can start sorting from this
number in either an ascending or descending order. It
should be noted here that in order to perform a
descending sort, starting from a given number, that
number must be stored in the ternary counter in its

IBM JOURNAL ~ JANUARY 1962

complement form, ie., 4 —.#, “0”->“1”, and
6‘1”__)“0”

D. Memory organization

The shaded blocks in Fig. 2 represent the hardware
units that have been added to the associative memory
previously shown in Fig. 1. Although most of these
hardware units are not necessary to implement the
ordered-retrieval algorithm, they do provide some de-
sirable features. For example, the ternary counter and
the match indicator provide for automatic ordered
retrieval-—automatic in the sense that the data is
retrieved and the sort-interrogate tag is generated with-
out stored-program intervention. The character-select
matrix allows the output of each character position of
the ternary counter to be connected to any character
position in the memory. The matrix also provides for
the complement output of each character position.
The sort-select register determines whether the inter-
rogating tag is to come from the interrogation register
or the ternary counter.

Circuits

A. Basic devices

The crossed thin-film cryotron®’ is used in the
design of this memory system. A symbol for the cryotron
is shown in Fig. 3a. The cryotrons are designed so that
a full current flowing through the control path will
make the gate path resistive. For example, refer to
Fig. 3b, which shows a two-state storage device and its
associated input and output circuits. The storage
device consists of a current source /, and a current
sink 2, and two paths between them. Current flowing
through the right path represents a *“0”, whereas
current flowing through the left path represents a “1”
in storage.

To store a “0”, current is put on the S, line and no
current on the S, line. This makes cryotron 5 resistive
and leaves cryotron 6 superconductive. Thus the
current from source / is directed through the right path
to current sink 2. Once the current is established in the

A
B
C
MEMORY
M| 0| 1| HandT A 0 1 [TandT M| 0] V| TlandT CONTROLS
-
INTERROGATION REGISTER e
PZACHA of1 RE ol 1 of of1
|
MASK REGlSTE,R k—‘
A 0] 1 IZ2ABEBE M0 1
M O 1 I M| 0] 0
R
W
WORD REGISTER n ~ 2 V] M
3 N
M| 0| 1 ol PZIIE o1 M| 0| 1 of1
J REGISTER
X SELECT
WORD REGISTER n - | U CONTROLS M
E N
M| 01 0|1 /AN o)1 M| 0] 1 o)1
- M
WORD REGISTER n [V N
-
ﬂ] o[
QUTPUT REGISTER
Figure 2 Block diagram of associative memory with ordered retrieval.
right path, the current on line S, may be released. applied to node 4. With current on the right path of the
However, the current on the right path will continue storage device, cryotron 8 would be resistive and
to flow, and no current will flow on the left path even cryotron 7 superconductive. Thus the current from
though it is superconductive. node 4 will be directed through path W, indicating a
To sense the state of the storage device, current is “0” stored. 133

IBM JOURNAL * JANUARY 1962

134

Adding another path to the storage device makes it a
three-state storage device. The input and output circuits
would use the same principles as the two-state device.

B. Associative memory bit

Shown in Fig. 4 is the associative memory bit used
in the present system. Notice that the bit is a two-state
storage device with READ, WRITE and COMPARE circuits.
The vertical interrogate lines labeled .#, 0, 1 carry the
interrogating currents from the interrogation and mask
registers. The currents on the compare lines are con-
trolled by the currents on both the vertical interrogate
lines and the lines of the storage devices. For example,
assume there is current flowing down the *“0” interrogate
line and there is current on the “0” line of the storage
bit. Thus with current coming in on the equal compare
line from the next higher-ordered bit, the current
would be directed through the lower path of the com-
pare paths to the equal line going into the next lower-
ordered bit position. Had the storage bit been set to
a “1”, the current on the equal line would have been
directed through the upper path to the unequal line.
Once the compare current flows in the unequal line it
is directed into the register select control.

The other two vertical lines are the input, output
lines. For example, to store a ““1”*, current is put on the
“1”” input line and on the WRITE line. The current on
the WRITE line is then directed through the upper path
of the WRITE circuit which sets the storage bit to a *“1”.
To read the contents of the storage bit, current is put
on the READ line. With a ““1” stored in the storage bit,
the current on the READ line will be directed through
the upper path of the READ circuit. The current on the
upper path of the READ circuit makes the ““0” output
line resistive and leaves the “1”” output line supercon-
ductive. Thus when a current source is connected to
the output lines, the current will be directed down the
“1” output line indicating a “‘1” stored in that bit
position of the selected word register.

C. Ternary counter

Figure 5 shows a position of the ternary counter. Note
that it contains two three-state storage circuits. During
the first phase of the memory cycle the interrogate and
transfer circuit sets the upper storage circuit equal to
the lower storage circuit. In addition, at this time, the
output of the lower storage circuit is sent through the
character-select matrix to the desired character position
in the memory.

During the second phase, the state of the upper
storage device is tested by current on either the ad-
vance NP or advance OP line to determine if it is the
OP position. Recall that the operating position (OP) is
defined as the lowest-ordered position whose state is
either a “0”” or a *““1”” and that the next position (NP)
is defined as the position immediately to the right of
the OP. Notice that if the upper storage device is not
a “0” or “1”, then the current on either the advance
NP or advance OP line will be directed to the next
higher ordered position. If this storage device is in

1BM JOURNAL * JANUARY 1962

S 5 6 S

CONTROL PATH

GATE PATH

(a) (b)

Figure 3 Two-state storage device.

INTERROGATE INPUT, OUTPUT
MO 01
Yo
»Y
r g] READ
INPUT-OUTPUT
N r 5 1] WRITE
J
UNEQUAL UNEQUAL
ya
N p COMPARE
EQUAL 4 p Faal EQUAL
1
1l l L1
Figure 4 Associative memory bit.
FROM PREVIOUS !’
0 1
POSITION TO NP
L4 1 ADVANCE NP FROTMHTHE
? MATC
4 ADYANCE OF - \iDICATOR
I
—a N
ADVANCING CIRCUIT [N
I -
CARRY LINE D X CARRY FROM NP
4
d]
T
v
- END OF SORT
. (TO MEMORY
+ CONTROL)
ML 0 1
TAG INPUT
MO
3
ot € RESET TOAM
a a —
Fau¥a
[d o4 , TAG
P T INPUT
CONTROL
] -
INTERROGATE and
_ U‘{‘O 1 TRANSFER (Iand T)

{ FROM CHARACTER
SELECT MATRIX)
TO CHARACTER

SELECT MATRIX

Figure 5 A ternary counter position.

the “0” or “1” state, then the current on either the
advance NP or advance OP line will be directed to the
advancing circuit of either the NP or the OP, re-
spectively.

The advancing circuit advances the state of the
lower storage device one unit, i.e., from.# to “0”, “0”
to “1” or “1” to .#. In addition, if the lower storage
device is being advanced from the “1” to the # state,
current will appear on the carry line going into the next
higher ordered position. As can be seen from Fig. 5, any
current on the carry line will be directed either to the
advancing circuit or to the end of sort line, depending
upon the state of the upper storage device.

The reset to .# and tag input circuits are controlled
by the memory controls. These circuits are used to
establish the state of the ternary counter at the start
of a sort operation.

D. Match indicator

The match indicator which determines the number
of matches during an interrogate phase is shown in
Fig. 6. The match indicator also establishes the controls
for advancing the ternary counter and for selecting the
matched words. During the first phase of the memory
cycle, the interrogate phase, current will be directed
onto either the ““0”, *“1” or P count lines and set the
match indicator storage circuit. The circuits for
accomplishing this are shown in the lower portion of
Fig. 6. As can be seen in the Figure, the count line
that the current appears on will be determined by the
number of matched words in the memory. If there is
more than one matched word, the current will be
directed to the plurality (P) line.

During the second phase of the memory cycle, the
advance control and the select control circuits are
activated. It should be noted that the advance control
circuits obey the sorting rules established earlier. Also
note that when the match indicator storage circuit is
set to P, the select control circuits direct current into
the lowest-ordered position of the ternary counter. If
this position is set to either a “0”” or a ““1”’, and the
match indicator is set to P, this indicates multiple-
matched sorting keys. When this happens, the first
matched word register is selected. The select and no-
select lines are shown going into the memory register
select controls.

The details of the memory register select controls are
not shown. However, three two-state storage circuits
are actually needed for each word register, indicating
the equal, marked and matched conditions. In addition
controls are necessary for establishing current on
either the READ or WRITE line of the first matched word
register, for marking of the first matched word register,
and for unmarking all equal word registers when de-
sired.

Conclusions

We have constructed an algorithm to be used with an
associative memory to retrieve randomly stored data

ol 1 P

ADVANCE NP T
TO TERNARY ADVANCE
COUNTER ADVANCE OP A]"—‘CONTROL

TEST
LOWEST POSITION L

SELECT A i SELECT
CONTROL

FROM TERNARY

NO
COUNTER > ’ ary
SELECT

Fa W AN oY

SELECT NO
TO MEMORY ECT
REGI STER of 1 P -

NTR + 4
CONTROL COUNT LINES
FROM MATCH

]
WORD
no 2 NO MATCH :

14
Tf'\

FROM MATCH
WORD
nal NO MATCH

Al

T

m

FROM MATCH

WORD n N
NO MATCH

-

FROM MEMORY
CONTROLS

Figure 6 Match indicator.

in an ordered sequence. Modifications of this sorting
algorithm using the different methods of interrogation
and the different types of match indications were
presented. We have also shown a cryogenic implemen-
tation of an associative memory using one form of the
ordered-retrieval algorithm.

Some of the main features of our ordered-retrieval
system are as follows. The sorting key is determined at
the time of the sort by a stored program. The key may
be made up of subkeys whose order within the word is
irrelevant. The sort may be in ascending or descending
order or a combination. A next higher or next lower
value retrieval may be made. An ordered retrieval is
performed without disturbing the original ordering of
the stored data.

Most of the possible applications of these features
are readily apparent. For example, the next value re-
trieval feature would be an aid to an interpolation
routine operating on randomly stored data. These
features are, of course, limited to data that may be
stored within an associative memory system. Thus we
have a high-speed internal sort which, of itself, does
not solve all sorting problems. However, an internal
sort is an integral part of file sorting. As technology
increases the input-output data rate, there will be an
increasing need for a fast internal sort.

135

[BM JOURNAL s JANUARY 1962

References

1. A. E. Slade and H. O. McMahon, “A Cryotron Catalog
Memory System”, Proceedings of the Eastern Joint Computer
Conference, December 1956.

2. A. E. Slade and C. R. Smallman, “Thin Film Cryotron
Catalog Memory”, Symposium on Superconductive Techniques
for Computing Systems, May 1960.

3. J. R. Kiseda, H. E. Petersen, W. C. Seelbach, and M. Teig,
“A Magnetic Associative Memory”’, IBM Journal, 5, No. 2,
106 (1961).

4. R. R. Seeber, ‘“Cryogenic Associative Memory”’, presented at

136

1BM JOURNAL s JANUARY 1962

National Conference of the Association for Computing
Machinery, Milwaukee, August 1960.

. R. R. Seeber, “Associative Self-Sorting Memory”, presented

at Eastern Joint Computer Conference, December 1960.

. D. A. Buck, “The Cryotron—A Superconductive Computer

Component”, Proceedings of the IRE, 44, No. 4, 4382 (1956).

. W. B. Ittner III and C. J. Kraus, ‘“‘Superconducting Com-

puters”, Scientific American, 205, 1, 124 (1961).

Received July 10, 1961

