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F.P. Palermo

A Network Minimization Problem

This letter deals with a problem which arose during a
study of communications networks. The study has led to
the mathematical problem described here.

A communications network consists of a set of sta-
tions at various geographical locations. Each station may
be connected, through a switching center, to other sta-
tions in the system. The problem is to determine which
stations are to be connected on the same line and where
the switching center is to be located so that the cost of
the lines is minimized; at the same time, a specified level
of service is provided. The cost of the lines is assumed to
be proportional to their lengths. This assumption is valid
if the lines are sufficiently long (depending on the tariff
rates). One is given the message load at each station and
the level of service is specified by saying that the lines are
to be loaded to a percentage of their capacity.

This has led to the following general problem:

Find the stations which are to be connected together
in one line and then connect them into a center so as
to minimize the total cost of the network.

In this letter we will consider a simplified version of
this problem in which we assume that a set of stations
has been connected together on a line and that these
lines are to be connected into the center. In the general
problem the grouping is undetermined, and we are look-
ing for an optimal grouping as well as for an optimal
tying of these groups to the center. In the simplified
version, the grouping is predetermined and we can treat
each group as if it were an individual station. This form
of the problem is identical to that of a relatively small
number of stations being connected individually to a
center.

Analytic method

Let us assume that each station is to be connected directly
to the switching center using m; lines, and that the stations
lie in a plane. This problem can be formulated mathemat-
ically as follows: Given a set of N points, P;, in a plane
and a set of weights m;, a point C is to be found so that the

N

expression >, ml; is minimized (where /; is the distance
=1

from P; to C}.

Introducing a coordinate system in the plane, one can
express /; as a function of the coordinates (x,y) of C
by the formula [i(x,y)=+/(x—x;)*+(y—y:)?% where
(x;, y;) are the coordinates of the point P;.

The problem thus reduces to the minimization of the
function F, defined by the formula

N
F(x,y)= X mili(x,y).
i=1

We shall prove that the surface defined by F, namely
those points (x, y, z) such that z=F(x, y), has a unique
minimum if and only if the set of points P; are not col-
linear, i.e., do not all lie on the same line.

To prove that the function F has exactly one mini-
mum, we establish four lemmas.

In the first lemma, we compute the discriminant
FoxFyy—F? and in Lemma 2 observe that it is always
positive if the points P; are not collinear. Using this re-
sult, we then establish Lemmas 3 and 4 so that the proof
of the main theorems will follow easily. We now proceed
with the formal proof:

Lemma ] Fm‘(x’ y)Fyy(xa y) _ny(x: y)2 = E _'—mlm]
i (ldy)®
X {{x=x) (y—¥) ~ (x—x;) (y—y:) }?, where Fup, Fyy
and F .y, are the second partial derivatives of F with re-
spect to x and y.

Proof: A straightforward computation gives:

mi(y—y)?
Frul, )= — o ——
K T

mi(x—x;)?
Fw(x,y)=2 — l_—
K3

3
1

¥ omi(x—x) (y—y)
Fx!l(x»y) =g I .
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Then

Yoo ommy(y—yi)*(x—x;)*?
FooFyy—Fay?= 2 — 1813 1
j=1 ik

¥ ommi(x—x) (x—x) (—y) (Y—y;)
N 2 1313
1, f=1 [
¥ommy
=3 T ) (x—x;)*
i, §=1 ¢ z

—(x—=x) (x—x;) y—y) y—¥y) ] .

If i=j, we get no contribution to the sum. If i#j, the
terms involving i and j give us the expression

m;m;
T L=y 2(x—x)2— —x) (x—x) =) (Y —Y))

+ =y (x—x)2—(x—x) (x—x) —y) (y—~¥y)] .

But this is exactly

mm
W{(y yi) (x—x;) — (y—y;) (x— x:)}2.

Lemma 2. If not all of the points P; are on the same
straight line, then F..Fy—F.,2>0 for all points P¥P;,
i=1,...N.

This follows directly from Lemma 1.

For the next lemma, we consider a straight line §
passing through the point Q(xo,y0). Thus, S(#)=
[x(2), y(t)]1 is the parametric representation of the line
where x(t) =xo-+at and y(z) =yo+bt. Let & be the func-
tion defined by the formula h(t) =FoS(t) =F[x(#),y(1)].

Lemma 3. F has no maximum value at any point Q#P;,
i=1,...N.

Proof: Suppose F has a maximum at Q(xo, ¥o). Then let
h(t)=F(x(t), y(t)) where x and y are defined as above.
Then 4 has a maximum at 0. But

1y =k F Y 1r, (&
( U\ dt Y\ dt

Figure 1
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These derivatives exist at all points Q= P;.

Then clearly, 2" (2) >0 for all + where h” exists. This
follows from Lemma 2, because the discriminant of the
quadratic form (2) is negative. Thus A”(0) >0 for all ¢
where h" exists, and h'(0)=0. Also h(0)=F(xy, yo)-
Thus, # has a local minimum at 0, contradicting the
hypothesis that # has a maximum at 0.

Lemma 4. If S is a straight line through P;, then h=FoS
has no maximum at P;.

x(t) =x;+at . .
be parametric equations for
y(t)=yi+ bt

Proof: Let

the line S.
Then h(1) = 3 mil; (1) +mi / (x—x:)*+ (y—y:)?
FES
=ho(t) +milt)\/ @@+ b2,

where ho(t) = 2 mjlj(t) .

J=i

ho can have no maximum at t=0 by Lemma 3.
m;|t[\/a?+b? has a minimum at t=0.

Theorem 1. F can have at most one minimum on the
plane.

Proof: Suppose F has two minima, say at P and Q, re-
spectively. Then let § be a straight line passing through
P and Q, such that S(0)=P, S(1)=0. Then consider
h=FoS: [0, 1]—R. By the Weierstrass theorem, % has a
maximum at some point 7, in (0, 1) because £(0) and
k(1) are minima. This contradicts either Lemma 3 or 4.

Theorem 2. The function F has at least one minimum.

Let I; be the distance between P; and P; and choose
K so that K >max I;;. For any point Q, we let [;g be the

distance from P to Q and d(P, Q) be the distance be-
tween P and Q. Then for any point Q such that ;o> 2K,
we have [, > K for all i. From the triangle inequality, we
have 11921;0—11122K~111>K

Thus F(Q) =Smilig>3Sm;K>Zm;ly =F(P)) . (1)

Let C be the set of points P such that d(P, P;) <2K.
C is a bounded closed set, and since F is continuous, by
the Weierstrass theorem, it has a maximum on the set C.

Let P in C be a point where F(P)is minimum.! Then
F(P) is the minimum for the function F. For if Q is any
point in the plane, Q=C or Q#C. If Q=C, then F(P) <
F(Q) because F(P) is the minimum over C. If Q#C,
then d(Q, P,) >2K, hence F(P) <F(P;)<F(Q).




Combining Theorems 1 and 2, we have proved that the
function F has exactly one minimum.

Analog method

Another approach to the problem of finding the mini-
mum of F is the use of the following analog? device
(Fig. 1). It is a generalization of the method described
by Polya? for the treatment of a similar problem.

On a map mounted on a wooden board, a pulley is
attached at each station P;, and n strings are tied together
in a knot at a common point. At the other end, a weight
proportional to m; is attached and the string is suspended
over the pulley at the point P;. After all of the weights
are attached, the board is held in a vertical plane. The
desired point C is the location of the knot when the sys-
tem is allowed to hang freely. The pulleys are used to
reduce the friction and the board is jiggled so that stick-
ing does not occur.

Note that C is the point where the potential energy of
the system is a minimum. Let L; be the length of the string
which is hung over the pulley at point P;. Let s; be the
length of string from the pulley to the weight, 4; the dis-
tance of the weight to a fixed horizontal reference plane,
H; the distance from the pulley to the fixed horizontal
plane, and /; the distance from the pulley to the knot. Then
the expressions EnuH; and ZmL; are both constants. Also
we have

(1) SmH;= (Emih;) +Em;s;)
(2) Em;L;=2ms;+3myl; .
Thus, subtracting (1) from (2) we obtain
smil;— Emhy= (SmL;— SmH;)
or Imli=Imi + (SmL; —3smH,;) .

Since the last two terms are constants, we see that the
function Imyl; attains a minimum whenever the function
Sm;h; attains a minimum, but this last function is just the
potential energy of the system of weights. In this method
it turns out that the center is that point where the forces
corresponding to the weights are in equilibrium.

It is interesting to note that the location of the center
is not the center of mass, as one might think upon first
meeting this problem. The case of three noncollinear sta-
tions with equal weights illustrates this. Here the center is
that point for which the line segments to the three vertices
form angles of 120° with each other, if this point is inside
the triangle (Fig. 2). If this point is outside the triangle,
then the center is at the vertex with the obtuse angle
(Fig. 3).

Conclusion

The principal result of this paper is the proof that there is
one and only one point for the center which gives a mini-
mal network when all of the stations are to be connected
directly to the center. Thus one can use any search pro-
cedure to find the coordinates of the center.

Although this treatment is only a solution of a special

Figure 2

Figure 3

case of the problem of obtaining the optimal network, we
have found by calculation on a real network that substan-
tial savings of line costs can be realized. The optimal
network problem is extremely complicated. However,
efforts are under way to use and extend the methods
described here to devise means for its treatment. The
simple nature of the analog procedure suggests that clever
use of this technique may be extremely useful in complex
problems of this type.
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