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R. W. Morse*

Ultrasonic Attenuation in Superconductors

Abstract: A brief review is given of the ultrasonic attenuation in metals arising from direct
interaction of the elastic waves and conduction electrons, and the physical variables on which it
depends. The drop in attenuation of longitudinal waves on entering the superconducting state is
in good agreement with BCS theory, the various factors combining to make the relative attenuation,
as/a,, depend only on the energy gap; the measurements give evidence, however, for gap anisotropy

or the presence of more than one gap. Recent measurements at Brown by Claiborne of shear wave

attenuation in single-crystal Al, are in good agreement with a theory based on the Boltzmann and
London equations. The steep drop at T. is produced by shorting out of electromagnetic waves by
supercurrents; the residual attenuation results from the effects of collision drag.

This paper has two purposes: to give a very brief
review of ultrasonic measurements in superconductors,
and to report on some as yet unpublished work that
has been done recently at Brown.

It is well known, of course, that an elastic wave in a
metal interacts with the conduction electrons and
hence is attenuated. One of the principal parameters in
determining the magnitude of this attenuation is the
ratio of wavelength to electron mean free path. If ¢ is
the propagation constant (g = 2n/4, where 4 is the
wavelength) and / is the mean free path, then there are
two principal regimes depending upon the size of ¢/
relative to unity. If g/ > 1, the attenuation coefficient
is proportional to the first power of the frequency, is
independent of /, and depends only upon fundamental
parameters of the metal. If g/ < 1, the attenuation
coefficient is reduced from the previous case approxi-
mately by the factor ¢/; hence it is proportional to the
square of the frequency and to /.

If g/ is sufficiently large (as it can be in pure metals at
low temperatures) the ultrasonic attenuation by con-
duction electrons is sizeable and easily observed. In a
metal which becomes a superconductor, this attenua-
tion is radically altered by the appearance of super-
conductivity. The discussion here will be restricted to
the ordinary ultrasonic region (up to, say, 200 Mc/sec)
where the phonon energy is very small compared to
the energy gap, and where the wavelength, although
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shorter than the mean free path, is longer than other
possibly relevant distances such as the coherence
length. Other papers in this conference have something
to say about such other cases.!

The ultrasonic attenuation by electrons in the
ordinary ultrasonic region decreases rapidly and
apparently monotonically as the temperature is
lowered below 7. The temperature dependence of this
decrease in attenuation for longitudinal waves is quite
well accounted for by the BCS theory, the calculation
being an extension of the usual quantum theory of the
scattering of phonons by electrons. The BCS theory
shows that three effects modify the scattering rate: the
temperature-dependent energy gap, the increase in the
density of states near the edge of the gap,and a coher-
ence factor the form of which depends upon whether or
not the spin is changed in the scattering. Now the
structure of the BCS theory is such that the last two
factors exactly cancel for the low-frequency ultrasonic
region. Thus the decrease in attenuation reflects only
the opening of the energy gap. The prediction is that
the ratio of superconducting to normal state attenua-
tion is given by the Fermi function of the energy gap;
namely,

o, = 2/ T + 1) = 2f(e) (n

where ¢ is the temperature-dependent BCS energy gap.
Although the derivation of this equation suggests that
it is valid only for g/ > 1, Tsuneto? has shown that it
also holds for g/ < 1.
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Figure 1 Ultrasonic measurements in tin com-
pared with the BCS prediction.
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Figure 2 Ultrasonic measurements in tin coms-
pared with a BCS prediction assuming
two different energy gaps.

Figure 1 shows how the above prediction typically
compares with experimental results. There are two
important ways in which such ultrasonic measurements
give support to the BCS formulation. First of all, these
results taken together with nuclear spin relaxation
measurements verify that the spin dependence of an
interaction is an important factor in determining scat-
tering rates in a superconductor. In the nuclear spin
case the rate goes up just below T,, whereas it goes
down with phonon scattering, results which are pre-
dicted by the BCS theory. The second point is that not
just any energy gap theory would agree as well with
the observed temperature dependence of the ultrasonic
attenuation as does the BCS theory. One notes from
Fig. 1 that the BCS theory does not predict quite as
rapid a decrease below T, as actually observed. A
simple energy gap theory which did not have in it
something like the coherence effect, would inevitably
agree much worse with the measurements since the
required density of states modification would lead to a
greater scattering than that predicted by Eq. (1). Thus
to obtain agreement one would be forced to quite a
different temperature dependence of ¢ than is observed
by other measurements.

The fact that the ultrasonic attenuation quite
generally is found to decrease below T, faster than
predicted, could be due either to a smali decrease in the
lattice-electron interaction constant just below T, or to
the presence of more than one gap. In the latter
instance the largest energy gap value would be felt
most near 7, and the smallest at low temperatures.
Figure 2 shows how well one can fit tin data by adding
the effects of two energy gaps. Such excellent agree-
ment, of course, is not to be taken too seriously since
any such fitting is not unique.

Ultrasonic measurements go further in suggesting
either gap anisotropy or the presence of more than one
gap, as some of us showed in tin a couple of years ago.?
For g/ > 1 the ultrasonic scattering picks out only
those electrons which move in the direction of the
wave with the sound velocity. Hence by propagating in
different directions in a single crystal one might hope
to select electrons from different parts of the Fermi
surface. At the lowest temperatures the attenuation
should fall exponentially, being determined by the
limiting energy gap for the electrons which are selec-
tively scattered. In tin we found that the apparent
limiting energy gap indeed did depend upon the
direction of propagation, varying from 3.2 to nearly
4.0 kT,. The numbers we obtained in tin have since
been verified by Mackintosh at Cambridge* and by
Bezuglyi, Galkin, and Korolyuk in Russia.® Frankly
I do not know how one can interpret these numbers in
terms of the Fermi surface, or indeed if they have any
real significance. However, they do suggest a direc-
tional dependence of the energy gap.

In the remaining time I would like to mention some
very recent work done with Dr. Lewis Claiborne on
shear wave effects in superconductors.® Some time ago
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Morse and Bohm’ found that the superconducting
attenuation with shear waves shows a nearly discon-
tinuous decrease near T, followed by a gradual change
similar in form to the longitudinal wave, i.e., one
proportional to f(¢). Claiborne has recently finished a
study of the shear wave attenuation in aluminum
crystals as a function of frequency, polarization and
propagation directions, and temperature down to
0.28°K using adiabatic demagnetization. Special atten-
tion was given to the region very near T, in order to
examine the very rapid drop in detail. The g/ range
covered was from about 0.8 to 4.0. When the earth’s
magnetic field is cancelled, one finds that the very
rapid decrease just below T, has an observable width
and the curve can be traced out point by point. Some
results are shown in Fig. 3 as a function of frequency.
Here one sees that the sharp drop in a,/a, just below
T is significantly frequency dependent.

The total attenuation «, was found by extrapolating
the lower temperature results to 7 = 0. A typical
temperature variation is shown in Fig. 4. (The results
are not accurate enough for a good estimation of
£(0).)

The frequency variation of o/, was also found to
depend somewhat on the directions of propagation and
polarization. Figure 5 shows another set of tempera-
ture variations near T,.

Dr. Claiborne has made a theoretical calculation,
approximately valid near T, which gives a reasonably
tidy explanation of the results. He made a self-
consistent, Boltzmann equation calculation similar to
that made by Holstein® and others. Since the region of
interest is very close to 7,, the superconducting
behavior can be reasonably accounted for by use of the
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Figure 4 o in db for shear waves in aluminum as
a function of T.
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Figure 3 os/an vs. T[T, in aluminum near T.
The direction of propagation is [100] and the
polarization vector is along [010].
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Figure 5 og/a, vs. T/T. in aluminum near T.
The direction of propagation is [110) and the
polarization vector is along [100].




London equation. Expressions for both longitudinal
and shear wave attenuation were then obtained which
are a function of the fractions of normal and super-
conducting electrons as well as g/ and wt. He found, as
expected, that « /o, for longitudinal waves was equal
to the fraction of normal electrons. Since in the BCS
theory this should be 2f(¢), in his final results for the

shear wave attenuation he replaced, by analogy, the
normal electron fraction by 2f(¢). Without going into
details here, it can be said that the calculations predict
a behavior very much like that observed. Some typical
results of the calculation are shown in Fig. 6. The
rapid drop in o, /«,, which is due to screening by super-
currents, has a temperature width determined by wr.
The residual attenuation is given by g-2f(¢), where
g(ql) is a function which appears in the normal state

1.0
shear wave calculation; it is plotted in Fig. 7. One sees
09 that the shorting out should be negligible for very
small g/ and increase in significance as g/ increases.
o8- Now the residual term g-2f(g) results entirely from
the inclusion of a collision drag term in the theory, i.e.,
071 the assumption that scattering produces a distribution
o which is in equilibrium with the local ion motions
) accompanying the wave. Tsuneto,? who made a more
os basic calculation for shear waves, did not find this
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Figure 7 Theoretical curves for shear waves,
for fixed values of electron waves for
fixed values of electron group velocity
and relaxation time. (7 = 0.3 x 1019 sec;
Vo = 3.0 X 108 cm/sec).

Figure 8 A comparison between theory and ex-
periment for the residual attenuation.
The value of g is obtained by fitting the 25
Mec/sec data.
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residual term but found only the shorting-out effect,
because he did not include the collision drag effect in
calculating the attenuation even though he allowed for
it in the distribution function.

Agreement between the calculations and the obser-
vations is quite gratifying and internally consistent.
For example, if one estimates g by fitting the results at
one frequency, then the curves for other frequencies
are quite accurately reproduced. Such agreement is
demonstrated in Fig. 8 for the data given in Fig. 3. The
agreement, however, goes further than this. The
normal-state attenuation, «,, also depends upon g. As
shown by Pippard® the shear wave attenuation is
given by:

1_
0, =K——2 )
g

where K is a constant independent of frequency. One
finds that the g determined by fitting to the super-
conducting residual attenuation at one frequency also

agrees with that which would be predicted for that
frequency by the frequency dependence of «,. Thus
there is complete internal consistency by choice of a
single g value (or [) for a given orientation of the
propagation and polarization vectors. In going to
another orientation one can also obtain another quite
self-consistent fit to the data, but only by making a
new choice of /. The differences in /’s chosen for
different orientations were about 20 percent and could
be due either to actual variations in / or to other real-
metal effects which were entirely ignored in the
calculation.

In summary, the initial drop in the shear wave
attenuation just below 7, seems to be due to a shorting
out of the electromagnetic interaction between the
lattice and the electrons, whereas the residual attenua-
tion in the superconducting region seems to be
explainable almost entirely by a collision drag inter-
action. Thus in aluminum it does not seem necessary
to call upon real-metal effects to explain the residual
attenuation observed with shear waves.
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