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First- and Second-Order Stress Effects
on the Superconducting Transitions
of Tantalum and Tin

Abstract: The shift of critical field of a single-crystal wire under uniaxial tension is studied for Ta and
Sn. For Ta the shift is nonlinear and gives both the first-order critical field-stress coefficient and a
particular combination of second-order coefficients. By combining with other data, the three second-
order constants are estimated. The smaller first-order coefficient of Sn is found to be considerably
smaller than previous estimates. Both Ta and Sn are found to satisfy a similarity condition for the
coefficients, but of a less restrictive form than usual. Similarity is used to predict the behavior of
jumps in elastic constant moduli at the transition in Ta. The general formal theory of the first- and
second-order coefficients is formulated and many special cases are given. The general thermodynamic
relations at the transition between jumps in strain and elastic constants and the various coefficients,

are derived. It is shown that BCS theory implies similarity.

. Introduction

The value of studies of the stress effects on super-
conducting transitions as a tool for studying the super-
conducting and normal states of superconducting
metals has been shown by the large number of recent
papers and by a great variety of new results. A good
many results have been fairly well confirmed by cross
checks between different workers and different
methods, and now more delicate features of the effects
can be studied including, for example, anisotropy,
second-order effects, and the applicability of similarity.
The present work®! aims to demonstrate the value of,
and to apply, the uniaxial stress technique first intro-
duced by C. Grenier,? which measures the magnetic
transition on single-crystal wires under uniaxial stress.
With this technique it becomes possible to explore in
detail the anisotropic nature of the stress effects, and
to obtain in some cases second-order coefficients as
well as first-order coefficients, i.e., the shift of critical
field, H,, quadratic in the stress components, as well
as the linear term. An anisotropic stress can be easily
applied, since tension produces both shear and hydro-
static stress, whose direction can be varied by studying
differently oriented specimens, and quite sizeable
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magnitudes are simply obtained by using thin speci-
mens, the limitation being the strength of the material.
However, the relative simplicity of the measurement
is achieved at the expense of more trouble in specimen
preparation. Thus in both the cases studied here,
some desired orientations were not obtained, and the
measurements had to be supplemented by hydrostatic
pressure results although, in principle, complete results
(on first-order coefficients) are obtainable by this
method alone.

Because interpretation of the data requires analysis
of a number of anisotropic stress situations, we take
this opportunity to develop the phenomenological
theory for general stresses. Some special results are
given by Fiske?, and still more in the thesis by Grenier?,
but we have developed the equations more extensively
and systematically. In particular, Section 2 introduces
definitions and notations for both first- and second-
order critical field stress and strain coefficients, and
notes the various special forms for special stresses of
interest and for cubic and tetragonal symmetry.
Appendices 1 and 2 contain additional relevant
material on the description of crystal elasticity and the




relations between the stress and the strain coefficients.

We then develop along standard lines, in Section 3,
but introducing a general stress, the general thermo-
dynamic relations between jumps of strain and of
elastic constants at the transition and the stress co-
efficients defined in Section 2. The jumps in elastic
constant are of particular interest to us because they
can be directly measured and provide an independent
source of the second-order coefficients. A careful dis-
cussion is given of the meaning of similarity, which has
been frequently used to discuss the temperature de-
pendence of the various cocfficients. The general
equations for these temperature dependences, in-
cluding the second-order coeflicients, are derived for
both a less restrictive form of similarity, called simple
similarity, and a more restrictive form, called double
similarity. Finally, it is shown that the BCS descrip-
tion of a superconductor effectively implies simple
similarity, deviations from it being very small.

The experimental procedures are described in Sec-
tion 4, with notes on the specimen preparation and on
the design of the tension apparatus to give a direct
measure of the tension on the specimen without
errors due to friction at supports.

Section 5 presents the data obtained on Ta and Sn,
and successively discusses implications which require
more and more supplementary information and
assumptions. In the Ta analysis we lean heavily on
the work on Ta of Jennings and Swenson,* and
Hinrichs and Swenson;® various data used are
tabulated in Appendix 3. The measurement of mean-
ingful transition curves for Ta has been made possible
only recently through the preparation of specially
purified material, and many of the older results
are of no value for quantitative discussion. Among
the results in this Section are: an evaluation of
the first-order constant, which agrees well with
various hydrostatic measurements; an estimate of the
three second-order constants from these data, the
hydrostatic work, and certain sound velocity jump
measurements; analysis to show the behavior of the
first-order constant with temperature follows simple
similarity, although showing a large deviation from
double similarity; application of similarity to predict
the temperature dependence of the elastic constant
jumps at the transition. It is noteworthy that the
second-order stress effects appear well within the
linear elastic region, and that they are basically shear
effects, since the hydrostatic second-order effects at
these pressures (and larger) are too small for observa-
tion.

The work on Sn concerns onlyfirst-order coefficients,
because plastic flow limits the maximum tension.
Among the results are: the great anisotropy of the
stress effect is confirmed and shown to be considerably
larger than previously thought; consistency arguments
among three measurements are given that indicate a
difference between hydrostatic measurements on
polycrystalline and single-crystal specimens; evidence

is given for deviation of the temperature dependence
of the stress coefficients from double similarity in the
same direction as for Ta, Pb and In; some questions
are raised about inconsistent results on In and the
nature of its deviation from double similarity.

2. Formal theory of critical field-stress and
strain relations

2.1 Definitions of the first- and second-order coefficients

The phenomenological parameters of interest in the
present work, which characterize certain intrinsic
properties of superconductors, are defined by power
series expansions of the critical field, H,, as either a
function of the stress components,® o, i =1 to 6
or of the strain components, ¢;, i = 1 to 6. In the limit
of small stress or strain, the situation considered here,
the coefficients of the first-order (linear) and second-
order (quadratic) terms in these expansions are the
quantities of interest. In this section we introduce a
general notation, derive various relations that will
be useful in later discussion, and note the effects of
symmetry.

First regard H, as a function of stress, and write for
the shift in H, with stress (the argument o; will stand
for all six stress components),

Ao'Hc = Hc(T= ai) - Hc(T, O)

6 1 6
= ) pioi+ 3 B;;0.0; + higher terms. (2.1)
= b j9i0

i,j=1
The first-order critical field-stress coefficients, §;,

are given by the derivatives of H,, evaluated at zero
stress, as

BAT) = QHAT, 6)[06)1,5,j2i>» i=1t06.  (2.2)

In general they are functions of temperature—but not
of stress, since they are properties of the unstressed
state.

Similarly, the second-order coefficients are given by

Bij=08°H 00, 00;, i,j=11t06. (2.3)

The analogous development to (2.1) to (2.3) regarding
H, as a function of strain gives

Ach = Hc(Ta 8i) - Hc(’I: 0)
6 1 6
=) o€ + = o;&;€; + higher terms .  (2.4)
=4 2 L2 ST
i= ij=

Again, first- and second-order coefficients appear,
related to derivatives of H, in the unstressed state by

a(T) = (OH T, €)[0e)r,, j2i,» i=1t06, 2.5)
;= 0°H,[oe0e;, i,j=1t06. (2.6)

The stresses and strains are linearly related through
the elastic constants by

6
&= 2, 8,05, @
j=1 -
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6
g;= i; Cjisi - (2.8)

By using the elastic relations (2.7), (2.8) between
stress and strain, the «;’s and «;;’s can be expressed
linearly in terms of the B,’s and f;;’s and vice versa.
Details of these relations and the simplified forms for
the special cases of cubic and tetragonal symmetry are
given in Appendix 2.

2.2 Special forms for cubic symmetry

For crystals with full cubic symmetry, the 8,’s and
B:;’s simplify considerably and involve only one and
three independent components, respectively; they are
given directly by the forms for second-and fourth-
rank tensors with cubic symmetry, which are, in
reduc76d index notation and referred to the cubic
axes,

ﬁi = (ﬁla ﬁly ﬁla 0, O, O)’

(Bi1 Biz P12 O 0 0 7
Biz Bix Bz O 0 0
.Bij= Biz Bz Bii O 0 0 . (2.8)
0 0 0 Bas O 0
0 0 0 0 Basa O
L 0 0 0 0 0 Bas

Then the linear and quadratic terms of (2.1) can be
written in the forms:

AH, = Bi(0y + 02 + 03) + 3B;,(6] + 05 + 03)
+ B12(0203 + 030, + 0,07)
+ $Baa(0? + 03 + 0d), (2.9)
= Bi(oy + 0, + 63) + By + 2B12)
x(o; + 0, + 65)°
+ #B11 — B12)[(0, — 03)
+ (03— 01)* + (0, — 6,)°]
+3B44(0% + 0% + 07) . (2.10)

Under a hydrostatic stress, o, which is given in
component form in the Appendix in (A1.6), we have

AH,=3B,0 + 3(By1 + 2B1)0” . (211)

The usual pressure coefficient of H, is then obtained
by defining the hydrostatic pressure of magnitude
= —o0, so that

(aaI;c)T _ (aazc)T _ _3p,. (2.12)

Under uniaxial stress, o, applied in the direction
having direction cosines /;, I,, I; with respect to the
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crystal axes, with components given by (Al.7), we
have

AH, = Byo + [(B11/2)(I7 + 15 + 13)
+ (Buz + Bas/(31 + BIE + R1D]0%, (2.132)

= B0 + (B11/2)6% + (By2 + Basl2 — B11)
x (B2 + BB + B12)e?. (2.13b)

Under shear stress, o, along /;, /,, I3 in a plane
perpendicular to m,, m,, m;, with components given
by (AL.8), we have

AH, = {(2/3)(B11 — B1)[(Iamy — I3m3)?
+ (Iymy — Iymy)* + (Iymy — 1,my)?]
+ (Baa/D[(Iyms + 1smy)* + (Iamy + 1;m,)?
+ (Iymy + 1,m)*]}o? . (2.14)

We note that the linear stress terms for both hydro-
static and uniaxial stress lead to the single first-order
constant f;, but that linear effects vanish for all shears
in crystals with cubic symmetry. We also note that
the quadratic terms of hydrostatic stress yield one
combination of the three second-order constants,
Bi1 + 2B4,, while quadratic terms of uniaxial stress
in two (or more) directions yield both f;, and
(B4a + 2f;,), and the quadratic terms of shear stress
could give (B;; — B;,) and B,,.

2.3 Special forms for tetragonal symmetry

In crystals with the higher tetragonal symmetries,
such as white tin and indium, the f; and f;; tensors
have two and six components respectively; the general
forms with respect to the principal axes of the crystal,
x5 being along the tetragonal axis, are®

ﬂi = (ﬁls ﬂla ﬁ3’ 03 07 0) >

rﬂll /312 ﬁ13 0
BlZ Bll BIS 0

ﬁij= 513 ﬂls 533 0
0 0 0 B

0 0 0 0 P
0 0 0 0 0 Be)

(2.15)

S O © O
o o o O o

Then, for general stress, A,H, becomes from (2.1) and
(2.15), keeping only first- and second-order terms,

AH, = (0, + 0,) + 303
+ (B11/2)(6,% + 0,3 + (B33/2)05°
+ B12016, + B13(0,05 + 0304)

+ (B44/2)(64* + 65%) + (Bes/2)os> . (2.16)




We now discuss the effects of special stresses, but
only first-order terms will be retained for later applica-
tion; in general these terms can be written in the form

AH, = [(28, + B3)/3)(oy + 0, + 03)

+ [(By — B3)/3](6, + 0, — 205), (first order).
2.17)

From (2.17) we see that under hydrostatic stress only
the first term is finite and gives —(2f8, + B3)p. Under
uniaxial stress along /;, I, 15,

A H, = [(2B; + B3)/3]e + [(By — B)(1 — 315%)/3]0,
(2.18a)

= (B, sin® 0 + B, cos? B)a, (first order),
(2.18b)

where /; = cos 6. Finally, under general shear stress,
given by (A1.8), only the second term of (2.17) is finite,
and gives

AH, = —20(f, — f3)lym,, (first order). 2.19)

We note that A H, in (2.19) vanishes for shears in the
coordinate planes (1 or m along any of the crystal
axes) and has its maximum magnitude for I; = m; =
+1/4/2, i.e., for shears in planes at 45° to the tetrag-
onal axis which compress (or expand) the tetragonal
axis, and expand (or compress) the transverse axes.

3. Thermodynamic relations at the transition

3.1 The free energy of a superconductor under stress
in a magnetic field

The formal relations of Section 2 apply to any
intrinsic scalar property, such as H,, which is a func-
tion of a symmetrical second-rank tensor field in the
material, such as stress. We now obtain the physical
relations between the critical field-stress coefficients
and discontinuities in strains and elastic constants at
the superconducting transition which are consequences
of thermodynamics. The procedure is standard,® but
we give some steps of the derivation to bring out
details of the treatment of a general stress.

The differential of internal energy, E, of a specimen
of material under a reversible infinitesimal change of
strain ds;, and of magnetic moment dM, in a uniform
external field H, with possible absorption of heat, is

6
i=1
where we assume homogeneous strain throughout the

volume V; S is the entropy.
Define a Gibbs free energy for the specimen by

6

G(To,H)=E—-TS-V > 05— HM; 3.2
=1

hence, from (3.1),

6
dG=—-SdT -V Y ¢ do,— M dH, . 3.3)
i1

In (3.3) we neglect second-order strain terms like
0:¢; dV, and treat ¢; as infinitesimal at all times.

At the phase transition, considered to take place
reversibly at constant T, ¢; and H,(= H,), the change in
G in going from the superconducting to the normal
state is, from (3.3),

AtrG = Gn(’T’ ai) - Gs(T, Gi, Hc) =0 ’ (34)

where we indicate by omission of the argument H,
that the free energy of the normal state, G (T, 7;), is
independent of magnetic field (we ignore the weak
susceptibility of a normal metal). Equation (3.4)
implicitly defines the critical field as a function of T
and o, H(T, 7).

Also from (3.3) the change of G, in a field H, is

G:(T; G He)

He
= Gs(T" 0i9 O) _j M dHe ) (3.53)
0

He
= GS(T; o 0) + J‘ Vs(n g He)He ‘11{2/4'7r ’ (35b)

o]

where the relation for a perfect diamagnet,
M= —-VH,/[4n , (3.6)

has been used for the magnetic moment of the super-
conductor of volume V, in a uniform field H,, thus
ignoring penetration effects—a good approximation
for superconductors of macroscopic dimensions.

3.2 Relations at the transition; magnetostrictive and
transition changes of strain

The quantity ¥, has been retained under the integral
sign in (3.5b) to indicate a dependence on H,, namely,
the magnetostrictive effect of the external field on the
superconductor. In fact, this dependence is a higher
order strain effect which could be neglected, but . is
convenient to retain at this point. We can evaluate the
magnetostrictive strain by differentiating (3.5b) with
respect to ¢, and using (3.3), to give,

V[T, 0;, H,) — &(T, o, 0)]

Hn
- J (a VS) H, dH,j4n , G.7)
o \0o; T,He,0,,j#i

where the higher order term coming from the change
of V, with H, has been neglected on the left.

By inserting (3.5b) with H, = H, into (3.4), we
obtain the well-known equation for the difference in
intrinsic free energies of normal and superconducting
states in zero field, namely,

Gn(Ts ai) - Gs(T5 Ois 0)

H(T,81)
=f VT, o, H)H, dH [4r . (3.8)
0
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Differentiation of (3.8) with respect to o; gives
V[ (T, o)) — &(T, 0y, 0)]
= - s(T" O Hc)(Hc/4n)(ch/ao-t)

0

. f @V joo)H, dH.jan | (3.9)

where on the left, the difference between ¥, and V, has
been neglected. Comparison of (3.9) and (3.7) shows
that the difference in strain g;, for given stress o,
between the normal and superconducting states in
zero field, may be considered made up of two parts—a
magnetostrictive part, which builds up continuously
with field as H, increases to H,, and a transition part
which occurs discontinuously during the transition at
H_. The latter part we may write, using (2.2),

Avti = 8T, ) — & (T, 0;, H)

H_ 0H, H_B;
- L= 2 3.10
4n Oo; 4n (3.10)
We note that the magnetostrictive change in strain,
(3.7), can be written

A&’ = 6T, 0, H,) — &%(T, ,, 0)
= —(Sy + Sy + Sy)H.?[8n , (3.11)

on neglecting the change of (¢V,/ds;) with H,, and
using (Al.4a).

From (3.10) by differentiating with respect to T,
the jump in components of the tensor of thermal
expansion coefficients, d¢,/0T, i = 1 to 6, at the trans-
ition is immediately expressed in terms of H,, 0H /0T,
B, 0B,/0T. Also note that, from (3.10), (2.1) and
(Al.6)

AtrV = V(Atral + Au's2 + Atr83)

e B+ B+ ) =
4

VH, 0H,
4n op’

the usual formula for the simple hydrostatic case.

3.3 Change of elastic modulus at the transition

A direct consequence of Eq. (3.10) for the jump in
strain at the transition, is the jump in elastic constants
at the transition, obtained by differentiating again
with respect to o¢;; this gives, using (Al.da) or
(0e,fo0;) = Sy,

1 [ch oH, o°H, ]

ALS = — — =
e 4n € 00, 0o;

0o; Jo;

= —(B:f; + HB:;p)/4n . (Footnote 10). (3.12)

Thus the jumps in elastic compliance coefficients are
linearly related to the second-order stress coefficients
of H. We note that A,S;; is finite in general at
T = T,.,where H, = 0, as expected when the transition
is second order, whereas A,¢; vanishes there.
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For cubic symmetry, (3.12) reduces to the three
relations

A“Su = Auszz = Ausss

= —(B,* + H.py1)/An, (3.13a)
A S1s = ALS3 =A,S,;

= —(8,> + H.py,)/dn , (3.13b)
ApSis = AySss = A,Ses = —H_ fr4/47 . (3.13¢)

At T,, A,.S,, = 0, corresponding to the vanishing of
linear shear effects for cubic symmetry. We can, in
fact, find direct relations between the shift in A, under
special stresses, such as uniaxial and hydrostatic
stress, and the corresponding elastic constants. Thus,
the jump in the reciprocal Young’s modulus, A, (1/Y),
given as a function of direction by (Al1.13) is very
simply related by (3.13) to the shift of H, under uniaxial
stress given by (2.13b), namely,

B120.2
2H,

Aa-Hc = 0 —

4no? 1
2H, u(Y) ,» (uniaxial stress)

Similarly, from (A1.12), (A1.10b), and (2.11), the
jump in reciprocal bulk modulus (1/B) at the transition
is related to the shift of A, under hydrostatic stress by

38,%0?
H

(3.14)

AH, =380 —

c

2no? 1
— -:I—G A"(E) , (hydrostatic stress). (3.15)

c

It is also useful to express directly the jump at H, in
the special elastic moduli corresponding to particular,
directly observed, sound velocities in terms of the f§;

and f,, using (A1.10) to relate the S;; and C;;, and
(A1.11) to define the elastic moduli. This gives
A,C = (H, [4m)C*B,s (3.162)
AC = (H2m)C*(Byy — B12) » (3.16b)
ACy = 9B [4m + (H ,/4m)[3B*(By; + 2B12)

+ C?Byy + QC*[3)B11 — B12)] (3.16¢c)
where, from (Al.12),
B=C,—C-C[3. (3.17)

Thus, measurements of the three velocity jumps and
velocities, with knowledge of §, and H,, will determine
the three second-order coefficients 8,1, f12, Baa-

3.4 Similarity and the temperature dependence of stress
coefficients

A useful description of the behavior of the critical

field-temperature relation under stress is given by




assumption of the so-called similarity conditions.
These assumptions permit the temperature dependence
of #; and f;; to be calculated from their values at either
one or two temperatures plus knowledge of the critical
field curve at zero stress. Similarity, although not exact,
seems to be a good approximation in many cases, and
in general it is helpful to describe behavior in terms of
deviations from similarity. Accordingly, we now de-
velop explicit formulas for the calculation of (T) and
B:{(T) which will be used later in analysis of various
measurements. We take this occasion to state carefully
the two separate similarity conditions, to develop their
implications separately, and to generalize the entire
analysis to the case of general stress, in place of the
usual hydrostatic pressure.

The first similarity condition states that the entire
family of critical field curves under stress can be
described in terms of a single function f(x) whose
functional form is independent of stress, by

Hff(i;;i) = (Tfﬂ) ’

where

=1, f(H)=0.

Thus at any stress 6, i = 1 to 6, the same reduced
critical field curve applies, where two parameters are
used to reduce H, and T, namely Hy(o;), the critical
field at 0°K, and T,(s;), the critical temperature. Note
that f can be different for different superconductors,
so the assumption (3.18) isless restrictive than is assum-
ing a universal reduced equation of state for all super-
conductors.

Further simplification of the description is obtained
by assuming that a second similarity condition is also
obeyed, namely,

Ho(s) _H o(0)
To) T.0)°

Thus the two parameters of the reduced equation are
reduced to one.

The significance of (3.19) is indicated by the Kok
relation for the electronic heat capacity coefficient of
the normal state,!? y,

VHO(azHc)
4n \oT? ) =0

Equation (3.20a) is simply a consequence of thermo-
dynamics (and the assumption that the superconduct-
ing specific heat has no term linear in T). Now if the
first similarity condition (3.18) holds, then (3.20a)
takes the form

r=-ro3) .

(3.18)

(3.19)

y= (3.20a)

(3.20b)

where f"(0) is a constant fixed by the functional form
of f(x). Now for change of isotopic mass, the original

case in which similarity was applied, y, being a property
of the electronic distribution, is expected to change
very little. Hence, in this case, from (3.20b), the first
similarity condition leads to the second.

Stress, however, would in general be expected to
alter the electron distribution and y, (and also V)
hence, from (3.20b), also H,/T,; the deviation from
(3.19) would then be related to the variation of y with
stress. Since, in fact, (3.18) is more commonly satisfied
than (3.19), we shall derive results both on the basis
of (3.18) above (simple similarity) and for (3.18) and
(3.19) (double similarity).

For convenience in manipulation we introduce a
compact notation, and write

H, =Hof(5), t=T|T,. (3.21)

Now, by differentiating with respect to o; or 7, we
obtain relations for various critical field-stress or

temperature coefficients. We have
H,r=0H.[0T = H,f'|T,, (3.22)

where f’ is the derivative with respect to the single
argument of f, and

H,;=0H |00, = Ho(f - f'15)) , (3.23)
where
6= (HoT.i/T.Ho )

= (d1n T,/05)/(d In Hy/00;) , (3.249)
Hy; = 0Ho[do; , (3.25)
T,;,=0T,/00; (Ref. 12). (3.26)

A second differentiation gives either
H rr= Hof"IT, 2 (3.27)
or
H ir= (0°H /00,0T)

= (Ho JTILS (1 — &) — f"16:] (3.28a)

H, ;= (azHc/anan) = HO,ij(f_ 5ij)

+ (HoHo /H[f'(26:0; — 8; — 6,) + f"t];
6ij=HoT,;;/T.Ho; (3.28b)
and a third differentiation leads finally to
H iir= (53Hc/a°'iaajaT) = (I/Tc){HO,ijf’

~ Ho Ty TS + ")
+ (HoHo ;/H)[(20,6; — 6, — §,)(f" + tf")
+ t2f" + ")} . (3.29)

Equations (3.21) to (3.29) are based only on simple
similarity. Assuming Hy(0), T0), f(t) are . known
functions, then B(T) = H, (T, 0) is determined by
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(3.23) when the two constants Hy (0) and §,(0) are
known. If 8, is measured at two temperatures, or if
B«T)and dB,/dT = H, ,; (given by (3.28a)) are known
at some 7, such as T, then H,;(0) and 5,0) can be
found.

Similarly for the second-order -coefficients, if
H(0), T0), £ (1), BAT), BAT), 6(0), 6,(0) are known,
then B,(T) = H,;; is determined by (3.28b) if the
two constants H,; and T, are known. Again
measurements of f;; at two temperatures or of f;;
and dB,,/dT = H_;;r (given by (3.29)) will determine
the two constants.

If the second similarity condition is also true, then
the two constants in each case are related, since

H, (o)) _ Hy; (o) _ Hy(0)

T.@) T T@° >~ 0=t G0
and (3.23) to (3.29) become
H. ;=Ho(f-f'1), (3.31)
H.r=—(Ho/T)f"t, (3.32)
H. ;;=Ho, (f=f't)+ (HO,iHO,j/HO)tzf” ) (3.33)
H ;= (1/Tc)[“Ho,ijf"t

+ (HoHo ;/H)U2f" + tf")] . (3.34)

Now only a single value of f;, or B;;, is required to
fix the T dependence everywhere.

If we have both cubic symmetry and double simi-
larity, the explicit formulas for the §’s are simply

B(T)=Ho, (f—f'D), (3.352)
Bii(T)=Ho 1 .(f— 'O+ (Ho  [Ho)t¥",  (3.35b)
B12(T) = Ho (,(f = f't) + (H0,12/H0)t2f” , (3.35¢)
Baa(T) = Ho4a(f —1'1) . (3.35d)

Finally we note that T ;, T, ;; may be evaluated from
measurements of H,, H,;, H, ;r, H.;; near T, which
is useful in the application of (3.23), (3.28b) in the case
of simple similarity. The relations follow from implicit
differentiation of the functional relation defining

T.(o;), namely

H(T,0)=0, (3.36)
which yields
T..,=—H.,/H.z1,, (3.37)

T;=[Hr(H. H,jr, + H ;H ir,)

~Her2H iy~ HoHo Hera ) Herl o (3.38)
where
H,r,=(0H(T, 6)/6T)r-1, -

3.5 Similarity and the BCS theory of superconductivity
Although the model of a superconductor developed
by Bardeen, Cooper and Schrieffer'® is a simplified
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one, which omits many features of a real metal, it has
been notably successful in describing quantitatively the
behavior of reduced properties of superconductors,
i.e., properties scaled with respect to values or para-
meters fixed by experiment. Similarity is just such a
property, hence it is noteworthy that BCS theory
effectively predicts simple similarity under stress;
however, the second similarity condition will not hold.
Actually, the theory provides a mechanism for altering
the reduced critical field curve, H,(T)/H,, under stress,
but it turns out that the dependence on stress (through
that mechanism) is so weak that similarity is predicted
to hold to a high degree of precision and certainly
within the experimental accuracy.

To draw this conclusion, we transform the equations
of the theory by elimination and combination of
parameters to give

H(T)/Ho = F(T|T,, kT./ho) , (3.39)

where F(x, y) is an explicitly known function of its
two variables. In particular, the coupling energy V,
whose magnitude and stress dependence are not known
directly from measurement, has been eliminated and
the ratio of kT, to the phonon energy, fiw, introduced
as a dimensionless measure of the electron-phonon
coupling strength. The values and stress dependence,
or at least pressure dependence, of kT, and /iw = k@,
where © is essentially the Debye temperature, can be
obtained from measurements independently of the
theory. Under stress T,, ® and T./© will in general
alter, hence the form of H(T)/H, as a function of
T/T, will change, and similarity will not strictly hold,
but a quantitative estimate shows the change to be
negligible.

We estimate from the theory that the maximum
value of 0F/0(kT,/kw), as a function of T, is about
0.01 for, say, Ta or Sn, for which (kT /kw) = 0.02
(Footnote 14).

For estimates of the change of coupling parameter
under stress, we use measured values of the effects of
pressure on 7, and ©. Thus we have

OIn(kT/hw) OInT, JdIn©
ap  dp ap

~ —10"%atm ™ !forTa,

—10"%atm~!for Sn. (Footnote 15)
Finally, we estimate the variation of F with pressure as

OF _  O0F KT, 8In(kT,/ho)
dp  O(kT./hw) ho ap

10™%(Ta)
10~5(Sn)

~1071%atm for Ta and 10~ °/atm for Sn, which is
small compared to, say, 8 In T,/op ~ 107® and 1079/
atm, respectively. Thus, effectively, the first similarity
condition holds, although, of course, the second

~0.01 x 0.02 x { (3.40)




similarity condition will not hold, in general, by the
same argument given in Section 3.4, based on Eq.
(3.20).

In fact, BCS theory predicts more than desired,
since it gives a very close family of functions for the
reduced curve H,(T)/H,, over the possible variation
with coupling parameter. Thus, the variation of
coupling parameter k7 / i from zero up to a maximum
of about 0.075, the value for Pb, produces only about
a 0.39, maximum change in H(T)/H,, whereas the
observed maximum variation of H.(T)/H, in going
from Al to Pb is about 79%,. Although the H.(T)/H,
curves of the theory thus show less sensitivity to the
variation of coupling strength among superconductors
than is observed, the sensitivity to pressure seems of
still smaller magnitude, since the coupling strength
itself is a weak function of pressure, and this feature
might plausibly persist when the theory is adequately
modified to explain the differences among super-
conductors.

4. Experimental technique

4.1 Preparation of single-crystal specimens

The tin crystals were grown by the following tech-
nique. The 99.999 % tin metal was heated in a glass
vacuum chamber and then forced by helium gas into
evacuated 0.043 in. i.d. glass tubes (ten at a time). A
furnace with a gradient in temperature was positioned
so that decreasing the current to the furnace allowed
the tin to solidify progressively down the tubes toward
the molten reservoir. The glass tubes were then dis-
solved in HF. The crystals were subsequently placed
in fresh glass tubes for annealing overnight at 190°C
in vacuum.

The preparation of the tantalum crystals has been
described in an earlier report.!® In general, they were
2to 3 inches long and 0.010 in. diameter. The resistivity
ratios were purposely controlled to be of the order of
R300/R4.2 ~ 300. In this case the crystals are reason-
ably strong and have fairly sharp transitions.

4.2 Apparatus for applying uniaxial stresses

The apparatus for applying uniaxial stresses is
shown in simplified form in Fig. 1. The essential parts
are: a micrometer head, a double-spring balance, and
a dial gauge which can be read to 0.0001 inch. Rota-
tion of the micrometer head moves the top of the
double spring 0.0249 inch per revolution in calibrated
steps, while the dial gauge measures the deflection of
the bottom of the spring. The difference between the
two extensions is the spring extension, which is pro-
portional, through a calibrated constant, to the stress
in the spring. The bottom of the spring is connected
through a shaft to one end of the crystal while the
other end of the crystal is fixed. Thus the tension in
the spring is equal to that in the specimen. There are
no frictional constraints in this apparatus to compli-
cate calculation of the stress; the present apparatus
differs from Grenier’s in this respect.

GEARS AND DIAL
INDICATOR

e

(HIN\N

FLEx,
&

%

GAUGE

MICROMETER HEAD —

Tavis >

DOUBLE SPRING —~

BALANCE T
.

I

___—COPPER CAN

/
CRYSTAL EXTENDING

/ BELOW COIL

SET OF TWO COILS

HEATER

. o

* 2

N N CARBON RESISTANCE
O] THERMOMETER

Figure ] The apparatus for applying uniaxial
stresses showing friction-free nature of
the determination of stress on the
specimen.

The ends of the crystals are gripped by short copper
cylinders, into which they are soldered in the case of
tin (using nonsuperconducting solder). They are
gripped by spot welding to molybdenum rings in the
case of tantalum. These grips are hooked onto the
apparatus. This method of mounting the specimen
leaves it partly free to twist or bend with tension, but
it is probably restricted by the copper grips in shearing
motion. For tantalum crystals of any orientation and
for tin crystals with cylinder axis <100>, <010}, or
<001) this constraint is of no significance. For other
orientations of tetragonal crystals, there will be an
appropriate correction to allow for the additional
constraint.

The diameters of the crystals were chosen so that
the stress at the yield point of the metal may be
measured with an accuracy on the order of 0.5 %,. Thisis
also the accuracy with which the average diameter of
the specimens is determined.

A bell jar resting on the top plate encloses the
apparatus. The micrometer head is rotated through a
gear and flexible shaft coupled to a solid shaft entering
the top plate through an O-ring seal.

4.3 Pressure and temperature control
Rough control of the pressure above the helium
bath is achieved with a Wallace and Tiernan manostat.
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A Sommers type bridge circuit’’ and amplifier,

working off a carbon resistor, feeds back current to a
wire heater (noninductively wound) on the copper
can enclosing the specimens. The temperature can be
held constant to better than 4 x 1073°K throughout
two consecutive sets of measurements making up
susceptibility curves for the stressed and unstressed
crystals. The time required for two sets may be only
10 minutes if the susceptibility curve is sharp.

4.4 Measurement of magnetic moment

A null technique is used for measuring the magnetic
moment of the specimen. Two coils of nearly equal
inductance are connected in opposition through the
high-sensitivity galvanometer. One coil encloses the
center portion of a crystal (the demagnetizing factor
for the long, thin cylindrical crystals is essentially
eliminated by this technique), while the other coil
stands close to the first and parallel to it. The deflection
of the galvanometer is measured as a function of the
current switched off in a Garret!® coil. The Garret
coil (calibrated by proton resonance) is a large one
which surrounds the outer nitrogen dewar. The
horizontal component of the earth’s field is com-
pensated for by a Helmholtz pair.

5. Observed data and calculated results

5.1 Uniaxial stress data for Ta

A typical set of magnetic moment measurements as
a function of applied field on a tantalum specimen are
shown in Fig. 2. The effect of the stress is essentially
to translate the curve; A,H, was taken from an average
value of the translation of the central portion of the
curve. The reversibility of the application of the stress
is shown by close restoration of the original curve on
release of stress; reversibility was checked in this way
for most values of stress. The critical field shifts
A H, obtained in measurements on two specimens

Figure 2 Magnetic moment vs applied magnetic
field for tantalum crystal #2, axis orien-
tation {110)>. Points before applying stress, m;
points at uniaxial stress of 3.96 k. atm, ®; points
after stress is released, O.
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with the same crystal orientation, axis along {110)*°,
up to uniaxial stresses ¢ of nearly 6,000 atm are shown
in Fig. 3, which plots A H./o vs o. The data closely
fit an inclined straight line, indicating both a linear
and a quadratic stress effect, and the line drawn is
obtained by least squares fit to the data, weighted by
estimates of uncertainty due to temperature drift, and
precision of the galvanometer readings.
From (2.13) with ¢ applied along {110}, we have

AH, = Byo + HByy + Biz + Bas/Do”, (110)). (5.1)

Hence the least squares line yields

By = (2.89 +0.13) x 10~ gauss/atm , (5.2a)
HBys + Bz + Baal2)
=(3.11 + 0.40) x 1078 gauss/atm? , (5.2b)

all values applying at T..
From (5.2a) and (2.12) we obtain for Ta

<ch
dp

which may be compared with the value —9.26 x 1074
gauss/atm of Hinrichs and Swenson,® and the value
—8.76 x 10™% gauss/atm obtained from dT./dp of
Jennings and Swenson* and critical field data, as
described in Section 5.2. Many of the older measure-
ments, using less pure Ta, gave values of (0H./0p)r.
several times these values,2® but the agreement
established by Hinrichs and Swenson,® and by the
uniaxial stress measurements above, all using speciaily
purified Ta, seems fairly conclusive.

) = —(8.67 + 0.39) x 10™* gauss/fatm , (5.3)
Te

5.2 Calculated results for Ta using critical field data
The value of dT./dp, or dT,/ds,, may be obtained

Figure 3 Critical field shift, A H., divided by
uniaxial stress, a, vs o, for two single-
crystal specimens of tantalum, both
with (110> orientation. Crystal #1, o;
crystal #2, ®; straight line is weighted least
squares fit, temperature about 4.27°K.

CRYSTAL | o <110>
CRYSTAL I & <110>

Dg He /o Gauss/ Atm x 104

| 1 1 1 1
0 1 2 3 4 5 6

UNIAXIAL STRESS (Atm) x 10-3




from (0H,/dp)r, or B, by using (3.37), and (A3.4a) for
(0H,/0T) 1, to give
dT, dT, i
=-3 = —(2.57 £ 0.13) x 107° deg/atm.
dp do,
(54)

This may be compared with the measured value of
Jennings and Swenson* of —(2.6 + 0.1) x 107°
deg/atm.

The three second-order coefficients Bi1s B2, Basa
may now be estimated at T, by combining information
from three sources. These are (1) the uniaxial stress
result in (5.2b), (2) the hydrostatic pressure measure-
ment* and (3) the elastic constant discontinuity at the
transition curve.?! Source (2) gives no significant
second-order pressure effect on 7, out to 10,000 atm,
or, more precisely, leads to d?T,/dp* < 107!! deg/
atm?, on allowing for a possible second-order effect
buried in the scatter. Then relating (8*H,/dp*)r. to
d*T,/dp* by (3.38), we have, using (2.11),

Bi1 + 281, = 3(9*H,[op?)

< 107° gauss/atm? (Footnote 22) (5.5)

which is negligible compared to the magnitude of the
B;; of 1077 given by (5.2b). Source (3) (of data on the
second order coefficients f;;) makes use of (3.16), in
particular (3.16a), applied to measured values of the
jump in the modulus C = C,, along the transition
curve.?? To obtain a value at T, requires extrapolation,
since AC vanishes at T,; hence, using values of H.
from (A3.3), measured values of AC/C ranging from
7.8 x 107% at 1.5°K to 1.1 x 107% at 4.0°K, with
T, = 4.25°K, we estimate tentatively by extrapolation
that at 7,

Bas = 1.6 x 1077 gauss/atm? , (5.6)

while at lower temperatures it rises to a maximum of
about 2.0 x 1077 at¢ = 0.65, then fallsto 1.6 x 1077
at ¢ = 0.2. Combining (5.2b), (5.5) and (5.6) yields at
T,

c

Bi1 = 0.8 x 1077 gauss/atm? , (5.73)
Bi2 = —0.4 x 1077 gauss/atm? , (5.7b)
Bas = 1.7 x 1077 gauss/atm? . (5.7¢)

5.3 Calculated results for Ta using critical field data
and similarity
We now show that it is possible to deduce the
temperature dependence of f; up to T, from H(T)
using similarity, and fitting one additional parameter.
The general equation is (3.23), which we rewrite for
the one linear coefficient of the cubic case,

Bi(T) = (dHo/do )(f — 6,f'1) (5.82)

61 = Ho(dT./do)/(T, dHo/do) . (5.8b)

0.4

SIMPLE SIMILARITY

0.3
£ semm T
< e
> —"—\
8 o2 -7 DOUBLE SIMILARITY
3 ,’/’
Lt
X
R 01 | I ! |
0 0.2 0.4 0.6 08 1.0

Figure 4 Predicted curve of @4(t) for Ta (solid
curve) vs t? using simple similarity,
critical field data, g4(7.) and choosing
the value of dHo/do; for best fit, Eq. 84 =
3.7 x 10-4 (f — 0.43f't) gauss/atm. Points
are measured values of Hinrichs and Swenson.®
Dashed curve shows prediction of double simila-
rity, Eq. B1 = 1.58 X 1074 (f — f't) gaussjatm.

In general (5.8a) may be fitted at two values of §,(T)
to fix dHy/do, and &,—one of these, however, may be
the value at 7, which we already know. We have
from (3.37) and (3.22) at T,

dT; - !

o, TB(TH/Hof'(1), (5.9)
hence putting (5.9) in (5.8b)

0, = —B(T)H/(dH/da ) f'(1) . (5.10)

For Ta, then’ uSing (5.23) for ﬁl(Tc)’ (A3.4a) for
f(D), (5.10) gives

8, = 1.58 x 107 *}(dH,/da) . (5.11)

Now choosing dH,/do, = 3.7 x 10™* gauss/atm to
fit the experimental points at small 7, we obtain
3, = 043 and

B(T)=3.7 x 107%(f — 0.43f'f) gauss/atm .  (5.12)

This value of &, is comparable to the value of
the same quantity found for Pb by Garfinkel
and Mapother,?* their quantity B = (dIn T,/dp)/
(dIn H,/dp) = 0.563, rather than the value 1.0 pre-
dicted by double similarity, Eq. (3.30). The solid
curve in Fig. 4 is (5.12), the points are measured
values,® and the dashed curve is the one predicted by
double similarity (and the value of 8, at ¢t = 1), given
by (3.31), where dH,/do, is evaluated from (5.11) with
8, = 1, hence its equation is

B(T) = 1.58 x 10™*(f — f't) gauss/atm . (5.13)

Thus (5.12) based on simple similarity satisfactorily
reproduces the observed values, whereas (5.13) based
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Figure 5 Calculated values of relative jump at
the transition of the elastic moduli
associated with particular elastic wave
velocities, determined from critical
field data, simple similarity, and gy,
B12, B at T. according to procedure
in the text. Dashed curve is experimental
values of Alers and Waldorf for AC/C.

on double similarity is in marked disagreement and
shows the wrong trend with 7. The calculated curve
could be made to go through the cluster of points
around t* = 0.9, but has been fixed by the value
found above for B, at > = 1.0, (5.2a). This value
agrees, in fact, with the plotted measured point at
t* = 1.0, which comes from the dT,/dp of Jennings and
Swenson, and is 2.7% lower than the value obtained
from Hinrichs and Swenson, as noted just after (5.3).
Thus simple similarity appears to hold for Ta very
much the way it does for Pb.

Note that §,(T) and H(T) fix the jump in strain at
the transition, as given by (3.10). Since there are no
data on Ta, we shall not give a curve. It is perhaps
worth noting that the jump is negative, and the
maximum magnitude, at 0°K, is

Age; = =24 x 1078, (0°K). (5.14)

This may be compared with the magnetostrictive
change given by (3.11), which is also negative and is
proportional to the field squared; its maximum value
at 0°K, is, using (A3.5b),

Ages = —0.45x 107%, (0°K). (5.15)

Thus the magnetostrictive change is at most 20% of
the jump.

Finally, we make a more tentative calculation based
on similarity in predicting the temperature dependence
of Bi1, Bi2s Baa o1, equivalently of A,C/C, A,.C'/C’,
A,C./C,, from the values of B, B,,, Bss at T.. This
calculation will illustrate a type of analysis that should
be very useful in fixing the second-order constants and
checking the accuracy of the independent techniques
used to obtain them, by relating critical field shift
measurements to sound velocity jump measurements;
also it will indicate the general trends with T—but we
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do not have adequate data for reliable quantitative
statements at this time.

The procedure followed, which involves a number
of plausible assumptions of uncertain accuracy, will
be sketched, but not given in detail. It is based on the
equations (3.28) for B,/(T) from similarity, and (3.16)
for the jumps in elastic moduli at the transition. From
(3.28) we have

Biy=Ho1,(f—81,1f"1)

+ (H %),1 [H)QRt' (8, — D +f"1?), (5.16a)
ﬂ12 = Ho,lz(f— 512f't)
+(HS [Ho)Qtf'8,(6, — ) +f"t?), (5.16b)

Bas = Ho4a(f — 644 f'1) . (5.16¢)

We first use (5.16¢) to fit the values of f,4 found from
measured A,,C/C values by (3.16a), and previously
used to extrapolate the value of B,.(T,) in (5.6). A
close fit is not possible since the peak in f, is not
reproduced when the ends of the curves are fitted;
we therefore arbitrarily choose to fit at the ends
(1.5°K and T,), giving

Hg 44 = 1.58 x 1077 gauss/atm?, 84, = 0.55.(5.17)

The AC/C thereby fixed is shown in Fig. 5, with some
of the experimental values of Alers and Waldorf.
We then determine H, ; and H, ,, to satisfy (5.16a)
and (5.16b) at T, using the values in (5.7), assuming,
in the absence of more data, that

511 = 512 = 544 = 055 9 (5.18)

and using the values of Hy,; and §; determined in the
application of similarity to 8,(T) (Footnote 25). This
gives

Ho i =9.0 x 1078 gauss/atm?,
Hgy,, = —5.0 x 1078 gauss/atm?, (5.19)

and fixes B,,(T), B,,(T) through (5.14a, b), hence
determines AC’/C’ and AC./C, as functions of T
through (3.16b, ¢) (Footnote 26). These curves are
also plotted in Fig. 5.

Reliable data are not available, but the preliminary
results do show AC,/C; small (in fact going negative
at low ¢) compared to AC/C, and AC’/C’ larger than
AC/C, but apparently an order of magnitude larger
and negative. Further study is needed; annealing
treatment and impurity content may have drastic
effects on the behaviors. Note that the relative
longitudinal wave elastic modulus jump, AC,/C,, is
finite at ¢ = 1.0, whereas the shear wave moduli
jumps vanish. This corresponds to the term 9B28,2%/
4nC, in (3.16c) whose magnitude is 0.084 x 107°.
The relative jump in Ta at T, is small; for comparison,
the same quantity in Pb is 2.5 x 107°, corresponding
to elastic moduli four times smaller, but to a §; ten
times larger, hence a factor overall of 25 larger.




5.4 Uniaxial stress data for tin

Due to the much lower strength of Sn compared to
Ta, the uniaxial stress measurements are restricted to
much lower levels. Thus the typical transition curves
shown in Fig. 6 under 179 atm of uniaxial tension,
correspond to a displacement of only hundredths of
a gauss.?” The A H, curve derived from these transi-
tion curves is shown in Fig. 7 up to 200 atm. In fact,
measurements of the strain show that plastic flow sets
in at about 170 atm, in contrast to Ta, where the linear
stress-strain region extends to more than 6000 atm of
tension (provided the maximum load has been intro-
duced and removed at least once). Another complica-
tion is the occurrence of hysteresis, indicated in Fig. 6,
but the shift under stress can be extracted by compar-
ing curves in increasing fields.

Successful measurements of shift were made only
with specimens oriented along (100> (the diad or
a-axis). Attempts to measure specimens with orienta-
tion close to {001 (the tetrad or c-axis) gave distorted
transition curves under stress with no well-defined
shift. This may be due to the generation of bending
stresses, which will occur when the orientation is not
exactly (001> and if the end of the specimen is
clamped. This possibility is being studied further.

The data in Fig. 7 were fitted to a straight line
through the origin by least squares.2® Since the crystal
axis was determined by X-rays to make an angle 6 with
the {001) axis of 87.5 + 0.5°, this gave, using (2.18b),

0.9988, + 0.0028; = (1.07 + 0.29) x 10~* gauss/atm .
(5.19)

Magnetic moment vs applied magnetic
field for tin crystal, axis orientation
(100>, Points under uniaxial stress of 179
atm, @; points after release of stress, O;
arrows indicate measurement with increasing
and decreasing field, and show hysteresis. Tem-

Figure 6
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Figure 7 Critical field shift vs uniaxial stress for
tin single crystal, axis orientation 2.5°
from (100> (diad axis). The dashed line
shows the calculated effect along the <{00I1)
(tetrad) axis, the full line is a least-squares
straight-line fit to measured points going through
the origin, slope (1.07 + 0.29) x 10~ 4 gauss/atm.

To evaluate B, and 8 individually, we use the hydro-
static pressure coeflicients which, by (2.17), give
(28, + B3). The most recent careful measurement by
Jennings and Swenson* gives (dT,/dp);, = —(4.95 +
0.1) degfatm, which combined with (0H,/0T);, =

—148.8 gauss/deg,?® leads to

—(0H,[0p)r, = 2B, + B
= (7.37 £ 0.15) x 1073 gauss/atm .

(5.20)

However, the careful measurement of Fiske? on the

shift of H, under p gives

—(6H,/0p)r, = (6.56 + 0.15) x 1073 gauss/atm .

(5.21)

perature about 3.71°K.

|
Crystal < 100>

® UNIAXIAL STRESS 179 Atm,

O STRESS RELEASED

The reason for this discrepancy, which lies well out-
side the random error, has not been established, al-
though Jennings and Swenson* suggest that possibly
polycrystalline and single crystal samples show differ-
ent behavior. If this is the case, we shall be more
interested in Fiske’s value. Combining (5.19) first with

0.8
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(5.20), then with (5.21), gives
B1 = (0.09 £ 0.03) x 10~ 3 gauss/atm,
(both cases),

fs = (7.18 + 0.15) x 10~ 3 gauss/atm
(polycrystalline result),

Bs = (6.37 £ 0.15) x 10~ gauss/atm,
(single crystal result).

These results may be compared

Grenier,2 who made measurements on single-crystal

(5.22a)

(5.22b)

(5.22¢)

with those of
105
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tin like the present ones, and obtained uniaxial stress
coefficients for several values of #. By extrapolating
his measurements at each angle as a function of T to
T,, we obtain the values (0H,/d0)r. x 10° gauss/atm =
6.32, 4.47, 2.44, 0.57 at 8 = 13°, 33°, 53°, 87°, re-
spectively. These are not quite linear in cos?6, as
(2.18b) would require, hence we choose only the two
extreme values as the most reliable, (since the perturb-
ing effects of bending stresses would be smallest) to
define a straight line which extrapolates to

B =0.57 x 10”3 gauss/atm,
B; = 6.61 x 1073 gauss/atm .

(5.23a)
{5.23b)

Thus f; comes out much closer to the single-crystal
value, (5.22¢), and almost within the quoted error,
which is consistent with the suggestion above that
polycrystalline and single-crystal behavior differ. The
By value, however, comes out considerably larger than
(5.22a). We note in support of our value that some of
Grenier’s other samples do show a good bit of scatter
in B, values,?® and also that a second sample of ours,
which was not measured quantitatively, also showed
considerably smaller §, than (5.23a). A further argu-
ment against (5.23a) is that (5.23a) and (5.23b) com-
bined give —(8H,/dp)y, = (2B, + B3) = 1.75 x 1073
gauss/atm, which is not in agreement with Fiske,
(5.21), and even exceeds (5.20).

The settling of these differences awaits further data,
which we hope may be partly provided by analysis of
our tin measurements at intermediate values of 6, and
by torsional measurements on single-crystal wires.

In any case, it is well established that tin shows a
strong critical field-stress anisotropy, and from our
values, stress along the ¢ axis has over 70 times the
effect of stress along the a axis. The very small a axis
effect may in fact be regarded as an accidental cancella-
tion of a hydrostatic effect and a shear effect of
opposite sign, both produced by the uniaxial stress,
as we see explicitly from (2.18b) with /; = 0. However,
this great anisotropy is not present in the critical
field-strain coefficients, which are more direct measures
of the physical effect of deformation on supercon-
ductivity. Thus from the inverse of (A2.9a, b), with
elastic constants at 4.2°K (Ref. 31), C;, = 0.8166 x
10°, Cy, = 0.570 x 105, C;5; = 0.3376 x 10°, C33 =
1.0175 x 105, C,, = 0.2660 x 10%, Cgs = 0.2781 x
10°, all in atm; using (5.22a, c), we have

o, = 2.28 x 10° gauss, a5 = 6.54 x 10> gauss,
asfoy =2.87. (Footnote 32). (5.24)

5.5 Remarks on similarity in tin

Grenier studied the T dependence of the coefficients
B, and B; for tin, and Fiske, Muench and others
studied the hydrostatic coefficient, 8,(T). The results
have been compared with the prediction of double
similarity, which fixes the curve from the value at T,
and most measured values come close to this predicted
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curve. However, in view of the discussion in Section
3.5, this correspondence is probably accidental, and
we wish to point out that Fiske’s extensive careful
measurements, although they show considerable
scatter, seem to lie significantly above the double
similarity curve. This is the direction of deviation from
double similarity shown by a number of other super-
conductors, €.g., Ta, In, Pb. In view of the fact that
these results were on single crystals, and in view of the
verification of the value at T, suggested in Section 5.4
on using our value of $, and Grenier’s value of f,
we have compared Fiske’s data in Fig. 8 with a curve
based on simple similarity as well as the one from
double similarity. The two parameters 6,, and H, ,
(Footnote 33) in (5.25) are chosen to fit at ¢ = 1, and to
follow the other points near T,, which are believed
more accurate than points at still lower T (giving more
weight to the lower T points would raise the value of
O,).

IJThe equation, whose form is obtained from (3.23)
on combining the equations for H, ; and H, ;, is

By = (0H [0p)r = Ho ,(f — 6,1'1),

Ho,= —(2H,,, + Hy3) = —5.28 x 10> gauss/atm ,
8, = H,T, | T.H,, =069,

T, = —QT, + T.3). (5.25)

Because of the great anisotropy in tin J, = 6;. This
value of 6, may be compared with 0.43 for Ta in
Eq. (5.12), 0.562 for Pb?*! and 0.69 for In from
Muench’s data.>* However, the situation is confused
by the fact that Muench finds double similarity obeyed
well for Sn. An additional puzzle is created by the

Figure 8 Critical field-pressure coefficient, (0H./
op)1, vs t2, for tin, measurements of
Fiske, o; measurements of Grenier, o.
Lower curve calculated from double similarity
and fitted to —6.56 x 10~® gauss/atm, at
t=1, Hep= —3.65 X 1073 (f — f't); upper
curve calculated from simple similarity fitted at
t=1 and at lower t, He,p = —5.28 x 1073
(f — 0.69 f't) gauss/atm.

FROM SIMPLE SIMILARITY

FROM DOUBLE SIMILARITY

(2H./2p) x 103 Gauss/ Atm.

(8H:/aply x 103 Gauss / Atm

4 | | | i
0 0.2 0.4 0.6 0.8 1.0




single crystal In data of Rohrer,?® in which H,, and
H,_ ; are obtained from measured jumps in length at
H_ (Eq. 3.10). Rohrer finds

B3 = (3.4 + 2.8¢%) x 1072 gauss/atm ,
By = (0.20 + 0.10t?) x 10~2 gauss/atm . (5.26)

Now from (3.23), on assuming the parabolic law,
f =1 — 2, we obtain equations of the observed form,
namely

Bi= Ho 1+ (26, — ne*],
(parabolic approximation). (5.27)
Then (5.26) and (5.25) give3®
5,=091, 6, =075,
__Ho 1 QH 1+ Hes)r=1.
? T, H.r, (2Ho,1+ Hy3)

=1 (QH,,s + H, 3)r=7,
"2 (2Hy,; + H,3)
and this value of J, disagrees with the value deduced

from Muench’s data. More single-crystal work on In
should resolve these questions.

=0.89, (5.28)

5.6 Discussion

These two applications of the uniaxial stress tech-
nique, to Ta and Sn, illustrate two useful features of
this technique in probing the behavior of supercon-
ductors under stress—the study of the second-order
coefficients and of the anisotropy of the coefficients;
also the first-order hydrostatic coefficients may be
obtained fairly easily. Of course, more of the labor of
carrying out the experiment is shifted to the preparation
of suitable single-crystal specimens.

Confidence in the accuracy of the measurements is
established by the satisfactory agreement on the value
of (0H,/dp)r. obtained here, with the value from other
recent work on specially purified Ta. The second-order
contribution seems clearly established, and its general
magnitude is confirmed by the recent measurements
of sound velocity jumps at the transition. The actual
values of the second-order coefficients are still tenta-
tive owing to the uncertainty in the sound velocity
measurements, which are not on good specimens, and
to the fact that no specimens of Ta for uniaxial stress
have been successfully prepared with different orienta-
tion than <{110). It is worth noting that the second-
order coefficients are nonlinear effects in the super-
conducting properties, and not in the elastic properties,
since all measurements are well within the Hooke’s
law region. The second-order contribution to A H, is
already 109 at 1000 atm (along {110}), and is 409,
at 6000 atm. Since no second-order effects are detected
out to 10,000 atm of hydrostatic pressure, it follows
that the second-order effects are much more sensitive
in Ta to shear stresses, although by virtue of the cubic
symmetry the first-order shear effects vanish.

Similarity is a valuable tool in predicting and testing
the observed temperature dependences, although it has
not been derived from first principles; however it is
necessary to work with the less restrictive form, called
simple similarity, which allows H, and T, to vary
independently with stress, hence has two parameters
to fix: Then Ta appears to obey simple similarity, as
shown from the behavior of (0H./dp)y with T, but with
a rather small value of the dimensionless parameter
d; = (6 In T,/0p)/(0 In Hy/Op). The value §; = 0.43 is
the smallest of those for the four superconductors Ta,
Pb, In, Sn, and gives (0H./dp)r for Ta a trend with T
opposite to that of the other three.

Furthermore, tentative application of similarity
makes possible prediction of the behavior of the
sound velocity elastic-modulus jumps as a function of
T, so that detailed cross-checks between these two
completely independent experiments on the second-
order constants should be possible, and very useful in
spotting systematic error in either.

The remarkable anisotropy of the first-order co-
efficients of tin to uniaxial stress found by Grenier is
confirmed, and our new value for the smaller co-
efficient, f8,, which is a factor six smaller than Grenier’s,
makes this anisotropy still greater. Combining this
value of B; with Fiske’s single-crystal hydrostatic
measurement gives a value of S5 that checks well with
Grenier’s, whereas using the polycrystalline hydro-
static measurement of Jennings and Swenson leads to
a substantially greater value than Grenier’s. This
seems a further indication of a difference between
single-crystal and polycrystalline measurements,
suggested by Jennings and Swenson in consequence
of the discrepancy between the two hydrostatic
coeflicients.

If new weightis put on Fiske’s single-crystal measure-
ments, then his values of (0H,/dp)r at various T
indicate some deviation from the behavior predicted
from the more restrictive form of similarity (double
similarity) which previously seemed confirmed by
polycrystalline measurements on tin. A tentative
value of the constant ¢, is suggested from these data.
In addition the value of &, for In is still uncertain,
since new single-crystal data, which are derived, how-
ever, from the difficult technique of measuring length
jumps at the transition, disagree with older data on
polycrystalline In.

A general conclusion is that more single-crystal data
are both desirable and necessary to settle some of these
problems in Ta, Sn, and In. In addition much remains
to be explored about the anisotropy of the various
coefficients.®” Higher precision data would be needed
to test the validity of simple similarity since, to present
accuracy, it seems to hold for all measurements.

Appendix |: Strain and stress notation and
relations

The second-rank stress tensor with components
65 i,j = 1, 2, 3 denotes the force per unit area in the
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J direction on the face perpendicular to the i axis.
Since it is a symmetrical tensor, there are six inde-
pendent components. Thus the tensor is commonly and
conveniently given in single index notation by

0y O¢ O0s 011 012 013
6 03 04 = [Oy3 Oy O3 |- (Al.1)
0s 04 O0j 013 023 033

Similarly, the symmetrical second-rank infinitesimal
strain tensor with components ¢;;, i, j=1, 2, 3,
denotes the gradient in the 7 (or j) direction of the
symmetrized displacement in the j (or i) direction. In
single index notation it has the form

£y e/2 &5/2 €11 &2 13

g6/2 &, £4/2

es/2 e4/2 &y €13 &3 £33

€ = Mii15n
or{m=1, i=1,2,3, (A1.2)
mi=2, i=4,5,6,

where i1, is the two-index form corresponding to i.
For small strains we assume linear phenomeno-
logical relations between stress and strain in the form

3 3
& = Z Sijklakl y O = Z Cklijeij s (A13)
ki=1 i,j=1

where the S, are the elastic compliance coefficients,
and the C;;, the elastic moduli. These are each fourth-
rank symmetrical tensors, and are usually written in
a reduced two-index form defined by

g = Ai S0, (Al.4a)
J=61

o;= 2 Cui (A1.4b)

where

Sij = mimSiizjj2 » (Al.5a)

Cji = Cjijauniz - (A1.5Yb)

Of interest for the applications in this work are
three special stresses:
(1) hydrostatic stress of magnitude o, a normal stress
of equal magnitude on all surfaces, whose components
in single index form, written as a row vector of six
components, are ‘

Ghyd = (0-9 g, 0, 09 0; 0,) . (A16)

(2) uniaxial stress of magnitude o, in the direction
with direction cosines /;, /,, I3, given by

Cuniax = (120, 1,20, I3%0, L 150, 131,06, 1,1,0) . (ALT)
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(3) shear stress of magnitude g, either in the direction
1y, 15, I, on a surface tangential to /;, /,, /5 and normal
to my, m,, my, or with I, I,, I3 and my, m,, m; inter-
changed; the components are given by

Oshear = (2llm105 212"120', 2’3"’130’, (12m3 + l3m2)0',
(Iymy + limy)a, (Iym, + Iymyo), (AL8)
where I,m, + Ihm, + I;m3=0. (A1.9)

‘For cubic symmetry, there are three independent
elastic constants, the tensors having the form given
in (2.9). The C;; and S; tensors are reciprocals, from
which follows easily

(Ci1 = C2)(S11 — S1) =1, (A1.10a)
(Cip +2C1)(S1 +28)=1, (A1.10b)
C44S44 = ]. . (Al.lOC)

Three elastic moduli defined by elastic wave
velocities, v, are also of interest here, namely

CL = pULZ = (Cll + C12 + 2C44)/2 (Al.lla)
for a longitudinal wave in {110) direction,

(Al.11b)

for a transverse wave in {110) direction, polarized
parallel to the <001 axis,

C'= pvtzz =(C11 = C12)2

for a transverse wave in the (110} direction, polarized
parallel to <110}.
The bulk modulus of a cubic crystal is
B=_Vd_g_C11+2C12= 1 ‘
3(Sy1 + 2842)

C = pv,lz = C44

(Al.11c)

= Al1.12

dv 3 ( )

The Young’s modulus Y in the direction /, 1, /5,

defined as the ratio of a uniaxial stress in the /;, [;, I3

direction to the corresponding longitudinal strain is
given by

1
¥ Syt + 2[S44/2 = (S1; — S12)]

x (12152 + L2122 + 1,21,%) . (A1.13)

Appendix 2: Relations between critical field-
stress and critical field-strain coefficients

From (2.2), (2.5) and (A1.4a) we have

: 6 j &
_OHAT o) ¢ OHe 05 5 os. (A2
da, =1 0g; 0oy j=h

Similarly, from (2.3), (2.6) and (Al.4a) we have

if

6
Bij= Y SuSitu, (A2.2)
1

k=




and inversely, using (A1l.4b), we have

6
%= ¥ BCa (A2.3)
~

6
Ot,-j = Z Ckicljﬁkl . (A24)

hil=1

For cubic symmetry, using the simplified forms of
the tensors in (2.9), we obtain

Br=(S11 + 25, (A2.5)
By = (ST +281)ay; + 25,2811 + Siz)%2
(A2.6a)

Bi2 = S122811 + Si2dayg +

+(S%, + 25,51, + 351y, , (A2.6b)
Bas = Siatls » (A2.6¢)
and inversely
oy =(Cyy +2C10)B4 (A2.7)
ayy = (Ci +2CEH)By + 2C1,Q2C 1 + C12)Bya s

(A2.8a)

o1, =C,C, + Cy3)B11

+(C3; +2C1,Cy5 + 3C1)B12 (A2.8b)
%44 = CisPaa - (A2.8¢)

For tetragonal symmetry, using the appropriate
tensors given in (2.15),

By =(S1: + S12)a + Sys03, (A2.9a)
B3 = 281301 + S3303, (A2.9b)
Bir = (5% + ST)ay; + 251,181,505,

+25,3(S11 + Si2)as + Stass s (A2.10a)
Biz = 2811812011 + (ST + Sa)ass

+25,3(S1s + Si2)ays + Stavas (A2.10b)

Bis = S13(S11 + Si)ogr + 2y2)
+ (511533 + S12833 + 28753 + S13833%33

(A2.10¢)
B3 = 2515(ety; + 0y3) + 481353323 + S33%33

(A2.10d)
Bue = S2attan s (A2.10¢)
Bss = Sie%s - (A2.10f)

The corresponding formulas for « in terms of f§ are
obtained from (A2.9) and (A2.10) by interchange of
a and f and replacement of S;;’s by C;;’s.

Appendix 3: Summary of critical field and other
data for tantalum

It is convenient to work with the values of the
deviation function,®® 84, against 1>, where

Sh=f~(1~1%, f(ty=H./Hy, t=T/T.. (A3.1)

Then we have

f=1—-1*+6h, (A3.2a)
f= =211 — dshjd(t?)) (A3.2b)
£ =2dSh{d(1?) + 42 d>Sh)d(t2)* — 2 . (A3.2¢)

The data of Hinrichs and Swenson® may be com-
pactly summarized by the tabulation (from the
smoothed curve in their Fig. 4).

t? —6h H, = 824 gauss (A3.3)
0.1  0.0083 T, =4.479°K
0.2 0.0167
0.3 0.0245
04 0.0281
0.5 0.0286
0.6 0.0270
0.7 0.0230
0.8 0.0168
0.9 0.0083
1.0 0.0000

Quadratic interpolations in this table will reproduce
their curve to within a unit in the last significant
figure and reproduce the experimental points to
+0.5 gauss. (The values of — A from Shaw, Mapother
and Hopkins,*® are quite close for #* > 0.5 but appear
to be a few units larger in the last figure for > < 0.5).

Applying (A3.2b), and second difference formulas,
to (A3.3), we estimate

0H
( ”) = —337 gauss/deg,*® f'(1)= —1.83,,
aT TC

(A3.4)
(ZZYI:I;)TC = —72 gauss/deg?, f'(1)= —1.75,.
(A3.4b)
Elastic constants for Ta at 4.2°K,*°
Elastic moduli (atm)
Cyy = 2.681 x 106
Cy, = 1.600 x 10
Cay = 0.865 x 10° (A3.52)

C =0.541 x 10°
C, = 3.005 x 10°
B =1960 x 105 .
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Compliance coefficients (atm™!)

Si;i= 0674 x10°°

S;,=—0252x%x10"° (A3.5b)
Sia= 1156 x 107°

K = 0.510x107¢,

Acknowledgments

We should like to thank A. Burgess and P. Roland for
assistance with the measurements, and D. J. Quinn and

Y

. Budo for assistance in the design and construction

of the apparatus, all of the Thomas J. Watson Re-

s€

arch Laboratory. We are indebted to G. Alers,

Ford Scientific Laboratory, C. Swenson, Iowa State
University, C. Grenier, Louisiana State University,
and G. Cody of RCA Laboratories, for communica-
tion of various results, and toJ. Swihart, of the Thomas

J.

Watson Research Laboratory, for discussion,

particularly of the relation of BCS theory to similarity.

References and footnotes

1
2

2w

w

11.
12.

13.

110

IBM JOURNAL °

. A preliminary account has been published; D. P. Seraphim
and Paul M. Marcus, Phys. Rev. Letters 6, 680 (1961).

. C. Grenier, Compt. Rend. 238, 2300 (1954); 240, 2302 (1955);
241, 1275 (1955); Thesis, University of Paris, 1956 (un-
published).

. M. D. Fiske, J. Phys. Chem. Solids 2, 191 (1957).

. L. D. Jennings and C. A. Swenson, Phys. Rev. 112, 31
(1958).

. C. H. Hinrichs and C. A. Swenson, Phys. Rev. 123, 1106
(1961).

. Some basic definitions and formulas of crystal elasticity
theory used here are given in Appendix I.

. See, for example, C. S. Smith, “Symmetry and Properties
of Crystals”, in Solid State Physics 6, 215 and 237 (1958).
(Edited by Seitz and Turnbull, Academic Press).

. See C. S. Smith, loc. cit., p. 237, four of the seven tetragonal
point groups have the form in (2.15) for Bs;.

. See, for example, D. Shoenberg, Superconductivity, Cam-
bridge University Press, 1957, p.73.

. An entirely analogous and complementary thermodynamic

development to (3.2)-(3.12) may be based on a Helmholtz

free energy (with respect to the mechanical variables),

F=FE— TS — H.M, and changes at constant strain. Then

at the transition Fn(7, &) = Fs(T, ¢, H:), and there are

magnetostrictive and transition changes in stress at constant
strain. Thus the latter has the form Aoy = (He/4m)(0H/0¢;)
analogous to (3.10) and differentiation by &; gives
AxCis = Gm)(OH o/ 0e:i)(OH e/ Be) + Ho(02H o[ 0e;¢5)]
= (205 + Heayy),

analogous to (3.12) (given also by Grenier? in his thesis).

Since the condition of constant strain is not easily realized

experimentally, the equation for Ao is not very interest-

ing. However, the equation between A¢-Ci; and the «’s is a

definite relation between constants of the two phases,

independent of stress; it must in fact be an algebraic con-
sequence of (3.12) and the equations relating the C’s and

«’s with the S’s and B’s.

J. Kok, Physica 1, 1103 (1934). The normal-state heat

capacity is y7.

Equation (3.23) is given by Garfinkel and Mapother24 in

their Eq. (13); they refer to simple similarity as ‘“‘geometric

similarity,” and use the symbol B for our 5.

J. Bardeen, L. Cooper and R. Schrieffer, Phys. Rev. 108,

1175 (1957).

JANUARY 1962

14.

15.

17.
18.
19.

20.
21.

22.

23.

24.
25.

26.

27.

28.

Of course, the values of &F/0(kTe/liw) near T/T. = 0 or 1
are smaller, and approach zero, since F is fixed at those
points. The maximum value of oF/o(kT./hw) approaches
zero in the weak-coupling limit, k7./Ao = 0, while the
largest value that occurs is about 0.04 for Pb with kT./liw
= 0.075. Detailed calculations of HT)/Ho and other
reduced quantities have been made for all values of coupling
strength, and will be reported separately. Included is the
reduced energy gap, co(7T)/20(0), which also may be given
in the form F(7/T., «) where « may be any of the para-
meters measuring the coupling; e.g., (kT./kw), eo(0)/kTe,
or eo(0)/fiw.
The values of &T./6p are —0.26 x 10-5 deg/atm at
¢ = 4.5°K for Ta, and —5 x 105 deg/atm at 7, = 3.7°K
for Sn. The value of ¢ In ®/p we deduce roughly from the
Gruneisen constant y¢ = —81ln ®/81n ¥V ~ 2 for Ta and Sn.
Since the compressibilities, K = —21n V/op ~ 0.5 x 10-8
atm~1! for both Ta and Sn, 2 In ®/op = yK ~ 10-6 atm !
for both.

. D. P. Seraphim, J. I. Budnick, W. B. Ittner III, AIME

Trans. 218, 527 (1960).

H. S. Sommers, Jr., Rev. Sci. Instr. 25, 793 (1954).

M. W. Garret, J. Appl. Phys. 22, 1091 (1951).

No success was obtained in growing crystals of significantly
different orientation.

See, for example, the tabulation of values in J. L. Olsen
and H. Rohrer, Helv. Phys. Acta 33, 872 (1960).

G. A. Alers and D. L. Waldorf, Phys. Rev. Letters 6, 677
(1961), and private communication on Ta.

Specializing (3.38) to cubic symmetry, and solving for Bi1,
gives

_ 1 d°T, oH. d: | 2H,
apz)n—”“ 9[ s o TP gr ) T

o2H, [ {0H\?
~ 7 (F7) |

arz/\er) lr-1,.
Using (5.2a), (A3.4a), (A3.4b), and (dB1/dT)r, = —0.22 X
104 gauss/deg atm from measured values (see Fig. 4),
gives (5.5).
Alers and Waldorf2! have measured the three velocity
jumps yielding AC/C, AC’'/C’, and ACL/CL (defined in
(A.11)), as functions of T; however, only AC/C had a
reasonable form and did not change substantially on
annealing, hence we have based a discussion on it alone.
We are indebted to Dr. Alers for communication of his
preliminary resuits.
M. Garfinkel and D. E. Mapother, Phys. Rev. 122, 459
(1961).
These should be Ho,1 = 3.7 x 10-% gauss/atm, &; = 0.43,
but in fact the values used in the calculation were slightly
different, since they were based on an earlier analysis of 81,
namely Ho,1 = 3.3 x 10~¢ gauss/atm, & = 0.50. This
should not make any substantial difference in the curves
of Fig. 5, which are, in any case, not of quantitative
significance.
Note that (3.16a, b, c) are not consistent if C is in atm
and Hoy in gauss/atm?, and unit conversion factors are
needed.
However, the shift shown in Fig. 6 is even smaller than
implied by the factor 20 reduction in applied stress com-
pared to the Ta transition curves in Fig. 4. At the orien-
tation used, (100>, the uniaxial stress coefficient has its
smallest value, and is in fact only one-third that of Ta,
whereas for the orientation <001 the coefficient is over 20
times larger than for Ta, and the shifts would then be
comparable (compare (5.22) and (5.20)).
An estimate of the second-order contribution in tin for
tension along <100> indicates it could be appreciable, which
would tend to reduce the magnitude of f1; this is suggested
also by the absence of observable shift at the lower pressures




29.

30.
31

32.

33.

34
. H. Rohrer, Phil. Mag. 4, 1207 (1959).
36.

53 and 98 atm. The estimate was made from the measured
value T¢ pp = (62T,/2p?) = 7.8 x 1010 deg/atm?, leading
to Bpp = 92He/dp> ~ 107 gauss/atm2. Hence if Bu =
02H,/0012 is assumed to have the same magnitude, then
the ratio of second- to first-order term for stress along
<1003 is PB11012/2B101 ~ 10-1 at 200 atm. The relation
used was (3.38) applied to pressure as the stress variable,
and solved for By in the form, using (3.37), Bpp = —27¢,p8'p
— Te,p?H": — Te.ppH’c where the primes are temperature
derivatives at 7T = T,. Then put T¢,p = —4.95 x 10-5
deg/atm, B’ ~ 10-8 gauss/atm deg (measured value, see
Fig. 8), and from the critical field curve H'. = —148.8
gauss/deg, H”: &~ —31 gauss/deg?.

From J. F. Cochran and D. E. Mapother, Phys. Rev.
121, 1688 (1961), Table II.

C. Grenier, Comptes Rendus 240, 2302 (1955), Fig. 2.

J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1658
(1960).

Fiske® finds as/on = 2.6; note his Eq. (8) for this ratio
has a factor 2 missing, and should read

ks Su + Siz — 2aS13

ky «S33 — Sis
The comma notation for derivatives is defined in (3.22)
to (3.29).

N. L. Muench, Phys. Rev. 99, 1814 (1955).

The parabolic law implies He,7. = —2Ho/Te.

37.

38.

39.

For example: does simple similarity apply to each com-
ponent coefficient separately, and if so, does each show
the same value of 8; how well does similarity describe
the second-order coefficients; how great is the anisotropy
of the second-order effects, et cetera?

Called D(t) by Shaw, Mapother, and Hopkins, Phys. Rev.
120, 88 (1960).

The value of (6H./eT)r, in (A3.4a) has slightly greater
magnitude than estimated by some previous workers; e.g.,
Cochran and Mapother,2® give —327 gauss/deg. The
difference could come from a slight bending down of the
8h vs t2 curve near 2 = 1, i.e., a negative curvature, which
is visible in Fig. 4 of Hinrichs and Swenson;?® it appears
also on replotting the data of Shaw, Mapother and
Hopkins,3® although it is not detectable on the small-scale
smooth curve of their Fig. 3. Further support for the value
above comes from the critical field measurements of
Seraphim, Novick and Budnick, Acta. Met., 9, 446 (1961)
very near T, on pure Ta, which give —336 gauss/deg, and
from the calorimetric measurements of Chou, White, and
Johnston, (who obtain (0H./0T)r, from the jump in specific
heat at T¢), Phys. Rev., 109, 797 (1958); these are probably
not as sensitive to impurity content as magnetic measure-
ments and give — 334 gauss/deg.

40. G. A. Alers, private communication.

Received October 16, 1961

111

IBM JOURNAL ¢ JANUARY 1962




