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D. H. Douglass, Jr.*

Magnetic Field Dependence
of the Superconducting Energy Gap in
Ginzburg-Landau Theory with Application to Al

Abstract: A theoretical calculation is given of the magnetic field dependence of the superconducting
energy gap, using the Ginzburg-Landau theory. In addition to depending upon the size of the specimen,
the field dependence of the energy gap depends quite strongly on the nature of the boundary conditions.
For the usual case with the magnetic field equal on opposite sides of a film, the calculations show that
for a ratio of thickness, d, to penetration depth, 2, less than /5, the energy gap goes smoothly to zero
as the critical field is approached—a second-order phase transition. When d/» > V/5, the energy gap
approaches a finite value as the critical field is approached—a first-order phase transition. Energy-gap
measurements for aluminum agree very well with these calculations. When one changes the boundary
conditions so that the magnetic field is constrained to be zero on one side of the film, the theory
predicts a very different behavior. For this case, at all thicknesses, the energy gap approaches a finite
value as the critical field is approached—a first-order phase transition. An experiment involving
cylindrical films is proposed to test this latter case. It is shown that in this proposed experiment these

boundary conditions are appropriate for predicting the current dependence of the energy gap.

Introduction

It is well known that for a bulk superconductor the
application of a sufficiently large magnetic field (the
critical field) will cause the superconductor to go into
the normal state with a corresponding absorption of
a latent heat— a first-order phase transition. In terms
of the energy-gap model, this means that at the critical
field the energy gap drops discontinuously to zero.
Since for small specimens the other magnetic proper-
ties of superconductors are very different from those
in the bulk state, one might speculate that the field
dependence of the energy gap of thin specimens is also
quite different. We shall show both theoretically and
experimentally that this is indeed true.

In the following section, theoretical calculations will
be presented showing that the field dependence of the
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energy gap does depend quite strongly on the size of
the specimen and also upon the nature of the boun-
dary conditions. In the subsequent section, direct
experimental measurements on the field dependence
of the energy gap of aluminum, obtained by the
electron tunneling technique, will be presented.

Field dependence of the energy gap: theory

In the absence of a magnetic field one can calculate
the magnitude of the energy gap from the theory of
Bardeen, Cooper, and Schrieffer! (BCS). Since, how-
ever, the BCS theory is capable of handling the
application of a magnetic field only as a perturbation,
one would expect the direct solution of their micro-
scopic equations for the full field dependence of the
energy gap to be quite difficult. On the other hand,
Gor’kov,? starting from the microscopic theory, has
derived a set of equations which are identified with the
original nonlinear phenomenological equations of




Ginzburg and Landau® (GL) and in which he showed
that the order parameter y of the GL theoryis propor-
tional to the energy gap ¢. In fact, BCS had previously
suggested that the energy gap would be a good order
parameter for nonlinear extensions of their theory.
Thus the problem of finding the field dependence of
the energy gap reduces to solving the GL equations for
the order parameter. It is rather a windfall that the
application of this suggestion has led to the GL
equations because the solutions in various special
cases have already been worked out in detail. Also, it
should be pointed out that the GL equations are valid
for strong fields; therefore one may investigate the
behavior of a superconductor near the critical field
with confidence. Thus we have a method of calcula-
ting the field dependence of the energy gap with as
much rigor as would be expected of calculations from
the microscopic theory.

There are two limitations of the GL theory. The first
is that it is true only in the local limit. This means that
the penetration depth A must be larger than the co-
herence length &, which is not usually true in the bulk
state of a superconductor. However, one would
expect that for a thin evaporated film the coherence
length would be limited by the size, d, of the crystal-
lites. Thus the condition of locality would be A > 4,
which is much easier to satisfy. The second limitation
concerns the fact that Gor’kov derived the Ginzburg-
Landau equations from the microscopic theory under
the condition that the energy gap be small compared to
its value at zero temperature and zero field. The theory
is therefore valid near the transition temperature,
where the gap is small; and for thin films, under
suitable boundary conditions, it can be made valid
even at T = 0 by applying a magnetic field.

Figure 1 Theoretical energy gap vs magnetic
field for the case of equal fields on
opposite sides of the film.

(ENERGY GAP)Z [e(H)/e(O))

0 1 ! 1 ]
0 0.2 0.4 0.6 0.8 1.0

(MAGNETIC FIELD)? (H/ Hg)?

In the GL theory y is a function of temperature,
magnetic field, and coordinates; therefore, so is the
energy gap. In general the energy gap will depend
upon position within the superconductor; however, if
di)(T) < 1/x ~ 10, where « is the nonlinear coupling
constant of the theory, the gap becomes independent
of coordinates. In the present paper we will restrict
ourselves to this case. It should be remarked here that
since the GL equations are differential equations, the
field dependence of the energy gap will depend upon
the boundary conditions. We shall show that the case
of a film with an equal magnetic field on opposite
sides is entirely different from the case of a film with
unequal fields on opposite sides. Let us take the case of
equal fields first.

® Film with external field equal on opposite sides

Consider a plate of thickness d with an external field
H, applied parallel to both surfaces. The GL equations
have already been solved for this case by Ginzburg,*®
mainly in connection with calculations of the critical
field. The two independent equations of condition
found by him are

e 462 (90> — 1)cosh?[¢od/24] .
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where ¢ = Yy(H)/Y(0), A is the temperature-dependent
London penetration depth (or perhaps an effective
penetration depth), H,, is the bulk critical field, ¢, is
the equilibrium value of ¢ in the presence of Hg, and
¢. and H,_ are the critical values. Gor’kov’s result can
be stated as

e(H)/e(0) = y(H)/[Y(0) = ¢ , 3

where ¢(H) is the energy gap. Equation (1) describes
a smooth decrease in the energy gap as the field is
increased. The field dependence of the gap for this case
has been calculated numerically and is shown in
Fig. 1 for various values of d/i. As H, — H, the gap
approaches a critical value. For this critical gap, the
superconductor is in equilibrium with the normal
state. Setting (1) equal to (2) gives ¢, from which one
can obtain H,.

For d/4 < 1, the solutions of Eqgs. (1) and (2) are
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Figure 2 Theoretical critical energy gap vs d/A
for the cases of equal and unequal fields
on opposite sides of the film.

Thus for very thin films the critical gap is zero, and the
field dependence of the gap is independent of thickness
when the external field is normalized to the critical
field of the film. A closer examination of Egs. (1) and
(2) shows that the critical gap remains zero all the way
up to d/i = \/ 5. Therefore, the superconducting phase
transition should be second order for films thinner
than this value. This result was previously given by
GL. The value of the critical gap for these boundary
conditions has been caiculated as a function of d/1 and
is shown in Fig. 2.

For small H,, Eqgs. (1) and (2) can be solved to give
an expression for the initial decrease of the energy gap
which is valid® for all 4 and is shown in Fig. 3:

&(Ho) 1 Ho\?
o) TP (Hc,,) ®
where
1sinh X — X
D) = 8 X cosh? X ©)
X =di.

® Film with the external field equal to zero on one side
and equal to H, on the other

Although the case considered previously is the one
usually encountered, this particular case is of interest
because it will point out how the boundary conditions
influence the field dependence of the gap. Also, this
analysis will describe the current dependence of the
energy gap in a cylindrical film.

This particular case has also been solved by Ginz-
burg’ and only the results will be presented here. The
first equation of condition corresponding to Eq. (1)
is

2 _, 4¢o°(1 — ¢oz)5inh2(¢od/}-) H.2
® T 14 (M2¢od)sinh(god/i) P

(10)

IBM JOURNAL »JANUARY 1962

The second equation of condition corresponding to
Eq. (2) is obtained from Eq. (10):

i
d¢o

Equations (10) and (11) are easily solved for the
limiting case when d/A < 1:

&(H.)/2(0) = /2/3 (12)
H.? = (2/3)(d|)*H.’ (13)

[ () o

or using (13)

o] - () -G o

There are several very important differences between
this and the previous example. The most striking is that
the critical energy gap is finite at all thicknesses—the
phase transition is always of first order. The critical
field is proportional to the thickness and s less than the
bulk critical field; whereas in the first case the critical
field is inversely proportional to 4 and is greater than
the bulk. critical field (see Eq. (5)). The value of the
critical gap for these boundary conditions has been
calculated numerically from Egs. (10) and (11) and is
shown in Fig. 2. The variation of the critical gap
with d/4 is, however, rather slight; for small d/A it is
2/3 and at large d/A it is /3/5.

=0, (11)

Figure 3 Theoretical quadratic coefficient vs d/a
for the case of equal fields on opposite
sides of the film.
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Direct experimental measurements of the field
dependence of the energy gap in aluminum

The energy gap of aluminum was measured directly
using the electron tunneling technique®-® with sand-
wiches of Al-Al,O;-Pb. The magnetic field was
parallel to the plane of the film to within 1°; the
experimental conditions correspond to the case of
equal fields on opposite sides of the film and the results
will be compared with the theory for this case. The
normalized energy gap vs reduced magnetic field is
shown in Fig. 4 for two films of thickness 3000 A and
4000 A. It should be noticed that for the 3000 A film,
the energy gap goes smoothly to zero as the critical
field is approached and is described quite well by the
equation [e(H,)/e(0))? = 1 — (Hy/H,)* which agrees
with Eq. (7). Measurements on two other films of
thickness 500 A and 2000 A gave similar results, and
the results on these three films were independent of
temperature over the range available (0.75 < T/T,
< 1.00). For the 4000 A film an entirely different
behavior is observed. The gap initially drops less
rapidly with field than in the previous case and, as the
critical field is approached, the energy gap drops very
abruptly from a finite value to zero; this abrupt change
usually occurs within less than 19, of the critical
field. The value of the gap just prior to this abrupt
drop will be called the critical gap. The critical gap of
the 4000 A film was found to be a function of tem-
perature.

Figure 4 Experimental measurement of the
energy gap of aluminum vs magnetic
field. The plotied lines are the best straight lines
through the data.(Case of equal fields on opposite

sides of film.)
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Figure 5 Experimental measurements of the
critical energy gap of aluminum vs d/A.
(Case of equal fields on opposite sides of film.)

Experimental measurements of the critical gap on
all four films are shown in Fig. 5 plotted against d/A.
Values of d/A for the various films were calculated!®
from the measured critical fields using the GL
theory. For a given thickness one can vary d/A over a
range of values by changing the temperature since A is
temperature-dependent. The largest attainable value of
df2.is limited by the value of 1 at low temperatures, and
the smallest value of d/A is determined by how close
one can get to the critical temperature and still have
signals big enough to measure. For the 4000 A film,

~values of d//. between 2.42 and 3.62 were obtained by

varying the reduced temperature between 0.749 and
0.965; and for the four films a total range of d/4 from
0.10 to 3.52 was obtained. It is seen that the data agree
very well with the theory when d/4 is less than 2.8. The
transition from first to second order is not inconsistent
with d/A = /5; the data show that it occurs for d/A
between 1.9 and 2.4. For d/A greater than 2.8 the value
of the critical gap deviates from the theoretical curve.
This is not surprising, since for aluminum nonlocal
effects will become important when d becomes com-
parable to A.

Summary and discussion

A theoretical calculation of the magnetic field depen-
dence of the superconducting energy gap was presen-
ted. In addition to depending upon the size of
specimen, the field dependence of the gap depends
quite strongly on the nature of the boundary condi-
tions. The calculations for the case of equal fields on
opposite sides of the film were found to be in very good
agreement with experimental measurements on films of
aluminum. The predictions of zero critical gap for
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dfA < /5 and finite critical gap for d/A > /5 seem
to be entirely borne out.

For the second case, a film with the magnetic field
constrained to be zero on one side, the theory predicts
that the critical gap will be finite at all thicknesses and
the phase transition will be first order. This case has
not been examined experimentally. One can set up
such boundary conditions by making the film multiply
connected. One appropriate experimental arrange-
ment might be an evaporated cylindrical aluminum
film on a glass cylinder with a single lead strip evapora-
ted along the axis of the cylinder after oxidation of the
aluminum. Then we will have a tunneling sandwich of
Al-Al,O4-Pb as before, but now we will have the Al
in the form of a multiply connected cylindrical
film. In the presence of an external axial magnetic field
H,, the field on the outer surface of the aluminum film
will be H,, while the field at the inner surface will be
zero since the flux will be excluded. Thus we will have
subjected the aluminum film to the boundary condi-
tions of the second case and Eq. (15) will correctly
describe the field dependence of the energy gap. As
H,— H,, given by Eq. (13), &(H,) — &(H,) as given by
Eq. (12). At H, the boundary condition H = 0 on the
inside cannot be maintained since the superconductor
goes into the normal state and the flux will leak in.
Since the field will then be the same on both sides of
the film and less than the critical field for these boun-

dary conditions (see Eq. (5)), the film cannot remain
in the normal state. It must return to the super-
conducting state. Upon further increase of the external
field this process will repeat itself, but the field
dependence of the energy gap for these latter conditions
will have to be calculated anew.

Finally, it should be pointed out that the above
boundary conditions can be set up and maintained by
passing a current parallel to the axis through the
aluminum film in the absence of any external field.
This will produce a finite field at the outer surface and
zero field at the inner surface. Thus, for this geometry,
Egs. (12) through (15) correctly describe the current
dependence of the energy gap of the aluminum film
(when d/2 < 1) where H,, is now equal to 2//r, where
r is the radius of the cylindrical film. The energy gap
will decrease as the current is increased, and as the
critical current (given by Eq. (13)) is approached the
energy gap will approach the critical value (given by
Eq. (12)). At the critical current the energy gap will
discontinuously to zero.
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