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of a Magnetic Ring Head™

Abstract: The playback process of a magnetic ring head with finite permeability of head and tape are
studied, using the theorem of reciprocity. In order to obtain an accurate result for the playback process, the
field around a magnetic gap is studied by a Fourier method. The shift of the gap null for infinite permea-
bility of the head as calculated by Westmijze is confirmed, and the new shift is found when the tape
permeability is greater than one. A simplified gap-loss function is given for the case of finite parameters

for tape and head.

Introduction

Several studies have been made of the playback process
of magnetic recording. The first contribution was the de-
termination of the approximate flux playback response
of a magnetic head in contact with an infinitely thin re-
corded tape.l:? The approximate flux response was
sin 27 /A

27/A
A is the wavelength of the recorded signal on tape in the
units of half-gap length. The output voltage from a head
is the time derivative of the flux response, and there-
fore the voltage amplitude varies as sin 27/A. Then
Wallace? solved for the effects of finite head/tape sepa-
rationt and finite thickness of the tape.

The next major step was taken by Westmijze? in 1953.
He showed that the simple sin 27/A voltage response is
only a rough estimate. The formula predicts a zero out-
put at A=2/n, where n is an integer, and he showed on
the basis of an exact calculation that these null points
are shifted toward longer wavelengths. He also deter-
mined the effect of head/tape separation and tape thick-
ness by using a reciprocity theorem. However, West-
mijze’s result on gap loss can only be expressed in a
complicated integral form. Hence the simple gap-loss
formula is still widely used, especially for rough esti-
mates. Furthermore, in all of the cases treated in the lit-
erature, the assumption has been made that the tape per-
meability is one and the head permeability is infinite.
The case of finite permeability of head and tape still ap-
pears open.

found to be of the form cos (2w/A)t, where

* The first part of the work reported here, the section on infinite
permeability, was done under the supervision of Prof. E. T. Jaynes,
while the author was a student at Stanford University.

It appears that the methods® based on the Schwartz-
Christoffel transformation do not apply for solving the
case with finite parameters.® In the present paper a
Fourier method is used to obtain the field outside of a
gap. Then, by using the reciprocity theorem, a simpli-
fied gap-loss function is derived, permitting the voltage
response of a playback head with arbitrary tape permea-
bility to be solved rigorously. It also enables us to obtain
interesting qualitative results when the permeability of
the head is finite. The problem considered by Westmijze
is reconsidered here as a special case. A first-order series
expansion is used to obtain numerical results, and excel-
lent quantitative agreement with Westmijze’s work is
found. The reciprocity theorem is derived from Max-
well’s equations® for the first time, and the derivation
includes the case in which the head is loaded with a
finite impedance. That case is of some interest for high-
frequency recording since it is difficult to obtain high-
input-impedance amplifiers in the megacycle range.

Semi-infinite head with infinite permeability

We shall first consider the case in which the permeability
of the head material is infinite. The same case was solved
by Westmijze3 by using a different method. The physical
configuration of the reproducing head surface can be
represented by a semi-infinite gap as shown in Fig. 1.
The two pole-pieces are closed at the back and a wind-
ing is placed on the back side of the pole-piece. When a
pre-recorded tape passes the head surface, the winding
gives an output voltage.
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Figure 1

It is possible to calculate the output voltage from the
winding by using a reciprocity theorem, as shown in Ap-
pendix I. The output voltage is:

Voo / H(xy) Mo gy, )

where H(x,y) is the magnetic field produced by a unit
current passing through the head winding and M(x,y)
is the magnetization of the tape. The integration is taken
over all space.

The field near a gap

There are several methods for obtaining the field H(x,y)
near a gap. Our approach is to solve Laplace’s equation
for the potential function in the region of interest and
then obtain the field by differentiation.

When a current passes through the winding, the two
pole pieces will be at a different magnetic potential.
Since the head material is infinitely permeable, there
can be no potential drop in the pole piece. Thus, the
whole potential drop is across the gap. We denote the
potential on the pole pieces by H, and — H,, respectively.
The precise boundary condition is indicated in Fig. 1.

We separate the region outside of the pole pieces
into regions A and C (as shown in Fig. 1). The general
solution to the Laplace equation in each region is:

S 0<x<1
Y)=H A, si nTY
Yalx,y) ox—l-n;l sin nmxe oo 2)
where A, are constants to be determined, and
) in kxe= y>0
(x,y) 2/ C (k) sin kxe—*vdk 3)
e 0 0<x< o0

Matching the potential at y=0:

] o0
/ C(k) sin kxdk= 2 A, sin nmx+Hyx 0<x<1 (4)
0

=
:HO l<x<o
If we make a Fourier sine transformation on both
sides with ¢ as a parameter in the respective regions and
use the identity
® . . T
/ sin ox sin kxdx:ib‘(a—k), (5)
0

where § (o—k) is a Dirac’s delta function, we obtain
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nrw sin o
a>—(nw)?’

(6)

sin b
ot Y A, (1)

n=1

%C(U) =H,

a

Matching the y derivatives at y=0, we have

e

- 2 A nw sin nwx:/ C(k)k sin kxdk 0<x<1. (7)

n—=1 0

Next, we multiply by sin (m=x) and integrate to obtain

Ap n © k sin k
Zr=(-1) +1A Clh) g dk (8)

From (6) and (8) we can eliminate the coefficients
C(k) and obtain

%z%(—l)mﬂniAn(—l)"m
® k sin? kdk < sin? kdk
X ﬁ [ )] (R (am)7) 20 ﬁ kike— (mm) 2]
(9)
where
oo in2
ﬁ = G R oy = B S0 =

1

272 (m2—n2)
X[Ln%~€i(2m7r)+Ci(2n7r)] nstm (10)
and
«©  sin2 kdk -1
—_— = —Ci(2m=)],
ﬁ K (mm)7] nm[y—i—Ln(Zmn) Ci(2mm)]

(11)
where vy is the Euler constant,
® Ccosx

Ci2m=)= —/ dx
2mm x

2mw
Si(2mm) = / SIn Y k.
0 X

We denote the right-hand side of (10) and (11) as
K,,, and L,, respectively. Thus, (9) becomes

o0
’—41“-:3(—1)%1 Y Ay (=1D)nmKyy+HoLy.  (12)
2 - n=1
Equation (12) is a set of algebraic equations with
known coefficients K,,, and L,,. Thus, the numerical
values of A’s can be obtained. It was evaluated that 4;=
—0.082H, A,=0.027H,, A3=—0.014H,,.

The potential function in the upper half-plane is then

volay) =20 / sinkSinkx gy S 4,20(— 10
7 Jo k =
©sin k sin kx
Xﬁ tmez ¢ (13)




The terms in the series are small and drop off rapidly
because the integral becomes very small as n increases.
The higher order terms therefore have very little influ-
ence on the potential in the upper half-plane. Good
numerical values can be obtained just by considering a
few terms. In the case of the magnetic recording process,
the zero-order term is sometimes sufficient, while in the
playback process one has to consider the first-order ap-
proximation so that the gap loss can be accurately cal-
culated.

From the potential function in (13), one can obtain
the x and y components of the magnetic field H,, H,, as:

0 o1 i
HFZHof SINRCOSKE et S d,2n(—1)n
T 0 k n=1
@ gin k cos kxke %y
sin k cos kxke 7 ) (14)
Xﬁ kZ—(nm)?
and
0 of k i X
Hy__ZHO/ LS L D, Ap2n(—1)n+1
T 0 k n=1
« k sin k sin kxe—%v
Xﬁ e dk, (15)

where the H, is an even function of x while H, is odd.

The playback process

Consider a sine wave recorded on the tape in the x-
direction. As the tape moves over the head surface, the
magnetization has the form

2
M,=M cos T’T(x—m). (16)
Thus, it can be written as:

2 2 . 27 .2
M, =M (cos%x cos%?)t + sme sm%vt). (17)
Since H, is an even function, the sine term in Eq.
(17) will not contribute to the integral over the x-axis.
Thus, the only term that contributes is the cosine term,
and from (1), (13) and (16) we obtain

27a,

V(M) =M2 cos 2™ 1—e * e-ﬁ’fksin il
- A 377 A
A

(=1)» A,4n~w J’ (18)

X[l'*’nzl HO 4——(71)\)2

where a is the thickness of the tape and b is the sep-
aration between head and tape.

The first term on the right-hand side of (18) was
sometimes used as an approximate formula for the play-
back process; it does give the right separation and thick-
ness loss. However, it does not give the shift of the first
gap null as calculated by Westmijze.5 The various orders
of approximation corresponding to the inclusion of the

increasing values of n in the series in Eq. (18) are
plotted in Fig. 2 for wavelengths greater than the first
gap null. It is shown that the deviation of the second
approximation from the first is very small and that the
higher order terms have a negligible effect on the over-
all response. The first approximation to the playback
response, including the n=1 term, is approximately

27wa
R b
2avtf 1—e * 27l 5—A2 ’——2,\
_ 27| 2= . (19
V(M) =M 2 cos 3 > s1n)‘[4_)\2}e (19)
A

Qualitatively, the shift of the null is due to the fring-
ing field of the semi-infinite gap and the correction factor

422

is simply ) for wavelengths greater than the gap

length.

The net flux in the gap as shown in Eq. (17) has the
amplitude of M cos (27/A)x. The field of the gap can be
viewed as a weighting function in Eq. (1). The zero-
order term gives a uniform weight to the flux in the gap;
hence on integrating over the gap, the net flux is zero at
A=2. The first-order term reveals that the flux near the
corner weighs about 16% more than that in the ceater;
thus the null flux point comes at A~=2.24.

In the above calculation, we have neglected the y
component of the flux on tape. This is justified since the
additional term that would have to be considered in
Eq. (1) (i.e., H,M,) has the identical wavelength re-
sponse as (19), and hence it is effectively included in
the constant M.

Figure2 The gap loss of a ring head.
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Playback process with finite parameters of
head and tape

The case in which the u of the tape is other than one is
also of interest. This can be calculated by the present
method. However, the permeability of a tape is not a
very meaningful concept, for with the present knowledge
of fine-particle theory, it is extremely difficult, if not im-
possible, to specify some physically relevant param-
eter such as the y of the tape. The analysis can only be
viewed as an indicative calculation and is more meaning-
ful when it is applied to a metallic medium.

The calculation with a finite permeability tape is sim-
ilar to that of the previous section. The general solution
of the potential function will be identical. Since the field
has a jump when entering a medium with a different
for a tape in contact with the head, Eq. (7) is changed
to

o0 o«

Y, Aynm sin nwx:—lu/ C(k)k sin kxdk, (20)
n=1 0
where p is the permeability of the tape. Then perform-

ing the same operations as before, the values of the A’s
are obtained from

A, 2 3
Im—Z(—nm+1 S 4, (~1)m
2u 21 T
i k sin® kdk
X, = (mm) A= ()7
i sin kdk
+H01 g (21)

Some values of these 4’s for different p are tabulated
as follows:

IS Al/HO A2/H0 A3/H0
1 —0.082 +0.027 —-0.014
5 —0.128 +0.044 —0.017
10 —0.147 +0.049 —0.019
K -~0.162 +0.053 —0.021

It is clear that the fringing effect is increased when
the higher permeability tape is used. This checks well
with physical intuition. The shift of the gap null due to
the permeability of the tape can be calculated. Using the
coefficient for infinite permeability tape, the correction
factor for the first approximation to the gap loss now
becomes

1+

16 —A\2
2_; (47r)z—6i%. (22)
The null will be at A=2.44; in other words, the shift
will be approximately 22 per cent instead of 12 per
cent.12
The above method can be applied to study the effect
of the case in which the permeability of the head is
finite. If the head permeability is finite, there will be a
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potential drop in the head; consequently there is also a
field in the head pole piece. By the reciprocity theorem,
such a field will also have some playback action.

The field in the pole piece is small, since the field has
a jump of u when it enters the gap. Thus, in applying
the reciprocity theorem, one finds that the gap has a
much more efficient playback process than that of the
pole piece for the same length. For the short wave-
lengths on tape, over the surface of the pole piece there
will be (roughly) equal amounts of flux in one direction
as another, and the net flux over the head pole piece will
tend to zero as the wavelength tends to zero. At longer
wavelengths, the flux over the pole piece is the same
direction (since the cosine part will play back as previ-
ously stated). Hence, the integration in Eq. (1) is non-
zero over the large volume above the total head pole
piece, and the output voltage due to the pole piece can
be comparable with that of a gap. This would result in
a higher output voltage at long wavelengths, and as the
wavelength becomes shorter, the pole piece continuously
loses its playback action.!® This will result in a slower
rise of output voltage than predicted by previous calcu-
lations.

If one neglects the playback process due to the pole
piece (u of head—c0), then the output voltage will rise
6 db/oct. However, in practice, one finds that it ranges
from 3% db to 5 db/oct. The ideal 6 db/oct. is never
obtained. It is believed that this is due to the finite u of
the head. Previous experiments show that as the p of the
head improves, the rise becomes steeper; also, the rise
is strongly dependent on the wrap-angle of the tape.
These results qualitatively support the above suggestion.

Conclusion

From the above analysis, we have found that for all
practical purposes, the gap-loss function can be written
as

. 2w [(5—A%
Gl~81n T(m) (23)

in the case of infinite permeability.

When the p of the recorded medium is high, there is
no effect on separation and thickness loss of the me-
dium, but the gap loss is changed to:

L 2/ 6—)\2
@_mj<zjg. (24)

To a first approximation the shift is independent of
separation loss and tape thickness; since the calculation
is exact for an infinite medium. If in each layer of the
infinite medium the shift is the same, then the shift must
not depend on the tape thickness and the separation.

When the u of the head material is finite, a low-fre-
quency boost is found to exist. This causes a discrepancy
with the 6 db/oct. rise at long wavelengths predicted by
previous calculations. No detailed calculation is pre-
sented since it strongly depends on the pole piece con-
figuration and the actual value of the u of the head.
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All calculations were based on a sine-wave response
and therefore can be applied to any wave shape by re-
solving the waveform into its Fourier components.14

Appendix |

We put the ring head in a large conducting box with the
output lead in the form of a coaxial line, with unit
radius, as in Fig. 3.

Then let

[E,, H,] be the electrical and magnetic field due to unit
current in the winding

[E;, Hy] be the electrical and magnetic field due to a
set of magnetic dipoles passing by the head
gap.

Then, we use the divergence theorem, and write
/V-(E1><H2—E2><Hl)alv:](E1 XHy—EyxH;)-dS,
v S

where v is the volume in the box and § is the surface
over the volume. On the right-hand side the surface
integral vanishes everywhere on the box, since there can
be no tangential component of E field on the conduc-
tive boundary. And if the terminal is open, the value of
H, is zero on the surface of the coaxial, for there is no
current in the coaxial due to the moving dipole, and the
integral is reduced to:

1
—/ (E,xHy) -ds=§/ (IyxEy) + dS= Vo,

where § is the area shown in Fig. 3.
The left-hand side can be expanded as:

/v  (EyxH,—Ey x Hy) dv

o
=f(H,* VXE,—E, * VxH,—H,
* VXE;+E, * VXH,)dv
then, using the Maxwell equations,
V xE=—9B/at V xH=J+:IE/ot.

One finds in the box where J is zero, the only contribu-

tory term is the 3rd term. Since OE,/0t=0, oH/dr=0
and E, only exists in the coaxial where H, is zero for an
open circuit. Hence, the left-hand side becomes

oB
— | Hy—dv.
ﬁ 15 %

This derivation also gives the result for a high-fre-
quency reproducing head where the output impedance
cannot be neglected. Then another term in the right-
hand side cannot be ignored and thus the theorem shall
be:

4B oE,
/ (Hl "t sEth%)dv =Voo—Vils,

where V, is the applied voltage for unit current and I,
is the current due to the moving dipole.

The restriction of the theorem is that the potential
function of the head is not drastically changed by the
tape and the remanent magnetization of the tape is high.
If these conditions are not met, then one must calculate
a new H, and also one must integrate through all space
instead of only the region where there is oxide magnetic
material.
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