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Dependence of the Energy Gap in
Superconductors on Position and Magnetic Field®

Abstract: A review is given of work concerning the decrease of the energy gap in superconductors
when a magnetic field is applied. The absence of any observable effect in previous spectroscopic work
is explained, and conditions for large effects are outlined. Experimental measurements on thermal
conductivity and microwave absorption in films in a magnetic field are described. The results show that
in thin films, the gap can be depressed continuously to zero, yielding a second-order phase transition.
In thicker films, the gap can be only partially depressed before the transition, and the transition is of
first order. These results agree with those obtained theoretically by Douglass from the Ginzburg-
Landau-Gor’kov theory, and experimentally, by electron tunnelling. An attempt to generalize the
Ginzburg-Landau-Gor’kov theory to cope with the case when ¢,/kT > | is then indicated. In this phenom-
enological theory, the normalized gap ¢(H)/¢(0) is taken as an order parameter w, and the free
energy is assumed to contain a term in §2|Vw|2, as well as a free energy density f(») and magnetic

energy »(w)H2 Some success is found.

Introduction

It is a basic part of the BCS theory' that stable super-
currents, such as those which arise in producing
perfect diamagnetism, can be understood qualitatively
by considering the normal BCS ground state composed
of pairs with net zero momentum to be transformed
into a state in which each has the same non-zero
momentum 2mv,, where v, is the drift velocity of the
entire electron cloud. Although there is disagreement
on this point,? this state is considered stable against
scattering because of the gap energy required to
remove each pair and drop it into a state with lower
net momentum. A fluctuation taking any macroscopic
number of electrons out of the ground state against an
energy cost in this way is astronomically unlikely, and
we have stable currents. Bogoliubov® pointed out in
1958 that the presence of this drift should alter the
excitation spectrum of the BCS state by adding a term
prv,. Evidently, this would cause the current to be
unstable if |pg||v,| equaled the gap gy. Calculations by
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various authors have shown that this condition is
similar to that derived from the macroscopic free-
energy balance. Thus the effect should be sizable,
leading to perhaps a 50 per cent reduction in the
minimum gap, together with a similar increase in gap
on the other side of the Fermi surface.

Having devoted considerable effort at Berkeley to
measuring the gap spectroscopically, we were intrigued
by the possibility of observing such large effects in the
presence of a field. However, we had little success
doing so in spectroscopic experiments at the time. In
Ginsberg’s experiments* on transmission of far infra-
red through superconducting films, we intentionally
applied 8 kG fields to see what effect this would have.
We found no effect outside a few percent. In Richards’
experiment® on reflection from bulk samples, the
geometry prevented any controlled use of magnetic
fields, but trapped flux kept ~1/2 the sample normal
and provided fields of the order of the critical field at
the surface of the superconducting metal. Yet, he
found a very sharp absorption edge with no evidence
of a smear or shift of the gap.

How was this to be explained ? For one thing, our
photons have little momentum ; hence we must produce
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pairs of excitations on opposite sides of the Fermi
surface, and the first-order gap change should cancel
out. Moreover, with the thin film we could reach only
a small fraction of H,, and hence j, or v,, with a field of
8000 gauss, so no higher order effects ~H? or v*
should have been observable. In the bulk sample we
readily reached H,, but any sizable second-order gap
decrease was prevented by the long coherence length
&, of Pippard,® which keeps the surface gap from being
greatly affected, as long as there is an interior region of
depth &, from which the field and current are excluded
by the surface currents in a depth A. The question then
was how to proceed.

Because of the long coherence length, £, > A, it was
evident that we would have to use films in which the
whole sample felt the field, if we were to find effects
greater than the few percent observed by Pippard for
the change in 1. Also, evidently, to get a maximum
effect, we must be able to reach the critical field of the
film. Since H,/H, ~ 1/d, this limits the film thickness
dto z 200 A for fields of convenient magnitude. But a
film as thick as that is far too good a reflector to be
usable in a far-infrared experiment of the sort per-
formed by Ginsberg. Thus we considered other
physical effects, for which observations could be made
on films of d = 300 to 3000 A. The tunnel experiments’
described earlier in the sessions are a beautiful ex-
ample (which we did not think of!). However, we had
chosen another approach, via thermal properties.

Thermal conductivity measurements

Even if the sample had to be too thick for a sensitive
far-infrared gap measurement, a simple thermal
property could still reveal gap changes. Specific heat
seemed hard to measure in a thin film, but thermal
conductivity seemed more promising. Morris and 1
set up a simple experiment® with an evaporated film on
a thin glass substrate, with carbon resistance ther-
mometers at both ends. One resistor served as heat
source, as well as thermometer, and the other was
attached at the temperature bath end of the film.

Figure 1 shows results on thin (~700 A) films of tin
and indium. For both metals, the thermal conductivity
K increases nearly as H? up to the critical field. At the
critical field, the thermal conductivity in the super-
conducting state joins smoothly onto the field-
independent conductivity of the normal metal. The
location of the shoulder at this point fixed H, for the
purposes of normalizing the data. The absence of any
discontinuity at H_ indicates that the superconducting
transition in a magnetic field is second order for films
of this thickness, in contrast to the first-order transi-
tion of bulk superconductors in a field. In other words,
since K is related directly to the gap width, we can
infer that the gap closes continuously to zero when a
field is applied to a thin film, whereas in a bulk sample
it drops discontinuously from nearly the full value
{~98 percent even at the surface) to zero.

In view of the theoretical prediction of a v, py term

IBM JOURNAL * JANUARY 1962

 J

1.0 / 22
/0
INDIUM 11} d = 650 A o
0.8— o T=1.2°% Hc = 1600 ce
@ T=21°% Hc=11000ce ©
’/
= TN NI d=700 A /
S 0.60- 5
M o T=13° ']
' He = 1600 ce /
>
— (J
~ 0.4
-
2
: Ysa
'
T 0.2
z R
1 &>
4 ./.
< | ] | 1 |
0 0.2 0.4 0.6 0.8 1.0 1.2
H/H

Figure | Change of thermal conductivity of thin
superconducting films with magnetic
field.

in the excitation spectrum, we varied the orientation of
the field in the plane of the film from parallel to
perpendicular to the direction of heat flow in the film.
This change produced no effect on K to within
experimental accuracy of a few percent. Since the
induced diamagnetic currents are orthogonal to the
field, this measurement also shows the absence of a
dependence on the angle between heat current and
diamagnetic current. Thus, if we interpret our results
in terms of a decrease of the energy gap with increasing
field, the modified gap appears to remain essentially
isotropic. Of course, even if there were a v-p term,
first-order effects would cancel in an average transport
effect like K. However, as the change approaches 100
percent, noncancelling second-order effects would
appear, and these would be expected to differ by a
factor of several for the parallel and perpendicular
cases, because of a different average of cos? . Thus
another factor must enter to explain the lack of
anisotropy. It may well have to do with the fact that in
these films, the two equal and opposite surface currents
are only slightly separated in space (compared to
&5, for example). Alternately, the short mean free path
in these “dirty” samples may upset the simple predic-
tion. Both of these characteristics of the experimental
situation contrast strongly with the Bogoliubov
idealization, which corresponds to a spatially uniform
current arising from a displaced sphere of momentum
eigenfunctions characteristic of an ideal sample.

The measured dependence of K upon H may be used
to compute the dependence of the energy gapon Hina
simple way if the electronic term, K,, is dominant in
K, and if K, is primarily limited by elastic scattering
of electrons by lattice imperfections. Under these
conditions, the ratio of thermal conductivity in the




superconducting state, K, to that in the normal state,
K., has been given by Bardeen, Rickayzen, and
Tewordt® as

« f " EX(0f/0E) dE
= GlegfkT) =8, 1)
en f E*(0f/0FE) dE
0

where f(E/kT) is the Fermi function, and 2¢, is the
energy gap. If we assume that the effect of a field upon
the stiperconducting state can be adequately represen-
ted as a change in the ¢, of BCS, then this relation may
be used to make a point-by-point inversion of experi-
mental data to determine e,(H )/eo(0). Starting from the
data on the thin indium film shown in Fig. 1, we find
the results shown in Fig. 2. The error bars represent the
uncertainty in normalization to the critical field, H,,
because of a slight rounding of the transition region
in the data on K. This uncertainty is magnified by the
fact that G(eo/kT) initially drops only quadratically as
go/kT increases from zero. This would produce a
rounded approach even if the gap dropped to zero
linearly in (H, — H). For the same reason, it requires
the rather steep final drop ~(H,. — H)" in the gap
near H, to reproduce the almost linear approach of
K, to K,, observed at that point.

Our results for the dependence of the energy gap
upon magnetic field in a thin film are qualitatively
similar to those from the more direct tunnel experi-
ments of Giaever and Megerle” and of Douglass,’
although their data were taken at higher reduced
temperature and in a different metal (aluminum). From
our data shown in Fig. 2, we see that ¢,(H)/g,(0) seems
to approach 1 — h? (h = H/H,) at low temperatures,
but it is moderately well fitted at 7/T, = 0.63 by
(1 — A%)”:. The latter form is that given by Douglass'®
based on the Ginzburg-Landau-Gor’kov (GLGQG)
theory,!! which is expected to hold near 7,. We also
note that our data at 7/7. = 0.36 deviate from
I — h* and approach (1 — k%" when the gap has
dropped so that go(H) ~ k7. This behavior indicates
that the GLG approach becomes successful, as
expected, when there is a large amount of thermal
excitation present.

With thicker films, new features appear, as shown in
Fig. 3. The thickest film, tin II with 4 ~ 2800 A, has
AK ~ H? up to the vicinity of H,, where it has only
reached ~25 percent. Then K appears to rise almost
discontinuously to K,, indicating that the transition is
first order in films of this thickness, if we assume that
the finite slope is entirely due to the measuring
temperature gradient and the nonuniformity of the
film. Applying our method of analysis, we find that
eo(H)/eo(0) drops linearly with (H/H_)?, then abruptly
from ~0.83 to zero at H.. An analysis based on the
GLG theory leads to g4(H,)/eqo(0) = 0.78 for a film
with this thickness [as related to H./H, (bulk)]. This
agreement is really quite good, considering the accuracy
and the fact that at H_ the surface gap (which governs

the penetration law) should be somewhat less than the
interior value for a film as thick as this one. The film
indium II, of intermediate thickness d =~ 1800 A, is
still thin enough to display a second-order transition,
but the increase in K near H, is steeper than H 2. This
qualitative behavior is also predicted by the GLG
theory, and by various phenomenological models

Figure 2 Magnetic field dependence of super-
conducting energy gap computed from
data of Fig. I.
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which take account of the dependence of the penetra-
tion depth and free energy of a superconductor upon
the energy gap width.

We conclude, then, that our selection of film thick-
nesses spans the region from second- to first-order
superconducting phase transitions in the presence of a
field, and that the GLG theory gives a good account of
the gap variation with field at the higher temperatures
but that it is less successful at lower temperatures. The
actual form of &y(H)/ey(0) depends on film thickness,
and approaches a definite limit only for films so thin
that d < A.

Microwave absorption

If, indeed, we are able to force the gap down to zero
by applying a magnetic field to a film, we should be
abletodetect this spectroscopically. As remarked above,
the critical field of a film thin enough for far-infrared
study is unattainably high. However, at 4 to 8 mm
microwaves, we have plenty of power available to
detect calorimetrically the small fraction of power
absorbed by a superconducting film with d ~ 500 A.
Thus, if we monitor the absorption of microwave
power as a function of H, we should see evidence for
the same gap decrease observed above.

Morris and White, in our laboratory, have done this
on a 120 A indium film at 4 and 8 mm, using matched
carbon resistors in a bridge, as above, to measure the
heating. Qualitatively, the observed behavior shown in
Fig. 4 is similar at both wavelengths, namely a con-
tinuous rise in absorption, roughly ~H?, up to the
normal value, after which it remains constant. This
behavior simply reflects the increase in absorption by
“normal electrons” excited across the gap as the gap
decreases. In addition to this common behavior, there
seems to be a slight downward shift of the apparent
H, (as measured by the shoulder on the curve) for the
4 mm radiation compared to the 8 mm radiation. This
shift can be explained by noting that the 4 mm photons
can span the gap as soon as it is reduced to ~1/4 its
field-free value, whereas it must be reduced by another
factor of 2 before the 8 mm photons can span it.
Because of the steep drop of ¢,(H) near H,, however,
the shift is small. Also, even the 4 mm photons only
have hv = kT for 3.5°K. Since the half-gap &, enters
the exponential governing thermal excitations, thermal
excitations are so prominent that no sharp absorption
edge is observed when hv = 2¢,(H) even at our lowest
temperature, 1.2°K. A further reduction in tempera-
ture with He? refrigeration, or a rise in microwave
frequency, would enable us to see whether the absorp-
tion edge is still as sharp as in the field-free case, or
whether it has changed shape. Because of the sum-rule
relation'? between this absorption spectrum and the
supercurrent properties, this data would be a valuable
link in clarifying the mechanism by which the modified
wave-function associated with the field-reduced e,(H)
brings about the increased penetration depth A.
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Figure 4 Change of microwave absorption of a
thin superconducting indium film at
wavelengths of 42 mm and 8.8 mm. The
zero of absorption is displaced a large, but
unknown, amount by absorption in the sample
support.

Discussion

We have seen that the GLG theory gives a fair account
of our observations at the higher temperatures, but it
seems to be failing at lower temperatures as long as the
gap is much greater than k7. For example, our thermal
conductivity data shows that ey(H)/ey(0) appears to
approach 1 — h? rather than (1 — #%)” at T — 0. This
failure is not surprising, since the GLG theory is based
on an expansion of the free energy near T,, which
cannot be expected to be valid also when (go/kT) > 1.
Since there seems to be no reliable a priori theory for
handling these nonlinear effects over the entire
temperature region, we have given thought to formula-
ting a simple phenomenological theory, based on BCS
for the zero-field limit, with which to guide our experi-
mental work. We assume that there is a well-defined
gap, which we can use as an order parameter, even in
situations far from the equilibrium situation treated
by BCS. Parmenter'? has approached the problem in a
manner somewhat similar to ours, but he has excluded
consideration of magnetic field effects (and hence of
many interesting cases).

To shorten notation, let w = ¢o(H, T)/eo(0, T) be an
order parameter which goes from 0 to 1 as the gap
goes from 0 to its equilibrium value at a given tempera-
ture. Also, let f{w) be the free-energy density at 0 and
temperature 7, normalized to the equilibrium value
H(T)*/8=. [In all the following work, H, refers to
bulk samples; Hy is the transition field of the film.]
Similarly, let x be the susceptibility normalized to
in. Then if, for definiteness, we consider a slab of




thickness 2a placed in a magnetic field H, parallel to its
surface, we approximate the overall free energy per
unit area at given temperature T by

G = (125 f "L
+ B(@)Eo?|Vol*] dx + 2aK(H,,/HC)2} . )

We can evaluate k approximately using the London
theory expression

x = 1 — (4/a)tanh(a/’) . 3)

In this, A is an effective value, as calculated from BCS
when w = 1, but which increases as w decreases in a
manner which is a priori uncertain, but expected to lie
between w~ "2 and w~!. The value, w,, of w at the
surface, x = +a, is the appropriate one to use in this
evaluation, in case the slab is thick enough to allow
substantial gap variation.

The term in (Vw)? arises from the extra kinetic
energy which arises from the modulation of plane
wave functions when the gap, and hence the occupation
numbers A,(g,/¢,) in the BCS wave function, vary in
space. The factor B(w) is of order unity, but probably
contains a factor w™", where n = 1 to 2. To see that
£,% is the appropriate length factor, one must take
account of the orthogonalization to other occupied
states implicit in the use of antisymmetrized functions.
Then if one considers a modulation, with wave vector
g, of the electron wave functions at the Fermi surface,
one finds an energy increase of order A*gkp/2m for a
fraction ~ g/ky of the electrons. This raises the system
energy by ~ nh¢?/2m. Since H2/8n ~ nmeg?/h*ks?,
this energy can be written

~ (H.*[87) x (hveleo)*q® ~ (H2[8m)Eo* (Vorlw)* .

In view of this result, it seems curious that Parmenter
found a characteristic length § ~ (&,/kp)” ~ 100 A,
rather than &, ~ 10* A. We might also note that
the coefficient of |Vy|? in the GLG theory is essen-
tially equivalent to our result.

The free-energy term f(w) is approximated in the
GLG theory by a two-term power series, f = —2w?
+ w* when normalized in our notation, where
W ~ gy ~ Y. Although Gor’kov has established this
GLG form from the BCS theory near T, where the
gap is small, it cannot be expected to be generally valid.
If instead one computes the binding energy at T = 0
of the BCS ground state, but with a constrained gap
which can be varied all the way down to zero by
adjustment of a Lagrange multiplier, one finds the
leading term for small gaps to be —w?/N(0)V, where
N@O)V is the usual coupling-strength parameter,
typically 0.2 to 0.4. Of course, the absolute minimum
energy occurs at w = 1, by definition of w. The
function f(w) is obtained only implicitly over the full
range of w. It is shown in Fig. 5 for a typical value
N(@)V = 1/3. Evidently it resembles the GLG form,

but departs significantly. One might presume that at
intermediate temperature fr(w) might lie between
these extremes.

Given Glw(x)], one uses a variational principle to
find w(x) to minimize the free energy for a given
value of H,. All other properties may then be com-
puted.

Evidently the scheme outlined above has so much
freedom in it that any number of combinations of
assumptions may reproduce a limited amount of
data. With enough data, however, or more reliable
a priori calculations, we might delimit it considerably,
and see if it is really capable of describing all observa-
tions.

One simple limiting case is that of the very thin
film, in which a < 2 or &,. Then the term in (¢,Vw)?
prevents any sizable change in « over the film
thickness. [This case is similar to one treated by
Pippard for colloids.'*] Thus, setting w(x) = const.,

G = 2a(H 2[8m)[ f(w) + r(w)(Ho/H)*] . @
Then 0G/dw = 0 implies
(Ho/H)? = —f(0)/x'(w) . )

Now we know experimentally that as H, is increased,
w falls continuously from 1 to 0 at a finite transition

Figure 5 Comparison of free energy curves f(w).
In our normalization, the GLG theory (valid near
T.) gives f(w) = —2w? + w® The BCS curve
is calculated at T =0 for NO)V = 1/3. The
experimental curves are derived from the results
of Figure 2. As might be hoped, the agreement is
better between GLG and the higher temperature
data, and between BCS (T = 0) and the lower
temperature data.
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field H; > H,. Thus the ratio f'/x’ must rise con-
tinuously and monotonically to a finite maximum
given by

(He/H)* = —f'(0)/x'(0) . (6)

Therefore, if f(w) and x(w) are expandable in power
series in , the leading terms for both must have the
same power of w. Since we expect f(w) to start as
w?, k(w) must also. Now for a thin film, from (3),

142
=3r O

Thus, (1/4%) ~ w?* for w = 0. The GLG theory
assumes this dependence throughout. If we do the
same, and take f = —2w® + w*, we naturally re-
produce the GLG result

o= (1 — kA%,

If we retain the assumption (1/4%) ~ w?, and instead
use (5) to (7) to invert the smoothed w(h) data of
Fig. 2, we find the f(w) curves shown as solid lines in
Fig. 5. For comparison, we also show the GLG- and
BCS-based f(w) functions as mentioned above. We
note that our higher temperature experimental curve
agrees best with the GLG curve, whereas the lower
temperature data agree better with the BCS curve, as
was to be expected if the model is at all correct.
Moreover, if one considers the difference between the
two temperatures, theory and experiment are in still
better agreement. This general agreement is encourag-
ing, but it may be fortuitous. Further work will be
required to explore its extent.

K

Concluding remarks
It would seem overly speculative to proceed further
along this line here, in view of the fact that it just may
not prove possible to obtain a sufficiently correct
description of the situation in this way. However, in
view of the difficulty of applying the rigorous Gor’kov
theory to a nonhomogeneous superconductor, espe-
cially in the nonlinear regime, it has seemed worth
exploring these views so long as they lead to even a
qualitative picture which is helpful.

This picture is that we can think of a reasonably

well-defined local gap which characterizes the super-
conducting wavefunction more or less as in BCS. If this
gap varies substantially in a distance of order &,, the
associated increase in energy density is of the order of
the condensation energy density. Thus, such rapid
variations will occur only for good reason. Examples
are in the intermediate state in the presence of a
magnetic field, or in the junction region between a
superconductor and a nonsuperconducting metal. In
the latter case, one might expect a nonzero gap to
extend a distance ~ &, through a nonsuperconducting
material, as observed in experiments of Meissner!®
and others. Since it seems reasonable to assume that in
a nonsuperconducting metal the BCS parameter V
may have the wrong sign for superconductivity, the gap
could presumably be driven to zero in a distance
shorter than £,, with the rate depending on the metal
concerned, as observed. (Parmenter!® reached a similar
numerical conclusion, even with his surprisingly short
characteristic length § ~ 100 A.)

If the discontinuity is really great, as at the inter-
face with an insulator, the conduction electrons are
simply reflected there. In this case, the ‘“‘localization
energy” is already in the wavefunctions in the normal
state, and hence it does not inhibit superconductivity
even if there is an almost discontinuous change in gap
at the interface. Thus, there is no difficulty in under-
standing why lead and tin films only 20 A thick have
nearly the same 7, as bulk samples, though enor-
mously increased critical fields. This consideration
might conceivably bear on the thin persistent filaments
in high-field superconductors, if they lie along regions
of highly strained material.

If we confine our attention to homogeneous material,
then the picture is relatively simple. When a field is
applied, it depresses the surface gap to increase the
penetration depth and reduce the magnetic energy. If
the sample is thin, the gap is decreased throughout, and
may be depressed to zero. In a bulk sample, however,
the interior must retain the full gap to retain the full
condensation energy. The resistance to change of gap
in a distance less than &, then keeps the surface gap
from dropping by more than a few percent for typical
parameter values.
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