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Dependence of the Energy Gap in 
Superconductors  on  Position  and  Magnetic  Field* 

Abstract:  A  review is given of  work concerning the decrease of  the energy gap in superconductors 
when a magnetic field i s  applied.  The absence of any observable effect in previous spectroscopic work 
is explained, and conditions for large effects are  outlined.  Experimental measurements on thermal 
conductivity and microwave  absorption in films in a magnetic field  are described. The results show that 
in  thin films, the gap  can  be  depressed continuously to  zero, yielding  a second-order phase transition. 
In thicker films, the gap  can  be only  partially depressed before the  transition, and the  transition is of 
f i r s t  order. These results agree with those obtained theoretically by Douglass from  the Ginzburg- 
Landau-Gor’kov theory, and experimentally, by electron  tunnelling. An  attempt  to generalize the 
Ginzburg-Landau-Gor’kov theory to  cope with  the case when &,/kT % I i s  then indicated. In  this phenom- 
enological theory, the  normalized gap E(H)/E(O) i s  taken as an order  parameter w, and the free 
energy i s  assumed to contain  a term  in pozlVw12, as well as a  free energy density f(w) and magnetic 
energy x(w)H2. Some success i s  found. 

Introduction 

It is a basic part of the BCS theory’ that stable  super- 
currents, such as  those which arise in  producing 
perfect diamagnetism,  can be understood qualitatively 
by considering the  normal BCS ground  state  composed 
of pairs with net zero momentum to be  transformed 
into  a  state  in which each has the same non-zero 
momentum 2mvd, where v d  is the  drift velocity of the 
entire electron cloud.  Although  there is disagreement 
on this  point,2 this state is considered stable  against 
scattering because of the  gap energy required to 
remove each  pair  and drop it into a  state with lower 
net momentum. A fluctuation  taking  any  macroscopic 
number of electrons out of the  ground  state  against  an 
energy cost  in  this way is astronomically unlikely, and 
we have stable  currents. Bogoliubov3 pointed  out in 
1958 that  the presence of this drift  should  alter  the 
excitation spectrum of the BCS state by adding  a  term 
pF.vd. Evidently, this would cause the  current to be 
unstable if lpFl I udl equaled  the  gap eo. Calculations by 
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various authors have shown that this  condition is 
similar to  that derived from  the  macroscopic free- 
energy balance.  Thus  the effect should  be sizable, 
leading to perhaps  a 50 per  cent  reduction  in  the 
minimum gap, together with a similar increase in gap 
on the  other side of the  Fermi surface. 

Having devoted considerable effort at Berkeley to 
measuring the  gap spectroscopically, we were intrigued 
by the possibility of observing such large effects in the 
presence of a field. However, we had  little success 
doing so in  spectroscopic experiments at  the time.  In 
Ginsberg’s experiments4 on transmission of far  infra- 
red through  superconducting films, we intentionally 
applied 8 kG fields to see what effect this would have. 
We found  no effect outside  a few percent. In Richards’ 
experiment5 on reflection from bulk samples, the 
geometry prevented any  controlled use of magnetic 
fields, but  trapped flux kept - 1/2 the  sample  normal 
and provided fields of the  order of the critical field at 
the surface of the superconducting  metal.  Yet,  he 
found a very sharp  absorption edge with no evidence 
of a smear or shift of the  gap. 

How was this to be explained? For  one thing, our 
photons have little momentum; hence we must  produce 49 
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pairs of excitations on  opposite sides of the  Fermi 
surface, and  the first-order  gap  change  should  cancel 
out.  Moreover, with  the  thin film we could  reach  only 
a small  fraction of H,, and  hencej,  or u,, with a field of 
8000 gauss, so no higher order effects - H 2  or u2 
should  have been observable. In the  bulk  sample we 
readily reached H,, but  any sizable second-order  gap 
decrease was prevented by the  long  coherence  length 
to of Pippard,6 which keeps the  surface  gap  from being 
greatly affected, as  long as there is an  interior region of 
depth to from which the field and  current  are excluded 
by the surface  currents  in a depth A. The  question  then 
was how to proceed. 

Because of  the  long  coherence  length, &, 9 I- ,  it was 
evident that we would have to use films in which the 
whole sample felt the field, if  we were to find effects 
greater  than  the few percent  observed by Pippard  for 
the  change in 1. Also, evidently, to get a maximum 
effect, we must be able to reach the  critical field of the 
film. Since H J H 0  N 1/d, this  limits  the film thickness 
d to 2 200 A  for fields of convenient  magnitude. But a 
film as thick as that is far  too good a reflector to be 
usable in a far-infrared  experiment of the sort per- 
formed by Ginsberg. Thus we considered other 
physical effects, for which observations  could be made 
on films of d = 300 to 3000 A.  The  tunnel experiments’ 
described earlier in  the sessions are a beautiful ex- 
ample (which we did not think of!). However, we had 
chosen another  approach, via thermal  properties. 

Thermal  conductivity  measurements 

Even if the  sample  had to be  too thick  for a sensitive 
far-infrared  gap  measurement, a simple thermal 
property  could still reveal gap  changes. Specific heat 
seemed hard to measure  in a thin film, but  thermal 
conductivity seemed more  promising.  Morris and 1 
set up a simple experiment* with an  evaporated film on 
a thin glass substrate, with carbon resistance ther- 
mometers at  both  ends.  One resistor served as  heat 
source, as well as  thermometer,  and the other was 
attached  at the  temperature  bath  end of the film. 

Figure 1 shows results on thin (- 700 A) films of tin 
and  indium.  For  both  metals,  the  thermal  conductivity 
K increases nearly as H 2  up  to the  critical field. At  the 
critical field, the  thermal  conductivity in the  super- 
conducting  state  joins  smoothly  onto  the field- 
independent  conductivity of the  normal  metal.  The 
location of the  shoulder  at  this  point fixed H ,  for  the 
purposes of normalizing  the data.  The absence of any 
discontinuity at H ,  indicates that  the superconducting 
transition in a magnetic field is second order  for films 
of this thickness, in contrast to the  first-order  transi- 
tion of bulk  superconductors in a field. In other  words, 
since K is related directly to the  gap  width, we can 
infer that the  gap closes continuously to zero when a 
field  is applied to a thin film, whereas in a  bulk  sample 
it drops discontinuously  from nearly the full value 
(-98 percent even at the  surface) to zero. 

50 In view of  the  theoretical  prediction of a v,.p, term 
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Figure I Change of thermal conductivity of thin 
superconducting films with  magnetic 
field. 

in the  excitation  spectrum, we varied the  orientation of 
the field in the  plane of the film from  parallel to 
perpendicular to the  direction of heat flow in  the film. 
This  change  produced  no effect on K to within 
experimental  accuracy of a few percent. Since the 
induced  diamagnetic  currents are  orthogonal  to  the 
field, this  measurement also shows the  absence  of a 
dependence on  the angle between heat  current  and 
diamagnetic  current.  Thus, if  we interpret  our results 
in terms of a decrease of the energy gap with increasing 
field, the modified gap  appears to remain essentially 
isotropic. Of course, even if there were a v ’ p  term, 
first-order effects would cancel in an average transport 
effect like K. However, as the  change  approaches 100 
percent,  noncancelling  second-order effects would 
appear,  and these would be expected to differ by a 
factor of several for the  parallel  and  perpendicular 
cases, because of a different average of cos2 0. Thus 
another  factor must  enter to explain the lack of 
anisotropy. It may well have to  do with the  fact that in 
these films, the  two  equal  and  opposite  surface  currents 
are only slightly separated in space  (compared to 
to, for example).  Alternately,  the short mean free  path 
in these “dirty”  samples may upset the simple predic- 
tion.  Both of these characteristics of the  experimental 
situation  contrast  strongly with the Bogoliubov 
idealization, which corresponds to a  spatially  uniform 
current  arising  from a displaced sphere of momentum 
eigenfunctions  characteristic of an ideal sample. 

The measured dependence of K upon H may be used 
to compute  the  dependence of the energy gap  on H in a 
simple way if the  electronic  term, KG, is dominant in  
K,  and if K, is primarily limited by elastic scattering 
of electrons by lattice imperfections.  Under these 
conditions,  the  ratio of thermal  conductivity in the 



superconducting  state, Ke,, to  that in the  normal  state, 
Ken, has been given by Bardeen,  Rickayzen,  and 
Tewordtg as 

“ Kes - G(c0/kT) = p ( c ’ f : a E )  d E  
Ken 

( 1 )  

~omE2(df / ’ iS)  d E  
where f ( E / k T )  is the  Fermi  function,  and 2g0 is the 
energy  gap. If we assume  that  the effect of a field upon 
the  shperconducting  state  can be adequately  represen- 
ted  as a change in the c0 of BCS, then  this  relation  may 
be used to  make  a  point-by-point  inversion of  experi- 
mental  data  to  determine E ~ ( H ) / E ~ ( O ) .  Starting  from  the 
data  on  the  thin  indium film shown i n  Fig. 1, we find 
the  results  shown in Fig. 2. The  error  bars  represent  the 
uncertainty in normalization  to  the  critical field, H,, 
because of a slight rounding of the  transition region 
in the  data  on K.  This  uncertainty is magnified by the 
fact  that G(&,/kT) initially drops  only  quadratically as 
Eo/kT increases  from  zero.  This  would  produce a 
rounded  approach even if the  gap  dropped  to  zero 
linearly in  ( H ,  - H ) .  For  the  same  reason, it requires 
the  rather  steep final drop - ( H c  - H)” in the  gap 
near H ,  to  reproduce  the  almost  linear  approach of 
K,, to Ken observed at  that  point. 

Our  results  for  the  dependence of the  energy  gap 
upon  magnetic field in a thin film are  qualitatively 
similar to  those  from  the  more  direct  tunnel experi- 
ments of Giaever  and  Megerle7  and of D o ~ g l a s s , ~  
although  their  data were taken  at  higher  reduced 
temperature  and in a different  metal (aluminum).  From 
our  data  shown  in  Fig. 2, we see that ~ ~ ( H ) / s , ( 0 )  seems 
to  approach 1 - h2 (h = H/H,) at low temperatures, 
but it is moderately well fitted at T/T, = 0.63 by 
( 1  - A’)”. The  latter  form is that given by Douglass’ 
based on  the  Ginzburg-Landau-Gor’kov (GLG) 
theory,” which is expected to  hold  near Tc. We also 
note  that our data  at T/T, = 0.36  deviate  from 
1 - h2 and  approach ( 1  - h2)” when the  gap  has 
dropped so that c O ( H )  - kT. This  behavior  indicates 
that  the  GLG  approach becomes  successful, as 
expected, when there is a large amount of thermal 
excitation  present. 

With  thicker films, new features  appear, as shown i n  
Fig. 3. The  thickest film,  tin I 1  with d z 2800 A ,  has 
AK - H z  up  to  the vicinity  of H,, where  it  has only 
reached -25 percent.  Then K appears  to rise almost 
discontinuously  to K,,, indicating  that  the  transition is 
first order i n  films of this  thickness, if we assume  that 
the finite slope is entirely  due  to  the  measuring 
temperature  gradient  and  the  nonuniformity of the 
film. Applying our method of analysis, we find that 
E~(H)/E, (O)  drops linearly  with (H/H,)2 ,  then  abruptly 
from  -0.83  to  zero  at H,. An analysis based on  the 
GLG  theory  leads  to E ~ ( H , ) / E ~ ( O )  = 0.78 for a film 
with this  thickness  [as related to H J H ,  (bulk)].  This 
agreement is really quitegood,  considering  the  accuracy 
and  the  fact  that  at H ,  the  surface  gap (which governs 

’ 

the  penetration law) should  be  somewhat less than  the 
interior  value  for  a film as  thick as this  one.  The film 
indium 11, of intermediate  thickness d z 1800 A, is 
still thin  enough  to  display a second-order  transition, 
but  the  increase  in K near H ,  is steeper  than H Z .  This 
qualitative  behavior is also predicted by the GLG 
theory,  and by various  phenomenological  models 

Figure 2 Magnetic field dependence of super- 
conducting energy gap computed  from 
data of Fig. I. 

Figure3 Change of  thermal conductivity of 
superconducting films  of intermediate 
thickness with magnetic field. 
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which take  account of the  dependence of the  penetra- 
tion  depth  and free energy of a  superconductor  upon 
the energy gap  width. 

We conclude,  then, that  our selection of film thick- 
nesses spans  the  region  from  second- to first-order 
superconducting  phase  transitions in the presence of a 
field, and  that the GLG theory gives a  good  account  of 
the  gap  variation with field at  the higher  temperatures 
but  that  it is less successful at lower temperatures.  The 
actual  form of E,(H)/E~(O) depends on film thickness, 
and  approaches  a definite limit only for films so thin 
that d 6 A. 

Microwave  absorption 

If,  indeed, we are  able  to force the  gap  down to zero 
by applying  a  magnetic field to a film, we should be 
able to detect  this  spectroscopically.  As  remarked  above, 
the critical field  of a film thin  enough  for  far-infrared 
study is unattainably  high.  However,  at 4 to 8 mm 
microwaves, we have plenty of power available to 
detect  calorimetrically  the small fraction of power 
absorbed by a  superconducting film with d - 500 A. 
Thus, if we monitor  the  absorption of microwave 
power as  a function  of H ,  we should see evidence for 
the  same  gap decrease observed above. 

Morris  and White, in our  laboratory, have done  this 
on  a 120 A  indium film at 4 and 8 mm, using matched 
carbon resistors in a  bridge, as above, to measure  the 
heating.  Qualitatively,  the observed behavior  shown in  
Fig. 4 is similar at  both wavelengths, namely a  con- 
tinuous rise in absorption,  roughly - H Z ,  up to the 
normal  value,  after which it remains  constant.  This 
behavior simply reflects the  increase in  absorption by 
“normal electrons” excited across  the  gap  as  the  gap 
decreases. In  addition to this  common  behavior,  there 
seems to be a slight downward  shift of the apparent 
H ,  (as measured by the  shoulder  on  the curve) for  the 
4 mm radiation  compared to the 8 mm radiation.  This 
shift can be explained by noting that  the 4 mm photons 
can  span  the  gap  as  soon  as it is reduced to - 114 its 
field-free value,  whereas  it  must be reduced by another 
factor of 2 before  the 8 mm photons  can  span  it. 
Because of the  steep drop of E,(H) near H,, however, 
the  shift is small. Also, even the 4 mm photons only 
have hv = kT for 3.5”K. Since the  half-gap 8, enters 
the  exponential  governing  thermal  excitations,  thermal 
excitations  are so prominent  that  no  sharp  absorption 
edge is observed when hv = 2&,(H) even at  our lowest 
temperature, 1.2”K. A  further  reduction in tempera- 
ture  with He3 refrigeration, or a rise in  microwave 
frequency, would enable us to see whether  the  absorp- 
tion edge is still as  sharp as in  the field-free case, or 
whether it has  changed  shape. Because of the  sum-rule 
relation“ between this  absorption  spectrum  and  the 
supercurrent  properties,  this  data would be a  valuable 
link in clarifying the mechanism by which the modified 
wave-function associated with the field-reduced e O ( H )  

52 brings about the increased penetration  depth A. 
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Figure 4 Change of microwave absorption of a 
thin superconducting indium  film  at 
wavelengths of 4.2 m m  and 8.8 mm. The 
zero of absosption is displaced a  large, but 
unknown, amount by absorption in the sample 
support. 

Discussion 

We have seen that the GLG theory gives a  fair  account 
of our observations at  the higher temperatures, but it 
seems to be failing at lower temperatures  as  long  as  the 
gap is much greater  than kT. For example, our  thermal 
conductivity data shows that E,(H)/E,(O) appears to 
approach 1 - h2 rather  than (1 - h2)” at T + 0. This 
failure is not surprising, since the GLG theory is based 
on an expansion of the free energy near T,, which 
cannot be expected to be valid also when (&,/kT) 9 1 .  
Since there seems to be no reliable a priori theory for 
handling these nonlinear effects over  the  entire 
temperature  region, we have given thought to formula- 
ting  a simple phenomenological  theory, based on BCS 
for  the zero-field limit, with which to guide our experi- 
mental  work. We assume that there is a well-defined 
gap, which we can use as  an  order  parameter, even in 
situations  far  from  the  equilibrium  situation  treated 
by BCS. ParmenterI3 has  approached  the  problem  in  a 
manner  somewhat similar to ours,  but he has excluded 
consideration of magnetic field effects (and hence of 
many  interesting cases). 

To shorten  notation, let w = E,(H, T)/&,(O, T )  be  an 
order  parameter which goes from 0 to 1 as  the  gap 
goes from 0 to its  equilibrium value at  a given tempera- 
ture. Also, letfT(w) be the free-energy density at (c) and 
temperature T, normalized to the  equilibrium  value 
H,(T)2/8n. [In  all  the following work, H ,  refers to 
bulk  samples; H T  is the  transition field of the film.] 
Similarly, let K be the susceptibility normalized to 
an. Then if, for definiteness, we consider  a  slab of 



thickness 2a placed in  a  magnetic field H, parallel to its 
surface, we approximate  the  overall  free energy per 
unit  area  at given temperature T by 

G = (H,‘iSn)( [f(W> 
- a  

+ /3(0)t~’1Vo1~] d x  + 2ati(H,/HC)’ . (2 )  

We can evaluate ti approximately using the London 
theory  expression 

ti = 1 - (I/a)tanh(a/i) . (3) 

In this, A is an effective value,  as  calculated  from BCS 
when o = 1, but which increases as w decreases in a 
manner which is a priori uncertain,  but expected to lie 
between 6 %  and o- ’. The value, os, of o at the 
surface, x = +a, is the  appropriate  one  to use in this 
evaluation, in case the  slab is thick enough to allow 
substantial  gap  variation. 

The  term  in (Vu)’ arises  from  the  extra  kinetic 
energy which arises  from  the  modulation of plane 
wave functions when the  gap,  and hence the  occupation 
numbers h k ( ~ k / ~ O )  in  the BCS wave function,  vary in 
space. The  factor P(o) is of order  unity,  but  probably 
contains  a  factor o-”, where n = 1 to 2. To see that 
to2 is the  appropriate length  factor,  one  must  take 
account of the  orthogonalization to  other occupied 
states  implicit  in  the use of antisymmetrized  functions. 
Then if one considers  a  modulation, with wave vector 
q, of the  electron wave functions at the  Fermi  surface, 
one finds an energy increase of order h2qkF/2m for a 
fraction - q/k ,  of the  electrons.  This raises the system 
energy by - nh2q2/2m. Since Hc2/8n N nmEo2/h2kF’, 
this energy can  be written 

1 

N (HC2/8n)  X (h~F/&o)~q’  - ( H , ’ / S ~ ) ( o ’ ( V O / W ) ’  . 
In view of this  result, it seems curious  that  Parmenter 
found a characteristic  length 6 - ( tO /kF)% - 100 A, 
rather  than to N lo4 A. We might  also note  that 
the coefficient of IV$I’ in  the GLG theory is essen- 
tially equivalent to  our result. 

The free-energy term f(o) is approximated  in  the 
GLG theory by a  two-term  power series, f = -201’ 
+ 04, when  normalized  in our  notation, where 
o - E~ - $. Although  Gor’kov  has  established  this 
GLG  form  from the BCS theory  near T, where  the 
gap is small,  it cannot  be expected to be generally valid. 
If instead one  computes  the binding energy at T = 0 
of the BCS ground  state,  but with a  constrained  gap 
which can  be varied all  the way down to zero by 
adjustment  of  a  Lagrange  multiplier,  one finds the 
leading  term for small  gaps to be -02 /N(0)V ,  where 
N(0) V is the  usual  coupling-strength  parameter, 
typically 0.2 to 0.4. Of course,  the  absolute  minimum 
energy occurs at o = 1, by definition of o. The 
function f(o) is obtained  only implicitly over  the full 
range  of w. It is shown in Fig. 5 for a typical value 
N(0)V = 113. Evidently it resembles the GLG form, 

but  departs significantly. One  might  presume that  at 
intermediate  temperature f T ( w )  might lie between 
these  extremes. 

Given G[w(x)], one uses a  variational  principle to 
find w(x)  to minimize the free energy for a given 
value of H,. All other properties  may  then be com- 
puted. 

Evidently  the scheme outlined  above  has so much 
freedom in it  that  any  number of combinations  of 
assumptions  may  reproduce  a limited amount of 
data. With  enough  data, however, or more  reliable 
a priori calculations, we might delimit  it  considerably, 
and see if it is really capable of describing  all  observa- 
tions. 

One simple limiting case is that of the very thin 
film, in which a < i or to. Then  the  term in (toVw)’ 
prevents  any sizable change in o over  the film 
thickness.  [This case is similar to one  treated by 
Pippard  for  colloid^.'^] Thus,  setting w(x)  = const., 

G = 2 4 H c 2 / 8 n > [ f ( 4  + K(MH,/Hc)21 . (4) 

(H,/Hc)2 = - f ’ (O) / t i ’ (W) . ( 5 )  

Then dG/dw = 0 implies 

Now we know  experimentally that  as Ha is increased, 
o falls continuously  from  1 to 0 at a finite transition 

Figure 5 Comparison of  free energy curves f(w). 
In our normalization, the GLG theory (valid near 
TJ gives f( w )  = - 2 w 2  + w4. The BCS curve 
is calculated at T = 0 for N(0)V = 113. The 
experimental curves are derived from the results 
of Figure 2. As might be hoped, the agreement is 
better between GLG and  the  higher temperature 
data, and between BCS (T = 0)  and the lower 
temperature data. 

w = $ / q O )  
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field HT > H,. Thus  the  ratio f ‘/IC’ must rise con- 
tinuously and monotonically to a finite maximum 
given by 

(HT/H,)2 = -f”(O)/.’(O) . (6)  

Therefore,  iff(w)  and ~ ( w )  are  expandable in power 
series in w, the leading terms for  both  must have the 
same power of w. Since we expect f ( w )  to start  as 
w2,  ~(0 )  must  also.  Now  for  a  thin film, from (3), 

Thus, (1/12) - w2 for w + 0. The GLG theory 
assumes this dependence throughout. If we do the 
same, and  take f = -2w2 + w4, we naturally re- 
produce  the GLG result 
w = (1 - P)”.  
If we retain the  assumption  (1/Iz) - w2,  and  instead 
use ( 5 )  to (7) to invert the  smoothed w(h) data of 
Fig. 2, we find the f ( w )  curves shown as solid lines in 
Fig. 5 .  For comparison, we also show the GLG-  and 
BCS-based f ( w )  functions as mentioned above. We 
note that  our higher temperature experimental curve 
agrees best with the GLG curve, whereas the lower 
temperature data agree better with the BCS curve, as 
was to be expected if the model is at all  correct. 
Moreover, if one considers the difference between the 
two  temperatures,  theory  and experiment are in still 
better agreement. This general agreement is encourag- 
ing, but  it may be fortuitous.  Further work will be 
required to explore its extent. 
Concluding remarks 
It would seem overly speculative to proceed further 
along  this line here, in view  of the  fact that it  just may 
not  prove possible to obtain  a sufficiently correct 
description of the  situation in this way. However, in 
view  of the difficulty  of applying the rigorous Gor’kov 
theory to a  nonhomogeneous  superconductor, espe- 
cially in  the  nonlinear regime, it has seemed worth 
exploring these views so long as they lead to even a 
qualitative  picture which is helpful. 

This  picture is that we can  think of a reasonably 

well-defined local gap which characterizes the  super- 
conducting wavefunction more or less as in BCS.  If this 
gap varies substantially in a  distance of order to, the 
associated increase in energy density is of the  order of 
the  condensation energy density. Thus,  such rapid 
variations will occur only for good reason. Examples 
are in the  intermediate  state in the presence of a 
magnetic field, or in the  junction region between a 
superconductor  and  a  nonsuperconducting metal. In 
the  latter case, one might expect a  nonzero  gap to 
extend a  distance - to through  a  nonsuperconducting 
material,  as observed in experiments of Meissner” 
and  others. Since it seems reasonable to assume that in 
a  nonsuperconducting  metal  the BCS parameter Y 
may have the  wrong sign for superconductivity, the  gap 
could presumably be driven to zero in a distance 
shorter  than go, with the  rate depending on  the metal 
concerned, as observed. (Parmenter13 reached a similar 
numerical conclusion, even with his surprisingly short 
characteristic length 6 % 100 A.) 

If the discontinuity is really great, as  at  the inter- 
face with an insulator,  the  conduction electrons are 
simply reflected there. In this case, the “localization 
energy” is already in the wavefunctions in the  normal 
state,  and hence it does not  inhibit superconductivity 
even if there is an almost discontinuous  change  in  gap 
at the interface. Thus,  there is no difficulty in under- 
standing why lead and  tin films only 20 A thick have 
nearly the same T, as bulk samples, though  enor- 
mously increased critical fields. This  consideration 
might conceivably bear  on  the  thin persistent filaments 
in high-field superconductors, if they lie along regions 
of highly strained material. 

If we confine our attention to homogeneous material, 
then  the picture is relatively simple. When a field  is 
applied, it depresses the surface gap to increase the 
penetration  depth  and reduce the magnetic energy. If 
the sample is thin,  the  gap is decreased throughout,  and 
may be depressed to zero. In a bulk sample, however, 
the  interior  must  retain  the full gap to retain  the full 
condensation energy. The resistance to change of gap 
in  a  distance less than to then keeps the surface gap 
from  dropping by more  than  a few percent for typical 
parameter values. 

_ _ _ _ ~  
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