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This  letter deals  with a problem  which arose  during a 
study of communications  networks. The  study  has led to 
the mathematical  problem  described  here. 

A communications  network consists of a  set of sta- 
tions at various  geographical locations. Each  station may 
be connected, through a switching  center, to  other sta- 
tions  in the system. The problem is to  determine which 
stations are  to be  connected on  the  same line and where 
the switching center is to be located so that the  cost of 
the lines is minimized; at  the  same time,  a specified level 
of service is provided. The cost of the lines is assumed to 
be proportional to' their lengths. This assumption is valid 
if the lines are sufficiently long (depending on the  tariff 
rates).  One is given the message load at  each station and 
the level of service is specified by saying that  the lines are 
to be loaded  to a  percentage of their  capacity. 

This has  led to  the following general problem: 

Find the stations which are to be connected together 
in one line and then connect them  into a center so as 
to  minimize  the total cost of  the network. 

In this letter we  will consider  a simplified version of 
this problem in  which we assume that a set of stations 
has been  connected  together on a  line and  that these 
lines are  to be  connected into  the  center.  In  the general 
problem the grouping is undetermined, and we are look- 
ing for an  optimal grouping as well as for  an optimal 
tying of these groups to  the center. In  the simplified 
version, the grouping is predetermined and we can  treat 
each  group as if it were an individual  station. This  form 
of the  problem is identical to  that  of a relatively small 
number of stations being connected  individually to a 
center. 

Analytic method 

Let us assume that  each  station is to be connected  directly 
to the switching center using mi lines, and  that  the stations 
lie  in a plane. This  problem  can be formulated  mathemat- 
ically as  follows: Given a set of N points, Pi,  in  a  plane 
and a  set of weights mi, a  point C is to be found so that  the 

N 
expression 2 milt is minimized (where li is the distance 

from Pi to C). 
i=1 

Introducing a coordinate system in  the  plane, one can 
express Zi as  a function of the coordinates ( x ,  y )  of C 
by the  formula &(x, y )   = ~ ( ~ - x i ) ~ + ( y - y ~ i ) ~ ,  where 
( x i ,   y i )  are the  coordinates of the point Pi. 

function F ,  defined by the  formula 

F ( x ,  Y )  = mih(x, Y )  . 

The problem thus reduces to  the minimization of the 

N 

i=1 

We  shall prove  that  the  surface defined by F ,  namely 
those  points (x, y ,  z )  such  that z= F ( n ,  y ) , has a unique 
minimum if and only if the set of points Pi are  not col- 
linear, i.e., do  not all lie on  the  same line. 

To prove  that  the  function F has exactly one mini- 
mum, we establish four lemmas. 

In  the first lemma,  we  compute  the discriminant 
FrzFl/!/-Fzu2 and in Lemma 2 observe that  it is always 
positive if the points Pi are  not collinear.  Using  this  re- 
sult, we then establish Lemmas 3 and 4 so that  the proof 
of the main  theorems will follow easily. We now  proceed 
with the  formal  proof: 

X ( ( X - x i )   ( y - r j )  - ( x - x j )  ( Y - Y P ) } ' ,  where Fzz ,  Flu, 

and F , ,  are the second partial derivatives of F with re- 
spect to x and y .  

Proof: A straightforward  computation gives: 
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Then 

- ( x - - x I )  (x-xj) ( Y - Y i )  ( Y - Y ~ )  1 . 
If i=j, we get no contribution to  the sum. If i f j ,  the 
terms  involving i and j give us the expression 

lemma 2. Z f  not all of the  points Pi are on the  same 
straight line,  then FzxF,,-F,,2>O for  all points P f P i ,  
i = l ,  . . . N .  

This follows  directly from  Lemma 1. 
For  the next  lemma, we consider  a  straight line S 

passing through  the  point Q(x0,yo).  Thus, S ( t )  = 

[ x ( t )  , y ( t )  ] is the  parametric representation of the  line 
where x ( t )  =xo+at and y ( t )  =yo+&. Let h be the  func- 
tiondefinedbytheformulah(t)=FoS(t)=F[x(t),y(t)]. 

Lemma 3. F has no  maximum  value at any  point Q f P i ,  
i = l ,  . . . N.  

Proof: Suppose F has a  maximum at Q ( x o ,   y o ) .  Then let 
h ( t )  = F (  x( t )  , y ( t )  ) where x and y are defined as  above. 
Then h has a maximum  at 0. But 

Figure I 

These  derivatives exist at all points Q#Pi. 
Then clearly, h ” ( t )  > O  for all t where h” exists. This 

follows from  Lemma 2, because the discriminant of the 
quadratic  form ( 2 )  is negative. Thus h”(0 )  > 0 for all t 
where h” exists, and h’(O)=O. Also h ( 0 )  = F ( X O ,  yo). 
Thus, h has a  local minimum  at 0, contradicting  the 
hypothesis that h has a  maximum  at 0. 

lemma 4. If S is a  straight line  through  Pi,  then h=FoS 
has no maximum at Pi. 

Proof: Let 
x ( t )  =xi+at t be parametric equations for 
~ ( t ) = y i + b t  

the  line S .  
Then h ( t )  = x mj l i ( t )  +mi d ( x - ~ { ) ~ + ( y - y i ) Z  

j#i 

=ho(t)  +milt) d m ,  
where ho( t )  = 2 m+j( t )  . 

ho can  have  no maximum at t=O by Lemma 3. 
mi [ t [ d m  has a minimum  at t =O. 

j#i 

Theorem 1. F can  have at most  one  minimum  on  the 
plane. 

Proof: Suppose F has two  minima, say at P and Q, re- 
spectively. Then let S be a  straight  line passing through 
P and Q, such  that S ( 0 )  = P ,  S( 1 ) =Q. Then consider 
h r F o S :  [0, l]+R. By the Weierstrass theorem, h has a 
maximum  at some  point t o  in (0 ,  1 ) because h(  0 )  and 
h(  1 ) are minima. This  contradicts either Lemma 3 or 4. 

Theorem 2. The  function F has at least one  minimum. 

Let 1 ; j  be the distance  between Pi and Pi and choose 
K so that K > max lij. For any  point Q, we let l i ~  be the 

distance from Pi to Q and d ( P ,  Q )  be the distance be- 
tween €‘ and Q. Then  for any point Q such  that 1 1 ~ 2 2 K ,  
we have liQ > K for all i. From  the triangle  inequality, we 
have li92li9-l1i22K-1~i>K. 

Thus F ( Q )  =ZmiliQ>XmiK>Bmilil=F(P1). ( 1 )  

Let C be the set of points P such  that d ( P ,  P I )  i 2 K .  
C is a  bounded closed set, and  since F is continuous, by 
the Weierstrass theorem,  it  has a maximum  on  the  set C. 

Let P in C be a point  where F ( 5 i s  minimum.l  Then 
F ( m  is  the  minimum  for  the  function F.  For if Q is any 
point  in  the plane, Q=C  or   Qf C. If Q=C,  then F ( B  2 
F ( Q )  because F ( T  is the  minimum  over C.  If Q#C,  
thend(Q, P,)>2K, hence F(P)_<F(%)<F(Q). 

i : j  
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Combining Theorems 1 and 2, we have proved that the 
function F has exactly one minimum. 

Analog method 

Another  approach  to  the problem of finding the mini- 
mum of F is the use of the following analog3 device 
(Fig. 1).  It  is a  generalization of the method described 
by Polya2  for  the  treatment of a  similar  problem. 

On a map  mounted  on a  wooden board, a pulley is 
attached  at  each station Pi,  and n strings are tied together 
in  a knot at  a common point. At  the  other  end, a weight 
proportional  to mi is attached and  the string is suspended 
over  the pulley at  the point P i .  After all of the weights 
are  attached,  the board is held in a vertical plane. The 
desired point C is the location of the  knot when the sys- 
tem is allowed to  hang freely. The pulleys are used to 
reduce  the  friction  and  the board is jiggled so that stick- 
ing  does not occur. 

Note  that C is the  point where the potential  energy of 
the system is a minimum. Let Li be the  length of the string 
which is hung  over the pulley at  point Pi. Let si be the 
length of string from  the pulley to  the weight, hi the dis- 
tance of the weight to a fixed horizontal  reference  plane, 
Hi the distance from  the pulley to the fixed horizontal 
plane, and li the distance from the pulley to the knot. Then 
the expressions Zrni f f i  and BrnfLi are both constants.  Also 
we have 

(1) PmiHi= (Zrnihi)  +Zrnis i )  

( 2 )  ZrniLi = Zrnisi + Xrni l i  . 
Thus,  subtracting ( 1 )  from (2) we obtain 

ZrniZi - 2rnihi = ( 2rniLi - ~ r r l ~ H i )  

or Zt?zi& = Zmihi + (ZmiLi - zrniHi) . 
Since the last two  terms  are constants, we see that  the 

function Zrnili attains a minimum whenever the  function 
Ztnihi attains a minimum,  but this  last function is just the 
potential energy of the system of weights. In this method 
it  turns  out  that  the  center is that  point where the  forces 
corresponding to  the weights are  in equilibrium. 

It is interesting to  note  that  the  location of the center 
is not the  center of mass, as one might think  upon first 
meeting  this  problem. The case of three noncollinear  sta- 
tions  with equal weights illustrates this. Here  the  center is 
that point for which the line  segments to  the  three vertices 
form angles of 120” with each  other, if this point is inside 
the triangle (Fig. 2 ) .  If this  point is outside the triangle, 
then  the  center is at  the vertex  with the  obtuse angle 
(Fig. 3 ) .  

Conclusion 

The principal  result of this paper is the proof that  there is 
one  and only one  point  for  the  center which gives a  mini- 
mal  network  when all of the stations are  to  be connected 
directly to the center. Thus  one  can use any  search pro- 
cedure  to find the  coordinates of the  center. 

Although  this treatment is only a solution of a special 

Figure 2 

Figure 3 

case of the problem of obtaining the optimal  network, we 
have  found by calculation on a  real  network that substan- 
tial savings of line  costs can be  realized. The optimal 
network  problem is extremely  complicated.  However, 
efforts are  under way to use and extend the methods 
described  here to devise means for its treatment.  The 
simple nature of the analog procedure suggests that clever 
use of this  technique  may be extremely useful in complex 
problems of this  type. 
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