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A Study of the  Playback  Process 
of a  Magnetic  Ring  Head* 

Abstract:  The playback process  of a magnetic ring head with finite permeability of head and tape are 

studied,  using  the  theorem  of  reciprocity. In order to obtain an accurate  result for the playback process, the 

field around a magnetic gap is studied by a Fourier  method. The shift  of the gap null for infinite permea- 

bility of the head as calculated by Westmijze is confirmed, and the new shift is found when the tape 

permeability is greater than one. A simplified gap-loss  function is given for the case  of finite parameters 

for  tape and head. 

Introduction 

Several studies  have been made of the  playback  process 
of magnetic  recording. The first contribution was the de- 
termination of the approximate flux playback  response 
of a  magnetic head in contact with an infinitely thin re- 
corded tape.lI2 The approximate flux response was 

found  to be of the  form cos (2x /X ) t ,  where 

X is the wavelength of the recorded signal on  tape in the 
units of half-gap  length. The  output voltage from a  head 
is the time  derivative of the flux response, and there- 
fore  the voltage amplitude varies as sin 2 x / X .  Then 
Wallaces solved for  the effects of finite head/tape sepa- 
ration* and finite thickness of the  tape. 

The next major step was taken by Westmijzej  in 1953. 
He showed that  the simple sin 2x/X voltage response is 
only  a  rough  estimate. The  formula predicts  a  zero out- 
put  at h = 2 / n ,  where It is an integer, and  he showed on 
the basis of an exact  calculation that these null points 
are shifted toward longer wavelengths. He also deter- 
mined the effect of head/tape separation and tape  thick- 
ness by using a reciprocity  theorem.  However,  West- 
mijze’s result on gap loss can only be expressed in  a 
complicated  integral form.  Hence  the simple gap-loss 
formula is still widely used, especially for rough esti- 
mates. Furthermore, in all of the cases treated in the lit- 
erature,  the assumption has been made  that  the tape  per- 
meability is one  and  the  head permeability is infinite. 
The case of finite permeability of bead and tape still ap- 
pears  open. 

sin 2x/X 
2 x / h  

* The first  part of the work reported here, the section on infinite 
permeability,  was  done under the  supervision  of  Prof. E. T.  Jaynes, 
while  the  author  was  a  student  at  Stanford  University. 

It  appears  that  the  methods? based on the  Schwartz- 
Christoffel transformation  do  not apply for solving the 
case with finite parameters.6 In  the present paper a 
Fourier method is used to obtain the field outside of a 
gap. Then, by using the reciprocity theorem, a simpli- 
fied gap-loss function is derived,  permitting the voltage 
response of a  playback  head  with arbitrary  tape permea- 
bility to be solved rigorously. It also enables us to  obtain 
interesting  qualitative  results when the permeability of 
the  head is finite. The problem  considered by Westmijze 
is reconsidered here as  a special case. A first-order series 
expansion is used to  obtain numerical results, and excel- 
lent quantitative  agreement  with Westmijze’s work is 
found.  The reciprocity  theorem is derived from Max- 
well’s equationsD for the first time, and  the derivation 
includes  the case in which the head is loaded  with  a 
finite impedance. That case is of some  interest for high- 
frequency recording  since it is difficult to  obtain high- 
input-impedance amplifiers in the megacycle range. 

Semi-infinite head with infinite permeability 

We shall first consider the case in which the permeability 
of the head  material is infinite. The same case was solved 
by Westmijze5 by using a different method. The physical 
configuration of the  reproducing head  surface can be 
represented by a semi-infinite gap as  shown  in Fig. 1. 
The two pole-pieces are closed at  the back and a wind- 
ing is placed on  the back  side of the pole-piece. When a 
pre-recorded tape passes the head surface,  the winding 
gives an  output voltage. 32 1 
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It  is possible to calculate the  output voltage from  the 
winding by using a  reciprocity theorem, as shown  in Ap- 
pendix I. The  output voltage is: 

where H ( x , y )  is the magnetic field produced by a  unit 
current passing through  the  head winding and M ( x , y )  
is the magnetization of the tape. The integration is taken 
over all space. 

The field near a gap 

There  are several methods for obtaining the field H ( x , y )  
near a  gap. Our approach is to solve Laplace's equation 
for  the potential function in the region of interest and 
then  obtain  the field by differentiation. 

When  a current passes through  the winding, the two 
pole pieces will be at a different magnetic  potential. 
Since  the  head material is infinitely permeable, there 
can be no potential drop in the pole piece. Thus,  the 
whole potential drop is across the gap. We  denote the 
potential on the  pole  pieces by H ,  and - H,, respectively. 
The precise boundary condition is indicated  in  Fig. 1 .  

We separate  the region outside of the pole pieces 
into regions A and C (as shown  in Fig. 1 ) . The general 
solution to  the Laplace equation in each  region is: 

where A ,  are constants to be determined, and 

q G ( x , y )   = S o m C ( k )  sin kxe-kudk Y>O ( 3 )  o<x< 'x 

Matching the potential at y=O: 

l m C ( k )  sin kxdk= 2 A,t sin nxx+H,x  O<x<l ( 4 )  
m 

r, -= 1 

= H ,  I<x<'x 

If we make a Fourier sine transformation  on both 
sides with u as a parameter in the respective regions and 
use the identity 

r sin OX sin kxdx=-S(a-k) ,  x 

2 ( 5 )  

322 where S ( U- k )  is a  Dirac's  delta function, we obtain 
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Matching the y derivatives at y=O, we have 

- 2 A,nx sin nxx= C ( k ) k  sin kxdk  O<x<l. (7) 

Next, we multiply by sin ( m x x )  and integrate to  obtain 

m 

n=l l* 

From (6) and (8) we can eliminate the coefficients 
C( k )  and  obtain 

k sin2 kdk 00 sin2 kdk 
k [ k 2 - ( m ~ ) z ] l '  '1 ( r n ~ i . ) ~ ]   [ k 2 -  ( n ~ ) ~ l  

(9) 

where 

k sin2 kdk - - ~ i ( 2 r n x )  m=n 
[k2- ( m ~ ) 2 ]  [ k 2 - ( n x ) 2 ]   2 m x  

n#m (10)  

and 

* sin2 kdk -1 
k [ k 2 - ( m x ) 2 ]  rnx 

= - [ y + L n ( 2 m x )   - C i ( 2 m ~ ) ] ,  

( 1 1 )  

where y is the  Euler  constant, 

Ci( 2 m ~ )  = - __ dx  
co: x 

Si( 2 m x )  = J o z m i  dx . 

We  denote the right-hand  side of ( 10) and ( 1  1 ) as 
K,, and L,, respectively. Thus, (9) becomes 

A'n=?(-1)??&+1 
2 a  2 An(-lln~xKn,, ,+H,L,.   (12) 

7k= 1 

Equation ( 1 2 )  is a set of algebraic equations with 
known coefficients Knm and Lm. Thus,  the numerical 
values of A's can be obtained. It was evaluated that A,= 
-0.082H0,  A2=0.027H0,  A3=-0.014Ho. 

The potential function  in  the  upper half-plane is then 

m sin k sin kx  '1 k 2 - ( n x ) 2  
e-"dk. 



The  terms  in  the series are small and  drop off rapidly 
because the integral becomes very small as n increases. 
The higher order  terms  therefore  have very little influ- 
ence  on the  potential in the  upper half-plane. Good 
numerical values can be  obtained just by considering  a 
few terms. In  the case of the magnetic  recording  process, 
the  zero-order term is sometimes sufficient, while in the 
playback  process one  has  to consider the first-order ap- 
proximation so that  the gap loss can be accurately cal- 
culated. 

From the  potential function in (13), one  can obtain 
the  x  and y components of the magnetic field H,, H ,  as: 

x l m  sin k cos kxke-kg 
d k  

k2-  ( n r  ) (14) 

and 

xl m k sin k sin kxe-ky 
k2-  ( n x ) 2  dk ,  ( 1 5 )  

where the H,, is an even function of x while H ,  is odd. 

The playback process 

Consider  a  sine wave recorded  on  the  tape in the x- 
direction. As the  tape moves over the head surface,  the 
magnetization has the form 

M,=M cos "x-Vt). 
2x 
x (16) 

Thus, it can  be  written as: 

M,=M (cos-x cos-vf + sin-x sin-Vvt). (17) x x h x 
2R 2R 2%- 2lr 

Since H ,  is an even function,  the sine term  in Eq. 
(17) will not  contribute  to  the integral over  the x-axis. 
Thus,  the only term  that contributes is  the cosine term, 
and  from ( l ) ,  (13) and ( 1 6 )  we obtain 

where a is the thickness of the tape  and b is the sep- 
aration between head and tape. 

The first term  on  the right-hand side of (18) was 
sometimes used as an  approximate  formula  for  the play- 
back  process; it does give the right separation  and thick- 
ness loss. However, it does not give the shift of the first 
gap null as calculated by Westmijze.5 The various orders 
of approximation corresponding to  the inclusion of the 

increasing values of n in the series in Eq. (18) are 
plotted in Fig. 2 for wavelengths greater  than  the first 
gap null. It is shown that  the deviation of the second 
approximation  from  the first is very  small and  that  the 
higher order  terms have  a negligible effect on  the over- 
all response. The first approximation to the playback 
response,  including the n = l  term, is approximately 

Qualitatively, the shift of the  null is due  to  the fring- 
ing field of the semi-infinite gap  and  the correction factor 

is simply (:I::) __ for wavelengths greater  than  the  gap 

length. 
The  net flux in the gap as shown  in Eq. (17) has the 

amplitude of M cos ( 2 ~ / h ) x .  The field of the  gap  can  be 
viewed as  a weighting function in Eq. (1). The zero- 
order  term gives a uniform weight to  the flux in  the  gap; 
hence on integrating over  the gap, the  net flux is zero  at 
X=2. The first-order term reveals that  the flux near  the 
corner weighs about 16% more  than  that in the  center; 
thus  the null flux point  comes at X-2.24. 

In  the above  calculation, we have neglected the y 
component of the flux on tape. This is justified since the 
additional term  that would have to be  considered  in 
Eq. (1) (i.e., H , M , )  has  the identical wavelength re- 
sponse  as ( 1 9 ) ,  and hence it is effectively included  in 
the  constant M .  

Figure 2 The gap loss of a ring head. 
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Playback process with finite  parameters of 
head and tape 

The case  in which the p of the  tape is other  than  one  is 
also of interest. This  can be  calculated by the  present 
method.  However, the permeability of a tape is not a 
very meaningful concept,  for with the present  knowledge 
of fine-particle theory, it is extremely difficult, if not  im- 
possible, to specify some physically relevant param- 
eter  such  as  the p of the  tape. The analysis can only  be 
viewed as an indicative  calculation and is more meaning- 
ful when it is applied to a  metallic  medium. 

The calculation  with a finite permeability tape is sim- 
ilar to  that of the previous  section. The general  solution 
of the potential function will be  identical.  Since the field 
has a jump when entering a medium with  a different p 
for a tape in contact with the  head,  Eq. ( 7 )  is changed 
to 

2 AnnT sin n 7 x Z - p  C ( k ) k  sin kxdk, (20) L* n = l  

where p is the permeability of the tape. Then  perform- 
ing the same  operations  as  before, the values of the A's 
are obtained from 

* sin kdk 
k[k2- ( m ~ ) ~ ]  

Some values of these A's for different p are  tabulated 
as follows: 

EL A J H ,  A2IHO A d H o  

1 -0.082 + 0.027 -0.014 
5 -0.128 +0.044 -0.017 

10 -0.147 +0.049 -0.019 
co -0.162 f0.053 -0.021 

____ - 

potential drop in the  head; consequently there is also a 
field in the head  pole piece. By the reciprocity  theorem, 
such a field will also have some  playback  action. 

The field in the pole piece is small, since the field has 
a jump of p when it  enters  the gap. Thus, in  applying 
the reciprocity  theorem, one finds that  the  gap  has a 
much  more efficient playback  process than  that of the 
pole piece for  the  same length. For the  short wave- 
lengths on  tape, over the  surface of the pole piece there 
will be  (roughly)  equal  amounts of flux in  one direction 
as  another,  and  the  net flux over the  head  pole piece will 
tend to  zero as the wavelength tends to  zero.  At longer 
wavelengths, the flux over the pole  piece is the  same 
direction  (since the cosine part will play  back  as  previ- 
ously stated). Hence, the integration in Eq. ( I )  is non- 
zero  over the large volume  above the total head pole 
piece, and the output voltage  due to the pole piece can 
be comparable with that of a gap. This would result in 
a  higher output voltage at long wavelengths, and as the 
wavelength becomes shorter, the pole piece  continuously 
loses its playback action.13 This will result  in  a slower 
rise of output voltage than  predicted by previous  calcu- 
lations. 

If one neglects the playback  process due  to  the pole 
piece ( p  of head+co),  then  the  output voltage will rise 
6 db/oct. However,  in  practice, one finds that it ranges 
from 3% db  to 5 db/oct.  The ideal 6 db/oct. is never 
obtained. It is believed that this is due  to  the finite p of 
the head. Previous experiments show that as the p of the 
head improves, the rise becomes steeper; also, the rise 
is strongly dependent  on  the wrap-angle of the tape. 
These  results  qualitatively support  the above suggestion. 

Conclusion 

From  the above analysis, we have found  that  for all 
practical purposes, the gap-loss function  can  be written 
as 

in the case of infinite permeability. 
When the p of the recorded  medium is high, there is 

It is clear that  the fringing effect is increased when 
the  higher  permeability tape is used. This checks well 
with physical  intuition. The shift of the gap  null due  to 
the  permeability of the  tape can be calculated.  Using the (24) 
coefficient for infinite permeability tape,  the correction 

no effect on separation and thickness loss of the me- 
dium,  but  the  gap loss is changed to: 

factor  for  the first approximation to  the gap loss now 
becomes 

0.162 6--X2 
I+---- 4"x2 (4iT)F- 4--X2* 

The null will be at -X=2.44; in other words, the shift 
will  be approximately 22 per cent instead of 12 per 
cent.12 

The above  method  can be applied to study the effect 
of the case in which the permeability of the head is 

324 finite. If the head  permeability is finite, there will be  a 

To a first approximation the shift is independent of 
separation loss and tape  thickness; since the calculation 
is exact for  an infinite medium. If in each layer of the 
inlinite  medium the shift is the  same,  then  the shift  must 
not  depend on  the tape  thickness and  the separation. 

When  the p of the head material is finite, a  low-fre- 
quency boost is found  to exist. This causes a discrepancy 
with the 6 db/oct. rise at long wavelengths predicted by 
previous calculations. No detailed  calculation is pre- 
sented  since it strongly  depends on  the pole piece con- 
figuration and  the  actual value of the p of the head. 
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All calculations were based on a sine-wave response 
and  therefore can be applied to any wave shape by re- 
solving the waveform into its Fourier components.14 

Appendix I 

We put  the ring  head in a  large  conducting box with the 
output lead  in the  form of a coaxial line,  with unit 
radius,  as  in Fig. 3. 

Then let 

[E,, HI] be the  electrical and magnetic field due  to unit 
current in the winding 

[E,,  H,] be the electrical and magnetic field due  to a 
set of magnetic dipoles passing by the head 
gap * 

Then, we use the divergence theorem, and write 

~V*(E,XH,--E,xH,)dv=  (E,XH2-EE,xH,).dS, 

where v is  the volume in the box and S is the  surface 
over the volume. On the  right-hand  side  the surface 
integral vanishes everywhere on the  box, since there can 
be no tangential component of E field on  the  conduc- 
tive boundary. And if the  terminal is open,  the value of 
H, is zero  on  the  surface of the coaxial, for there is no 
current in the coaxial due  to  the moving dipole, and the 
integral is reduced to: 

L 

where S is the  area shown  in  Fig. 3. 
The left-hand  side can be  expanded  as: 

1 V ( E , x H , - E ~ x H , ) ~ ~  

= J ( H , ~ V X E , - E ~ ~ V X H ~ - H ,  

.VXE,+E,-.VXH,)dv 

then, using the Maxwell equations, 

VXE=-aBIat VxH=J+dE/at.  

One finds in the box where J is zero, the only contribu- 

tory term is the 3"1 term.  Since dE,/at=O, aH/at=O 
and E, only exists in the coaxial where H, is zero  for  an 
open circuit. Hence,  the left-hand  side becomes 

This  derivation also gives the result for a  high-fre- 
quency reproducing head  where the  output impedance 
cannot be neglected. Then  another  term in the right- 
hand side cannot be ignored and  thus  the theorem  shall 
be: 

where V ,  is the applied voltage for  unit  current  and 12 

is the  current  due  to the  moving  dipole. 
The restriction of the theorem is that  the potential 

function of the head is not drastically  changed by the 
tape  and  the  remanent magnetization of  the  tape is high. 
If these conditions are not  met, then  one must  calculate 
a new H, and also one  must integrate through all space 
instead of only the region  where  there is oxide  magnetic 
material. 
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