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Thermal Conductivity of Dilute
Indium-Mercury Superconducting Alloys

Abstract: Thermal conductivities were measured for a series of polycrystalline alloys of indium con-
taining 0.1 to 2.5 At.9, mercury. Using theoretical models which relate the electronic thermal con-
ductivity of a superconductor to its energy gap, the temperature and composition dependences of the
energy gap have been calculated for these specimens. Estimates of the lattice thermal conduction were

also obtained.

Introduction

The Bardeen, Cooper and Schrieffer theory of super-
conductivity! seems to be capable of predicting the
relative values of the thermal conductivity in the
normal and superconducting states, provided that the
conduction is by electrons and the scattering is due to
static defects.” Conversely, thermal conductivity data
can be used to check the variation of the BCS energy
gap with temperature and purity. The chief difficulty
in this procedure is to determine quantitatively that
the thermal conduction occurs solely by electrons and
the scattering is done solely by static defects or, in the
cases where other scatterers or other conductors are
present, to make the proper corrections to obtain the
desired curves.

In order to determine in this way the temperature
dependence of the BCS energy gap, indium specimens
containing from 0.1 to 2.5 At.%, mercury have been
measured. It was found that at high reduced tempera-
tures and higher purities it was necessary to correct for
the scattering of electrons by phonons. This was done
by using the expressions derived by Kadanoff and
Martin® from a simple model for the combined effects
of impurity and phonon scattering. At low tempera-
tures and low purities a parallel conduction by phonons
was found. This was corrected by an extrapolation
procedure which employed the data of the higher
purity specimens.

The choice of the indium-mercury alloys for this
study was prompted by the fact that the metallurgy,
critical temperatures, critical fields, and other super-
conducting properties had been thoroughly investigat-
ed by M. D. Reeber.* The specimens used in this study
were either specimens used in that study or specimens
prepared in a similar manner and known to be highly
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homogeneous. A description of the technique for
measuring thermal conductivity can be found in a
previous paper.’

Normal state

The normal state thermal conductivity data could be
adequately represented by the expression: 1/KY =
A/T + BT?. This indicates that there was not a detect-
able amount of phonon conduction in the normal
state for these specimens. It also indicates that the
resistance to electronic conduction could be ascribed
to a term due to impurities, 4/7, and a phonon term,
BT>.

The results for the alloy specimens are summarized
in Table 1. The most striking feature of these data is
the increase in the constant B, which is a measure of
the phonon scattering of electrons, with increasing
mercury content. According to the elementary theories
of phonon scattering, this constant should depend only
upon the Debye temperature and the ‘“‘effective”
number of free electrons present in the material under
consideration. Judging from the behavior of other
alloy systems, it is unlikely that these quantities vary
by a sufficient amount to account for the observed
changes in the constant B. Actually, higher order
theoretical calculations® indicate that B is not really
independent of imperfection content, but increases
with increasing residual resistivity. However, the ob-
served increase in B is considerably greater than the
increase predicted. A similar effect has been observed
by A. M. Guénault’ in single-crystal indium and tin.

The quantity « listed in Table 1 is equal to the ratio
of resistance due to phonons to the resistance due to
impurities evaluated at the transition temperature.
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measured (in the superconducting state) in the 0.5,
1.0, and 2.5 At.9, mercury specimens.

In Fig. 1 the thermal conductivity in the super-
conducting state is plotted for all the specimens. In
deducing the amount of phonon conduction, we take
advantage of the fact that the plot of In K®vs (T,/T) is
linear in the case of impurity scattering of electrons in
the range of (T,/T) greater than about 1.2. It can be
seen that this holds well for the purest specimens in
this plot. In fact, it was possible on this plot to draw
straight lines with the same slope (within the experi-
mental uncertainty) through the data of all the speci-
mens in the region 1.2 < 7./T < 1.5. However, with
the more impure specimens and higher values of 7./T
the conductivities fall above this straight line. This
excess conductivity we ascribe to phonon conduction.

The values of the lattice thermal conductivity
which were obtained in this way can be compared to
the predictions of Bardeen, Rickaysen, and Tewordt.?
For our specimens there was no lattice conduction
(in the normal state) which lay outside of experi-
mental uncertainty. Therefore, in order to compare
with the results of BRT, we used the values of lattice
conductivity in the normal state inferred by Sladek®
from his work with concentrated indium-thallium
alloys. By extrapolation of his results we find that the

Figure 1 The superconducting thermal conduc-
tivity as a function of T./T for specimens
containing 0.1, 0.2, 0.5, 1.0, and 2.5 At.9
mercury.

normal-state lattice conductivity can be represented by
the function 6 x 107472 watt cm ™! deg™" for dilute
specimens. Using this value and the BRT result, for
the ratio of lattice conductivities a quasi-theoretical
curve for the lattice conductivity in the superconducting
state could be constructed and compared to the experi-
mental values of Fig. 2.

The vertical bars in this plot correspond to an error
of +29 in the total superconducting conductivity
from which the lattice conductivity was calculated.
Even though the inaccuracy is great, it can be seen that
the data agree with the theory in order of magnitude.
However, a curve drawn at half the theoretical value
gives a somewhat better fit to the experimental points.
While the inaccuracy of this determination is probably
too great to justify conclusions about the theory from
these data alone, the data are consistent with the
determinations of the lattice conductivities by other
workers such as Hulm® and Laredo,'® whose data

Table 1 Summary of results for In-Hg specimens
Nominal

composition Constant A Constant B « = BT.3/4
pure (see Ref. 5) 0.034 deg? cm/watt  1.11 x 103 cm/watt deg 1.3

0.1 At.%, Hg 0.608 24 x 1073 0.157
0.2 1.247 31 x 1073 0.100
0.5 2.90 34 x 1073 0.046
1.0 5.90 — ~0

2.5 13.25 — ~0
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indicate that the ratio of superconducting lattice
conductivity to normal-state lattice conductivity is
less than the prediction of BRT.

Once corrections have been made for lattice conduc-
tion, there remains the task of accounting for the
phonon scattering of electrons in the purest specimens
near the transition temperature. The development of
the correct theory for this case remains one of the un-
finished tasks for physicists concerned with the theory
of superconductivity. The simple model of Kadanoff
and Martin® predicts a decrease of the ratio of con-
ductivities, K*/K", when phonon scattering is present;
however, it fails to predict the correct ratios observed
in very pure lead and mercury and is in disagreement
with the detailed calculations of BRT.!! On the other
hand, the detailed BRT theory fails to predict a de-
crease in the K*/K" ratio when phonon scattering
occurs. We have, therefore, used the Kadanoff and
Martin model because it has been shown to be empiric-
ally successful in the cases of pure indium® and pure
tin.” Further, it can be hoped that the results are fairly
insensitive to the exact nature of the correction since
the phonon scattering is, in all of these specimens,
known to be small.

The expression derived by Kadanoff and Martin is
as follows:

K°/K" = 3n* jwd(ﬁS)(ﬂe)z(Sechz BE[2)
]

x [1+«(T/T)’]

x [Be/BE + o(T/T)*]" ", (1)
where E = (¢ + ¢,>)* and f = 1/kT, in the notation

Figure 2 The lattice thermal conductivity in the
superconducting state versus T/T.. The
curve through the experimental points is one-half
the theoretical curve.
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of BCS; however, the constant « is the ratio of the nor-
mal-state electronic resistance due to phonons at the
transition temperature to that due to impurities. For the
purposes of determining the BCS energy gap from this
expression, it is sufficient to observe that once the ratio
K*/K", the temperatures T, T,, and the ratio « are deter-
mined, the energy gap &, is completely determined on
the right-hand side of the expression.

The energy gap

The calculated values of the energy gap determined
in this manner can be displayed (as a function of
reduced temperature) in several ways. Perhaps the
most natural is a plot of the energy gap itself as a
function of the reduced temperature. An entirely
equivalent plot is the ratio of the energy gap found
experimentally to the value predicted by BCS. It should
be pointed out that this does not constitute an inde-
pendent measurement of the energy gap, but is simply
a method of displaying any deviations from the
predicted temperature dependence of the BCS theory.

The smoothed data calculated in this way for the
three specimens with observable phonon scattering
are shown in Fig. 3. The vertical bars here represent
deviations introduced by an estimated error of +29%,
in K°/K". The results show the experimentally derived
energy gap is above the BCS value at the lower values
of reduced temperature. While the over-all agreement
with BCS is quite good (the experimental values are
within 59 of the BCS value) the deviations do seem
to lie outside the estimated experimental error. It
seems unlikely that this deviation could be caused by
any inadequacies of the Kadanoff and Martin model
for combined phonon and impurity scattering. Even
in the purest of these specimens, the amount of re-
sistance in the normal state attributable to phonons
does not exceed 3 %, of the total resistance in the region
of reduced temperature below 0.6. This would indicate
that the correction would be small regardless of the
model used to make it, and, consequently, would be
unlikely to change the result qualitatively.

At temperatures near the transition temperature,
the experimentally derived energy gaps for the 0.1,
0.2, and 0.5 At.% mercury specimens also deviate
from the BCS theory. However, the deviations from
the theoretical result in this region lie within the experi-
mental uncertainty, which is large near the transition
temperature. Therefore, it is impossible to determine
whether this feature is a reflection of the variation of
the energy gap with increased impurity, experimental
error, or an inadequacy in the Kadanoff and Martin
model.

In Fig. 4, the smoothed curves are shown for the
specimens which display phonon conduction in the
superconducting state. In neither the 0.5 At.%; nor the
1.0 At. 9 specimen was there a detectable amount of
phonon scattering in the normal state. Therefore, once
the data for these specimens are corrected for phonon
conduction, the BRT expression for K°/K" in the
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Figure 3 The ratio of experimental energy gap to
the theoretical BCS gap for specimens
with detectable phonon scattering.

presence of impurity scattering is applicable. Using the
terminology of BCS this expression is:

KS/K" = 3n? J d(BE)(BE)?* sech® BEJ2 . 2
&0

It is sufficient for present purposes to note that once

KS/K" and the reduced temperature are specified, the

energy gap is determined by the right-hand side of the

expression.

Here again the data are generally in good agreement
with the BCS prediction. The vertical bars again
indicate the deviation caused by an uncertainty of
+29 in the K*/K" ratio. At higher values of reduced
temperature, the curves lie within these limits of error.
However, at lower reduced temperatures, the experi-
mentally measured values of the energy gap lie below
the theoretical values and outside the experimental
error.
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Figure 4 The ratio of experimental energy gap to
the theoretical BCS gap for specimens
with detectable phonon conduction.
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