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First-  and Second-Order Stress Effects 
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Abstract: The shift of  critical field of a single-crystal wire under uniaxial tension i s  studied for Ta and 
Sn. For Ta  the  shift is nonlinear and  gives both  the  first-order  critical field-stress coefficient and a 
particular  combination  of second-order coefficients. By combining with  other data, the  three second- 
order constants are estimated. The smaller  first-order  coefficient  of Sn i s  found to  be considerably 
smaller  than previous estimates. Both  Ta and Sn are found to  satisfy a similarity  condition  for  the 
coefficients, but  of a less restrictive  form  than usual. Similarity i s  used to  predict  the behavior of 
jumps in elastic constant moduli  at  the  transition in Ta. The general formal  theory  of  the  first- and 
second-order coefficients i s  formulated and many special cases are given. The general thermodynamic 
relations at  the  transition between jumps in  strain and elastic constants and the various coefficients, 
are derived. It is  shown that BCS theory  implies  similarity. 

1. Introduction 

The value of studies of the  stress effects on super- 
conducting  transitions as a  tool  for studying the super- 
conducting  and  normal  states of superconducting 
metals  has been shown by the large  number of recent 
papers  and by a  great variety of new results. A good 
many results have been fairly well confirmed by cross 
checks between different workers  and different 
methods, and now  more delicate features of the effects 
can be  studied  including, for example, anisotropy, 
second-order effects, and  the applicability of similarity. 
The present work’ aims to demonstrate  the value of, 
and to apply,  the  uniaxial stress technique first intro- 
duced by C .  Grenier,’ which measures the magnetic 
transition on single-crystal wires under uniaxial stress. 
With  this  technique  it becomes possible to explore  in 
detail  the  anisotropic  nature of the stress effects, and 
to obtain  in some cases second-order coefficients as 
well as  first-order coefficients, i.e., the shift of critical 
field, H,, quadratic in the stress components, as well 
as  the linear  term. An anisotropic  stress  can be easily 
applied, since tension  produces both shear and hydro- 
static stress, whose direction can  be varied by studying 

94 differently oriented specimens, and quite sizeable 

magnitudes are simply obtained by using thin speci- 
mens, the  limitation being the  strength of the material. 
However, the relative simplicity of the  measurement 
is achieved at  the expense of more  trouble  in specimen 
preparation.  Thus in both  the cases studied here, 
some desired orientations were not obtained, and  the 
measurements  had to be supplemented by hydrostatic 
pressure results although,  in principle, complete results 
(on  first-order coefficients) are  obtainable by this 
method  alone. 

Because interpretation of the  data requires analysis 
of a number of anisotropic  stress  situations, we take 
this  opportunity  to  develop  the  phenomenological 
theory  for  general stresses. Some special results are 
given by Fiske3, and still more  in  the thesis by Grenier’, 
but we have developed the  equations  more extensively 
and systematically. In particular, Section 2 introduces 
definitions and  notations  for  both first- and second- 
order critical field stress and  strain coefficients, and 
notes  the  various special forms  for special stresses of 
interest and  for cubic and  tetragonal symmetry. 
Appendices 1 and 2 contain  additional relevant 
material on  the description of crystal elasticity and  the 
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relations between the  stress and  the  strain coefficients. 
We then  develop  along  standard lines, in  Section 3, 

but introducing  a general stress, the general  thermo- 
dynamic  relations between jumps of strain  and of 
elastic constants  at  the  transition  and  the stress  co- 
efficients defined in Section 2. The  jumps in elastic 
constant  are of particular  interest to us because they 
can be directly measured and provide an independent 
source of the second-order coefficients. A  careful dis- 
cussion is given of the  meaning of similarity, which has 
been frequently used to discuss the  temperature de- 
pendence of the various coefficients. The  general 
equations  for these temperature dependences, in- 
cluding  the  second-order coefficients, are derived for 
both a less restrictive form of similarity, called simple 
similarity, and a  more restrictive form, called double 
similarity. Finally, it is shown that  the BCS descrip- 
tion of a superconductor effectively implies simple 
similarity, deviations  from  it being very small. 

The experimental  procedures are described in Sec- 
tion 4, with notes  on  the specimen preparation  and on 
the design of the  tension apparatus  to give a  direct 
measure of the tension on the specimen without 
errors  due to friction at supports. 

Section 5 presents the  data obtained on  Ta  and Sn, 
and successively discusses implications which require 
more  and  more supplementary  information and 
assumptions. In  the  Ta analysis we lean heavily on 
the work on  Ta of Jennings and S ~ e n s o n , ~  and 
Hinrichs and S w e n ~ o n ; ~  various data used are 
tabulated  in  Appendix 3. The measurement of mean- 
ingful transition curves for  Ta has been made possible 
only recently through  the  preparation of specially 
purified material, and  many of the  older results 
are of no value for  quantitative discussion. Among 
the results in this Section are:  an evaluation of 
the first-order  constant, which agrees well with 
various  hydrostatic  measurements; an estimate of the 
three  second-order  constants  from these data,  the 
hydrostatic  work, and  certain  sound velocity jump 
measurements; analysis to show the behavior of the 
first-order  constant  with  temperature follows simple 
similarity, although showing a  large  deviation  from 
double  similarity;  application of similarity to predict 
the  temperature  dependence of the elastic constant 
jumps at the  transition.  It  is  noteworthy  that  the 
second-order stress effects appear well within the 
linear elastic region, and  that they are basically shear 
effects, since the hydrostatic  second-order effects at 
these pressures (and  larger) are  too small  for  observa- 
tion. 

The work on Sn concerns onlyfirst-ordercoefficients, 
because plastic flow limits the  maximum  tension. 
Among  the results are:  the great  anisotropy of the 
stress effect is confirmed and shown to be  considerably 
larger than previously thought; consistency arguments 
among  three  measurements  are given that indicate a 
difference between hydrostatic  measurements on 
polycrystalline and single-crystal specimens ; evidence 

is given for  deviation of the  temperature  dependence 
of  the  stress coefficients from  double similarity in  the 
same  direction as  for  Ta,  Pb  and  In; some  questions 
are raised about inconsistent  results on  In  and  the 
nature of its  deviation  from  double similarity. 

2. Formal  theory of critical field-stress and 

2.1 Definitions of the first- and second-order coeficients 
The phenomenological  parameters of interest in  the 

present  work, which characterize  certain  intrinsic 
properties of superconductors, are defined by power 
series expansions of the critical field, H,, as either  a 
function of the  stress  components,6 oi, i = 1 to 6 
or of the  strain  components, c i ,  i = 1 to 6. In  the limit 
of small stress or strain,  the  situation  considered here, 
the coefficients of the  first-order (linear) and second- 
order  (quadratic)  terms in these expansions are  the 
quantities of interest. In this section we introduce a 
general notation, derive various  relations that will 
be useful in  later discussion, and  note  the effects  of 
symmetry. 

First  regard H,  as a  function of stress, and write for 
the  shift  in H, with stress  (the  argument oi will stand 
for all six stress components), 

strain  relations 

AbHC E H,(T, ai) - H,(T, 0) 
6 1 6  

= Piai + - 1 pijoioj + higher terms. (2.1) 

The first-order  critical field-stress coefficients, p i ,  
are given by the derivatives of H,, evaluated at zero 
stress, as 

i =  1 2 i , j =  t 

pi(T) = (aH,(T, ~ ~ i ) / d ~ i ) T , ~ ~ , j # i ,  i = 1 to 6 . (2.2) 

In general they are  functions of temperature-but not 
of stress, since they are  properties of the unstressed 
state. 

Similarly, the  second-order coefficients are given by 

pij = d2H,/doi do j ,  i, j = 1 to 6 . (2.3) 

The analogous  development to (2.1) to (2.3) regarding 
H, as a function of strain gives 

AEHc H,( T, E J  - H,( T, 0) 
6 l 6  

= 1 aici + - E ~ ~ & ~ ~ E ~  + higher terms . (2.4) 

Again, first- and  second-order coefficients appear, 
related to derivatives of H, in  the unstressed state by 

i =  1 2 i , j =  1 

M , ( T )  = (aH,(T, &i)/a&i)T,ej,j+i , i = 1 to 6 , (2.5) 

a..  15 = a2HC/aEiacj ,  i ,  j = 1 to 6 . (2.6) 

The stresses and  strains  are  linearly  related  through 
the elastic constants by 

(2.7) 95 
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6 
6. J = CjiSi . 

i = l  

By using  the  elastic  relations (2.7), (2.8) between 
stress and strain, the ai’s and aij’s can be expressed 
linearly  in  terms of the Pi’s  and Pij’s and vice versa. 
Details of these relations and  the simplified forms  for 
the special cases of cubic  and  tetragonal  symmetry are 
given in Appendix 2. 

2.2 Special forms  for cubic symmetry 
For crystals with full cubic  symmetry, the Pi’s and 

Pij’s simplify considerably and involve only one  and 
three  independent  components, respectively; they are 
given directly by the  forms  for second-and  fourth- 
rank  tensors with cubic  symmetry, which are,  in 
reduced  index notation  and referred to  the  cubic 
axes,’ 

Bi  (PI, 81, P I ,  O , O ,  0) ; 

P 1 1  P 1 2  P 1 2  0 0 0 

P 1 2  P 1 1  P l Z  0 0 0 

P l Z  P l Z  P 1 1  0 0 0 

0 0 0 p 4 4 0  0 

0 0 0 0 p 4 4 0  

o o o o o ~ 4 ,  
Then  the linear and  quadratic terms of (2.1) can be 
written in  the  forms : 

AUHC = Pl(0l + 0 2  + 63) + 3Bll(4 + of + 4) 
+ P12(a2a3 + a361 + 
+ +P44(05 + a; + .%I 9 (2.9) 

x (a1 + 0 2  + a3), 

+ H P 1 1  - 81z)[(a2 - a3I2 

+ (03 - all2 + (a1 - 0J21 

+ 3P44(a,: + 4 + 0 3  (2.10) 

= Pl(C1 + 0 2  + 0 3 )  + H P 1 1  + 2812) 

Under a hydrostatic stress, a, which is given in 
component  form  in  the  Appendix  in (A1.6), we have 

AuHC = 3P1a + 3(Pll + 2Plz)a2 . (2.11) 

The usual  pressure coefficient of H, is then  obtained 
by defining the  hydrostatic  pressure of magnitude 
p E -a, so that 

(2.12) 

Under uniaxial stress, a, applied in  the direction 
96 having direction cosines 11, I,, l3 with respect to  the 
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crystal axes, with components given by (A1.7), we 
have 

x (lfl: + 1:1: + l:l;)a’. (2.13b) 

Under  shear stress, a, along 11, I,, l3 in  a  plane 
perpendicular to m,, m,, m3, with components given 
by (A1.8), we  h.ave 

+ (llrnz + lzml)2]}a2 . (2.14) 

We note  that  the linear  stress  terms for  both hydro- 
static and uniaxial stress  lead to the single first-order 
constant P1, but  that linear effects vanish for all  shears 
in crystals with cubic symmetry. We also  note that 
the  quadratic  terms of hydrostatic stress yield one 
combination of the  three  second-order  constants, 
fil + 2P12, while quadratic  terms of uniaxial stress 
in  two  (or more)  directions yield both Pll and 
(f144 + 2P1,), and  the  quadratic  terms of shear  stress 
could give (fil - P1 2) and p44. 
2.3 Special forms  for tetragonal symmetry 

In crystals with the  higher  tetragonal symmetries, 
such as white tin and  indium,  the P i  and P i j  tensors 
have two and six components respectively; the general 
forms with respect to the  principal  axes of the crystal, 
x3 being along  the  tetragonal axis, are’ 

Pi = (PI, PI ,  8 3 ,  O,O, 0) ; 

. (2.15) 

Then,  for  general stress, AuHc becomes from (2.1) and 
(2.15), keeping only first- and second-order  terms, 



We now discuss the effects of special stresses, but 
only first-order terms will be  retained  for  later  applica- 
tion; in general these terms  can be written in  the  form 

AmHc =  PI + P3)/3](01 + e 2  + 0 3 )  

+ [(B1 - P3)/3](c1 + c2 - 2a3), (first order). 
(2.17) 

From (2.17)  we  see that  under hydrostatic stress only 
the first term is finite and gives -(2& + /?,)p. Under 
uniaxial stress along I,, 12,  l , ,  

A d f c  =  PI + P3)PIc + [(PI - P 3 ) ( 1  - 3132)/31~ 9 

(2.18a) 

= (pl sin2 8 + p3 cos2 e)a, (first order), 
(2.18b) 

where I ,  = cos 8. Finally,  under general shear stress, 
given by (A1.8), only the second  term of  (2.17) is finite, 
and gives 

AuHC = -2a(P1 - P,)Z,m, , (first order). (2.19) 

We note  that AuHc in (2.19) vanishes for shears in  the 
coordinate  planes (1 or m along  any of the  crystal 
axes) and has  its  maximum  magnitude for I ,  = m3 = 
f 1/,/2, i.e., for shears in planes at 45" to the  tetrag- 
onal axis which compress  (or  expand)  the  tetragonal 
axis, and expand  (or  compress)  the  transverse axes. 

3. Thermodynamic relations at  the transition 

3.1 The free energy of a superconductor under stress 

The  formal  relations of Section  2  apply to  any 
intrinsic  scalar  property,  such  as H,, which is a func- 
tion of a symmetrical second-rank  tensor field in  the 
material,  such as stress. We now obtain  the physical 
relations between the  critical field-stress coefficients 
and discontinuities in  strains  and elastic constants at 
the superconducting  transition which are consequences 
of thermodynamics. The procedure is standard,' but 
we give some steps of the  derivation to bring out 
details of the  treatment of a general stress. 

The differential of internal energy, E, of a specimen 
of material  under  a reversible infinitesimal change of 
strain dci ,  and of magnetic  moment d M ,  in a uniform 
external field He with possible absorption of heat,  is 

d E = T d S + V   x o i d s i + H , d M ,  (3.1) 

where we assume  homogeneous  strain  throughout  the 
volume V ;  S is  the  entropy. 

Define a  Gibbs  free energy for  the specimen by 

in a  magnetic field 

6 

i = l  

6 
G(T, CT~,  He) = E - T S  - V cisi - H,M ; (3.2) 

i =  1 

hence, from (3.1), 
6 

d G =   - S d T -  V C E i d o i - M d H , .  (3.3) 
i= 1 

In (3.3) we neglect second-order  strain  terms  like 
c ic i  dV, and  treat ci as infinitesimal at all times. 

At  the phase transition, considered to  take place 
reversibly at constant T, ci and He( = H,), the change  in 
G in going from  the  superconducting to the  normal 
state is, from (3.3), 

AtrG = G,(T, ai) - G,(T, ci, H,) = 0 , (3.4) 

where we indicate by omission of the  argument H,  
that  the free energy of the  normal  state, G,(T, ci), is 
independent of magnetic field  (we ignore  the weak 
susceptibility of a normal metal). Equation (3.4) 
implicitly defines the critical field as a  function of T 
and ci, H,(T, ci). 

Also from (3.3) the  change of G, in  a field He is 

Gs(T, ci, H e )  

= G,(T, CT~, 0)  - M dH,  , 
C' 

r e  

(3.5a) 

= G,(T ci, 0)  + V,(T ci, 838, dH,/4n , (3.5b) 

where the  relation for a perfect diamagnet, 

M = - VsH,/4n , (3.6) 

has been used for  the magnetic moment of the super? 
conductor of volume V, in  a  uniform field He, thus 
ignoring  penetration effects-a good  approximation 
for  superconductors of macroscopic  dimensions. 

3.2 Relations  at the transition;  magnetostrictive and 

The  quantity V, has been retained  under  the  integral 
sign in (3.5b) to indicate  a  dependence on He, namely, 
the  magnetostrictive effect  of the  external field on the 
superconductor.  In  fact, this dependence is a higher 
order  strain effect which could  be neglected, but is 
convenient to retain at this point. We can  evaluate  the 
magnetostrictive  strain by differentiating (3.5b) with 
respect to ci, and using (3.3), to give, 

transition changes of strain 

K[c i (T  ci, He) - Ei(T ci, O>l 

where the higher order  term  coming  from  the  change 
of V, with He has been neglected on  the left. 

By inserting (3.5b) with He = H, into (3.4), we 
obtain  the well-known equation  for  the difference in 
intrinsic free energies of normal  and superconducting 
states in zero field, namely, 

GAT, ai) - G s ( T  bi, 0) 

97 

IBM JOURNAL JANUARY 1962 



Differentiation of  (3.8)  with  respect to ui gives 

V[&Y(T, ai) - &;(x ui, O)] 

= - v.(T, ci, HJ(Hc/4n)(aHc/aoi) 

- {r(aK/a.i)He d ~ e / 4 n  5 

where on the left, the difference  between V, and V, has 
been  neglected. Comparison of  (3.9) and (3.7) shows 
that the difference in strain ei, for given stress uir 
between the normal and superconducting states in 
zero  field,  may be considered made up of two parts-a 
magnetostrictive part, which builds up continuously 
with field as He increases to H,, and a transition part 
which  occurs discontinuously during the transition at 
H,. The latter  part we may  write,  using (2.2), 

Atr&i I EY(T, ~ i )  - E:(T, oi, H,) 

(3.10) 

We note that the magnetostrictive change in strain, 
(3.7), can be written 

AH,&: E E:(T ,  ~ i ,  He) - E;(T, oi, 0) 

= -(Sli + Szi + S,i)H2/8n , (3.11) 

on neglecting the change of (aVs/aai) with He, and 
using (Al.4a). 

From (3.10) by differentiating with respect to T, 
the jump in components of the tensor of thermal 
expansion coefficients,  a@T, i = 1 to 6, at the trans- 
ition is  immediately  expressed in terms of H,, aH,/aT, 
pi,  api/aT. Also note that, from (3.10),  (2.1) and 
(A1.6) 

AtrV = V(Atr81 + AtrE2 + A t r 4  

the usual formula for the simple hydrostatic case. 

3.3 Change of elastic modulus at the transition 
A direct consequence of Eq.  (3.10) for the jump in 

strain at the transition, is the jump in elastic constants 
at the transition, obtained by differentiating again 
with  respect to aj; this gives,  using (Al.4a)  or 
(asi/aoj) = s,, 

aui  auj 
= -(Pipj + H,Pij)/4n.  (Footnote 10).  (3.12) 

Thus  the jumps in elastic  compliance  coefficients are 
linearly related to the second-order stress  coefficients 
of H,. We note that AtrSij is finite in general at 
T = T,, where H, = 0, as  expected  when the transition 

98 is second order, whereas  vanishes there. 

For cubic symmetry,  (3.12)  reduces to the three 
relations 

= - (P Iz  + H,&1)/47~  (3.13a) 
AtrSIZ = = AtrS23 

= -(PI2 + HCP12)/4n  (3.13b) 

(3.13~) 

At T,, At,$,, = 0, corresponding to the vanishing of 
linear shear effects for cubic symmetry. We can, in 
fact, find direct relations between the shift in H, under 
special  stresses,  such as uniaxial and hydrostatic 
stress, and the corresponding elastic constants. Thus, 
the jump in the reciprocal Young’s modulus, Atr(l/ Y) ,  
given as a function of direction by (Al. 13)  is  very 
simply related by  (3.13) to the shift of H, under uniaxial 
stress given  by  (2.13b),  namely, 

P1 202 

2% 
A,H, = - - 

- - At(+) , (uniaxial stress).  (3.14) 
47ca2 
2HC 

Similarly, from (A1.12), (Al.lOb), and (2.11), the 
jump in  reciprocal  bulk modulus (l/B)  at the transition 
is related to the shift of H, under hydrostatic stress by 

- - Air(:) , (hydrostatic stress).  (3.15) 
2na2 
HC 

It is also useful to express  directly the jump  at H, in 
the special elastic moduli corresponding to particular, 
directly observed, sound velocities  in  terms  of the Pi, 
and P1, using  (A1.lO) to relate the Sij and C,,, and 
(Al.11) to define the elastic  moduli. This gives 

AtrC = (Hc/4.n)C2P44 9 (3.16a) 
(3.16b) 

AtrCL = 9B2P,?/4n + (Hc/47T)[3B2(P1 1 i- ~ P I z )  

+ CzP44 + (2C’2/3)(B11 - P1JI , (3 .164  
where, from (Al. 12), 

B = CL - C - C’/3 . (3.17) 

Thus, measurements of the three velocity jumps and 
velocities,  with  knowledge of P1 and H,,  will determine 
the three second-order coefficients Pll, P12, P44. 
3.4 Similarity and the temperature dependence of stress 

A useful description of the behavior of the critical 
field-temperature relation under stress is  given  by 

coejicients 
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assumption of the so-called  similarity conditions. 
These assumptions permit the temperature dependence 
of pi  and p i j  to be calculated from their values at either 
one or two temperatures plus  knowledge of the critical 
field curve at zero stress.  Similarity, although not exact, 
seems to be a good approximation in many cases, and 
in  general it is helpful to describe  behavior  in terms of 
deviations from similarity. Accordingly, we  now de- 
velop  explicit formulas for the calculation of P,(T) and 
pij (T)  which  will  be  used later in  analysis of various 
measurements. We take this occasion to state carefully 
the two separate similarity conditions, to develop their 
implications separately, and to generalize the entire 
analysis to the case of general  stress, in place of the 
usual hydrostatic pressure. 

The first  similarity condition states that the entire 
family of critical field curves under stress can be 
described in terms of a single function f ( x )  whose 
functional form is independent of stress, by 

(3.18) 

where 

f(0) E 1 , f(1) = 0 . 
Thus at any stress ai, i = 1 to 6, the same  reduced 
critical field curve applies, where two parameters are 
used to reduce H, and T, namely Ho(oi), the critical 
field at O’K, and Tc(ai), the critical temperature. Note 
that f can be  different for different superconductors, 
so the assumption (3.18)  is  less  restrictive than is assum- 
ing a universal  reduced equation of state for all super- 
conductors. 

Further simplification of the description is obtained 
by assuming that  a second  similarity condition is also 
obeyed,  namely, 

(3.19) 

Thus the two parameters of the reduced equation are 
reduced to one. 

The significance  of  (3.19)  is indicated by the Kok 
relation for the electronic heat capacity coefficient of 
the normal state,’’ y ,  

(3.20a) 

Equation (3.20a)  is  simply a consequence of thermo- 
dynamics (and the assumption that the superconduct- 
ing specific heat has no term linear in  T).  Now if the 
first  similarity condition (3.18) holds, then (3.20a) 
takes the form 

V 2 

Y = - -Y(O)(?) 4n , (3.20b) 

where f ”(0) is a constant fixed  by the functional form 
off(x). Now for change of isotopic mass, the original 

case in which  similarity was applied, y,  being a property 
of the electronic distribution, is  expected to change 
very little. Hence, in this case, from (3.20b), the first 
similarity condition leads to the second. 

Stress,  however,  would in general be expected to 
alter the electron distribution and y,  (and also V )  
hence, from (3.20b), also Ho/T,; the deviation from 
(3.19)  would then be related to the variation of y with 
stress. Since,  in fact, (3.18)  is more commonly  satisfied 
than (3.19), we shall derive results both on the basis 
of (3.18) above (simple  similarity) and for (3.18) and 
(3.19) (double similarity). 

For convenience  in manipulation we introduce a 
compact notation, and write 

H, = H,f(t), t = T/T, . (3.21) 

Now, by differentiating  with  respect to ai or T,  we 
obtain relations for various critical field-stress or 
temperature coefficients.  We  have 

Hc,T E dH,/aT = Ho f ’/T, , (3.22) 

where f’ is the derivative  with  respect to the single 
argument off, and 

H , i  E dH,/dai = HO,i(f-frt6J , (3.23) 

where 

6i (HOTcJTcHoJ 
= (d In T,/doi)/(d In Ho/dai) , (3.24) 

Ho,i = dHo/doi , (3.25) 

Tc,i = dT,/doi (Ref. 12) . (3.26) 

A second differentiation gives either 

Hc,TT = HofITc 3 (3.27) 
or 

Hc,iT E (a2H,/doidT) 

= (Ho,i/Tc)[fr(l - S i )  - / ” t a i l  7 (3.28a) 

H,, i j  = (d2Hc/da,da,) = Ho, i j ( f  - S i j )  

+ (Ho,iHo,j/Ho)t[f’(26i6j - - 6 j )  +f”t] ; 

6 i j  = HoTc,ij/TcHo,ij 7 (3.28b) 
and a third differentiation leads finally to 

H,, i j~ E (d3Hc/daidajdT) = (l/T,){ffo,ijf’ 

- ( f f o T c , i j / T c ) ( f ’  +f”t> 
+ ( H o , ~ H o J / H O ) [ ( ~ ~ ~ ~ ~  - - Jj)(f’ + tf”) 
+ t(2f” + tf”’)]} . (3.29) 

Equations (3.21) to (3.29) are based  only on simple 
similarity.  Assuming Ho(0), T,(O), f ( t )  are known 
functions, then pi(T) = HC,,(T, 0) is determined by 99 
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(3.23) when the  two  constants Ho,i(0) and Si(0) are 
known. If p i  is measured at two  temperatures, or if 
pi(T)  and dpi/dT HESIT (given  by (3.28a)) are known 
at some T ,  such as T,, then Ho,i(0) and Si(0) can be 
found. 

Similarly for  the  second-order coefficients, if 
Ho(O), T,(O),.f(t),  Pi(T),  Pj(T), Si(O>, Sj(0) are known, 
then Pij(T) = H,, i j  is determined by (3.28b) if the 
two constants Ho,i j  and TCl i j  are  known. Again 
measurements of pij at two temperatures or of p i j  
and dpij/dT = (given by (3.29)) will determine 
the  two  constants. 

If the second similarity condition is also  true,  then 
the  two  constants  in  each case are  related, since 

and (3.23) to (3.29) become 

Hc,i = Ho, i ( f - f ’ t )  > (3.31) 

H ~ , T  = - (Ho,i /Tc)f”t  9 (3.32) 

H c , i j  = H o , i j ( f - f ’ t )  + (Ho,iHo,j/Ho)tZf” 3 (3.33) 

Hc,ijT = (l/Tc)[-HO,ijf”r 

+ (Ho,iHo,j/Ho)t(2f” + tf‘”)] * (3.34) 
Now  only a single value of pi, or p i j ,  is required to 
fix the T dependence everywhere. 

If we have both  cubic symmetry and  double simi- 
larity, the explicit formulas  for  the p ’ s  are simply 

Pl(T> = Ho,1(f-f’t) 9 (3.35a) 

Pll(T) = H o . , , ( f - f ’ t )  + (H0,lZ/HO)tZf”, (3.35b) 

P l m  = HO,lZ(f”f’t) + ( ~ o , l z / ~ o ) ~ z f ”  9 (3.35c) 

P44(T) = H0,44(f”f’t)  . (3.35d) 
Finally we note  that Tc,i, Tc,ij may be evaluated  from 

measurements of H,,  Hc,i, H c , i T ,  H,,ij near T,, which 
is useful in  the  application of (3.23), (3.28b) in the case 
of simple similarity. The relations follow from implicit 
differentiation of the  functional  relation defining 
Tc(ai), namely 

Hc(T ,  ai) = 0 9 (3.36) 
which yields 

Tc,i = -Hc, i /Hc,Tc  7 (3.37) 

Tc,ij = [Hc,T, (Hc, iHc, jT ,  + H c , j H c , i T c )  

- Hc,TcZHc, i j  - Hc,iHc,jHc.T,T,1/Hc,T,3 9 (3*38) 
where 

H c , T ,  E ( a H c ( T ,  o i > / a T ) T = T E  . 
3.5 Similarity and  the BCS theory of superconductiuity 

Although  the  model of a  superconductor developed 
100 by Bardeen, Cooper  and S~hrieffer’~ is a simplified 

one, which omits many features of a real metal,  it  has 
been notably successful in describing quantitatively  the 
behavior of reduced properties of superconductors, 
Le., properties scaled with respect to values or para- 
meters fixed  by experiment. Similarity is just such a 
property, hence it is noteworthy that BCS theory 
effectively predicts simple similarity under  stress; 
however, the second similarity condition will not  hold. 
Actually, the theory provides a mechanism for  altering 
the reduced critical field curve, H,(T)/H,, under stress, 
but it  turns  out  that  the dependence on stress  (through 
that mechanism) is so weak that similarity is predicted 
to hold to a high degree of precision and certainly 
within the experimental accuracy. 

To draw  this  conclusion, we transform the  equations 
of the  theory by elimination  and  combination of 
parameters to give 

H,(T)IHo = W / T , ,  kT,/ho) 7 (3.39) 

where F(x,  y )  is an explicitly known  function of its 
two variables. In particular,  the  coupling energy V,  
whose magnitude  and  stress  dependence  are not known 
directly from  measurement,  has been eliminated and 
the  ratio of kT, to the phonon energy, Aw, introduced 
as a dimensionless measure of the electron-phonon 
coupling  strength.  The values and stress dependence, 
or  at least pressure dependence, of kT, and Ao = kO, 
where 0 is essentially the Debye temperature, can be 
obtained  from  measurements  independently of the 
theory. Under stress T,, 0 and T , / 0  will in general 
alter, hence the  form of H,(T)/Ho as a  function of 
T/T,  will change,  and similarity will not strictly hold, 
but a quantitative  estimate shows the  change to be 
negligible. 

We estimate  from  the  theory that  the maximum 
value of aF/a(kT,/Ao), as  a  function of T, is about 
0.01 for, say, Ta or Sn, for which (kT,/ho) e‘ 0.02 
(Footnote 14). 

For estimates of the  change of coupling  parameter 
under stress, we use measured values of the effects of 
pressure on T, and 0. Thus we have 

a ln(kT,/hw) - a In T, a In 0 
a P  a P  a P  

--- - - -10-6atm”forTa, 

- atm”  for  Sn.  (Footnote 15) 

Finally, we estimate  the  variation of F with pressure as 

aF aF kT, a In(kT,/hw) 
a p  - a(kT,/hw) ti0 a P  
” 

(3.40) 

N 10-lO/atm for  Ta  and lO-’/atm for Sn, which is 
small  compared  to, say, a In T,/dp - and 
atm, respectively. Thus, effectively, the first similarity 
condition holds, although, of course, the  second 
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similarity condition will not  hold, in general, by the 
same argument given in Section 3.4, based on Eq. 
(3.20). 

In fact, BCS theory  predicts  more than desired, 
since it gives a very close family of functions  for  the 
reduced curve Hc(T)/Ho, over  the possible variation 
with coupling  parameter.  Thus,  the  variation of 
coupling  parameter kT,/ho from  zero up  to a maximum 
of about 0.075, the value for  Pb,  produces only about 
a 0.3% maximum  change  in Hc(7')/Ho, whereas the 
observed maximum variation of Hc(T)/Ho in going 
from A1 to  Pb is about 7%. Although  the H,(T)/H, 
curves of the  theory  thus show less sensitivity to  the 
variation of coupling  strength  among  superconductors 
than is observed, the sensitivity to pressure seems of 
still smaller magnitude, since the  coupling  strength 
itself is a weak function of pressure, and this  feature 
might plausibly persist when the  theory is adequately 
modified to explain the differences among  super- 
conductors. 

4. Experimental technique 

4.1 Preparation of single-crystal  specimens 
The  tin crystals were grown by the following tech- 

nique. The 99.999% tin  metal was heated in a glass 
vacuum  chamber  and  then  forced by helium gas into 
evacuated 0.043 in. i.d. glass tubes  (ten at a time). A 
furnace with a  gradient  in  temperature was positioned 
so that decreasing the  current  to  the  furnace allowed 
the  tin  to solidify progressively down  the  tubes  toward 
the molten reservoir. The glass tubes were then dis- 
solved in  HF.  The crystals were subsequently placed 
in fresh glass tubes  for  annealing  overnight at 190°C 
in vacuum. 

The  preparation of the  tantalum  crystals  has been 
described in an earlier report.I6  In general, they were 
2 to 3 inches long  and 0.010 in. diameter.  The resistivity 
ratios were purposely controlled to be  of the  order of 
R,oo/R,.z - 300. In  this case the  crystals  are  reason- 
ably  strong  and have fairly sharp  transitions. 

4.2 Apparatus  for applying uniaxial stresses 
The  apparatus  for applying uniaxial stresses is 

shown  in simplified form  in Fig. 1. The essential parts 
are: a  micrometer  head,  a  double-spring  balance, and 
a  dial gauge which can  be read to 0.0001 inch. Rota- 
tion of the  micrometer  head moves the  top of the 
double  spring 0.0249 inch  per  revolution  in  calibrated 
steps, while the  dial gauge measures the deflection of 
the  bottom of the  spring. The difference between the 
two extensions is  the  spring extension, which is pro- 
portional,  through  a  calibrated  constant,  to  the  stress 
in  the spring. The  bottom of the  spring is connected 
through  a  shaft to one end of the  crystal while the 
other  end of the crystal is fixed. Thus  the tension  in 
the  spring is equal  to  that in  the specimen. There  are 
no frictional  constraints  in  this  apparatus  to  compli- 
cate  calculation of the  stress;  the  present apparatus 
differs from  Grenier's  in  this respect. 

F 

A J INDICATOR 

GEARS AND DIAL 

4 I 
COPPER C A N  

. S E T  OF TWO COILS 

IRYSTAL EXTENDING 
BELOW COIL 

HEATER 

CARBON RESISTANCE 
THERMOMETER 

Figure I The apparatus for applying uniaxial 
stresses  showing friction-free nature of 
the  determination of stress on the 
specimen. 

The  ends of the crystals are  gripped by short  copper 
cylinders, into which they are soldered in  the case of 
tin (using nonsuperconducting solder). They are 
gripped by spot welding to molybdenum rings in  the 
case of tantalum. These grips are  hooked onto  the 
apparatus.  This  method of mounting  the specimen 
leaves it  partly  free to twist or bend with tension, but 
it is probably restricted by the  copper grips in  shearing 
motion. For tantalum  crystals of any  orientation  and 
for  tin crystals with cylinder axis (loo), (OlO), or 
(001) this  constraint is of no significance. For other 
orientations of tetragonal crystals, there will  be an 
appropriate  correction to allow for  the  additional 
constraint. 

The diameters of the crystals were chosen so that 
the stress at  the yield point of the metal  may be 
measured with an accuracy on the  order of 0.5 %. This is 
also  the accuracy with which the average diameter of 
the specimens is determined. 

A bell jar resting on  the  top plate encloses the 
apparatus.  The micrometer head is rotated  through  a 
gear and flexible shaft  coupled to a solid shaft  entering 
the top plate through  an O-ring seal. 

4.3 Pressure and temperature  control 
Rough  control of the pressure  above  the helium 

bath is achieved with a Wallace and  Tiernan  manostat. 101 
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A Sommers  type bridge circuit" and amplifier, 
working off a  carbon resistor, feeds back  current to a 
wire heater (noninductively wound) on  the  copper 
can enclosing the specimens. The  temperature  can be 
held constant to better than 4 x lO-'"K throughout 
two consecutive sets of measurements  making up 
susceptibility curves for  the stressed and unstressed 
crystals. The time required for two sets may  be only 
10 minutes if the susceptibility curve is sharp. 

4.4 Measurement of magnetic moment 
A null technique is used for measuring the magnetic 

moment of the specimen. Two coils of nearly  equal 
inductance  are  connected  in  opposition  through  the 
high-sensitivity galvanometer.  One coil encloses the 
center  portion of a  crystal  (the demagnetizing factor 
for  the  long,  thin cylindrical crystals is essentially 
eliminated by this  technique), while the  other coil 
stands close to  the first and  parallel to it.  The deflection 
of the  galvanometer is measured  as  a  function of the 
current switched off in  a  Garret" coil. The  Garret 
coil (calibrated by proton resonance)  is  a  large  one 
which surrounds  the  outer  nitrogen  dewar.  The 
horizontal  component of the  earth's field is com- 
pensated  for by a Helmholtz  pair. 
5. Observed  data and calculated results 

5.1 Uniaxial stress  data for  Ta 
A typical set of magnetic moment  measurements  as 

a function of applied field on  a  tantalum specimen are 
shown in Fig. 2. The effect  of the stress is essentially 
to translate  the  curve; AuHc was taken  from an average 
value of the  translation of the  central  portion of the 
curve. The reversibility of the  application of the stress 
is shown by close restoration of the  original  curve on 
release of  stress; reversibility was checked in this way 
for most values of stress. The critical field shifts 
AoHc obtained  in  measurements on two specimens 

Figure 2 Magnetic  moment vs applied  magnetic 
field for  tantalum crystal #2, axis orien- 
tation ( I  IO). Points before applying stress, m; 
points at uniaxial stress of 3.96 k .  arm, e; points 
after stress is released, 0. 
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with the  same  crystal  orientation, axis along (llO)", 
up  to uniaxial stresses c of nearly 6,000 atm  are shown 
in Fig. 3, which plots AuHc/a vs a. The  data closely 
fit an inclined straight line, indicating both a linear 
and a  quadratic stress effect, and  the line drawn is 
obtained by least squares fit to the  data, weighted by 
estimates of uncertainty  due to temperature  drift,  and 
precision of the  galvanometer readings. 

From (2.13) with c applied  along (1 IO), we have 

Hence the  least  squares line yields 

P1 = (2.89 f 0.13) x gauss/atm , (5.2a) 

t(P11 + P12 + P44/2) 

=(3.11 f 0.40) x lo-' gausslatm' , (5.2b) 

all values applying at T,. 
From (5.2a) and (2.12) we obtain  for  Ta 

M T C  
aHc = -(8.67  0.39) x gauss/atm , (5.3) 

which may be compared with the value -9.26 x 
gauss/atm of Hinrichs and Swenson,' and  the value 
-8.76 x gausslatm  obtained  from dTc/dp of 
Jennings  and Swenson4 and critical field data,  as 
described in  Section 5.2. Many of the  older measure- 
ments, using less pure  Ta, gave values of (dHc/8p)Tc 
several times these values,20  but  the  agreement 
established by Hinrichs  and Swenson,' and by the 
uniaxial stress  measurements  above,  all using specially 
purified Ta, seems fairly conclusive. 

5.2 Calculated results for  Ta using criticaljeld data 
The value of dTc/dp, or dTc/dcl, may be obtained 

Figure 3 Critical field  shift, A,H,, divided by 
uniaxial stress, Q, vs (I, for  two single- 
crystal specimens of tantalum,  both 
with (I IO) orientation. Crystal # I ,  0 ;  
crystal #2, 0; straight line is weighted least 
squares fit,  temperature about 4.27"K. 
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from (lJHc/8p)Tc or fll by using (3.37), and (A3.4a) for 
(dH,/aT),, to give 

- = - 3  - = -(2.57 & 0.13) x lop6 deg/atm. dTC dTC 
d p  da, 

(5.4) 

This  may  be  compared with the measured value of 
Jennings and Swenson4 of -(2.6 0.1) x 
deg/atm. 

The three  second-order coefficients Pll, P12, f144 

may now be  estimated at T, by combining  information 
from three sources. These are (1) the uniaxial stress 
result in (5.2b), (2) the  hydrostatic  pressure measure- 
ment, and (3) the elastic constant  discontinuity at  the 
transition  curve.2'  Source (2) gives no significant 
second-order pressure effect on T, out  to 10,000 atm, 
or, more precisely, leads to d2T,/dp2 < lo-" deg/ 
atm2, on allowing for  a possible second-order effect 
buried  in  the  scatter.  Then relating (82H,/8p2)Tc to 
d2T,/dp2 by (3.38), we have, using (2.11), 

P11 + 2P12 = 3(a2Hc/aP2) 

< gauss/atm2  (Footnote 22) (5.5) 

which is negligible compared to the  magnitude of the 
p i j  of given by (5.2b). Source (3) (of data  on  the 
second order coefficients p i j )  makes use of  (3.16), in 
particular (3.16a), applied to measured values of the 
jump in  the  modulus C = C,, along  the  transition 
curve." To obtain a value at T, requires extrapolation, 
since AC vanishes at T,; hence, using values of H ,  
from (A3.3), measured values of AC/C ranging  from 
7.8 x 10"j  at 1.5"K to 1.1 x at 4.0°K, with 
T, = 4.25"K, we estimate tentatively by extrapolation 
that  at T, 

p4, E 1.6 x gausslatrn' , (5.6) 

while at lower temperatures  it rises to a  maximum of 
about 2.0 x at t = 0.65, then falls to 1.6 x lo-' 
at t = 0.2. Combining (5.2b), (5.5) and (5.6) yields at 
T C  

Pl l  = 0.8 x gausslatm' , (5.7a) 

/Il2 = -0.4 x gausslatrn' , (5.7b) 

/344 = 1.7 x gauss/atm2 . (5.7c) 

5.3 Calculated  results f o r   T a  using critical  field  data 

We now show that  it is possible to deduce  the 
temperature  dependence of p1 up to T, from H,(T) 
using similarity, and  fitting  one  additional  parameter. 
The general equation is (3.23), which we rewrite for 
the  one  linear coefficient of the  cubic case, 

and  similarity 

0.4 I 0 0 

x 

6 0.1 I I I I 
0 0 . 2  0.4 0 6  0.8 1 .o 

t *  - 
Figure 4 Predicted  curve  of p&) for T a  (solid 

curve) vs t Z  using simple  similarity, 
critical field data, p,(T,) and choosing 
the value of dHo/dcrl for best fit, Eq. p1 = 
3.7 x 10-4 (f - 0.43f't) gauss/atm. Points 
are measured values of Hinrichs and S ~ e n s o n . ~  
Dashed curve shows prediction of double simila- 
rity, Eq. 81 = 1.58 X (f - f ' t )  gausslatm. 

In general (5.8a) may be fitted at two values of P,(T) 
to fix dHo/do,  and  6,"one of these, however, may be 
the value at T,, which we already know. We have 
from (3.37) and (3.22) at T,, 

hence putting (5.9) in (5.8b) 

6, = -B l (Tc>/ (dHo/d~ l>f ' (1 )  . (5.10) 
For  Ta, then, using (5.2a) for pl(Tc), (A3.4aj  for 
f '(1), (5.10)  gives 

6, = 1.58 x 10-4/(dH0/do,)  . (5.11) 

Now  choosing dHo/da, = 3.7 x lo-, gauss/atm  to 
fit the experimental  points at small t, we obtain 
6, = 0.43 and 

P,(T) = 3.7 x lO-" ( f -  0.43f't) gauss/atm . (5.12) 

This value of 6, is comparable  to  the value of 
the  same  quantity  found for  Pb by Garfinkel 
and M a p ~ t h e r , ~ ,  their  quantity B (d  In T,/dp)/ 
(d  In Ho/dp) = 0.563, rather  than  the value 1.0 pre- 
dicted by double similarity, Eq. (3.30). The solid 
curve in  Fig.  4 is  (5.12), the  points  are measured 
 value^,^ and  the  dashed curve is the  one  predicted by 
double similarity (and  the value of P1 at t = l), given 
by (3.31), where dHo/do,  is evaluated  from (5.11) with 
6, = 1, hence its  equation is 

P,(T) = 1.58 x lO-"(f-f't) gauss/atm . (5.13) 

Thus (5.12) based on simple similarity satisfactorily 
reproduces  the observed values, whereas (5.13) based 103 
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Figure 5 Calculated values of relative jump at 

the transition of the elastic moduli 
associated with particular elastic wave 
velocities, determined from critical 
field data, simple similarity, and pll, 
p12, p~ at T, according to procedure 
in  the  text. Dashed  curve  is experimental 
values of Alers and Waldotf for ACIC. 

on double similarity is in marked disagreement and 
shows the wrong trend with T. The calculated curve 
could be made to go through  the cluster of points 
around t2  = 0.9, but has been  fixed  by the value 
found above for p1 at t2 = 1.0, (5.2a). This value 
agrees, in  fact, with the plotted measured point at 
tZ = 1 .O, which comes from  the dT,/dp of Jennings and 
Swenson, and is 2.7% lower than  the value obtained 
from Hinrichs and Swenson, as noted just after (5.3). 
Thus simple similarity appears to hold for Ta very 
much the way it does for  Pb. 

Note  that &(T) and H,(T) fix the  jump in strain  at 
the  transition,  as given by (3.10).  Since there are  no 
data  on  Ta, we shall not give a curve. It is perhaps 
worth noting that  the  jump is negative, and the 
maximum magnitude, at O’K, is 

Atr&l = -2.4 X lo-’ , (0°K) . (5.14) 

This may be compared with the magnetostrictive 
change given by  (3.1 l), which  is also negative and is 
proportional to  the field squared;  its maximum value 
at O’K, is, using (A3.5b), 

A H , E ~  = -0.45 X lo-’ , (0°K) . (5.15) 

Thus  the magnetostrictive change is at most 20% of 
the jump. 

Finally, we make  a more tentative calculation based 
on similarity in predicting the  temperature dependence 
of Bll,  Pl2, 844 or, equivalently of A,,C/C, A,,C’/C‘, 
AtrC,/CL, from  the values of Pl1,  Pl2, 844 at T,. This 
calculation will illustrate  a type of analysis that should 
be very useful in fixing the second-order constants  and 
checking the accuracy of the independent techniques 
used to obtain them, by relating critical field shift 
measurements to sound velocity jump measurements; 

104 also it will indicate the general trends with T-but  we 

do not have adequate data  for reliable quantitative 
statements at this time. 

The procedure followed, which involves a number 
of plausible assumptions of uncertain accuracy, will 
be sketched, but  not given in detail. It is based on the 
equations (3.28) for pij(T) from similarity, and (3.16) 
for  the  jumps  in elastic moduli at the  transition. From 
(3.28)  we have 

811 = H0,d.f- S l l f ’O 

812 = Ho,12(f- 812f‘ t )  

+ (H ”Ol /H0)(2tf’ 1(61 - 1) + f ” t 2 )  , (5.164 

+ (H ’0.1 /Ho)(2tf’61(81 - 1) +f”t’) , (5.16b) 

844 = H0,44(-f- 644f’t) * (5.16~) 
We first  use (5.16~)  to fit the values of 844 found  from 
measured A,,C/C values by (3.16a), and previously 
used to extrapolate  the value of j?44(Tc) in (5.6). A 
close fit is not possible since the peak in p44 is not 
reproduced when the ends of the curves are  fitted; 
we therefore arbitrarily choose to fit at the ends 
(1.5’K and T,), giving 

H0.44 = 1.58 x 10” gausslatm’ , 6,, = 0.55 . (5.17) 

The AC/C thereby fixed is shown in Fig. 5,  with some 
of the experimental values of Alers and Waldorf. 
We then determine H,,,, and HO,,, to satisfy (5.16a) 
and (5.16b) at T,, using the values in (5.7), assuming, 
in the absence of more data,  that 

a l l  = dl,  = 844 = 0.55, (5.18) 

and using the values  of Ho,l and 6, determined in the 
application of similarity to &(T) (Footnote 25). This 
gives 

Ho,ll = 9.0 x lo-’ gausslatm’ , 
H,,,, = -5.0 x 10”’ gausslatm’ , (5.19) 

and fixes Pll(T),   Pl2(T) through (5.14a,  b), hence 
determines ACr/C and AC,/C, as functions of T 
through (3.16b, c) (Footnote 26). These curves are 
also plotted in Fig. 5.  

Reliable data  are  not available, but  the preliminary 
results do show AC,/C, small (in fact going negative 
at low t )  compared  to AC/C, and A C / C  larger than 
AC/C, but  apparently an order of magnitude larger 
and negative. Further  study is needed; annealing 
treatment  and impurity content may have drastic 
effects on the behaviors. Note that the relative 
longitudinal wave elastic modulus jump, ACJCL, is 
finite at t = 1.0, whereas the shear wave moduli 
jumps vanish. This corresponds to the  term 9B2P12/ 
4nC, in (3.16~) whose magnitude is 0.084 x 
The relative jump in Ta  at T, is small;  for  comparison, 
the same quantity in Pb is  2.5 x corresponding 
to elastic moduli four times smaller, but to a p1 ten 
times larger, hence a  factor overall of  25 larger. 
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5.4 Uniaxial  stress  data  for  tin 
Due to the much lower strength of Sn compared to 

Ta, the uniaxial stress measurements are restricted to 
much lower  levels. Thus the typical transition curves 
shown in Fig. 6 under 179 atm of uniaxial tension, 
correspond to a displacement of only hundredths of 
a gauss.27 The A,Hc curve derived from these transi- 
tion curves is shown in Fig. 7 up  to 200 atm. In fact, 
measurements of the strain show that plastic flow sets 
in at about 170 atm, in contrast to Ta, where the linear 
stress-strain region  extends to more than 6000 atm of 
tension (provided the maximum load has  been intro- 
duced and removed at least once). Another complica- 
tion is the occurrence of hysteresis, indicated in Fig. 6 ,  
but the shift under stress can be extracted by compar- 
ing  curves  in  increasing  fields. 

Successful measurements of shift  were made only 
with  specimens oriented along (100) (the diad or 
a-axis). Attempts to measure  specimens  with orienta- 
tion close to (001) (the tetrad or c-axis)  gave distorted 
transition curves under stress with no well-defined 
shift. This may  be due to the generation of bending 
stresses,  which  will occur when the orientation is not 
exactly  (001) and if the end of the specimen  is 
clamped. This possibility  is  being studied further. 

The data in Fig. 7 were  fitted to a straight line 
through the origin by least squares.”  Since the crystal 
axis was determined by X-rays to make an angle 8 with 
the (001)  axis of  87.5 k OS”, this gave,  using  (2.18b), 

0.9988, + 0.0028, = (1.07 & 0.29) x gauss/atm . 
(5.19) 

Figure 6 Magnetic moment vs applied magnetic 
field for tin crystal, axis orientation 
(loo). Points under uniaxial stress of 179 
arm, 8; points  after release of stress, 0 ;  
arrows indicate measurement with increasing 
and decreasing ,field, and show hysteresis.  Tem- 
perature about 3.71“K. 

a 
0 

Crystal < 100> 
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Figure 7 Critical field shift vs uniaxial stress for 
tin single crystal, axis orientation 2.5” 
+om (100) (diad axis). The dashed line 
shows the calculated effect along  the (001) 
(tetrad)  axis, the full line is  a least-squares 
straight-line fit to measured points going through 
the origin, slope (1.07 f 0.29) X IO-* gausslatm. 

To evaluate Dl and p3 individually, we  use the hydro- 
static pressure  coefficients  which, by (2.17),  give 
(28, + p3). The most  recent careful measurement by 
Jennings and Swenson4 gives (dT,/dp),, = -(4.95 f 
0.1) deg/atm, which  combined  with (aH,/aT),, = 
- 148.8 ga~ss/deg,~’ leads to 

- ( a H C I a P ) T E  = 281 + 8 3  

= (7.37 & 0.15) x lop3 gauss/atm . (5.20) 

However, the careful measurement of Fiske3 on the 
shift of H, under p gives 

-(i3H,/ap),c = (6.56 k 0.15) x lo-, gauss/atm . 
(5.21) 

The reason for this discrepancy,  which  lies well out- 
side the random error, has not been established, al- 
though Jennings and Swenson4  suggest that possibly 
polycrystalline and single crystal samples  show  differ- 
ent behavior. If this is the case, we shall be more 
interested in Fiske’s  value. Combining (5.19) first  with 
(5.20), then with  (5.21),  gives 

P1 = (0.09 k 0.03) x lo-, gauss/atm , 
(both cases),  (5.22a) 

8, = (7.18 k 0.15) x gauss/atm, 

(polycrystalline result), (5.22b) 

8, = (6.37 & 0.15) x gauss/atm , 
(single crystal result). (5.22~) 
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1 MAGNETIC FIELD IN GAUSS 

These results may  be compared with those of 
Grenier,2 who made measurements on single-crystal 



tin  like  the  present ones, and obtained  uniaxial stress 
coefficients for several values of 8. By extrapolating 
his measurements at each  angle  as a function  of T to 
T,, we obtain  the values (8H,/8a)T, x lo3 gauss/atm = 
6.32, 4.47,  2.44,  0.57 at 8 = 13",  33",  53",  87", re- 
spectively. These are  not  quite linear in cos2&  as 
(2.18b) would  require, hence we choose only the  two 
extreme values as  the most reliable, (since the  perturb- 
ing effects  of bending stresses would be smallest) to 
define a  straight  line which extrapolates to  

PI = 0.57 x lo-, gauss/atm, (5.23a) 

a, = 6.61 x lo-, gauss/atm . (5.23b) 

Thus P3 comes out much closer to the single-crystal 
value, (5.22c), and  almost within the  quoted  error, 
which is consistent with the suggestion above that 
polycrystalline and single-crystal behavior differ. The 
P1 value, however, comes out considerably  larger than 
(5.22a). We  note  in  support of our value that some of 
Grenier's  other samples do show a  good  bit of scatter 
in PI values,30 and also that a second sample of ours, 
which was not measured  quantitatively,  also showed 
considerably smaller P1 than (5.23a). A further  argu- 
ment  against (5.23a) is that (5.23a) and (5.23b) com- 
bined give - ( ~ ? H , / a p ) ~ ~  = (2& + p,) = 7.75 x IO-, 
gauss/atm, which is not in  agreement  with  Fiske, 
(5.21), and even exceeds (5.20). 

The settling of these differences awaits  further  data, 
which we hope  may be partly  provided by analysis of 
our  tin measurements at intermediate values of 8, and 
by torsional  measurements on single-crystal wires. 

In  any case, it is  well established that  tin shows a 
strong  critical field-stress anisotropy, and  from  our 
values, stress along  the c axis  has over 70 times the 
effect of stress along  the a axis. The very small a axis 
effect may in fact be regarded  as an accidental cancella- 
tion of a  hydrostatic effect and a  shear effect  of 
opposite sign, both produced by the  uniaxial stress, 
as we see explicitly from (2.18b) with I ,  = 0. However, 
this  great  anisotropy  is not present  in the critical 
field-strain coefficients, which are  more direct  measures 
of the physical effect of deformation on supercon- 
ductivity. Thus  from  the inverse of (A2.9a, b), with 
elastic  constants at 4.2"K (Ref. 31), Cll = 0.8166 x 
lo6, Clz = 0.570 X lo6, C, ,  = 0.3376 X lo6, C33 = 
1.0175 x lo6, c44 0.2660 x lo6, c66 = 0.2781 x 
lo6, all in atm; using (5.22a, c), we have 

a, = 2.28 x lo3 gauss, a, = 6.54 x lo3 gauss, 

a3/al = 2.87 . (Footnote 32). (5.24) 

5.5 Remarks on similarity in tin 
Grenier  studied  the T dependence of the coefficients 

P1 and P3 for  tin, and Fiske,  Muench and others 
studied the hydrostatic coefficient, P,(T). The results 
have been compared with the prediction of double 
similarity, which fixes the curve  from  the value at T,, 

I06 and most  measured values come close to this  predicted 
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curve. However, in view of the discussion  in  Section 
3.5, this  correspondence  is  probably  accidental, and 
we wish to point  out  that Fiske's extensive careful 
measurements,  although  they  show  considerable 
scatter, seem to lie significantly above  the  double 
similarity curve.  This is the direction of deviation from 
double similarity shown by a  number of other  super- 
conductors, e.g., Ta,  In, Pb. In view  of the  fact  that 
these results were on single crystals, and  in view of the 
verification of the value at T, suggested in Section 5.4 
on using our value of PI and Grenier's value of p 3 ,  

we have compared Fiske's data in  Fig. 8 with a curve 
based on simple similarity as well as  the  one  from 
double similarity. The  two  parameters a,,, and H0,,, 
(Footnote 33) in (5.25) are chosen to fit at t = 1, and  to 
follow the  other  points near T,, which are believed 
more  accurate  than  points  at still lower T (giving more 
weight to the lower T points would raise the value of 

The  equation, whose form is obtained  from (3.23) 
6,). 

on combining  the  equations  for Hc,3 and Hc,l ,  is 

P, = ( a H , / a P ) T  = H0,J . f  - 6,f'O Y 

H0,, = -(2H0,, + H 0 , 3 )  = - 5.28 x lo-, gauss/atm , 

6 ,  = HoT,,,/TcHo,, = 0.69 , 

TC,, = - W c , ,  + K . 3 )  * (5.25) 
Because of the  great  anisotropy in  tin 6, z 6,. This 
value of 6, may be compared with 0.43 for  Ta  in 
Eq. (5.12), 0.562 for  Pb2'  and 0.69 for In from 
Muench's data.34 However, the situation  is  confused 
by the  fact that Muench finds double similarity obeyed 
well for Sn. An  additional puzzle is created by the 

Figure 8 Critical field-pressure coefficient, ( W , /  
ap)T, vs t2, for tin, measurements of 
Fiske, 0; measurements of Grenier, 0. 

Lower curve calculated from double similarity 
and fitted to -6.56 X gausslatm, at 
t = I ,  Hc,p = -3.65 x 10V (f - f 't); upper 
curve calculated from simple similarity fitted  at 
t = 1 and at lower t ,  = -5.28 X 
(f - 0.69 f ' t )  gausslatm. 

I I I I 
I 0.2 0.4 0.6 0.8 1.0 



single crystal In  data of R ~ h r e r , ~ ~  in which H,,, and 
are  obtained  from  measured jumps  in length at 

H, (Eq. 3.10). Rohrer finds 

p3 = (3.4 + 2.8t2) x gauss/atm , 
p1 = (0.20 + 0.10t2) x gauss/atm . (5.26) 

Now  from (3.23), on assuming the  parabolic law, 
f = 1 - t2 ,  we obtain  equations of the observed form, 
namely 

pi E H o , i [ l  + (261 - l)t2] , 
(parabolic  approximation). (5.27) 

Then (5.26) and (5.25) give36 

6 ,  = 0.91 , 6 ,  = 0.75 , 

(5.28) 

and this value of 6 ,  disagrees with the value deduced 
from Muench’s data.  More single-crystal work on  In 
should resolve these questions. 

5.6 Discussion 
These  two  applications of the  uniaxial  stress tech- 

nique, to  Ta and Sn, illustrate  two useful features of 
this  technique  in  probing  the  behavior of supercon- 
ductors  under stress-the study of the second-order 
coefficients and of the anisotropy of the coefficients; 
also  the  first-order  hydrostatic coefficients may  be 
obtained fairly easily. Of course,  more of the  labor of 
carrying out  the experiment is shifted to  the  preparation 
of suitable single-crystal specimens. 

Confidence in  the  accuracy of the measurements is 
established by the  satisfactory  agreement on  the value 
of ( a H , / ~ ? p ) ~ ~  obtained here, with the value from  other 
recent  work on specially purified Ta.  The second-order 
contribution seems clearly established, and  its general 
magnitude is confirmed by the recent measurements 
of sound velocity jumps at the  transition. The  actual 
values of the  second-order coefficients are still tenta- 
tive owing to  the uncertainty in  the  sound velocity 
measurements, which are  not  on  good specimens, and 
to  the fact that  no specimens of Ta for  uniaxial  stress 
have been successfully prepared with different orienta- 
tion  than (1 10). It is  worth  noting  that  the second- 
order coefficients are  nonlinear effects in  the super- 
conducting  properties,  and not  in  the elastic  properties, 
since all  measurements  are well within the Hooke’s 
law region. The second-order  contribution to AoHc is 
already 10% at 1000 atm (along ( 1  lo)), and  is 40% 
at 6000 atm. Since no second-order effects are detected 
out  to 10,000 atm of hydrostatic  pressure,  it follows 
that  the second-order effects are  much  more sensitive 
in Ta to shear stresses, although by virtue of the  cubic 
symmetry the first-order  shear effects vanish. 

Similarity is a  valuable  tool in predicting and testing 
the observed temperature dependences, although  it  has 
not been derived from first principles; however it is 
necessary to work with the less restrictive form, called 
simple similarity, which allows Ho and T, to vary 
independently with stress, hence has two parameters 
to fix. Then Ta appears  to obey simple similarity, as 
shown  from  the  behavior of (dHC/ap), with T, but with 
a  rather small value of the dimensionless parameter 
6, = (a In T,/dp)/(a In Ho/ap). The value 6, = 0.43 is 
the smallest of those for the  four  superconductors Ta, 
Pb,  In,  Sn,  and gives (dH,/ap), for  Ta a  trend with T 
opposite to  that of the  other three. 

Furthermore,  tentative  application of similarity 
makes possible prediction of the  behavior of the 
sound velocity elastic-modulus  jumps  as a function of 
T, so that detailed cross-checks between these two 
completely independent  experiments on  the second- 
order  constants  should  be possible, and very useful in 
spotting systematic error  in either. 

The remarkable  anisotropy of the  first-order  co- 
efficients of tin  to uniaxial stress found by Grenier is 
confirmed,  and our new value for  the smaller co- 
efficient, p,, which is a  factor six smaller than Grenier’s, 
makes  this  anisotropy still greater.  Combining  this 
value of p1 with Fiske’s single-crystal hydrostatic 
measurement gives a value of p3 that checks well with 
Grenier’s, whereas using the polycrystalline hydro- 
static  measurement of Jennings and Swenson leads to 
a substantially  greater value than Grenier’s. This 
seems a further  indication of a difference between 
single-crystal and polycrystalline measurements, 
suggested by Jennings and Swenson in  consequence 
of the discrepancy between the  two  hydrostatic 
coefficients. 

If new weight is put  on Fiske’s single-crystal measure- 
ments,  then his values of (dHC/ap), at various T 
indicate  some  deviation  from the behavior  predicted 
from  the  more restrictive form of similarity (double 
similarity) which previously seemed confirmed by 
polycrystalline measurements on tin. A tentative 
value of the  constant 6, is suggested from these data. 
In  addition the value of 6, for  In is still uncertain, 
since new single-crystal data, which are derived, how- 
ever, from  the difficult technique of measuring  length 
jumps  at  the  transition, disagree with older data  on 
polycrystalline In. 

A general conclusion is that  more single-crystal data 
are  both desirable and necessary to settle some of these 
problems  in  Ta, Sn, and  In.  In  addition  much remains 
to be explored about  the anisotropy of the  various 
 coefficient^.^' Higher precision data would be needed 
to test  the validity of simple similarity since, to present 
accuracy, it seems to hold  for all measurements. 
Appendix I :  Strain and  stress notation and 

The second-rank  stress  tensor with components 
ci j ,  i, j = 1,2, 3 denotes  the  force  per  unit area  in  the 

relations 
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j direction  on  the face perpendicular to  the i axis. 
Since it is a symmetrical tensor,  there are six inde- 
pendent  components. Thus  the tensor is commonly  and 
conveniently given in single index notation by 

a6 O11  O12 O13 11: 02 E I..; 6 2 2  a 2 3 1  * (A1.1) 

0 5  0 4  0 3  O13 a 2 3  

Similarly, the symmetrical second-rank infinitesimal 
strain  tensor with components c i j ,  i, j = 1,  2,  3, 
denotes  the  gradient in the i (or j )  direction of the 
symmetrized displacement in the j (or i )  direction.  In 
single index notation  it has the  form 

E612  E5/2 81 2 

Ep E,$] [Ill E22 :::] 
E512  E412 83 &13 E33 

&. = W.8. . 
I I I l l 2  2 

m i = l ,   i = l , 2 , 3 ,  

m i = 2 ,   i = 4 , 5 , 6 ,  

(A1.2) 

where i l iz is the two-index form  corresponding to i. 
For small strains we assume linear  phenomeno- 

logical relations between stress and  strain  in  the  form 
3 2 

where the S i j k l  are  the elastic compliance coefficients, 
and  the Cijkl the elastic moduli.  These  are each fourth- 
rank symmetrical tensors,  and  are usually written in 
a reduced two-index form defined by 

6 

Ei = S..fS. 
j =  1 

6 

I J  J 9 (A1.4a) 

b j  = 2 CjiEi , (Al.4b) 
i =  1 

where 

S i j  = mimjSilizjlj2 , (A1.5a) 

cji = CjljZili2 . (A1.5b) 

Of interest  for  the  applications  in  this  work  are 
three special stresses : 
(1) hydrostatic stress of magnitude o, a  normal stress 
of equal  magnitude on all surfaces, whose components 
in single index form, written as  a row vector of  six 
components,  are 

Ohyd E (‘? a? a, O7 0, 0,) . (A1.6) 

(2) uniaxial stress of magnitude o, in  the  direction 
with direction cosines 11, I,, I,, given by 

1 08 auniax E (l12a, lZ2o, 13’0, 12130, Z311a, lllza) . (A1.7) 
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(3) shear stress of magnitude o, either  in  the  direction 
I , ,  I,, I, on a surface tangential to I,, I,, l ,  and  normal 
to ml, m.,, m,, or with I,, I,, 1, and m,, m,, m, inter- 
changed;  the  components  are given by 

ashear = (2llm1a, 21,m2a, 2Z3m,a, (12m3 + 13m2)a, 

(lsm1 + 11m3)a, (llm2 + 12ml)a) 2 (A1’8) 

where l lml + Z,m2 + l,m, = 0 .  (A1.9) 

For cubic symmetry, there  are  three  independent 
elastic constants,  the  tensors having the  form given 
in (2.9). The Cij and S i j  tensors  are reciprocals, from 
which follows easily 

(C11 - C12)(S11 - S12) = 1 9 (Al.lOa) 

C4,S4, = 1 . (Al.lOc) 

Three elastic moduli defined by elastic wave 
velocities, u, are  also of interest here, namely 

c, = PC,’ = (C11 i- c1, + 2c44)/2 (Al.l la) 

for a longitudinal wave in (1 10) direction, 

c = pvt,2 = c44 (Al. l lb)  

for  a  transverse wave in ( I  10) direction, polarized 
parallel to the (001) axis, 

C‘ = put22 = (Cl1 - C1,)/2 (Al . l lc)  

for  a  transverse wave in the (1 IO) direction, polarized 
parallel to  ( i io).  
The bulk modulus of a  cubic  crystal is 

The Young’s modulus Y in  the  direction I,,  I,, I,, 
defined as  the  ratio of a uniaxial stress in the I , ,  I,,  I, 
direction to  the corresponding  longitudinal  strain is 
given by 

1 
Y - = Sll + 2[S44/2 - (SI1 - SlJI 

X (ZZ2/3’ + Z3’ZI2 + Z l 2 Z Z 2 ) .  (A1.13) 

Appendix 2: Relations between  critical field- 
stress and critical  field-strain coefficients 

From (2.2), (2.5) and  (A1.4a) we have 

Similarly, from (2.3), (2.6) and (A1.4a) we have 
6 

Pij = 1 S k i S l j U k l  5 (A2.2) 
k , l =  1 



and inversely,  using (A1.4b), we have 
6 

ai = 1p.c.. J J I  (A2.3) 

gij = 1 CkiCljPkl . (A2.4) 

j =  1 

6 

h , l =  1 

For  cubic  symmetry,  using  the simplified forms  of 
the  tensors  in (2.9), we obtain 

P1 = is11 + 2S12)% 2 (A2.5) 

P11 = (Si1 + 2S:,)all + 2Sl2(2Sll + S 1 2 ) ~ l Z ~  

P 1 2  = SlZ(2Sll + S12)@11 + 
+ (SI1 + 2S11S12 + 3S:2b12 (A2.6b) 

P44 = s:4u44 2 (A2.6~)  

a1 = (Cll  + 2C,2)81 Y (A2.7) 

a l l  = cc:, + 2CIZ)Pll + 2C12(2Cll + C12)PlZ 9 

a12 = C12(2Cll + C12)Pll 

(A2.6a) 

and inversely 

(A2.8a) 

+ + 2C11C12 + 3c:z)Plz (A2.8b) 

a44 = C24P44 . (A2.8~) 
For  tetragonal  symmetry,  using  the  appropriate 

tensors given  in (2.15), 

P1 = ('11 + S12)Kl + S13K3 > (A2.9a) 

P3 = 2S13a1 f S33a3 1 (A2.9b) 

P11 = cs:, + S:,)~,, + 2Sl lS l ,~ l2  

P 1 2  = 2SllSlZ"ll + (SI1 + S:2)% 

+ 2s13(Sll + S12)K13 + (A2.10a) 

+ 2S13(S11 + S12)~13 + $3~33 ,  (A2.10b) 

P13 = S13(S11 + S12)(Kll + a12> 

+ (S11S33 + 'lZS33 + 2S:3)a13 + S13S33a33 7 

(A2.10~) 

P 3 3  = 2S:3(ctll f @12)  + 4S13S33@13 + S:3a33 > 

(A2.10d) 

844 = s:4x44 9 (A2.10e) 

P 6 6  = S26a66 ' (A2.10f) 

The  corresponding  formulas  for a in  terms of /I are 
obtained  from (A2.9) and (A2.10) by interchange of 
ct and P and  replacement of Sij's by Cij's. 

Appendix 3: Summary of critical field and other 

It is convenient  to  work  with  the  values  of  the 
deviation f ~ n c t i o n , ~ '  ah, against t 2 ,  where 

data  for  tantalum 

S h  ~ f -  (1 - t 2 ) ,  f ( t )  E H J H , ,  t = T/Tc . (A3.1) 

Then we have 

f = 1 - t 2 + S h ,  (A3.2a) 

f' = -2t(l - dSh/d(t2)), (A3.2b) 

f "  = 2dSh/d(t2) + 4t2d26h/d(t2)2 - 2 . (A3.2~)  

The  data  of  Hinrichs  and  Swenson5  may be com- 
pactly  summarized by the  tabulation  (from  the 
smoothed  curve  in  their  Fig. 4). 

t 2  - Sh H ,  = 824 gauss (A3.3) 
0.1 0.0083 Tc = 4.479"K 
0.2 0.0167 
0.3 0.0245 
0.4 0.0281 
0.5 0.0286 
0.6 0.0270 
0.7 0.0230 
0.8 0.0168 
0.9 0.0083 
1.0 0.0000 

Quadratic  interpolations in this  table will reproduce 
their  curve  to  within a unit in the  last significant 
figure and  reproduce  the  experimental  points  to 
f 0.5 gauss.  (The  values of - 6h from  Shaw,  Mapother 
and hop kin^,^' are  quite  close  for t 2  > 0.5 but  appear 
to be a few units  larger in the  last figure for t2  < 0.5). 

Applying (A3.2b), and  second difference formulas, 
to (A3.3), we estimate 

(SITc = -337 gauss/deg ,39 f'(1) = - 1.83, , 

(A3.4a) 

($1 = -72 gauss/deg2 , f"(1) = - 1.756 . 
TC 

(A3.4b) 

Elastic  constants for Ta   a t  4.2°K,40 

Elastic moduli (atm) 

Cl l  = 2.681 X lo6 

C,, = 1.600 X lo6 

C4, = 0.865 X lo6 

C = 0.541 X lo6 

C, = 3.005 X lo6 

B = 1.960 X lo6 . 

(A3.5a) 
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Compliance coeficients (atm“) 

St, = 0.674 X 

SI ,  = -0.252 X (A3.5b) 

S44 = 1.156 X 

K = 0.510 X 

Acknowledgments 

We should like to  thank A. Burgess and P. Roland  for 
assistance with the  measurements,  and D. J. Quinn  and 
Y. Budo for assistance in  the design and  construction 
of the  apparatus, all of the  Thomas J. Watson Re- 
search Laboratory. We are  indebted to  G. Alers, 
Ford Scientific Laboratory,  C. Swenson, Iowa  State 
University, C. Grenier,  Louisiana  State University, 
and G. Cody of RCA  Laboratories,  for  communica- 
tion of various results, and to J. Swihart, ofthe  Thomas 
J. Watson Research Laboratory,  for discussion, 
particularly of the  relation of  BCS theory to similarity. 

References  and footnotes 

1 .  A preliminary account has been published; D. P. Seraphim 
and Paul M. Marcus, Phys. Rev.  Letters 6,  680 (1961). 

2. C. Grenier, Compt.  Rend. 238,2300 (1954); 240,2302 (1955); 
241, 1275 (1955); Thesis, University of Paris, 1956 (un- 
published). 

3. M. D. Fiske, J .  Phys.  Chem.  Solids 2, 191 (1957). 
4. L. D. Jennings and C. A. Swenson, Phys.  Rev. 112, 31 

(1958). 
5. C. H. Hinrichs and C. A. Swenson, Phys.  Rev. 123, 1106 

(1961). 
6. Some basic definitions and formulas of crystal elasticity 

theory used here are given  in Appendix I. 
7. See, for example, C. S. Smith, “Symmetry and Properties 

of Crystals”, in Solid  State  Physics 6 ,  215 and 237 (1958). 
(Edited by Seitz and Turnbull, Academic  Press). 

8. See C. S. Smith, loc. cit., p. 237, four of the seven tetragonal 
point groups have the form in (2.15) for &. 

9. See, for example, D. Shoenberg, Superconductivity, Cam- 
bridge University Press, 1957, p.73. 

10. An entirely analogous and complementary thermodynamic 
development to (3.2)-(3.12) may  be  based on a Helmholtz 
free energy (with respect to the mechanical variables), 
F = E - TS - H e M ,  and changes at constant strain. Then 
at the transition Fn(T, Q )  = F,(T, e ,  I f c ) ,  and there are 
magnetostrictive and transition changes in stress at constant 
strain. Thus the latter has the form Atrot = (HC/4?r)(aHc/aei) 
analogous to (3.10) and differentiation by ~j gives 

AtrCij = (t.l)[(aHc/a&i)(aH,/a&,) + Hc(a2Hc/a~ia~j ) ]  
= ( ~ t u j  + Heat,), 

analogous to (3.12) (given also by Grenierz in his thesis). 
Since the condition of constant strain is not easily  realized 
experimentally, the equation for At,oi is not very interest- 
ing. However, the equation between AtrCij and the a’s is a 
definite relation between constants of the two phases, 
independent of stress; it must in fact be an algebraic con- 
sequence of (3.12) and the equations relating the C’s and 
a’s with the S’s and p’s .  

11. J. Kok, Physica 1, 1103 (1934). The normal-state heat 
capacity is yT.  

12. Equation (3.23) is  given  by Garfinkel and Mapother24 in 
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Of course, the values  of aF/a(kTc/hw) near T/Tc = 0 or 1 
are smaller, and approach zero, since F is fixed at those 
points. The maximum value of aF/a(kTc/hw) approaches 
zero in  the weak-coupling limit, kTc/hw = 0, while the 
largest value that occurs is about 0.04 for Pb with kTc/hw 
= 0.075. Detailed calculations of HC(T)/Ho and other 
reduced quantities have been made for all values of coupling 
strength, and will  be reported separately. Included is the 
reduced energy gap, EO(T)/EO(O), which also may be given 
in the form F(T/Tc, a)  where a may  be any of the para- 
meters measuring the coupling; e.g., (kTc/Aw),  eo(0)/kTc, 
or ~ 0 ( 0 ) / h w .  
The values of aT,/ap are -0.26 x deg/atm at 
Tc = 4S”K for Ta, and - 5  x deg/atm at T,  = 3.7”K 
for Sn. The value of a In O/ap we deduce roughly from the 
Gruneisen constant Y G  = - a In @/a In V 2 for Ta and Sn. 
Since the compressibilities, K = -8 In V/ap g 0.5 x 1 0 - 6  
atm-l for both Ta and Sn, a In O/ap = YGK 10-6 atm-1 
for both. 
D. P. Seraphim, J.  I. Budnick, W. B. Ittner 111, AIME 
Trans. 218, 527 (1960). 
H. S. Sommers, Jr., Rev. Sci. Instr. 25, 793 (1954). 
M.  W. Garret, 1. Appl. Phys. 22, 1091 (1951). 
No success  was obtained in growing crystals of significantly 
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See, for example, the tabulation of values in J. L. Olsen 
and H. Rohrer, Helv.  Phys.  Acta 33, 872 (1960). 
G. A. Alers and D. L. Waldorf, Phys.  Rev.  Letters 6,  617 
(1961), and private communication on Ta. 
Specializing (3.38) to cubic symmetry, and solving for 811, 
gives 

Using (5.2a), (A3.4a), (A3.4b), and (dpl /dT)T,  = -0.22 x 
gauss/deg atm from measured values  (see Fig. 4), 

gives (5.5). 
Alers and Waldorf21 have measured the three velocity 
jumps yielding AC/C, AC‘jC‘, and ACLICL (defined in 
(A.ll)), as functions of T; however, only AC/C had a 
reasonable form and did not change substantially on 
annealing, hence we have  based a discussion on it alone. 
We are indebted to  Dr. Alers for communication of his 
preliminary results. 
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namely H O J  = 3.3 x gauss/atm, 61 = 0.50. This 
should not make any substantial difference in the curves 
of Fig. 5, which are, in any case, not of quantitative 
significance. 
Note  that (3.16a, b, c) are not consistent if C is in atm 
and Ho,ij in gauss/atm2,  and unit conversion factors are 
needed. 

, However, the shift shown in Fig. 6 is even smaller than 
implied by the factor 20 reduction in applied stress com- 
pared to the Ta transition curves in Fig. 4. At the orien- 
tation used, (loo), the uniaxial stress coefficient has its 
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whereas for the orientation (001 > the coefficient  is over 20 
times larger than  for Ta, and the shifts would then be 
comparable (compare (5.22) and (5.20)). 
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smooth curve of their  Fig. 3. Further  support  for the value 
above comes from  the critical field measurements of 
Seraphim,  Novick and Budnick, Acta. Met . ,  9, 446  (1961) 
very near T, on pure  Ta, which give -336 gauss/deg, and 
from  the calorimetric  measurements of Chou, White, and 
Johnston, (who obtain ( ~ H , / W ) T ,  from the jump in specific 
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