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Solutions of the BCS Integral Equation 
and  Deviations  from 
the Law of Corresponding  States 

Abstract: The BCS integral  equation has  been studied for nonseparable interactions  of the Bardeen- 
Pines form, V ( ~ E E ’ ~ ) .  Numerical solutions were  obtained usingan IBM 7090 for a  simple interaction  of this 
form which included the effect of  the Coulomb repulsion. The results for  the  ratio  of  the energy gap 
to  the  critical  temperature and for  the  temperature dependence of the energy gap, the electronic 
specific  heat,  and the  critical field in terms of  the  proper reduced quantities  were rather insensitive 
to  the  form  or strength  of  the interaction.  This indicates that  the BCS theory gives the law of corres- 
ponding states. The calculated ratio  of energy gap to  critical  temperature varies with  the  ratio of 
critical  temperature to  the Debye temperature, and this variation i s  of the correct  order  of magni- 
tude if the Coulomb interaction i s  included. The same model i s  used to  study the isotope effect. Wi th  
the plausible assumption that  the Coulomb  cutoff is independent of  the ionic mass, there  are deviations 
from  the “ ‘12  law that  are  larger  for small T,/eD superconductors. 

Introduction 

In  the original  paper of the BCS theory,’ the super- 
conducting  state of a  metal is found by minimizing the 
free energy with respect to trial wave functions  made 
up of paired single-electron states.  This  leads to a non- 
linear  integral  equation  for  the energy-gap function 
with the  electron-electron  interaction  occurring in  the 
kernel. In order to  obtain analytic  solutions of this 
integral  equation,  the  interaction was treated  as  a  small 
separable  function which is  constant.  The  argument 
used was that, in  terms of the  proper reduced variables, 
all  superconductors  behave in essentially the same  way; 
i.e., there  is  a  law of corresponding  states, even though 
different superconductors would be expected to have 
quite different band  structures, phonon spectra, and 
electron-electron  interactions.  Therefore, the super- 
conducting  properties  should  be  rather insensitive to 
the precise form of the  interaction. The very good 
agreement between the results of the theory and a 
“typical”  superconductor  tended to justify  this 
approximation. 

In  this work, we have considered a rather different 
form of the  interaction  in  order to see if the results of 

14 the  theory really are insensitive to this  form.  This 

IBM JOURNAL JANUARY 1962 

interaction is taken to be a nonseparable  function of a 
form  more closely related to  that derived by Frohlich,’ 
and by Bardeen and  pine^.^.^ The effect  of a Coulomb 
interaction is also  included, and  the  attractive  part is 
not limited to a weak interaction.  The resulting com- 
plication  has  made  it necessary to obtain  solutions 
numerically, and these have been  found on  an IBM 
7090 digital  computer.  In  addition to seeing whether 
the  theory gives the law of corresponding  states with 
changes  in the interaction, we were also  able to deter- 
mine  whether the observed deviations  from the law of 
corresponding  states in superconductors, such as  Pb 
and Hg,  could  be  understood in terms of the  form  and 
strength of the interaction. 

The effect of the  Coulomb interaction on  the expo- 
nent  in  the  isotope effect is considered and  compared 
with previous  calculations5 based on Tolmachev’s 
handling of the integral  equation.6 The possibility of 
interpreting the experimental results of Geballe and 
Matthias’ is discussed. 

Formulation  of  the  problem 

We consider the trial wave function of BCS’ made up 



of paired single-electron states  in which, at tempera- 
ture T, 

h k = f j l - s )  

is the  probability of occupancy of the single-electron 
states k t ,  - k l  for  the ground  pairs,  and 

fk = [EpEk + I]-’ ( 2 )  

is the thermodynamic  probability of excitation out of 
the  ground  pair  state, p = I/k,T, &k is the single- 
electron energy with respect to  the  Fermi surface, and 
Ek is defined by 

E,= [ck2 + Ak2]% (3) 

in terms of the  parameter Ak(T). Minimization of the 
free energy leads to a nonlinear  integral  equation for 
Ak, 

in which occurs  the  electron-electron  interaction vkkr .  

The  interaction consists of the  Coulomb  interaction 
plus a part via the  phonons.  The  latter has been des- 
cribed by Frohlich’ and by Bardeen and Pines3 in  the 
form 

where oq is the  phonon frequency of wave number q, 
and M k - k ‘  is the  matrix element for  the scattering of 
an electron  from k to k’ with the emission or  absorp- 
tion of a  phonon. 

The  interaction ( 5 )  has  the  property  that 

v{tpno” < 0 for I&k - Ek.1 < h w k - k ,  , 

> 0 for I&k - EL.( > hwk-kf  . 
In order to obtain  analytic  solutions of the  integral 
equation (4), BCS approximated the interaction by 

Vkk, = -v for [ELI, IEk‘I both < (hw),, , (6) 

= 0 otherwise, 

where V > 0. With this  interaction, Ak is a constant 
at each  temperature  (denoted  as E,, by  BCS) to a  dis- 
tance Ao from  the  Fermi surface and is zero at  a  greater 
distance. The integral  equation  then reduces to  an 
integral and  can be solved analytically. In  order  to 
include  the effect of the  Coulomb interaction,  Tolma- 
chev6 used an approximation 

vkk, = - I/ for IEkl, 1Ek.l both < h o  , 
= -k for (Ek(,  1Ek.1 both < hW1 , (7) 

and  and/or I E ~ ~  > ho 

= 0 otherwise, 

to calculate Ak at zero  temperature.  The  solution is a 
positive constant  for / E /  < ho, a negative constant  for 
Am < / E /  < hw,, and zero  for  larger values of / E ] .  None 
of the thermodynamic  functions was determined with 
this  solution. 

If  one  considers  the Bardeen-Pines interaction (5) 
with the “jellium” model for  the electron-phonon 
interaction,  and  adds to this the screened Coulomb 
interaction,  one obtains’ 

x [(ck - E ~ ) ’  - h2~2,2]sin2 8/2 

where f3 is the angle between k and k’, k ,  is the Fermi 
momentum, k,  is the inverse Fermi-Thomas screening 
length,  and Q p  is the  plasma frequency for  the positive 
ions : 

Qp2 = 4 7 r N ( ~ e ) ’ / ~ ,  (9) 

with N the  number of ions of charge Ze and mass M 
per  unit  volume. In  Eq. (8) the  assumption  is  made 
that  the distances of k and k’ from  the  Fermi surface 
are small  compared to kF. Also, simplifying assump- 
tions have been made  regarding umklapp processes. 

For  the spherically symmetric solution, i.e., for no 
anisotropy  in  the energy-gap function Ak, the integrals 
over angles in Eq. (4) can be performed if one  takes 
principal  parts in  the  integrand.  On transforming  from 
Ikl to x = E / ~ Q ~  as  the independent  variable, we find 
for  the integral  equation 

y(x) = - $ J dx’li(1x - x‘l) - tanh $ q w ’  , (10) 

where 

Y(X‘) 
W 

Y ( 4  = A(x)/hQ, 7 

W’ E w(x’) = [E’’ + A(~’)’]”/hn, , 

rl= phn, 3 (11) 
and 

x’ - 1 
2 (x’ - 1) 

is  the  interaction  in terms of a’ = kS2/4kF2 which in 
turn is  proportional to the  interelectron spacing. The 
interaction (12) is dimensionless and includes the 
density of states of the free-electron gas;  it  thus  cor- 
responds to N(0)V of  BCS. A  plot of this  function is 
given by the  dashed  line in Fig. 1 .  Equation (10) has 
the  trivial  solution y(x)  E 0. If y(x) is a  nontrivial 
solution, so is -y(x); we shall  consider the solution 
that is positive at  the  Fermi surface.  Both  solutions 
lead to the same physical results. Finally the solutions 
of (10) are symmetrical about  the  Fermi  surface; 

Since the Bardeen-Pines interaction (12) has a 
logarithmic singularity at x’ = 1/(1 + a’), and since 

Y ( 4  = J4-X) .  
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this  singularity is probably  cut off by lifetime effects, 
we have carried out  the initial  calculations using a 
square well in I E  - E ’ I  of the  form plotted by the solid 
line. The Bardeen-Pines interaction  changes sign at 
J E - E ’ I  = AR,/(l + 2 ~ ’ ) ~ .  A typical value of u2 for a 
superconductor is 0.4  for which kS2 = 1.6 k,’. If the 
maximum  phonon wave vector in  the  metal is 2k,, 
then  from 

wk = R,k/(kz + k,Z)” 

for  the  phonon frequency,8 one finds that  the inter- 
action  changes sign at  an energy difference equal  to 
k,8,, the Debye energy. This is the  point at which we 
take  the change in sign in the simplified interaction. 

In order to obtain finite solutions,  the  constant 
repulsive interaction  must be cut off. The  Coulomb 
interaction  drops off as l/k2  to a  small value at  a dis- 
tance of about k, from  the  Fermi surface. Lifetime 
effects also  tend to cut off the  Coulomb interaction,’ 
but  for electron-hole  damping the cutoff is still at  about 
a  distance of k,.* In order  to simplify the calculation, 
we have  arbitrarily  taken  a  much smaller cutoff (hw,) 
of from  two to four  times the Debye energy. The value 
of the repulsive part of the interaction was taken  as 
the screened Coulomb  interaction averaged over the 
Fermi surface.” The strength of the attractive  inter- 
action  is  the  last  remaining  parameter,  and  this  is 
chosen to give the desired ratio of T,/d,. 

Solutions of the integral equation 

Two  methods of solution of the  integral  equation (10) 
were employed. The first was a  straight  iterative  pro- 
cedure in which a guess was made  as to the  form of 
the  function y (x )  ; this was substituted  in the right side 
of the  equation,  and  a new y(x), presumably  better, 
was calculated.  This  procedure was found to converge 
only if the trial  function were good  enough, and  then 
the convergence was slow. 

A second method which proved to be more powerful 
was based on  an idea of Tolmachev.6  This consists of 
a “quasi-linearization’’ of the  equation by noting that 

w = [x’ + y(x)”” % [x’ + y(0)2]” , 
since it is only for x M 0 (near  the  Fermi surface) that 
y makes an  important  contribution  to w. To allow for 
a  more  general  type of solution, we have  expanded 
y (x )  at the  Fermi  surface  in  a  Taylor  expansion 

y(x) = y(o)[l - A ~ Z I +  0(x4) (13) 

w w [x’ + y(0)2(l - Ax’)2]” . (14) 

so that a  more  accurate expression for w is 

for which the electron-phonon interaction is large, the cutoff may be only the 
* On the other hand, it is thought that for the strong-coupling superconductors 

order of the energy gap from the Fermi surface, a distance smaller even than 
the Debye energy (see the article by J. Bardeen in this issue, p. 3). The results 
we have found are so close  to those of BCS, in which they assumed weak 
coupling and no Coulomb interaction, that it  is doubtful that a value of 
the cutoff different from what we have taken would modify these results sig- 

16 nificantly. This does not apply to the isotope effect, however, as we shall see. 
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There are  no  odd terms in x in  the expansion (13) 
since Eq. (10) is the same for y( - x )  as  for y(x) .  The 
additional  term  in (14) allows for  the possibility of a 
solution  in which the minimum value of w is at  
x 1  # 0. This would mean that  the energy gap would 
not be ~ A ( E  = 0)  but 2Emin= 2[~ , ’  + A (e l ) ’ ]” ,  
where E~ = AR,xl. For  all of the solutions we found, 
A was positive but  it was not large  enough to move the 
minimum value of w away from x = 0. 

The integral in (10) can now  be divided into two 
regions, R ,  near  the  Fermi  surface,  where x‘ is small 
enough that y(x’) can be  approximated by the first two 
terms of (1 3) in  the  numerator of the integrand, as well 
as  in w‘, and R, where y(x’ )  is  retained as  an unknown 
in the  numerator.  The  equation  then is in  the  form of 
an inhomogeneous  linear  integral  equation for y (x )  in 
R,  in  terms of the  two  parameters y(0) and A .  

Y ( X >  = f W  + J R W ,  ~ ’ M x ‘ )   d x ‘ ;  x = Rz  , (15) 

where 

1 
f(x) = - 2 6, dx’V(lx - x’l) 

X 
y(O)(l - Ax’,) 

W’ 
tanh +qw’ (16) 

Figure I Plot of the interaction as a function 
of the energy  difference. The  angular 
dependence  has  been integrated out. The dimen- 
sionless interaction contains the density of states 
and corresponds to N(0)V of BCS, except that 
the latter is a separable interaction and  is not 
a function of  the energy diference. The dashed 
curve is  a plot of Eq. (12), the Bardeen-Pines 
interaction, for a2 = 0.4. This interaction is zero 
at an energy dtrerence of zero, it changes sign at 
E = hn,/(l + 2a91’2, it has a logarithmic singu- 
larity at E = hR,/(l + a2)1/2, and it has the 
value 0.5 (regardless of the  value of a2>  at e = 
h ClP. The solid curve  is  the simplified square-well 
type of interaction used in this calculation. 

I E N E R G Y  D I F F E R E N C E  E/kBBD 
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Figure 2 The energy-gap function at zero tem- 
perature as a function of energy for 
the square-well interaction. N ( 0 ) ~ A t t ,  is 
the  value of the attractive part of the interaction, 
and N(0)VRepuls is  the  value of the repulsive part. 
The repulsive part was  cut of f  at an energy 
dlrerence of 2 k s e ~ .  The dashed curves are the 
corresponding BCS and Tolmachev solutions. 

and 

R(x,  x’) = - - 
1 tanh Jqw‘ 
2 w’ 

X [v(X + X’) + V ( ~ X  - .’()I . (17) 
We have made use of the  fact  that y(x) = y( - x); the 
region R ,  in (15) is  then  only over positive x with the 
definition (17). In (1  7), w was approximated by  (14) 
only to  the  point  that (13) became negative. For larger 
x, w is very nearly equal to x and was so taken. 

The  linear  equation (15) can be solved numerically 
by the usual  methods to give y(x; y(O), A) .  With  this 
solution  in R,  and Eq. (13) in R , ,  the integral in 
Eq. (10) can be determined for x c R , .  We then check 
to see that y(x) determined in this way in R ,  fits Eq. 
(13) with our initial  parameters y(0) and A .  In other 
words, we vary the two  initial  parameters  until we 
have a self-consistent solution. 

Both of  these  methods of computation were carried 
out  on IBM 704 and 7090 computers using the 
FORTRAN method of programming. For  the  one case 
where the  same  problem was done  both by iteration 
and by “quasi-linearization”,  the  solution y(x) agreed 
to four places. Figure 2 is a plot of A(&) for  tempera- 
ture T = 0 with different values of the repulsive part 
of the square-well interaction.  The cutoff in the re- 
pulsive part was taken at 2k0, here. Also plotted (with 
the  dashed lines) are  the BCS and  Tolmachev  solutions 
with the interactions (6) and (7). Notice that with the 
same  strength of the interaction, the solution at E = 0 17 
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Figure 3 The energy-gap function for two differ- 
ent  temperatures as a function of 
energy. The solid curves are for the  cutoff of the 
Coulomb interaction at an energy difference of 
4 k ~ 0 ~ .  The circles are the solution at zero tem- 
perature for a cutoff of 3.6ksO~. 

(half the energy gap) with the nonseparable  inter- 
action  is smaller than with the BCS or Tolmachev 
interaction. Also the BCS and  Tolmachev  solutions 
are identically zero  for E larger than k0, or 2k0, 
respectively, while with the nonseparable  interaction 
the solution goes to zero asymptotically, oscillating in 
sign for  the cases with a repulsive part of the inter- 
action. 

Figure 3 is a plot of A(&) for  a  stronger  interaction 
and  at two  temperatures. It was found  that  the solution 
at T # 0 was very nearly a simple scaling of the solu- 
tion at T = 0. This is illustrated  in Fig. 3 where, for 
this  particular case, A(&, T = O.9Tc) x 0.54A(~, T = 0) 
for all E. 

In BCS it was shown that, near T,, the  square of the 
energy gap is a linear  function of T. The  same was 
found to be true  for  our solutions with the non- 
separable  potential,  and  this was used to determine 
T,, the highest temperature  for which a  nontrivial 
solution exists. Figure  4 is a  plot of the  square of 
A(T)-the value of A(&, T)  at the  Fermi surface- 
versus the  temperature. Both quantities  are in reduced 
units.  Acomparison is made of four  solutions, the BCS 
solution in  the weak coupling limit as  tabulated 
by Muhlschlegel,” the BCS solution  in the  strong 
coupling  limit as worked out by Thouless,”  the  non- 
separable weak interaction,  and  the  nonseparable 
interaction used for Fig. 3, which we shall  denote  as 
the intermediate coupling case. The limiting slope of 
the curves in terms of the reduced variables is very 
nearly the same for these four  solutions. The points 
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Figure 4 The square of the half-energy gap  as a 
function of temperature near T,. Thepoints 
are calculated points.  The solid lines are two of 
the limiting lines at  T,, the upper being for  square- 
well intermediate coupling case calculated here 
and the lower line being for the BCS weak 
coupling case.’ 

are  calculated  points while the  straight lines are  the 
limiting lines for  the BCS weak coupling  case (lower 
line) and  the square-well nonseparable  interaction for 
the  intermediate  coupling case (upper line). The slopes 
of the limiting lines are 3.03 for  the BCS weak coupling 
case,” 3.00 for  the BCS strong  coupling  case,” and 
3.18 for  the intermediate  coupling with the  non- 
separable  potential used in  this  calculation.  One sees 
that  the  temperature  dependence  of  the energy gap 
near T, is very little affected by the interaction. 

Table I gives the results for  the  ratio of the energy 
gap at zero  temperature (2A(O)) to k,T, for  the various 
calculations.  This  ratio  is  much  more sensitive to  the 
form  and  strength of the  interaction  than is the  tem- 
perature  dependence of the energy gap. For  the BCS 
approximation  and  for  the nonseparable  interaction, 
both T,/e, and 2A(0)/k,Tc tend to increase with in- 
creasing  interaction  strength.  This  correlation between 
these two  quantities is found  experimentally, at least 
for  the  nontransition elements, as indicated at  the 
bottom of Table I. With the BCS approximation,  the 
largest  ratio of energy gap  to T, is apparently 4.0, and 
this  occurs for  the nonphysical  situation for which 
Tc.eD is infinite.* 

For  the  two cases with the nonseparable  interaction 
for which the coupling is weak (Tc/OD < 0.01) the 
ratio  of energy gap  to k,T, is 3.5, just  as  in  the BCS 
approximation.  Notice  that  the  one  solution is for  zero 
attractive  interaction,  corresponding the closest to  the 

Bardeen-Pines interaction. For stronger  interactions, 
the energy gap  to k,Tc ratio  can be larger than 4.0, as 
for example the last case, and this  occurs for Tc/9D 
values of the same  order of magnitude as those of Pb 
and  Hg. We have also  obtained  solutions  for the  actual 
Bardeen-Pines interaction of Eq. (12) but with an 
arbitrary cutoff in  the  singularity. For uz = 0.4, the 
result is that Tc/OD = 0.01, a weak-coupling case. This 
gives 3.48 for  the  ratio 2A(0)/kBT, in agreement with 
the  other weak-coupling calculations. 

Another  comparison  that  can  be  made  is to look at 
different cases in which Tc/dD is the same. For example, 
T,/O, = 0.22. For the BCS approximation  the  ratio  of 
energy gap  to k,T, is 3.65. This is increased to 3.68 on 
going to the  nonseparable  interaction with no re- 
pulsive part. Finally the  ratio is larger than 4.0 when a 
repulsive part of the  interaction  is included. 

Table I The  ratio of the energy gap to  the 
critical temperature for various cal- 
culations compared to actual supercon- 
ductors. The larger ratios of T c / O D  correspond 
to stronger interactions. (hwl /kdD)  is the value 
of the cutof of the repulsive interaction. 

0.15 0.001 3.526 
0.30 0.040 3.532 
0.45 0.12 3.569 
0.625 0.22 3.65 
co 03 4.000 

Square well in I E - E ’ \  (nonseparable interaction) 
N(0)Vattractive N ( 0 )  Vrepulsive hwl Tc 2h(0) 

k d o  O D  kBTc 
- - 

0 0.50 2 0.0008 3.53 
0.20 0.10 2 0.007 3.52 
0.20 0.50 2 0.023 3.63 

0.68 0 - 0.22 3.68 
1 .oo 0 - 0.38 4.16 

0.40 0.60 4 0.21 4.01 
0.60 0.60 4 0.29 4.2 

Experimental results 
Tc 2 W )  
OD ksTc  
- -. 

~~ ~ 

Aluminuml3 0.0027 3.37 
Tin l4 0.019 3.1-3.5 
Indium14 0.03 1 3.6 
Mercuryls 0.059 4.6 

the maximum ratio does occur at the strong-coupling limit for the BCS approx- 
* Note added in proof. P. M. Marcus (private communication) has shown that Lead 14 0.075 4.0-4.3 
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The second from  the last  calculation simulates the 
stronger  coupling  superconductors Pb and  Hg  in 
several ways. The repulsive part of the  interaction 
(N(0)Vrepulsive = 0.6) is  equal to  the value of the 
screened Coulomb  interaction averaged over the 
Fermi  surface of Hg." Also the ratios T,/O, = 0.21 
and 2A(0)/k,Tc = 4.0 are  reasonable  approximations 
to the  corresponding  quantities  for Pb  and Hg. We 
have denoted  this  calculation as  the intermediate 
coupling  case in Figs. 3 and 4, and we have calculated 
the specific heat  and  critical field for this case to see if 
these functions  approximate Pb  or  Hg. 

Figure  5 gives the  reduced energy gap  as a function 
of reduced temperature  over  the  complete  temperature 
range. The solid line is for  the BCS approximation  for 
both  the weak-coupling' ' and strong-coupling" 
limits. These  two cases give the  same  function to  the 
accuracy of this  graph. Incidentally, the functional 
form  for  the  strong  coupling case as  found by Thouless 
can be expressed in the simple form 

and this  also gives the weak-coupling case within 0.1 
percent error over most of the  temperature  range. 
The fact that  the temperature dependence of the energy 
gap  for  the intermediate-coupling  case, given by the 
circles in  Fig. 5, is nearly the same as  the BCS weak- 
coupling case even though 2A(0)/k,TC is appreciably 
larger than 3.5,is in agreement with the  experimental 
data  on Pb.I4 

The specific heat and critical field 

With the solutions A(&, T )  discussed in  the previous 
section, it  is possible to calculate the specific heat, 
critical field, and  other  thermodynamic  functions. 
These calculations follow as  in  the BCS paper' with 
slight modifications to allow for  the energy dependence 
of A. The electronic specific heat in  the  superconduc- 
ting  state is determined  from  the  temperature  de- 
pendence of the  entropy 

where for convenience we have split C,,, into  two  parts : 
CeS(l), which depends on  the  temperature dependence 
of the  distribution of quasiparticles with constant 
energy gap, and CeS('), which depends on  the tempera- 
ture  dependence of A(&, T).  

where (l/q) is the  temperature  and w and x are  the 
energies with respect to hQ, as in Eq. (1 1). Notice that 
the energy-gap function A(&, T )  determines w. 

The second part of the reduced specific heat is 

Here we have made  the  approximation  that y ( x )  = 
A(&, T)/tiO, for  any particular  temperature is just y(x) 
for T = 0 times a  factor  independent of x .  We have 
already  illustrated  this  for an  actual solution  in Fig. 3. 
With  this  approximation, 

and we need the derivative of the energy-gap function 
with respect to temperature only at  the  Fermi surface. 
The temperature derivative as expressed in  the 
bracket in (20) in reduced form is just  the negative of 
the slope of the  plot  in Fig. 4 and this  approaches  a 
constant  near T, where CeS(') is an  important  part of 
Ces. At T = T,, the energy gap  function goes to zero 
and C,s(l) = yT,. Thus CeS('), which has  a finite value 
here, is the  jump  in  the specific heat at T,. On  the  other 
hand, at T = 0 the  temperature derivative goes to 
zero and  the only contribution to C,, is from CeS('). 

We have carried out numerical  integrations of Eqs. 
(19) and (20) for  the  solution in  the intermediate 
coupling case (Fig. 3). Figure 6 gives the results near 
T,. The electronic specific heat is larger  for the inter- 
mediate  coupling case than for  the BCS weak coupling 

Figure 5 Temperature dependence of the energy 
gap in  terms of reduced  quantities. 
The solid line is for the strong coupling limitI2 
and is  given by the simple  functional relation. 
The weak coupling limit  is  identical to the accu- 
racy of this graph. The intermediate coupling 
case  with the nonseparable potential is  given by 
the circles and lies  only  slightly higher than the 
BCS approximation. 

1 t 
2 i 
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I T / T ~  

Figure 6 Temperature dependence of the super- 
conducting electronic specific heat near 
the critical temperature T,. The solid 
lines are calculated theoretical curves. The points 
are calculated from the experimental data.16-17 
The jump in the reduced specific heat at T,  is 
the value of the reduced specific heat minus one. 

case, but  the increase is not nearly large  enough to  
explain the results for lead.  Figure 7 is a plot of the 
specific heat at low temperatures. On this  plot an ex- 
ponential specific heat is a straight line. The inter- 
mediate-coupling case lies lower than  the BCS weak- 
coupling case, merely reflecting the larger  ratio of 
energy gap  to kBTc in  the former. The lead data begin 
lower but bend above both calculated curves at the 
lower temperatures.  This  may reflect an anisotropic 
energy gap  as suggested by Boorse,” and which has 
not been considered in  the present  calculation. 

The  jump  in  the specific heat at Tc given by Ces(2) has 
a particularly simple form: 

We have  made use of the fact that y(x) is  zero at Tc, 
and have transformed to  2 = x?. The  ratio [y(x)/y(O)] 
is finite, and,  as we have already discussed, is  nearly 
temperature  independent. For  the BCS approximation 
in which A(&, T )  is  independent of E ,  y(x)/y(O) = 1, and 
the integral  is simply’ 

1 
For  the solutions we have found, [y(x>/y(O)l2 5 1 near 
the  Fermi surface. Thus  the integral is less than 1/2. 
For  the  solution  in  the intermediate-coupling case, the 
integral  had the value of 0.405. 

By using the  experimental values for  lead  for  the 
other  quantities in (22), one  could  hope to determine 
how  much smaller than  1/2the integral is, and  thus how 
fast A(&, T )  for lead drops  in value on moving from 
the  Fermi surface. However, substituting the experi- 
mental values into (22) (even using the  larger value of 
4.3 for 2A/kBTc), we find that  the integral  must  be 
0.58. This can be  accomplished only by having 
A(&, T )  increase on moving from  the  Fermi surface. 
On  the basis of the solutions that have been  found of 
the BCS integral  equation for various  interactions,  it 
seems unlikely that  any reasonable  interaction  can 
give such a solution.  Another  explanation lies in  an 
anisotropy of the energy gap.  The  ratio A(0, O)/kBTc in 
Eq. (22) should involve the  gap averaged in  some way. 
However, the  actual  gap  measured by tunneling or by 
infrared  absorption would tend to be  determined by 
the lower edge, and this would favor the smallest of a 
distribution of gaps. Such an error  in  our knowledge 
of the  gap would  require that  the  integral be larger 
than  it actually is, in  order  for (22) to be satisfied. 

Figure 7 Temperature dependence of the super- 
conducting electronic specific heat at 
low temperatures. The solid lines are calcu- 
lated theoretical curves. The dashed curves are 
experimental. The vertical bars are the estimated 
experimental errors for  Pb  as given in Ref. 17. 
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The critical field H, is found by calculating the 
difference in free energy between the  normal and 
superconducting  states : 

where Wn and Ws are  the energies of the  normal  and 
superconducting  states while Sen and S,, are  the  cor- 
responding  electronic  entropies. 

- + w2 1 (25) 
w(1 + eqW) ' 

-" ln(1 + e".)) . (26) 
1 + evx 

The  contributions  from  the  normal  state,  the second 
term of (25) and  the  third  and  fourth  terms of (26), can 
be  determined analytically. However, since for large x 
they cancel corresponding  contributions  from the 
superconducting  state,  a  greater accuracy is obtained 
in  the  numerical  calculation by evaluating Eqs. (25) 
and (26) in  the  form given. 

Figure 8 is a  plot of the  deviation of the critical 
field from  a  parabolic  curve.  The  experimental  curves 
are given by the  dashed lines, and they show the up- 
ward movement of the maximum deviation on going 
from low to high values of TC/9D as  pointed out by 
Mapother.  The  same  trend is shown by the  calculated 
curves. However, the  intermediate-coupling case, 
which simulated lead or mercury in  the  ratios TJ9, 
and 2A/k,Tc, has not moved up  far  enough on the 
critical field curve to agree with the  actual  super- 
conductors. 

The isotope effect 

The isotope effect in the BCS theory  has been con- 
sidered previously' by observing that when the  in- 
tegral  equation is expressed in terms of the  proper 
variables, as  in Eqs. (10)-(12), the  ionic mass does  not 
occur in  the interaction. Hence the  integral  equation 
itself does  not  depend on the mass and neither do the 
solutions y(x) and qc (the inverse critical temperature). 
Then  on transforming to A and T,, we find, since 
R, oc "" , 

A(O)CC M-" , T,K M - " .  (27) 

This  argument is valid only if there  are no mass- 
dependent cutoffs in  Eq. (10). With the inclusion of 
the  Coulomb  interaction  there  must be some cutoff of 
the interaction  as we have already discussed. If the 

\ 
\ 
\ 

Figure 8 Deviation of the  critical field from  a 
parabolic curve. The  points are calculated 
from theory. The solid lines are drawn to connect 
the points.  The dashed curves are experimental. 

cutoff is just  the l/k2 decrease of the  Coulomb inter- 
action or if it is due  to lifetime effects involving 
excitation of electron-hole pairs', then  the cutoff is 
mass-independent in  the original  integral  equation (4). 
This cutoff is  then mass dependent  after  the  transfor- 
mation to Eq. (lo), and there will  be a modification of 
the relations (27). 

If we denote  the cutoff by = Awl (independent 
of mass M )  before the  transformation,  then  after  the 
transformation  it becomes x ,  with 

x1 = &,/hQ,  7 (28) 

so that  for variations  in  the mass M 

Sx, 1 S M  
x1 2 M '  

Now for  the energy gap  at T = 0, 

" - " 

A(O>O> = hQ,Y(O, 0 )  9 

and  thus 

SA Sa2, S y  
" -- +". 
A Rp Y 

Since SR,/Q, = - $6M/M, (29) and (31) give 

SA 6M 
A 
" - -3(1 - ox 9 

where i is the coefficient in the change of y with x , ,  
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The  exponent in (27) is then  changed  from -3 to 
- +(l - () for  the variation of the  gap 2A(O, 0). The 
same would be true of T, if the  ratio 2A/k,T, were in- 
dependent of the cutoff. According to  the results in 
Table 1, this is not exactly true,  but  the changes are 
very small  compared to the  other effects. Thus 
A(0) cc M-lh ( l - c ) ,  T' E "%(I-<) . (34) 

We have determined  the coefficient ( of Eq. (33) for 
the  intermediate-coupling case. Figure  3 shows the 
result on  the solution of varying the cutoff. The solid 
line for T = 0 is the solution  for  a cutoff E ]  = 4k,Q,. 
The circles give the  solution at T = 0 for  a cutoff 
E ,  = 3.6k,QD. Notice that  the biggest effect  of the 
changed cutoff is at energies larger than 2k,0D. The 
solution at the  Fermi  surface changes from 0.419 to 
0.400 k,6,, giving [ = +0.44.  Carrying  out  the same 
calculation  for the Tolmachev  solution for  the  cor- 
responding case (see Ref. 5) gives [ = +0.28. Thus 
the  two different calculations give the same order of 
magnitude  correction ( to  the isotope effect. Since we 
are only  interested in the  order of magnitude of (, we 
shall confine our  consideration to cases involving the 
Tolmachev  solution,  inasmuch  as these can  be worked 
out  analytically. 

Table 2 gives the  calculated  correction [ to the 
- 1/2 exponent in  the isotope effect. The results are 
shown  for  two different cutoffs hw, of the  Coulomb 
interaction.  The value hwl/k,O, of 1000 corresponds 
roughly to distances in k space at which the  Coulomb 
interaction dies off without lifetime effects. 

Table 2. Calculated  correction < t o  the exponent 
in  the isotope effect 

Superconductor hwl/ksBo = 10 1000 

Hg, Pb 0.3 0.05 
Ru 1.3 0.4 

The value for V ,  in  Eq. (7) for  the  Tolmachev solu- 
tion was taken to be the value of the screened Coulomb 
interaction  averaged over the  Fermi surface. The 
attractive part V was then  chosen to give the  proper 
value of Tc/QD. Since V ,  is nearly the  same  for all 
superconductors,  the  main effect on < is the relative 
size of T,/O,. Thus  Ru has  a  larger value of ( than  Hg 
or Pb because it  has  a smaller T,, and  this agrees with 
the  experiment^.^ In  fact, according to  our model, 
there is no reason why [ can  not be larger than one, 
leading to a positive exponent  in the isotope effect. 

Our  model would predict an exponent  near  zero  for 
Os (as is found7),  but  the  exponent  for  Zn  should be 
intermediate between that of Pb  and  Hg  on  the one 
hand,  and  Ru  and Os on  the  other. This is so because 

22 the value of T c / Q D  for  Zn is intermediate  among values 
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of TJQ, for these other  superconductors. However, 
the  experimental results' are  that  Zn has an exponent 
of -0.5. Thus  the model  breaks  down for this case. 
In fact, the experimental results indicate,  for the seven 
superconductors  tested, that  the exponent is either 
- 1/2 or 0, while our model predicts a smooth  variation 
from - 1/2 to 0. An alternative  explanation of the  lack 
of an isotope effect in the  transition elements Os and 
Ru has been suggested by Matthias.  He  has  proposed 
that  the  transition elements may become supercon- 
ducting  through an interaction  other than  the electron- 
phonon  interaction, so that there is no effect  of the 
ion mass on the  transition. However, in  order  for  the 
result to be explainable  for  Zn,  the  nontransition ele- 
ment  superconductors  must have a cutoff in the 
Coulomb  interaction  that is proportional to M-  l/z. 
The  explanation of such a cutoff remains an unsolved 
problem. 

Conclusions 

We have seen that with quite different forms  and 
strengths for  the interaction V k k ' ,  the results of the 
BCS theory are nearly invariant.  This result is similar 
to  that  found earlier by the  authorz4  for  the specific 
case of the relation between the energy gap  and 
critical field at zero  temperatures.  These results indi- 
cate  that  the theory is probably insensitive to  the 
effects  of bands, and they explain the experimentally 
found  law of corresponding  states. 

In considering the deviations  from the law of cor- 
responding  states,  the  theory worked out here can 
essentially account  for  the  variations  in  the  ratio of 
energy gap  to critical  temperature.  It  also shows that 
even when this  ratio differs from  the value of 3.5, the 
reduced energy gap  as a function of reduced  tempera- 
ture is nearly invariant,  as  has been found experi- 
mentally. In  the case of the critical field and  the 
specific heat  near T,, the model gives variations in  the 
right  direction as a  function of T,/eD, but  the varia- 
tions  are nearly an  order of magnitude too small. It is 
probably necessary to include  anisotropies  and life- 
times in  order to understand  the  actual deviations 
from  the law of corresponding  states  for  these  thermo- 
dynamic  functions. 

By making  the  additional plausible assumption that 
the cutoff in  the  Coulomb  interaction is independent 
of the  ionic mass, this model also gives the deviation 
of the  isotope effect from  the M-  dependence. The 
calculations are in  qualitative  agreement with the 
results of nearly the M- dependence  for  Pb,  Hg, TI, 
and Sn while the lack of an isotope effect in  Ru  and 
Os (Ref. 7) is  also  understood. However, the  results 
with Zn  (Ref. 7) can  not be explained by this  model. 
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