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Magnetic  Field Dependence 
of the  Superconducting Energy Gap in 
Ginzburg-Landau Theory with  Application to AI 

Abstract: A theoretical  calculation is given of  the magnetic field dependence of  the superconducting 
energy gap, using the Ginzburg-Landau theory. In addition to  depending upon the size of  the specimen, 
the field dependence of  the energy gap  depends quite strongly on the  nature  of  the boundary conditions. 
For the usual case with  the magnetic field equal on opposite sides of a  film, the calculations show that 
for a ratio of thickness, d, to  penetration depth, A, less than dg, the energy gap  goes smoothly to  zero 
as the  critical field i s  approached-a second-order phase transition.  When d /h  > dg, the energy gap 
approaches a finite value as the  critical field is approached-a first-order phase transition. Energy-gap 
measurements for  aluminum agree very  well with these calculations. When one changes the boundary 
conditions so that  the magnetic field i s  constrained to  be zero  on one  side of  the  film,  the  theory 
predicts  a  very  different behavior. For this case, at  all thicknesses, the energy gap approaches a finite 
value as the  critical field is approached-a first-order phase transition. An experiment  involving 
cylindrical films is  proposed to  test this  latter case. It is shown that  in this proposed experiment these 
boundary conditions  are  appropriate for  predicting  the current dependence of  the energy gap. 

Introduction 

It is  well known that  for  a bulk superconductor the 
application of a sufficiently large magnetic field (the 
critical field) will cause the superconductor to go into 
the  normal  state with a corresponding absorption of 
a latent heat- a first-order phase transition. In terms 
of the energy-gap model, this means that  at  the critical 
field the energy gap drops discontinuously to zero. 
Since for small specimens the  other magnetic proper- 
ties  of superconductors are very different from those 
in the bulk state,  one might speculate that  the field 
dependence of the energy gap of thin specimens is also 
quite different. We shall show both theoretically and 
experimentally that this is indeed true. 

In the following section, theoretical calculations will 
be presented showing that  the field dependence of the 
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energy gap does depend quite strongly on  the size of 
the specimen and also upon the  nature of the  boun- 
dary conditions. In the subsequent section, direct 
experimental measurements on  the field dependence 
of the energy gap of aluminum, obtained by the 
electron tunneling technique, will  be presented. 
Field dependence of  the energy gap: theory 

In the absence of a magnetic field one can calculate 
the magnitude of the energy gap from  the theory of 
Bardeen, Cooper,  and Schrieffer’  (BCS).  Since,  how- 
ever, the BCS theory is capable of handling the 
application of a magnetic field only as a  perturbation, 
one would expect the direct solution of their micro- 
scopic equations for the full field dependence of the 
energy gap to be quite difficult. On the  other  hand, 
Gor’kov,’ starting  from  the microscopic theory, has 
derived a set of equations which are identified with the 
original nonlinear phenomenological equations of 



Ginzburg and  Landau3  (GL)  and in which he showed 
that  the order  parameter $ of the GL theoryis  propor- 
tional to the energy gap E .  In  fact, BCS had previously 
suggested that  the energy gap would be  a  good  order 
parameter  for  nonlinear extensions of their theory. 
Thus the problem of finding the field dependence of 
the energy gap reduces to solving the  GL equations  for 
the  order  parameter. It is rather  a windfall that  the 
application of this suggestion has led to  the  GL 
equations because the  solutions in various special 
cases have already been worked out in detail. Also, it 
should be pointed out  that  the  GL  equations  are valid 
for  strong fields; therefore  one may investigate the 
behavior of a  superconductor  near  the critical field 
with confidence. Thus we have a method of calcula- 
ting  the field dependence of the energy gap with as 
much rigor as would be expected of calculations  from 
the microscopic theory. 

There are two  limitations of the GL theory.  The first 
is that it is true only in the local limit. This means that 
the  penetration  depth i must be larger than  the co- 
herence length r ,  which is not usually true in the bulk 
state of a  superconductor. However, one would 
expect that  for a  thin  evaporated film the coherence 
length would be limited by the size, d, of the crystal- 
lites. Thus  the condition of locality would be i > d, 
which is much easier to satisfy. The second limitation 
concerns the  fact that Gor’kov derived the Ginzburg- 
Landau  equations  from the microscopic theory  under 
the condition  that the energy gap  be small compared to 
its value at zero temperature  and zero field. The  theory 
is therefore valid near  the  transition  temperature, 
where the  gap is small;  and  for  thin films, under 
suitable  boundary  conditions,  it  can  be  made valid 
even at T = 0 by applying  a magnetic field. 

Figure I Theoretical energy gap vs magnetic 
field for the case of equal  fields  on 

In the  GL theory $ is a  function of temperature, 
magnetic field, and  coordinates;  therefore, so is the 
energy gap.  In general the energy gap will depend 
upon position within the  superconductor; however, if 
d/A(T) 4 1/ti z 10, where ti is the  nonlinear  coupling 
constant of the  theory, the  gap becomes independent 
of coordinates.  In  the present paper we  will restrict 
ourselves to this case. It should be remarked here that 
since the GL equations are differential equations,  the 
field dependence of the energy gap will depend  upon 
the  boundary  conditions. We shall show that the case 
of a film with an  equal magnetic field on opposite 
sides is entirely different from  the case of a film with 
unequal fields on opposite sides. Let us take  the case of 
equal fields first. 

Film  with externaljeld equal on opposite sides 

Consider a plate of thickness d with an external field 
H ,  applied parallel to  both surfaces. The  GL equations 
have already been solved for this case by Ginzb~rg ,~ , ’  
mainly in connection with calculations of the critical 
field. The  two  independent  equations of condition 
found by him are 

opposite sides of the film-. 

where 4 = $(H)/$(O), i is the  temperature-dependent 
London  penetration  depth  (or  perhaps an effective 
penetration  depth), Hcb is the bulk critical field, 4, is 
the equilibrium value of 4 in the presence of H,, and 
4, and H, are  the critical values. Gor’kov’s result can 
be  stated  as 

E(H)/&(O) = $W)/$(O) = 4 2 (3) 
where E ( H )  is the energy gap.  Equation (1) describes 
a smooth decrease in  the energy gap  as  the field is 
increased.  The field dependence of the  gap  for  this case 
has been calculated numerically and is shown  in 
Fig. 1 for  various values of d/A. As Ho + H, the  gap 
approaches a critical value. For this critical gap, the 
superconductor is in equilibrium with the  normal 
state. Setting (1) equal to (2) gives 4,, from which one 
can  obtain H,. 

For d/A -g 1 ,  the solutions of Eqs. (1) and (2) are 

E(H,)I&(O) = 0 3 (4) 

HC2 = 24[l/d]2H,b2 (5 )  

or, using (5) ,  

(7) 45 
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Figure 2 Theoretical  critical energy gap vs d / x  
for the cases of equal  and  unequal  fields 
on  opposite sides of  the  film. 

Thus  for very thin films the critical gap is zero, and the 
field dependence of the  gap is independent of thickness 
when the external field  is normalized to  the critical 
field  of the film. A closer examination of Eqs. (1) and 
(2) shows that  the critical gap remains zero all the way 
up  to dl,? = 4% Therefore, the superconducting phase 
transition should be second order  for films thinner 
than this value. This result was previously given by 
GL.  The value of the critical gap for these boundary 
conditions has been calculated as  a function of d/A and 
is shown in Fig. 2. 

For small H,, Eqs. (1) and (2) can be solved to give 
an expression for the initial decrease of the energy gap 
which  is valid6 for all d and is shown in Fig. 3: 

where 

D(X)  = - 1 sinh X - X 
8 X cosh' X 

X = d/A . 
Film with the externaIJield equal to zero on one side 

and equal to Ho on the other 
Although the case considered previously is the  one 
usually encountered, this particular case is  of interest 
because it  will point out how the  boundary conditions 
influence the field dependence of the  gap. Also, this 
analysis will describe the current dependence of the 
energy gap  in  a cylindrical film. 

This particular case has also been  solved  by Ginz- 
burg' and only the results will be presented here. The 
first equation of condition corresponding to Eq. (1) 
is 

The second equation of condition corresponding to 
Eq. (2)  is obtained  from  Eq. (10): 

Equations (10) and (1 1) are easily  solved for  the 
limiting case when d/A < 1 : 

E(Hc)/E(O) = J% (12) 
Hc2 = (2/3)3(d/A)2H,b2  (13) 

or using (13) 

There  are several  very important differences  between 
this and  the previous example. The most striking is that 
the critical energy gap is finite at all thicknesses-the 
phase transition is  always  of first order.  The critical 
field  is proportional to the thickness andis less than the 
bulk critical field; whereas in the first case the critical 
field  is  inversely proportional to d and is greater than 
the  bulk. critical field  (see Eq. (5)) .  The value of the 
critical gap for these boundary conditions has been 
calculated numerically from Eqs. (IO) and (1 1) and is 
shown in Fig. 2. The variation of the critical gap 
with d/A is, however, rather  slight;  for small d/A it is 
,/2/3and  at large d/A it is J3/5. 

Figure 3 Theoretical quadratic coefficient vs d/x  
for the case of equal  fields on opposite 
sides of the film. 
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Direct experimental measurements of the field 
dependence of the energy gap in aluminum 

The energy gap of aluminum was measured directly 
using the electron tunneling technique*?' with sand- 
wiches  of  Al-Al,O,-Pb. The magnetic field  was 
parallel to  the plane of the film to within 1"; the 
experimental conditions correspond to  the case of 
equal fields on opposite sides  of the film and  the results 
will be compared with the theory for this case. The 
normalized energy gap vs reduced magnetic field  is 
shown in Fig. 4 for two films  of thickness 3000 A and 
4000 A. It should be noticed that  for  the 3000 A film, 
the energy gap goes smoothly to zero as  the critical 
field  is approached and is described quite well by the 
equation [E(H~)/E(O)]' = 1 - (Ho/H,)' which agrees 
with Eq. (7). Measurements on two other films  of 
thickness 500 A and 2000 A gave similar results, and 
the results on these three films  were independent of 
temperature over the range available (0.75 < T/T, 
< 1.00). For the 4000 A film an entirely different 
behavior is observed. The gap initially drops less 
rapidly with field than in the previous case and, as the 
critical field is approached,  the energy gap drops very 
abruptly  from  a finite value to zero ; this abrupt change 
usually occurs within less than 1 % of the critical 
field. The value of the gap just prior to this abrupt 
drop will be called the critical gap. The critical gap of 
the 4000 A film  was found  to be a function of tem- 
perature. 

Figure 4 Experimental measurement of the 
energy gap of aluminum vs magnetic 
field. Theplotted lines  are the best straight lines 
through the data.(Case of equaljelds on opposite 
sides offilm.) 
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Figure 5 Experimental measurements of the 
critical energy gap of aluminum vs d/x.  
(Case of' equal fields on opposite sides of film.) 

Experimental measurements of the critical gap on 
all four films are shown in Fig. 5 plotted against d/A. 
Values of d/A for  the various films  were calculated" 
from  the measured critical fields using the GL 
theory.  For  a given thickness one can vary d/A over a 
range of  values  by changing the  temperature since A is 
temperature-dependent. The largest attainable value of 
d/A is limited by the value of A at low temperatures, and 
the smallest value of d/A is determined by how close 
one can  get to the critical temperature  and still have 
signals big enough to measure. For  the 4000 A film, 
values of d/A between 2.42 and 3.62 were obtained by 
varying the reduced temperature between 0.749 and 
0.965; and  for  the  four films a  total range of d/A from 
0.10 to 3.52 was obtained.  It is seen that  the  data agree 
very  well  with the theory when d/A is  less than 2.8. The 
transition  from first to second order is not inconsistent 
with d / l  = J5; the  data show that it occurs for d/A 
between 1.9 and 2.4. For d/A greater than 2.8 the value 
of the critical gap deviates from  the theoretical curve. 
This is not surprising, since for aluminum nonlocal 
effects  will  become important when d becomes com- 
parable to A. 
Summary and discussion 

A theoretical calculation of the magnetic field depen- 
dence of the superconducting energy gap was presen- 
ted.  In addition to depending upon the size  of 
specimen, the field dependence of the gap depends 
quite strongly on  the  nature of the  boundary condi- 
tions. The calculations for  the case of equal fields on 
opposite sides of the film  were found  to be in very good 
agreement with experimental measurements on films  of 
aluminum. The predictions of zero critical gap  for 47 
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d/A I ,Is and finite critical gap  for d/A > JS seem 
to be entirely borne  out. 

For  the second case, a film with the  magnetic field 
constrained to be zero on  one side, the theory  predicts 
that  the critical gap will be finite at all thicknesses and 
the phase  transition will be first order. This case  has 
not been examined experimentally. One can set up 
such boundary  conditions by making  the film multiply 
connected.  One  appropriate  experimental  arrange- 
ment might be an evaporated cylindrical aluminum 
film on a glass cylinder with a single lead strip  evapora- 
ted  along  the axis of the cylinder after  oxidation of the 
aluminum. Then we will have a  tunneling sandwich of 
Al-AI,O,-Pb as before, but now we  will have the AI 
in the  form of a multiply connected cylindrical 
film. In the presence of an external  axial magnetic field 
H,, the field on  the  outer surface of the  aluminum film 
will be H,, while the field at  the inner surface will  be 
zero since the flux  will  be excluded. Thus we will have 
subjected the  aluminum film to  the  boundary  condi- 
tions of the  second case and  Eq. (15)  will correctly 
describe the field dependence of the energy gap. As 
H, -+ H,,  given by Eq. (13), &(HO) + E(HJ as given  by 
Eq. (12). At H, the  boundary  condition H = 0 on  the 
inside cannot be maintained since the  superconductor 
goes into  the  normal  state  and  the flux  will leak in. 
Since the field  will then be the same on  both sides of 
the film and less than  the critical field for these boun- 

dary  conditions (see Eq. (5 ) ) ,  the film cannot  remain 
in the  normal  state.  It  must  return to the  super- 
conducting  state.  Upon  further increase of the external 
field this process will repeat itself, but  the field 
dependence ofthe energy gap  for these latter  conditions 
will have to be  calculated  anew. 

Finally, it  should be pointed out  that  the above 
boundary  conditions can be set up  and maintained by 
passing a  current parallel to the axis through  the 
aluminum film in the absence of any  external field. 
This will produce  a finite field at  the  outer surface and 
zero field at  the inner  surface.  Thus,  for this geometry, 
Eqs. (12) through (15) correctly describe the current 
dependence of the energy gap of the  aluminum film 
(when d/A < 1) where Ho is now equal to 2I/r, where 
r is the  radius of the cylindrical film. The energy gap 
will decrease as  the  current is increased, and  as  the 
critical current (given by Eq. (13))  is approached  the 
energy gap will approach  the critical value (given  by 
Eq. (12)). At the critical current  the energy gap will 
discontinuously to zero. 
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