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Solutions of the BCS Integral Equation
and Deviations from
the Law of Corresponding States

Abstract: The BCS integral equation has been studied for nonseparable interactions of the Bardeen-
Pines form, V(Jee’[). Numerical solutions were obtained using an IBM 7090 for a simple interaction of this
form which included the effect of the Coulomb repulsion. The results for the ratio of the energy gap
to the critical temperature and for the temperature dependence of the energy gap, the electronic
specific heat, and the critical field in terms of the proper reduced quantities were rather insensitive
to the form or strength of the interaction. This indicates that the BCS theory gives the law of corres-
ponding states. The calculated ratio of energy gap to critical temperature varies with the ratio of
critical temperature to the Debye temperature, and this variation is of the correct order of magni-
tude if the Coulomb interaction is included. The same model is used to study the isotope effect. With
the plausible assumption that the Coulomb cutoff is independent of the ionic mass, there are deviations

from the M-1/2 ]aw that are larger for small T ./6p superconductors.

Introduction

In the original paper of the BCS theory,' the super-
conducting state of a metal is found by minimizing the
free energy with respect to trial wave functions made
up of paired single-electron states. This leads to a non-
linear integral equation for the energy-gap function
with the electron-electron interaction occurring in the
kernel. In order to obtain analytic solutions of this
integral equation, the interaction was treated as a small
separable function which is constant. The argument
used was that, in terms of the proper reduced variables,
all superconductors behave in essentially the same way;
i.e., there is a law of corresponding states, even though
different superconductors would be expected to have
quite different band structures, phonon spectra, and
electron-electron interactions. Therefore, the super-
conducting properties should be rather insensitive to
the precise form of the interaction. The very good
agreement between the results of the theory and a
“typical” superconductor tended to justify this
approximation.

In this work, we have considered a rather different
form of the interaction in order to see if the results of
the theory really are insensitive to this form. This
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interaction is taken to be a nonseparable function of a
form more closely related to that derived by Frohlich,?
and by Bardeen and Pines.®** The effect of a Coulomb
interaction is also included, and the attractive part is
not limited to a weak interaction. The resulting com-
plication has made it necessary to obtain solutions
numerically, and these have been found on an IBM
7090 digital computer. In addition to seeing whether
the theory gives the law of corresponding states with
changes in the interaction, we were also able to deter-
mine whether the observed deviations from the law of
corresponding states in superconductors, such as Pb
and Hg, could be understood in terms of the form and
strength of the interaction.

The effect of the Coulomb interaction on the expo-
nent in the isotope effect is considered and compared
with previous calculations® based on Tolmachev’s
handling of the integral equation.® The possibility of
interpreting the experimental results of Geballe and
Matthias’ is discussed.

Formulation of the problem
We consider the trial wave function of BCS! made up




of paired single-electron states in which, at tempera-
ture 7T,

hk=%(1 —2-) 0

is the probability of occupancy of the single-electron
states kT, —kJ for the ground pairs, and

o =[P+ 1770 @)

is the thermodynamic probability of excitation out of
the ground pair state, § = 1/k,T, g is the single-
electron energy with respect to the Fermi surface, and
E, is defined by

Ey=[a’ + ACT" 3)
in terms of the parameter A, (7). Minimization of the

free energy leads to a nonlinear integral equation for
ke

A
Ay = —%Y Vi =< tanh 1E,. , (4)
& E,.

in which occurs the electron-electron interaction ¥V,
The interaction consists of the Coulomb interaction
plus a part via the phonons. The latter has been des-
?ribed by Frohlich? and by Bardeen and Pines® in the
orm

_ hwk—k'le—k'lz
(hwk—k’)z — (e — Ek')z ’

where w, is the phonon frequency of wave number q,
and M, _,. is the matrix element for the scattering of
an electron from k to k’ with the emission or absorp-
tion of a phonon.

The interaction (5) has the property that

phonon __
ka’ -

&)

VR <0 for e —&p] < hoy_y s
>0 for |e — &| > hoy_y .

In order to obtain analytic solutions of the integral
equation (4), BCS approximated the interaction by

Vae = =V for |, & both < <hwd,, , (6)

= 0 otherwise,

where V > 0. With this interaction, A, is a constant
at each temperature (denoted as &, by BCS) to a dis-
tance /i from the Fermi surface and is zero at a greater
distance. The integral equation then reduces to an
integral and can be solved analytically. In order to
include the effect of the Coulomb interaction, Tolma-
chev® used an approximation

ka/ = — V fOr lskl, ISkI' bOth < hw N
+V; for e, &| both < ho,, (7

and |g] andjor |eg|> ho

= ( otherwise,

to calculate A, at zero temperature. The solution is a
positive constant for |¢] < hw, a negative constant for
hw < |¢| < hw,, and zero for larger values of |¢]. None
of the thermodynamic functions was determined with
this solution.

If one considers the Bardeen-Pines interaction (5)
with the “‘jellium’ model for the electron-phonon
interaction, and adds to this the screened Coulomb
interaction, one obtains®

_ dne’(e, — &)* ®)
k(e — 8 + 4k ’
x [(& — &)* — 2Q,*]sin? 6/2

where 0 is the angle between k and k', kp is the Fermi
momentum, K, is the inverse Fermi-Thomas screening
length, and Q, is the plasma frequency for the positive
ions:

Q,? = 4nN(Ze)*IM, €)

with N the number of ions of charge Ze and mass M
per unit volume. In Eq. (8) the assumption is made
that the distances of k and k’ from the Fermi surface
are small compared to kr. Also, simplifying assump-
tions have been made regarding umklapp processes.

For the spherically symmetric solution, i.e., for no
anisotropy in the energy-gap function A, the integrals
over angles in Eq. (4) can be performed if one takes
principal parts in the integrand. On transforming from
|k| to x = ¢/AQ, as the independent variable, we find
for the integral equation

ka’

y(x)=—%[dx'V(x — x|) %x//) tanh {nw’, (10)

where
y(x) = A(x)[hQ, ,
w =wx') = [¢2 + Ax)?]%/hQ, ,

n = phQ,, (11)
and
1 a®x? x2 -1
V(x) == —5—— —— 12
(x) 2(x2—1)ln 1+ pEa (12)

is the interaction in terms of a? = k,%/4kz* which in
turn is proportional to the interelectron spacing. The
interaction (12) is dimensionless and includes the
density of states of the free-electron gas; it thus cor-
responds to N(0)V of BCS. A plot of this function is
given by the dashed line in Fig. 1. Equation (10) has
the trivial solution y(x) = 0. If y(x) is a nontrivial
solution, so is — y(x); we shall consider the solution
that is positive at the Fermi surface. Both solutions
lead to the same physical results. Finally the solutions
of (10) are symmetrical about the Fermi surface;
y(x) = p(—x).

Since the Bardeen-Pines interaction (12) has a
logarithmic singularity at x> = 1/(1 + a?), and since
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this singularity is probably cut off by lifetime effects,
we have carried out the initial calculations using a
square well in |¢ — ¢&'| of the form plotted by the solid
line. The Bardeen-Pines interaction changes sign at
le—¢'| = BQ,/(1 + 2a*)*. A typical value of a* for a
superconductor is 0.4 for which k> = 1.6 kg2 If the
maximum phonon wave vector in the metal is 2kp,
then from

Wy = Qk[(k* + k)"

for the phonon frequency,® one finds that the inter-
action changes sign at an energy difference equal to
kz0p, the Debye energy. This is the point at which we
take the change in sign in the simplified interaction.

In order to obtain finite solutions, the constant
repulsive interaction must be cut off. The Coulomb
interaction drops off as 1/k? to a small value at a dis-
tance of about k; from the Fermi surface. Lifetime
effects also tend to cut off the Coulomb interaction,’
but for electron-hole damping the cutoff is still at about
a distance of kz.* In order to simplify the calculation,
we have arbitrarily taken a much smaller cutoff (hw,)
of from two to four times the Debye energy. The value
of the repulsive part of the interaction was taken as
the screened Coulomb interaction averaged over the
Fermi surface.'® The strength of the attractive inter-
action is the last remaining parameter, and this is
chosen to give the desired ratio of 7,/6),.

Solutions of the integral equation

Two methods of solution of the integral equation (10)
were employed. The first was a straight iterative pro-
cedure in which a guess was made as to the form of
the function y(x); this was substituted in the right side
of the equation, and a new y(x), presumably better,
was calculated. This procedure was found to converge
only if the trial function were good enough, and then
the convergence was slow.

A second method which proved to be more powerful
was based on an idea of Tolmachev.® This consists of
a “quasi-linearization” of the equation by noting that

w=[x? + p(x)*]% = [x* + p(0)*]%,

since it is only for x ~ O (near the Fermi surface) that
y makes an important contribution to w. To allow for
a more general type of solution, we have expanded
y(x) at the Fermi surface in a Taylor expansion

y(x) = y(O)[1 — Ax*] + 0(x*) (13)
0 that a more accurate expression for w is
wa [x2 + p(0)X(1 — AxH)*]% . (14)

* On the other hand, it is thought that for the strong-coupling superconductors
for which the electron-phonon interaction is large, the cutoff may be only the
order of the energy gap from the Fermi surface, a distance smaller even than
the Debye energy (see the article by J. Bardeen in this issue, p. 3). The results
we have found are so close to those of BCS, in which they assumed weak
coupling and no Coulomb interaction, that it is doubtful that a value of
the cutoff different from what we have taken would modify these results sig-
nificantly. This does not apply to the isotope effect, however, as we shall see:
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There are no odd terms in x in the expansion (13)
since Eq. (10) is the same for y(—x) as for y(x). The
additional term in (14) allows for the possibility of a
solution in which the minimum value of w is at
x; # 0. This would mean that the energy gap would
not be 2A(e = 0) but 2E_. = 2[e;> + A (6%,
where &, = /Q,x,. For all of the solutions we found,
A was positive but it was not large enough to move the
minimum value of w away from x = 0.

The integral in (10) can now be divided into two
regions, R, near the Fermi surface, where x’ is small
enough that y(x") can be approximated by the first two
terms of (13) in the numerator of the integrand, as well
as in w’, and R, where y(x") is retained as an unknown
in the numerator. The equation then is in the form of
an inhomogeneous linear integral equation for y(x) in
R, in terms of the two parameters y(0) and 4.

y(x) = f(x) +f R(x, x")y(x)dx'; x = R, , (15)

R>

where
1
f6) = =3 f ax'V(lx = x)
Ry

12
x M tanh 3qw’ (16)

Figure 1 Plot of the interaction as a function
of the energy difference. The angular
dependence has been integrated out. The dimen-
sionless interaction contains the density of states
and corresponds to N(O)V of BCS, except that
the latter is a separable interaction and is not
a function of the energy difference. The dashed
curve is a plot of Eq. (12), the Bardeen-Pines
interaction, for a® = 0.4. This interaction is zero
at an energy difference of zero, it changes sign at
e = hQp/(1 + 2a?)172, it has a logarithmic singu-
larity at ¢ = EQp/(1 + a?)V/2, and it has the
value 0.5 (regardless of the value of a®) at ¢ =
% Qyp. The solid curve is the simplified square-well
type of interaction used in this calculation.
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Figure 2 The energy-gap function at zero tem-
perature as a function of energy for
the square-well interaction. N(0)Vaur is
the value of the attractive part of the interaction,
and N(0)Vrepuis is the value of the repulsive part.
The repulsive part was cut off at an energy
difference of 2ks8p. The dashed curves are the
corresponding BCS and Tolmachev solutions.

and

_ 1 tanh 4nw’
2 w’

x [V(x+x)+ V(x-xD]. A7)

We have made use of the fact that y(x) = y(—x); the
region R, in (15) is then only over positive x with the
definition (17). In (17), w was approximated by (14)
only to the point that (13) became negative. For larger
x, w is very nearly equal to x and was so taken.

The linear equation (15) can be solved numerically
by the usual methods to give y(x; y(0), 4). With this
solution in R, and Eq. (13) in R,, the integral in
Eq. (10) can be determined for x = R,. We then check
to see that y(x) determined in this way in R, fits Eq.
(13) with our initial parameters y(0) and A. In other
words, we vary the two initial parameters until we
have a self-consistent solution.

Both of these methods of computation were carried
out on IBM 704 and 7090 computers using the
FORTRAN method of programming. For the one case
where the same problem was done both by iteration
and by “‘quasi-linearization”, the solution y(x) agreed
to four places. Figure 2 is a plot of A(e) for tempera-
ture 7 = O with different values of the repulsive part
of the square-well interaction. The cutoff in the re-
pulsive part was taken at 26, here. Also plotted (with
the dashed lines) are the BCS and Tolmachev solutions
with the interactions (6) and (7). Notice that with the
same strength of the interaction, the solution at ¢ = 0

R(x, x") =

Figure 3 The energy-gap function for two differ-
ent temperatures as a function of
energy. The solid curves are for the cutoff of the
Coulomb interaction at an energy difference of
4k 58p. The circles are the solution at zero tem-
perature for a cutoff of 3.6kn0p.

(half the energy gap) with the nonseparable inter-
action is smaller than with the BCS or Tolmachev
interaction. Also the BCS and Tolmachev solutions
are identically zero for & larger than k6, or 2k8,
respectively, while with the nonseparable interaction
the solution goes to zero asymptotically, oscillating in
sign for the cases with a repulsive part of the inter-
action.

Figure 3 is a plot of A(g) for a stronger interaction
and at two temperatures. It was found that the solution
at T # 0 was very nearly a simple scaling of the solu-
tion at T = 0. This is illustrated in Fig. 3 where, for
this particular case, A(e, T = 0.9T,) = 0.54A(e, T = 0)
for all .

In BCS it was shown that, near T, the square of the
energy gap is a linear function of 7. The same was
found to be true for our solutions with the non-
separable potential, and this was used to determine
T., the highest temperature for which a nontrivial
solution exists. Figure 4 is a plot of the square of
A(T)—the value of A(g, T) at the Fermi surface—
versus the temperature. Both quantities are in reduced
units. A comparison is made of four solutions, the BCS
solution in the weak coupling limit as tabulated
by Miihlschlegel,!! the BCS solution in the strong
coupling limit as worked out by Thouless,? the non-
separable weak interaction, and the nonseparable
interaction used for Fig. 3, which we shall denote as
the intermediate coupling case. The limiting slope of
the curves in terms of the reduced variables is very
nearly the same for these four solutions. The points
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Figure 4 The square of the half-energy gap as a
function of temperaturenear T.. Thepoints
are calculated points. The solid lines are two of
the limiting lines at T, the upper being for square-
well intermediate coupling case calculated here
and the lower line being for the BCS weak
coupling case.1t

are calculated points while the straight lines are the
limiting lines for the BCS weak coupling case (lower
line) and the square-well nonseparable interaction for
the intermediate coupling case (upper line). The slopes
of the limiting lines are 3.03 for the BCS weak coupling
case,!! 3.00 for the BCS strong coupling case,'? and
3.18 for the intermediate coupling with the non-
separable potential used in this calculation. One sees
that the temperature dependence of the energy gap
near 7T is very little affected by the interaction.

Table I gives the results for the ratio of the energy
gap at zero temperature (2A(0)) to kT, for the various
calculations. This ratio is much more sensitive to the
form and strength of the interaction than is the tem-
perature dependence of the energy gap. For the BCS
approximation and for the nonseparable interaction,
both T,/6, and 2A(0)/k T, tend to increase with in-
creasing interaction strength. This correlation between
these two quantities is found experimentally, at least
for the nontransition elements, as indicated at the
bottom of Table I. With the BCS approximation, the
largest ratio of energy gap to T, is apparently 4.0, and
this occurs for the nonphysical situation for which
T,/8) is infinite.*

For the two cases with the nonseparable interaction
for which the coupling is weak (7,/0, < 0.01) the
ratio of energy gap to kT, is 3.5, just as in the BCS
approximation. Notice that the one solution is for zero
attractive interaction, corresponding the closest to the

* Note added in proof: P. M. Marcus (private communication) has shown that
the maximum ratio does occur at the strong-coupling limit for the BCS approx-
imation.
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Bardeen-Pines interaction. For stronger interactions,
the energy gap to k5T, ratio can be larger than 4.0, as
for example the last case, and this occurs for T,./0,
values of the same order of magnitude as those of Pb
and Hg. We have also obtained solutions for the actual
Bardeen-Pines interaction of Eq. (12) but with an
arbitrary cutoff in the singularity. For a® = 0.4, the
result is that 7,/0, = 0.01, a weak-coupling case. This
gives 3.48 for the ratio 2A(0)/k T, in agreement with
the other weak-coupling calculations.

Another comparison that can be made is to look at
different cases in which T/, is the same. For example,
T./8, = 0.22. For the BCS approximation the ratio of
energy gap to kT, is 3.65. This is increased to 3.68 on
going to the nonseparable interaction with no re-
pulsive part. Finally the ratio is larger than 4.0 when a
repulsive part of the interaction is included.

Table | The ratio of the energy gap to the
critical temperature for various cal-
culations compared to actual supercon-
ductors. 7he larger ratios of Te/0p correspond
to stronger interactions. (iwi/kr8p) is the value
of the cutoff of the repulsive interaction.

BCS Approximation
T, 2A(0)

NO)V 0o kanT.

0.15 0.001  3.526
0.30 0.040 3.532
0.45 0.12 3.569
0.625 0.22 3.65

o0 oy 4.000
Square well in |¢ — &'| (nonseparable interaction)
N(O) Vattractive N(O) Vrepulsive hwi 10 2A(0)
kslp op kBT
0 0.50 2 0.0008  3.53
0.20 0.10 2 0.007 3.52
0.20 0.50 2 0.023 3.63
0.68 0 - 0.22 3.68
1.00 0 - 0.38 4.16
0.40 0.60 4 0.21 4.01
0.60 0.60 4 0.29 4.2
Experimental results
T. 2A(0)
7)) k&T,

Aluminum?3  0.0027 3.37

Tin*4 0.019 3.1-35
Indium4 0.031 3.6
Mercury1® 0.059 4.6
Lead4 0.075 4.0-4.3




The second from the last calculation simulates the
stronger coupling superconductors Pb and Hg in
several ways. The repulsive part of the interaction
(NO)V eputsive = 0.6) is equal to the value of the
screened Coulomb interaction averaged over the
Fermi surface of Hg.1° Also the ratios 7./0, = 0.21
and 2A(0)/kzT,. = 4.0 are reasonable approximations
to the corresponding quantities for Pb and Hg. We
have denoted this calculation as the intermediate
coupling case in Figs. 3 and 4, and we have calculated
the specific heat and critical field for this case to see if
these functions approximate Pb or Hg.

Figure 5 gives the reduced energy gap as a function
of reduced temperature over the complete temperature
range. The solid line is for the BCS approximation for
both the weak-coupling!! and strong-coupling!?
limits. These two cases give the same function to the
accuracy of this graph. Incidentally, the functional
form for the strong coupling case as found by Thouless
can be expressed in the simple form

NT) T. AT)
AQ) ~ b [? ro)] ’

and this also gives the weak-coupling case within 0.1
percent error over most of the temperature range.
The fact that the temperature dependence of the energy
gap for the intermediate-coupling case, given by the
circles in Fig. 5, is nearly the same as the BCS weak-
coupling case even though 2A(0)/kT. is appreciably
larger than 3.5,is in agreement with the experimental
data on Pb.**

The specific heat and critical field

With the solutions A(e, T) discussed in the previous
section, it is possible to calculate the specific heat,
critical field, and other thermodynamic functions.
These calculations follow as in the BCS paper! with
slight modifications to allow for the energy dependence
of A. The electronic specific heat in the superconduc-
ting state is determined from the temperature de-
pendence of the entropy

CCS T dSes Ces(l) CeS(Z)

yT. T, dT ~ yT. 3T, °

(18)

where for convenience we have split C,,, into two parts:
C. M, which depends on the temperature dependence
of the distribution of quasiparticles with constant
energy gap, and C,®), which depends on the tempera-
ture dependence of A(e, T).

ClV 6(T\ (" w(x)%e™
el ), snrer @)

where (1/n) is the temperature and w and x are the
energies with respect to AQ, as in Eq. (11). Notice that
the energy-gap function A(e, T) determines w.

The second part of the reduced specific heat is

A

yT, n?
I L
d . 20
><y(O)ZL “reop W0

Here we have made the approximation that y(x) =
A(e, T)/HQ, for any particular temperature is just y(x)
for T = 0 times a factor independent of x. We have
already illustrated this for an actual solution in Fig. 3.
With this approximation,

dy(x) _ y(x) dy(0)
dT ~ y0) dT °’

and we need the derivative of the energy-gap function
with respect to temperature only at the Fermi surface.
The temperature derivative as expressed in the
bracket in (20) in reduced form is just the negative of
the slope of the plot in Fig. 4 and this approaches a
constant near T, where C,® is an important part of
C,... At T = T,, the energy gap function goes to zero
and C,*) = yT.. Thus C,,/*, which has a finite value
here, is the jump in the specific heat at T,. On the other
hand, at T = O the temperature derivative goes to
zero and the only contribution to C,; is from C,".

We have carried out numerical integrations of Egs.
(19) and (20) for the solution in the intermediate
coupling case (Fig. 3). Figure 6 gives the results near
T,. The electronic specific heat is larger for the inter-
mediate coupling case than for the BCS weak coupling

1)

Figure 5 Temperature dependence of the energy
gap in terms of reduced quantities.
The solid line is for the strong coupling limit1?
and is given by the simple functional relation.
The weak coupling limit is identical to the accu-
racy of this graph. The intermediate coupling
case with the nonseparable potential is given by
the circles and lies only slightly higher than the
BCS approximation.
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Figure 6 Temperature dependence of the super-
conducting electronic specific heat near
the critical temperature T.. The solid
lines are calculated theoretical curves. The points
are calculated from the experimental data.1%:17
The jump in the reduced specific heat at T. is
the value of the reduced specific heat minus one.

case, but the increase is not nearly large enough to
explain the results for lead. Figure 7 is a plot of the
specific heat at low temperatures. On this plot an ex-
ponential specific heat is a straight line. The inter-
mediate-coupling case lies lower than the BCS weak-
coupling case, merely reflecting the larger ratio of
energy gap to kT, in the former. The lead data begin
lower but bend above both calculated curves at the
lower temperatures. This may reflect an anisotropic
energy gap as suggested by Boorse,!® and which has
not been considered in the present calculation.

The jump in the specific heat at T, given by C,? has
a particularly simple form:

AC, _C.(T)

7T, YT,
-] - Em

® dx[y(x)/y(0)]*e*
) fo M+ @

We have made use of the fact that y(x) is zero at T,
and have transformed to ¥ = x#. The ratio [y(x)/1(0)]
is finite, and, as we have already discussed, is nearly
temperature independent. For the BCS approximation
in which A(e, T') is independent of &, y(x)/»(0) = 1,and
the integral is simply®

fw di—f = 12. (23)
0 [1 + ex]2
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For the solutions we have found, [y(x)/»(0)]* £ 1 near
the Fermi surface. Thus the integral is less than 1/2.
For the solution in the intermediate-coupling case, the
integral had the value of 0.405.

By using the experimental values for lead for the
other quantities in (22), one could hope to determine
how much smaller than 1/2the integral is,and thus how
fast A(e, T) for lead drops in value on moving from
the Fermi surface. However, substituting the experi-
mental values into (22) (even using the larger value of
4.3 for 2A/kgT,), we find that the integral must be
0.58. This can be accomplished only by having
A(e, T) increase on moving from the Fermi surface.
On the basis of the solutions that have been found of
the BCS integral equation for various interactions, it
seems unlikely that any reasonable interaction can
give such a solution. Another explanation lies in an
anisotropy of the energy gap. The ratio A(0, 0)/kT. in
Eq. (22) should involve the gap averaged in some way.
However, the actual gap measured by tunneling or by
infrared absorption would tend to be determined by
the lower edge, and this would favor the smallest of a
distribution of gaps. Such an error in our knowledge
of the gap would require that the integral be larger
than it actually is, in order for (22) to be satisfied.

Figure 7 Temperature dependence of the super-
conducting electronic specific heat at
low temperatures. The solid lines are calcu-
lated theoretical curves. The dashed curves are
experimental. The vertical bars are the estimated
experimental errors for Pb as given in Ref. 17.
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The critical field H. is found by calculating the
difference in free energy between the normal and
superconducting states:

ch Wn_ Ws T Ses"'sen
Lol I e
YL Yic e

c

where W, and W, are the energies of the normal and
superconducting states while S,, and S, are the cor-
responding electronic entropies.

N
“Sirrem) @
S”y;cse" = 7%(%)’7 J:o dx{1 Z“;,’w +In(l +e™™)
- j_xenx — In(1 + e“"")} . (26)

The contributions from the normal state, the second
term of (25) and the third and fourth terms of (26), can
be determined analytically. However, since for large x
they cancel corresponding contributions from the
superconducting state, a greater accuracy is obtained
in the numerical calculation by evaluating Egs. (25)
and (26) in the form given.

Figure 8 is a plot of the deviation of the critical

field from a parabolic curve. The experimental curves

are given by the dashed lines, and they show the up-
ward movement of the maximum deviation on going
from low to high values of 7,/0, as pointed out by
Mapother. The same trend is shown by the calculated
curves. However, the intermediate-coupling case,
which simulated lead or mercury in the ratios 7./6,
and 2A/kgT., has not moved up far enough on the
critical field curve to agree with the actual super-
conductors.

The isotope effect

The isotope effect in the BCS theory has been con-
sidered previously® by observing that when the in-
tegral equation is expressed in terms of the proper
variables, as in Egs. (10)-(12), the ionic mass does not
occur in the interaction. Hence the integral equation
itself does not depend on the mass and neither do the
solutions y(x) and 7. (the inverse critical temperature).
Then on transforming to A and 7., we find, since
Q,c M %
AO)oc M™%, T.c M™%, 27
This argument is valid only if there are no mass-
dependent cutoffs in Eq. (10). With the inclusion of

the Coulomb interaction there must be some cutoff of
the interaction as we have already discussed. If the
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Figure 8 Deviation of the critical field from a
parabolic curve. The points are calculated
from theory. The solid lines are drawn to connect
the points. The dashed curves are experimental.

cutoff is just the 1/k? decrease of the Coulomb inter-
action or if it is due to lifetime effects involving
excitation of electron-hole pairs®, then the cutoff is
mass-independent in the original integral equation (4).
This cutoff is then mass dependent after the transfor-
mation to Eq. (10), and there will be a modification of
the relations (27).

If we denote the cutoff by ¢; = fiw; (independent
of mass M) before the transformation, then after the
transformation it becomes x,; with

xl = El/th s (28)
so that for variations in the mass M

ox, 1M

i e 29
x;, 2 M (29)
Now for the energy gap at T = 0,

A(0, 0) = hQ,¥(0, 0), (30
and thus

oA 0Q, Jy

—=——f4+ =, 31
ETa (31)
Since 0Q,/Q, = — $6M/M, (29) and (31) give

oA oM

—=—-1-0—, 32
R (L (32)

where { is the coefficient in the change of y with x,,

B0 _ 5%,

= . 33
¥(0) Xy 33
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The exponent in (27) is then changed from ~1% to
— $(1— {) for the variation of the gap 2A(0, 0). The
same would be true of T, if the ratio 2A/kzT, were in-
dependent of the cutoff. According to the results in
Table 1, this is not exactly true, but the changes are
very small compared to the other effects. Thus

A(O)OCM—‘/z(l-C) , TCOCM—‘/z(l—é) . (34)

We have determined the coefficient { of Eq. (33) for
the intermediate-coupling case. Figure 3 shows the
result on the solution of varying the cutoff. The solid
line for T' = 0 is the solution for a cutoff ¢, = 4k g0,
The circles give the solution at 7 = 0 for a cutoff
&, = 3.6kg8,. Notice that the biggest effect of the
changed cutoff is at energies larger than 2kg6,. The
solution at the Fermi surface changes from 0.419 to
0.400 kg0, giving { = +0.44. Carrying out the same
calculation for the Tolmachev solution for the cor-
responding case (see Ref. 5) gives { = +0.28. Thus
the two different calculations give the same order of
magnitude correction { to the isotope effect. Since we
are only interested in the order of magnitude of {, we
shall confine our consideration to cases involving the
Tolmachev solution, inasmuch as these can be worked
out analytically.

Table 2 gives the calculated correction { to the
—1/2 exponent in the isotope effect. The results are
shown for two different cutoffs /iw, of the Coulomb
interaction. The value Aw,/k g0, of 1000 corresponds
roughly to distances in k space at which the Coulomb
interaction dies off without lifetime effects.

Table 2. Calculated correction { to the exponent
in the isotope effect

Superconductor  hwi/kg8p = 10 1000

Hg, Pb 0.3 0.05
Ru 1.3 0.4

The value for V', in Eq. (7) for the Tolmachev solu-
tion was taken to be the value of the screened Coulomb
interaction averaged over the Fermi surface. The
attractive part 7 was then chosen to give the proper
value of T,./8,. Since V, is nearly the same for all
superconductors, the main effect on { is the relative
size of T,./8p,. Thus Ru has a larger value of { than Hg
or Pb because it has a smaller 7, and this agrees with
the experiments.” In fact, according to our model,
there is no reason why { can not be larger than one,
leading to a positive exponent in the isotope effect.

Our model would predict an exponent near zero for
Os (as is found”), but the exponent for Zn should be
intermediate between that of Pb and Hg on the one
hand, and Ru and Os on the other. This is so because
the value of T,/8,, for Zn is intermediate among values
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of T,/6, for these other superconductors. However,
the experimental results’ are that Zn has an exponent
of —0.5. Thus the model breaks down for this case.
In fact, the experimental results indicate, for the seven
superconductors tested, that the exponent is either
~ 1/2 or 0, while our model predicts a smooth variation
from —1/2to 0. An alternative explanation of the lack
of an isotope effect in the transition elements Os and
Ru has been suggested by Matthias. He has proposed
that the transition elements may become supercon-
ducting through an interaction other than the electron-
phonon interaction, so that there is no effect of the
ion mass on the transition. However, in order for the
result to be explainable for Zn, the nontransition ele-
ment superconductors must have a cutoff in the
Coulomb interaction that is proportional to M~ 2,
The explanation of such a cutoff remains an unsolved
problem.

Conclusions

We have seen that with quite different forms and
strengths for the interaction Vy., the results of the
BCS theory are nearly invariant. This result is similar
to that found earlier by the author?* for the specific
case of the relation between the energy gap and
critical field at zero temperatures. These results indi-
cate that the theory is probably insensitive to the
effects of bands, and they explain the experimentally
found law of corresponding states.

In considering the deviations from the law of cor-
responding states, the theory worked out here can
essentially account for the variations in the ratio of
energy gap to critical temperature. It also shows that
even when this ratio differs from the value of 3.5, the
reduced energy gap as a function of reduced tempera-
ture is nearly invariant, as has been found experi-
mentally. In the case of the critical field and the
specific heat near T, the model gives variations in the
right direction as a function of T,./6,, but the varia-
tions are nearly an order of magnitude too small. It is
probably necessary to include anisotropies and life-
times in order to understand the actual deviations
from the law of corresponding states for these thermo-
dynamic functions.

By making the additional plausible assumption that
the cutoff in the Coulomb interaction is independent
of the ionic mass, this model also gives the deviation
of the isotope effect from the M~ 1/2 dependence. The
calculations are in qualitative agreement with the
results of nearly the M~ 1/2 dependence for Pb, Hg, T1,
and Sn while the lack of an isotope effect in Ru and
Os (Ref. 7) is also understood. However, the results
with Zn (Ref. 7) can not be explained by this model.
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