Mechanical Effects

K. Andres,* J. L. Olsen* and H. Rohrer*

at the Superconducting Transition

Abstract: Work in Ziirich on the difference in size and in expansion coefficient between the normal

and the superconducting states is summarized. The volume dependences of the critical temperature
and of the electronic density of states at the Fermi surface are discussed.

Introduction

The critical field of a superconductor depends upon
pressure. Simple thermodynamic considerations then
show that there must be differences between the
mechanical properties of the superconductor in the
normal and in the superconducting state. Such differ-
ences are to be expected in the volume, the elastic
constants, and the expansion coefficient. Calcula-
tion of these differences shows that they must be very
small, dand it is not surprising that early measurements
failed to detect any of these effects.’

Lasarew and Sudovstov? first observed the difference
in volume between the two states, and changes in
elastic constants were first observed by Landauer® and
by one of the present authors in tin.**> A difference in
the thermal expansion of normal and superconducting
lead has very recently been reported by Andres and
Rohrer.®

In the present paper we shall summarize the work
done in Ziirich on the volume difference and expansion
coefficient, and we shall discuss the information which
may be derived concerning the pressure dependence
of the critical field. We shall not attempt to discuss the
work on the change in elastic constants by Mason
and Bommel,” Gibbons and Renton,® and more
recently by Alers and Waldorf.®

The pressure dependence of the critical field may be
used to deduce the volume dependence of the density
of states at the Fermi surface and of the parameters
determining the superconducting energy gap.'°® The
first of these is of interest for comparison with band-
theoretical calculations. The change in the purely
superconductive properties appears to show some
difference between “phonon” and ‘‘electron” super-
conductors.

Thermodynamics
The thermodynamic relationship involving (6H,./0p)r,
the pressure derivative of the critical field H. of a
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superconductor, has been discussed by Shoenberg,!
who finds that

H,8H, HZoV,
(Vn_ V“): I/; < < (4 .s’
47 Op 8n Jdp
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where p is the hydrostatic pressure and V, and V, are
the volumes in the normaland superconductive states,
respectively. Differentiation with respect to pressure or
temperature yields the difference in compressibility x
or thermal expansion coefficient a.

Equation (1) has been written for the hydrostatic
case, but it is obvious that extensions may be made to
take care of more complicated stress systems. Thus
changes in length in a given direction are obtained by
considering the effect of uniaxial stresses.

Certain limitations are placed upon the temperature
dependence of 0H /dp if it is assumed that the function
f(») in the relation

H, = H,f(1) ©))

is independent of stress, i.e. (f(¢)/dp), = 0. H, is the
critical field at T = 0, and ¢ = T/T,, where T, is the
transition temperature.

We may use the relation

Amy* T2 = Ho [ f"(0];=0 , )

where y* is the electronic specific heat per unit volume,
and f(¢) is the second derivative of f(r) with respect
to ¢. It is then found that

0H, H, /dT.\_. , H, (dy*

- (o -re+ 2 (Lo, @
0H,[0p is then completely determined by the values of
Hy/T.-dT./dp and H,Jy*-dy*/dp. Conversely measure-
ment of 0H,/0p near T = 0 and near 7, allows a unique
determination of dT,/dp and dy*/dp if f'(¥),—, and
H,/T, are known.




It is instructive to write down the form which (4)
takes if it is assumed that the critical field curve is
parabolic so that

fO=1-14¢. ©)
We make use of the abbreviations
dlny dInT,
= = c, 6
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where y is the electronic specific heat per mole, and v
is the molar volume. (y* = y/v.) Then

dH,
dp

- —Hox[s(l 1)+ L;l(1 - tz)], 0

where x is the compressibility.
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Experimental results
® The volume difference

The change in length on destruction of super-
conductivity by a magnetic field has been measured
here using an optical method,!®''! and by Cody'?
using a capacitive method. A sensitivity allowing detec-
tion of length changes of only a few angstroms in
specimens about 10 cm long is required. The experi-
mental details have been described fairly fully
elsewhere.!

The results obtained on polycrystalline metals are
summarized in Fig. 1. The length changes in single
-crystals may be highly anisotropic. We have reported
previously on thallium!® where /; — I, is of different
sign along different axes. More recent work on
mercury and indium single crystals is shown in Figs. 2
and 3. Where reliable information on 0H_/0p is
available from other sources we usually find good
agreement between our measurements of v, — v, and
values calculated using Eq. (8). Onlyin the cases of lead
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Figure 1 The temperature dependence of (v.—
vn)/vs in polycrystalline materials. The
dashed portions of the curves are extrapolations

using (8). (After Rohrer.'1)

Figure 2 The temperature dependence of (I,—
In)/I; in indium single crystals. (Rohrer.!?)
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and tantalum does there appear to be a severe disagree-
ment between our work and other careful measure-
ments of 8H,/dp.131%

® The elastic constants

While 0H_/dp can be measured directly, 6*H_/dp? is
too small to be observed at the relatively small stresses
which can be applied without permanent deformation
of the material investigated. Some of the information
required in (10) for a calculation of the difference in
compressibility in the two states is therefore lacking. It
is fortunate therefore that recent work by Alers®
supplements the work by Landauer,® Mason and
Bommel,” and Gibbons and Renton® on the sound
velocity in the normal and superconducting states.

Previous work here*:* on the change in modulus of
rigidity of polycrystalline tin provided information on
the second derivative of H,. with respect to a shear
strain only.!?

® Expansion coefficients

Andres and Rohrer® have recently investigated the
difference in expansion coefficient between the normal
and superconducting states in lead. Their results, which
are shown in Fig. 4, are in agreement with our observa-
tions on v, — v,

Measurements of the expansion coefficient in the
normal state are further of interest since they provide

Figure 3 The temperature dependence of
(Is—I.)/l; in mercury single crystals.
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Figure 4 Preliminary results on the thermal ex-
pansion coefficients of normal and
superconducting lead. A normal o super-
conducting (Andres and Rohrer.%)

an estimate of dy*/dp which is independent of the value
obtained from measurements of dH,./dp. Such work
has recently been reported by White,®17 Andres and
Rohrer,® and Andres.?®

Discussion
® The pressure dependence of y

We have recently summarized existing measurements
and calculations of dH /dp, and have tabulated the
values of s = d In T,/d In v and g = d In y/dn 1n v,
which may be calculated from them.'®

Mapother!® has strongly criticized our estimates of
the probable errors in these two quantities. He points
out that the uncertainties in our present knowledge of
[F'(0),=, are so large as to make our estimates of the
error in g much too optimistic. In spite of their uncer-
tainty, however, the estimates of g are of interest because
they vary between —5 and + 10 while the value to be
expected for a free electron gasis g = dIny/dInv =
2/3. At present the information is too uncertain to
make attempts at a comparison of theory and experi-
ment very fruitful, and it is essential that further data
on the volume dependence of y be collected using an
alternative method.

The work by White'®17 in Australia* and by Andres
and Rohrer® in Ziirich should help fill this gap.

Preliminary work by both groups now indicates g =~
1.6 in aluminium while work on 8H,/dp?° had indicated
g = 1 % 5. In this metal a very large uncertainty is
introduced into calculations of g from ¢H_/dp by the
uncertainty in [f'(9)];=,. In lead two estimates of g

* Dr. G. K, White27 has recently obtained the following values of g from
expansion coefficient measurements:
Al Cr Cu PFe Pb Pd
g= 18 -9 07 2.1 1.8 2.1




existed; one'® based on v, — v, gave g = 1.8, and
another!® based on direct measurements of 0H,/dp
gave g = 6. Andres and Rohrer’s measurements of
the expansion coefficient now suggest g = 0.7.

® The pressure dependence of T,

Bardeen, Cooper and Schrieffer have expressed the
critical temperature of a superconductor in terms of the
Debye temperature, &, and the product N(0)A4 of the
density of states at the Fermi level, and a constant 4
determining the strength of the interaction causing
superconductivity. Rohrer!! has recently shown that
the relative change of [N(0)A] with volume v, which is
given by d In [N(0)A4]/d In v, is approximately the same
for all soft superconductors except thallium. This com-
bined with

dinT, dln6, _, 0850, dlnN(0)4
dlnv dhv =~ T, dlnv

suggests that a plot of (d In T,/d In v + y;) against
In (0.856,/T,) should be a straight line. (Note that
dIn 0p/dIn v = —yg, the Griineisen constant.)

Such a plot is shown in Fig. 5. It will be seen that the
soft superconductors lie remarkably close to a straight
line. The only exception is thallium, which must be
regarded as very doubtful because of lack of knowledge
about the very strong anisotropy in the compressibility
and in the influence of stress on T,.

The hard superconductors so far investigated
obviously do not obey the relation which exists
among the soft superconductors.* This may perhaps
be understood in the light of the discovery by Geballe,
Matthias, Hull and Corenzwit?! that there is no isotope
effect in the transition metal ruthenium. These authors
suggest that this is an indication that the mechanism
causing superconductivity in the transition metals may
not involve the phonons. If the phonons are not in-
volved then there would, of course, be no reason for
any correlation between d1n 7,/d In v and 6/T,, and we
should not be surprised by a failure of the Rohrer rule
for tantalum, vanadium and lanthanum.

(1

Zero-point energy

It has recently been pointed out by Daunt and Olsen?2
that the difference between the mechanical properties
of a metal in the normal and superconducting states
must cause a temperature-dependent difference in the
Debye 6. The temperature dependence causes changes
in the zero-point energy of a magnitude sufficient to
explain the anomalous specific heats observed by
Bryant and Keesom?? in indium, and Boorse, Hirsch-
feld and Leupold?* in niobium.

The zero-point energy of a Debye solid is (9/8) R per
mole, and our initial estimate of the contribution AC

* Note added in proof: Recent work here has shown that the value of
(dIn Tc/dIn v + yg) used in Fig. 4 is about 30%; too high. (This value was
taken from work of Alekscevski and Gaidukov.) We have also found2? that
ruthenium lies far below the line for non-transition-metal superconductors in
Fig. 4.
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Figure 5 (d In T;/d In v + yg) as a function of
(8p/T:). The soft superconductors are
marked with open circles, the hard
superconductors with black circles.
The data used have been collected from work by
various authors.

which changes in 0 might make to the specific heat was
simply AC = (9/8)R(86/0T). This very crude estimate
gives some idea of the order of magnitude of anomalies
which may be expected.

A more rigorous treatment consists in writing down
the partition function, Z, and thence calculating the
free energy, F, and the specific heat. If this is done for
a harmonic oscillator with a temperature-dependent
frequency vw(T), then terms arise in the specific heat
C,(ry in addition to those usually found in the specific
heat C, .ons:. for a temperature-independent oscillator.
Most of these terms become small at low temperatures,
and the main difference AC = C,g) — C,cons. is
given by
%y
AC +hT 377 (12)

If a similar treatment is carried out for a Debye
solid it is found that?®

020

AC= ~3RT 7.

(13)
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This may easily be calculated from the formulae
given by Daunt and Olsen, and turns out to be some-
what larger in absolute magnitude than (9/8)R(30/0T).
The change in sign gives agreement in sign between the
temperature-dependent elastic constants observed by
Alers and Waldorf® and the specific heat anomaly
observed by Boorse, Hirschfeld and Leupold.**

The approach sketched above would appear to meet
the objections made to our original procedure by
Ferrell,2® and to support our view that variations in
zero-point energy play a noticeable role in determining
the specific heat at very low temperatures.
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