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Lognormal Distribution Function for Describing
Anelastic and Other Relaxation Processes

Il. Data Analysis and Applications

Abstract: The present paper deals with the use of the theory and computations given in Part | for a relaxa-

tion process governed by a lognormal distribution of relaxation times. The experimental determination of

the basic parameters appearing in the theory is shown to require the application of a number of corrections

to the usual type of dynamical data. General expressions are derived for these corrections, and the data

necessary for their use are presented in graphical form. Specific examples are given of the application of the

theory to the analysis of anelastic relaxation phenomena.

Introduction

The previous paper! (which will be designated as I) has
dealt with the behavior of a system which exhibits a log-
normal distribution of relaxation times. In particular,
methods were given for obtaining the three relaxation
parameters, 7., 8J, and B, of such a system from the
static response function ¥(1), and the dynamic response
functions J:(o) and J2(w). The purpose of the present
paper is to deal with the use of the theory. We first con-
sider, in the next section, a series of corrections required
in the precise evaluation of relaxation parameters from
actual dynamical data, taking cognizance of the fact that
Ji(w) and J2(w) are not quite the functions usually meas-
ured experimentally. Finally, the subsequent section deals
with possible areas of application of the material con-
tained in these papers, including a discussion of some
specific anelastic relaxation processes.

Methods for the analysis of dynamical data*

The theory, as presented in Part 1, gives a detailed descrip-
tion of the static and dynamic response functions when a
Gaussian distribution in In r prevails, including methods
for evaluation of relaxation parameters (Part I, Table 5).
Unfortunately, this theory is not always immediately ap-
plicable when dynamical data are involved because the
theory assumes that J; and J; are measured as functions

*This section may be omitted on a first reading, particularly by a reader
who seeks only an over-all picture of the content of these papers.
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of o, while in practice deviations from this procedure
usually occur, as follows:

(a) Other dynamic functions, such as tan ¢(=J./J1),
or J=(J124+J22)1/2, are often measured instead of J; and
Js. For example, in dielectric relaxation, the loss angle ¢
is often measured directly, while in anelasticity the in-
ternal friction gives tan ¢. The measurement of J instead
of J; does not generally pose any problems, since the
difference between J and J; is only of order ¢2/2; thus
for $=0.1 (which is so often the case) this difference is
unimportant. On the other hand, tan ¢=J:/J1 is a more
difficult quantity to interpret than Jo.

(b) The dynamic response functions are more often
measured as a function of T-! than of the frequency.
This approach is based on the validity of the Arrhenius
relation (I-32),t which makes it possible to change the
variable x(=In o7,x) of Eqs. (I-16) and (I-17) by vary-
ing the temperature while keeping o constant. It is clear
from Eq. (I-32) that when o is constant,

Om 1 1
TR (T - T,,)’ 0

where T, is the absolute temperature at which the J, peak
occurs (corresponding to x=0). Thus, it appears that
one need only insert (1) into Eqgs. (I-16) and (1-17) to

1The notation (I — n) will be used herein to refer to equation () in Part
1. Similar notation will be used for the tables and Figures in Part I,




obtain J,(7-') and J=(7-1). If this were strictly true it
would mean that J,(7-*) and Jo(T-!) differ from J;(x)
and J2(x), respectively, only in that they are now cen-
tered about Tp-1, and that the abscissa has undergone a
change in scale factor (by @.,/R). While this statement
is approximately correct, the change-over from the fre-
quency to the temperature variable leads to complica-
tions, resulting from the fact that the parameters 8/, o,
and 3 may each be explicitly dependent on temperature.
(The simple scale change in converting from x to 1/T is
based, of course, on the assumption that these three
quantities are constant.)

The present section deals with the various corrections
required in order to be able to utilize the results sum-
marized in Part I, Tables 1 to 5 for the analysis of actual
dynamical measurements. These corrections, though not
unimportant, are usually small; they may, therefore, be
handled as though each is independent of the others. We
will be primarily concerned with the J, peak because
measurements of this quantity (or of the related function
tan ¢) may be made with sufficient accuracy to justify
making the various corrections. (In the case of the J;
function, corresponding accuracy is not usually attained.)
Involved in these corrections are the width, position, and
height of the peak, since these are the quantities used to
obtain S, 7., and 3J, respectively. The corrections to be
considered are those due to: (1) the conversion from
tan ¢ to Jo; (2) the temperature dependence of 8J; (3)
the temperature dependence of «; (4) the temperature
dependence of 8.

In evaluating these corrections it is useful to consider
first the general problem of the perturbation of a sym-
metric peak function F(x), centered at x=0, by a func-
tion G(x) to form a perturbed peak function P(x) given
by

P(x)=F(x)G(x), (2)

where the perturbation G(x) has the property that
G(0)=1 and that G(x) is a slowly varying function
relative to F(x). The effect of the perturbation will in
general be to change the position, the height, and the
width of the peak. A straightforward calculation shows
that the position of the peak is shifted by an amount 8x
which, to first order, is given by

dx=a/A, 3)
where a is the slope of the G-function at x=0,
a=G'(0), 4)

and A is the negative curvature of the normalized func-
tion F(x) /F(0) at the peak,

A=—F"(0)/F(0) . (5)

In making these calculations, it is convenient to take as
the small quantity not the shift in peak position, 8x, but
rather the shift relative to the half-width of the peak;
since the half-width is of order 1/\/4, the quantity
a/ \/7 is taken to be small. Thus, for wide peaks §x may

not be K1, yet the approximation a/v/A << 1 may still
be valid. The height of the peak is changed only to second
order in the quantity a/+/4, i.e.,

P(a/A4) _q a?

FO) 24 ° (6)

This change can, therefore, be neglected in what follows.
For present purposes, the unperturbed peak F(x) will be
the J» function with constant values for 8/, », and 8. The
peak shift, 8x, due to the perturbation G (x), means that
the condition In wr,=0, valid at the peak in the absence
of a perturbation, is replaced by

In orm=238x=a/A (7)

when the perturbation G (x) is present. Thus, the correct
value of 7,, may be located from the position of the peak
using Eq. (7). Computation of 8x for each type of per-
turbation will require a knowledge of A4. Values of
A=—[8%f2(x, B) /8x2]1/f2(x, B) | z=0 computed as a func-
tion of 8 from the numerical tabulation of the function
f2(x', B) in Table I-2, are plotted in Fig. 1. The quantity
A goes from a value of unity at 8=0 to an asymptotic
value of 2/32 at large values of 8.

Finally, the effect of the perturbation on the peak

Figure 1 Quantity A=— [0%,(x, B1/0x?1/f,(x, B)]|s-0
as o function of 8.
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width must be considered. It is easy to show that if the
function G(x)—1 is an odd function of x, the width of
the peak at half-maximum is unchanged by the perturba-
tion to a first-order approximation. Using Eq. (1) com-
bined with Egs. (I-23) and (I-21) then gives for this
width, in reciprocal temperature units

R
Ag(T-1) =2.635 o r:(8), (8)

m

where ro(8) is the quantity plotted in Fig. I-3. When
rz=1 in Eq. (8), we obtain the well-known result for the
case of a single relaxation time. It is now possible to pro-
ceed to consider, in turn, each of the complexities men-
tioned above, which lead to perturbations of the simple
J; peak.

Corrections for conversion from tan ¢ to J,

As shown in [, the quantity tan ¢=J3/J; involves, in
general, a ratio of distribution integrals; therefore, the
theory is more complicated for this quantity than for J,.
Only when 8J<<Jy can we write tan ¢ as proportional
to Jo. Otherwise, it is desirable to convert the experimen-
tal results for tan ¢ into the equivalent results for J, the
analysis of which has already been dealt with in Table
I-5. Assuming that tan ¢ and J, are being measured con-
currently, one method of handling the data is to convert
tan ¢ into J» point for point, using the definition
Jo=J{ tan ¢. On the other hand, if it is only desired to
obtain the three relaxation parameters, 8, =m, and 8J
from the peak width, location, and height, respectively,
such a point-for-point conversion is not required; it is
only necessary to apply small corrections to the results
obtained directly from the tan ¢ peak. The theory dis-
cussed in Eqs. (2) to (7) might then be applied to the
present problem by taking F(x)=J2(x)/J1(0), and the
perturbation function G (x) =J1(0) /J1(x).

The peak width remains unchanged to first order in the
transformation from J, to tan ¢, since G(x) —1 is an odd
function of x. The width obtained from the tan ¢ peak
may accordingly be used to obtain 8 from Eq. (8) and
Fig. I-3.

To obtain the shift in peak position, 8x, requires calcu-
lation of the parameter a which appears in Eq. (3). From
the definition of a, Eq. (4), and the form of G (x) given
above, we may write

, I (0) _ &J

=CO= 7% T Ro @
The last expression, which defines %, is adopted because
J1'(0) is negative and proportional to 8J. Thus, A=
—9f1(x, B) /0x| =0 is a positive dimensionless parameter
which is equal to 1/2 for the case of a single relaxation
time and becomes smaller with increasing 8. It is con-
venient now to introduce a dimensionless parameter
called relaxation strength, Ay, and defined by

ANy=8]/y. (10)
When this definition and the result (obtained from Eq.
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Figure2 The quantity h/A as a function of 3.

(I-16)) that J1(0) =Jy+31A, are inserted into Egs. (3)
and (9), we obtain, for the displacement of the peak
position,

h &7 h Ay

_~— —— 11
dr= A 1134, (11)

A J(0) —
Values of 4/A, for the case of a lognormal distribu-
tion, are plotted in Fig. 2 as a function of 8. This graph
is obtained from the values 4 () plotted in Fig. 1, and
values of & obtained from Yager’s computations? of J;.
For 8=0, h/A=1/2, and Eq. (11) is in agreement (up
to terms of order A3;) with the exact relation: 8§x=
1 In{1+A,) derived by Zener® for the case of a single
time of relaxation.* Equation (11) extends Zener’s result
in that it permits the calculation of the peak shift when
BF0. The value of 8x so obtained may then be used in
Eq. (7) to obtain .. It is worth noting that for large 3,
the quantity A/ A approaches asymptotically 8/2/7.
Finally, the peak height, P(0) differs from the height
of the unperturbed peak F(0) only in terms of second
order (see Eq. (6)), which difference may be neglected.
Therefore, we obtain in the present case, with the help
of Eq. (I-17):
72(0)

8J
(tan ¢) max= m =12(0, 8) 71(—05'

Ay

B 12
1+3A, (2

=f2(0, B)




Equation (12), together with Fig. I-3 for the function
f2(0, B) permits one to obtain 8J or A, from the peak
height of the function tan ¢.

In summary, if tan ¢ is measured as a function of In
or of T-1, the peak width, location, and height may be
used to obtain B, mm, and A, respectively. The peak
width is unchanged from that of the J; peak, while the
height of the tan ¢ peak is (to first order) the same as
that of the J; peak divided by J1(0). The peak position is
shifted, with the value 8x given by Eq. (11). The column
of Table 1 headed “tan ¢ to J; conversion” serves to sum-
marize these corrections. The peak height will not appear
in this table since, as shown in Eq. (6), the height is not
affected, to first order, by the perturbations being con-
sidered.

Corrections for 8J(T)

When measurements are made as a function of T-* rather
than of w, the parameter 8J (or the strength, A;) cannot
be treated as constant, since it actually varies with T. To
know how it varies, we must depart from the formal
theory and consider the nature of the relaxation centers
and the quantities which determine the energy of order-
ing of these centers. According to the simplest treatment,
whereby the ordering energy depends only on o, one
obtains §JxT-%; on the other hand, when the ordering
energy is also allowed to depend on the existing state of
order, the result may come out in the form 8Joc(T—T,) 1,
where T, is a critical temperature.®* (This last result is
similar to that for the magnetic susceptibility of a ferro-
magnetic material above the Curie point.) We will use
here the latter form for the temperature dependence of
37, recognizing that the simpler form may always be ob-
tained by setting T,=0.

In order to apply the results of Egs. (3) and (5), we
again develop the exact peak function as the perturbation
of a symmetrical peak F{x), following the notation of
Eq. (2). In the present case, the function J, may be
written in terms of the temperature as

J2(x) =3J(T) f2(x, B)

(13)

SI(T
:{BJ(Tp)fz(x,B)}{ @) } ,

8J(Tp)

where the variables T and x are interconvertible by means
of Eq. (1). The first factor on the right-hand side of
Eq. (13) may then be taken as the unperturbed peak,
F(x), while the second factor is the perturbation, G (x).
In view of the proposed form 8Joc(T—T.), it is easily
shown that this second factor is expressible as

G(x)= 1—(T6/Tp) , (]4)
(A +ax)*—(T./Tp)

where

a=RT,/Qm . (15)

For T.=0, Eq. (14) goes into the simple form: G(x) =

1-+ax, which obeys the condition that G(x) —1 is an odd
function of x.

Thus, as before, the peak width remains unchanged by
the perturbation G (x). In the more general case, where
7.0, this same result will be obtained, provided that
the peak width is not very great and T is not comparable
to T,, since then G(x) can be expressed to sufficient
accuracy over the range of the peak by a Taylor expan-
sion about x=0. Accordingly, we conclude that, except
for very wide peaks or in cases where T./T, is close to
unity, the perturbation due to 8J(T") does not appreciably
affect the peak width. In cases where this approximation
is not valid the best procedure is probably to make a
point-for-point correction, i.e., to multiply each data
point by 8J(T,) /8J(T).

As for the peak position, we again use Eq. (7) where
now

o

a=G0)—FFF—. 16

O =TT (1o
This result, together with values of 4 given in Fig. 1,
permits the calculation of the shift in peak position, Jx,
using Eq. (3). It is noteworthy that the sign of the cor-
rection is the same as that for the conversion of tan ¢ to
Jo, given by Eq. (11). Unlike this earlier correction,
however, the quantity a is here independent of 8. An
estimate of a is readily obtained, for the case in which
T./T,<1, by utilizing Eq. (I-32) combined with the
fact that x=0 at T=T, to give

0(‘1=Qm/RTP=—1ﬂ OTOm » (17)

For 7om, the typical value of 10-** sec may be inserted, so
that, for a typical frequency range of 102<2 cps, we obtain
a=0.043+0.008. Thus, for example, for a case in which
B=2 and the quantity 4 =0.27 (from Fig. 1), we find
8x=0.15. Such a correction needs to be taken into
account for precise work.

Finally, the peak height requires no correction, to first
order, as a result of Eq. (6). It is, therefore, expressed
by Jz,...=8J(T}) - f2(0, 8), or by Eq. (12).

A summary of these results is given in the column of
Table 1 headed “8J(T).”

Corrections for o(T)

The problem to be considered here is unique to anelastic
relaxation measurements. It occurs as a result of the fact
that, in measuring internal friction as a function of tem-
perature, it is experimentally convenient to work with a
constant inertia rather than at a constant frequency;
changes in the compliance (i.e., of the elastic modulus)
and in dimensions of the sample accordingly produce
small changes in the frequency. The quantity o, there-
fore, is not a constant but a slowly varying function of
temperature. The consequence of a change in o as we
traverse the peak is that each point can be regarded as
belonging to a peak for which o is constant but which is
centered at a temperature different from T',. To see what
effect this dependence of » on T has on the peak width,

315
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we may compare the value o(7T’) of v at temperature T,
at which the function is equal to half its maximum value,
with the value wp=w(T,). The point at 7" appears to be
part of a peak centered at reciprocal temperature
T,1+8'(T-1), where

On (T
——R—S(T )—In o
= e (1 do ) (18)
o 2oy

and 8o=0(T") —v,. Since the elastic moduli of a mate-
rial always decrease with increasing temperature, §o will
be >0 on the low-temperature (high 7-1) side of the
peak, and <0 on the high-temperature side of the peak.
Therefore, the effect of the temperature dependence of o
is to make the peak narrower relative to one measured at
constant frequency. Accordingly, the correction required,
which is the negative of §'(7T-1), must serve to widen it.’
Note that if 8w/, is equal in absolute magnitude on the
two sides of the peak, the second-order correction in Eq.
(18) cancels out exactly. In any case, if the two half-
maximum values are attained at temperatures T' and T",
the peak width must be increased, to first order, by the
amount §(7-1) given by

R |o(T)—o(T")]
Qm Op ’

This correction may also be expressed as a fraction of
the total peak width A>(T-1), which is given by Eq. (8),
as follows:

§(T-1) = (19)

(T |a(T) —o(T")]
Az(T_l) 2.635r2(ﬁ)wp

(20)

The correction involved in Eqs. (19) or (20) may be
obtained directly from the measured values of w; never-
theless, it is worthwhile to get an idea of its magnitude by
considering the two principal effects which contribute to
it. These are as follows:

(a) The dependence of compliance on frequency due
to the 8J-effect, i.e., the relaxation process itself. (When
87 is appreciable compared to Jy this will be the principal
effect.)

(b) The dependence of Jy on temperature. (This will
be important only if A;<K1.)

The calculation of these two contributions is relatively
straightforward; therefore, only the results will be quoted
here. For the relative change in peak width due to the 8J
effect, we find

8(11) 0.15 Ay

= . (21)
A (T) r2(B) 1+34,

For a single relaxation time, r;=1, this correction is
approximately 0.15A,, which is only about 3% for A; as
large as 0.2. As 3 increases, the increase in r» makes the
correction still smaller. For the correction due to the tem-
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perature dependence of Jy, we obtain
8(T1) 9RT,? -
[T 20m

where n=—Jy(T,) (dJy~1/dT) is the temperature coeffi-
cient of the reciprocal compliance (i.e., of the elastic
modulus). Typical values of the right-hand side of Eq.
(22) are obtained using RT,/Qm~0.04, T,~500°K,
n~3%x10-*/°K, to get 3 x 10-3, or less than 0.5% change
in peak width due to this effect. This correction will,
therefore, generally be negligible.

Having disposed of the question of the correction to
the peak width due to the »(T') dependence, we now turn
to the question of peak position and height. From the
discussion of the correction to the width, leading to Eq.
(21), it is clear that the «(T) dependence produces a
symmetrical narrowing of the J; peak, so that the peak
position and height remain unchanged. The narrowing
due to the second effect, which led to Eq. (22) is not
exactly symmetrical, but since this entire effect is small,
the shift in peak position which it produces is completely
negligible for all but extremely wide peaks.

The column headed o(T) in Table 1 summarizes the
corrections discussed in this section.

(22)

Corrections for B(T)

The final source of complication, which appears when
relaxation data are obtained as a function of temperature,
comes from the temperature dependence of the param-
eter 8. As shown in Part I, this distribution parameter will
be independent of temperature when the distribution is
entirely in the quantity 7o, and it will show the strongest
temperature dependence (i.e., S T-*) when the distribu-
tion is entirely in the activation energy, Q. A more gen-
eral result, Eq. (I-33), was shown to apply to intermedi-
ate cases.

To calculate 8x, the shift in peak position, we may use
the method of treating the actual peak as a perturbation
of a simpler peak, in accordance with Eq. (2). In the
present case, the unperturbed function F(x) and the per-
turbation function G (x) are, respectively, given by

F(x) =387 f2(x, Bp) (23)
G(x) =fa(x, B)/f2(x, Bp) . (24)
In these equations x is again regarded as related to T-!
by Eq. (1), 8 depends on T according to (I-33) and (3,
is a constant, equal to 8(T,). To utilize Eq. (7) requires
a knowledge of a=G’(0). Straightforward manipulation

of Eq. (24) using Eq. (I-17) which defines the f2(x, 3)
function, shows that

=G'(0) = . 25
“ © On  f2(0,8) |g=8, (23)
Furthermore, it is not hard to show that
R B | _ 2 dh(0.B) i 26)

dx? =0 Br dag B=Bp




Consequently, when we take the ratio a/A4, where A4 is
defined by Eq. (5), we obtain the simple result

BPBQ
20

Under the condition of strongest dependence of 8 on
temperature, where the distribution is only in Q, we have,
from Eq. (I-28), B¢=f8,RT;. Equation (27) then be-
comes

RT,
szﬁp,,z(zg ) (28)

The magnitude of 8x increases rapidly with increasing
B». For example, for 8=2, and taking RT,/Q..~0.04,
we obtain, from (28), §x~ —0.08, which is for most
purposes quite a small correction. For larger B-values,
however, this correction becomes more significant.

The peak width is essentially unaffected by the 8(T)
dependence, because of the linear variation of 8 with
T-1 as given by Eq. (I-33). This linearity assures that
the half-maximum points on both sides of the peak are
shifted by the same amount and in the same direction.®
The fact that the width is unaffected by the temperature
dependence of f means that the value 8, can be obtained
from the width without corrections, as outlined in Table
I-5. Values of 8 so obtained may then be plotted vs T-%,
to obtain B¢ explicitly. Finally, the By-value so obtained
can be used to correct the peak position, in accordance
with Eq. (27), when this correction is of sufficient mag-
nitude to merit attention.

The column headed 8(T) in Table 1 summarizes the
corrections discussed in this section.

Sx=a/A=— (27)

Applicability of the theory

In the present section we will outline some of the appli-
cations of the theory contained in the previous sections
of this paper. To some extent, this material will draw
together suggestions made at various points in the earlier
sections; however, it will also include some applications
not mentioned earlier, as well as applications to specific

relaxation phenomena. This discussion of applications is
most conveniently subdivided along the lines of the three
relaxation parameters, 8, 8J, and 7,,, which are derivable
from the experimental measurements. It must be empha-
sized that the use of the lognormal distribution is only
justified when it is shown that a complete static or dynamic
response function can be fitted by the theory.

Determination of B

Knowledge of the quantity 8 represents a knowledge of
the width of the Gaussian distribution in In  and, as such,
can be useful in ascertaining the atomistic mechanisms of
relaxation. As shown in I, however, more complete infor-
mation is obtained when £ is known as a function of
temperature; it then becomes possible to tell how much
of the distribution is in the quantity In 7o and how much
in the activation energy. Such information is much more
informative than the simple knowledge of 8 at one tem-
perature.

By way of illustration, let us begin with the well-known
anelastic relaxation process which occurs in substitu-
tional solid solutions (the “Zener relaxation”). This effect
has been studied extensively by the authors and their col-
laborators for the solid solutions of Zn in Ag”. The effect
manifests itself as a tan ¢ peak which is relatively narrow,
corresponding to -values in the range below unity. The
data for the Ag-Zn alloys is fitted very well by assuming
the lognormal distribution in relaxation times. The results
for 3, obtained by the methods of Table I-5 and Table 1
of this paper, are shown in Fig. 3. In this Figure, both
static (creep) data and dynamic (tan ¢) data are used
to obtain results over a range of temperatures. At the
same time, data for solid solutions of two slightly different
compositions are included, since there is every reason to
believe that the results for these two compositions lie on
essentially the same curve. The scatter is rather large
partly because, in this range of comparatively small
B-values, the quantities r-(8) and Ay'(8) are not as
strongly dependent on f3 as is the case for larger S-values.
Nevertheless, it is possible to see from Fig. 3 that the

Table I Corrections to the location and width of the J, peak

tan ¢ to J;
Correction  for: conversion 8I(T) o(T) B(T)
h A RT 1
Peak location® Sx— = — Nonet dx=—3:80/20m
with h/A from Fig. 2 with A4 from Fig. 1

Peak width Nonet None¥t Increase width by Nonet
3(T') given by
Eq. (20) or (21)

*Peak location cbtained from Eq. (7) using 8x given here.
+No correction to first order.
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distribution in In 7 is most likely made up both of a dis-
tribution in the activation energy and one in In 7. The
significance of this result will be discussed in more detail
in another paper.t

The above remarks concerning the Zener relaxation
suggest that a more precise evaluation of 8(7T) may be
obtained from relaxation processes involving broader dis-
tributions. An example is the “grain-boundary relaxation”
observed in polycrystalline metals. The most complete
study of this phenomenon has been made by Ké&° using
both static and low-frequency dynamic experiments. The
results are complicated by the presence of an additional
internal friction which increases monotonically with in-
creasing temperature and is superimposed on the peak.
This so-called “background” internal friction is hard to
separate unequivocally from the peak. One way of carry-
ing out such a separation is to assume that the peak is
symmetrical in 7-! with its width given by twice the
observed half-width of the lower temperature (high 7-1)
side of the peak. This procedure, which should not be far
wrong, gives for the grain-boundary relaxation a value of
=3.30 at 280°C. Since it can be shown that the relaxa-
tion time for a given boundary is proportional to its linear
dimension,!® it seems reasonable to suggest that the dis-
tribution responsible for the width of the peak is a distri-
bution in grain diameters. It is, therefore, interesting to
note the work of Feltham!' who shows that grain diame-
ters in polycrystalline aluminum vary according to a log-
normal distribution. Quantitatively, however, the above
suggestion fails, since the S-value derived by Feltham
from the grain-size distribution is only 0.39, which is far
lower than the value 3.30 quoted above from the relaxa-
tion measurements. Although a grain-size distribution
count was not made on the specimens used for the relaxa-
tion studies, it is nevertheless hard to believe that the dis-
tribution would change so appreciably as to account for

Figure 3 Variation of 8 with T-' for two Ag-Zn solid
solutions.
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the difference in B-values. It must, therefore, be con-
cluded that the distribution in relaxation times will have
an entirely different explanation. One way of shedding
light on this problem is to determine 8¢ and 8¢ separately
from B(T). Unfortunately, Ké&s work allows only one
other value of 8 to be obtained in addition to that ob-
tained from the peak, viz., a value from static runs carried
out near 200°C. Again the results are complicated by the
“pbackground” contribution, but by using only the early
part of the creep curve (specifically, the ratio t1/2/f1/4,
where 1,4 is the time for relaxation to go 1/4 of the way
to completion), the authors obtain 8=3.65 at 200°C.
This result, compared with the value of 3.30 at 280°C,
suggests that a distribution in both Q and in In = is
involved. Nevertheless, this result must be regarded as
tentative in view of the limited temperature range cov-
ered. More extensive measurements of this kind would
be helpful in our attempt to understand the reason for the
broad distribution and, at the same time, the atomistic
mechanisms involved in the relaxation process.

Another broad anelastic relaxation effect which has
been studied in some detail is the Bordoni relaxation due
to dislocations introduced into a crystal by plastic defor-
mation. A recent paper by Niblett!? attempts to distin-
guish between a distribution in ln 7o and one in activation
energies by an approach similar to that of the present
paper (i.e., by examining whether the peak width is or is
not a function of temperature). Niblett concerns himself
only with distinguishing the two extreme possibilities, i.e.,
a distribution entirely in In 7o vs one entirely in Q. He
concludes that the results fit better to a distribution in the
activation energies.

Precise determination of 87

One method of obtaining an increased understanding of
a relaxation phenomenon in a crystal is in terms of the
temperature, orientation, and composition dependence of
8J (or of the relaxation strength, A,). The usefulness of
such information is shown, for example, by a recent series
of papers dealing with the Zener relaxation.” When the
relaxation strength is large and the distribution is rela-
tively narrow, 8J is conveniently obtained by measuring
the function J; at relatively high temperatures (where it
equals Jg) and at relatively low temperatures (where
Ji=Jy). When the distribution is broad, however, and
especially if A, is also small, this method will fail. The
best way to attain precision in the measurement of the
relaxation strength is then to obtain 8J from the height
of the J; peak (see Table I-5), or A, from the height
of the tan ¢ peak using Eq. (12). The advantage of these
methods is that they give directly the strength at one
temperature, T,, without the requirement of advance
knowledge concerning the dependence of 3/ on tem-
perature.

Precise determination of 7,

Probably the widest use of relaxation studies is to obtain
information on the kinetics of the process producing the




relaxation, as typified by the most probable relaxation
time, 1,, and the associated activation energy, O, and
frequency factor, 7o.»~!. The importance of precise deter-
minations of 7, are illustrated by recent concern over
discrepancies between the activation energy, Q,., ob-
tained from relaxation studies and values obtained from
the diffusion of radioisotopes in the same materials.13 1%
In a typical investigation, relaxation times are measured
over about three decades. A systematic error of 20% in a
value of 7., due to failure to take the various corrections
into account, can give an error in Q,, of the order of 3%,
which is not insignificant by current standards of pre-
cision.

The corrections in the calculation of 7,, from dynami-
cal data are summarized in Table 1 in the row headed
Peak location. The correction for the conversion of tan ¢
to Jz is important when A; is large, even for small B3-
values. On the other hand, the corrections for the tem-
perature dependence of 8J and of 8 become important
only for broad relaxations (8> 2).

In the case of static measurements it is noteworthy that
t1/2/ ™ drops from 0.693 to 0.615 (a change of 13%) in
going from B8=0 to B=2 (see Fig. I-6). An even greater
source of error in static measurements comes about when
the “after-effect” rather than the ¢ function is measured.
Though not discussed in this paper so far, the after-effect
is experimentally a very convenient method for studying
relaxation behavior. (In fact, most of the early studies of
both anelastic and dielectric relaxation in the last century
were by means of such measurements.) It therefore
seems appropriate to review this type of measurement
briefly and to consider how it is affected by the existence
of a lognormal distribution. Specifically, the procedure is
to apply a “force,” oo, to the system for a time ¢, (called
the hold time) according to the schedule

oo (—1<t<0)
o= (29)
0 (t<—toand 1>0) ,

and then to observe the “displacement” £(z) for t>0.
Note that the time scale is chosen so that oy is released
at r=0. Since we are only dealing in the range where all
responses of the system are linear, the quantity of interest
is £(t) /oo. This ratio is used to define the “after-effect”
function Xto(f) by the equation

e(ty/o=38J - Xto(t) . (30)

The subscript 1, relates to the fact that the after-effect
function depends on how long the “force” oo had been
applied. The well-known superposition principle of Boltz-
mann® may be used to relate the after-effect functions to
the static function /(t). Specifically, it shows that

Xe, (8) =9 (t+20) —y(1) . 31

Note that for to—>0, X, ()= 1—y/(#). Now, it is easy to
show that for the case of a single relaxation time (8=0),
Xt,(1) is always an exponential, proportional to e/,
regardless of the value of the hold time, #. In this case,

X,O(r)

Ll
0.03 0.1

[ NN
1

t/Tm

Figure 4 After-effect function plotted vs log t/7,
for various values of the hold time, {,, for
the case of 3=1.5.

therefore, the relations r=t¢y,,—1.44¢,,2 provide a con-
venient way to get 7 from after-effect measurements,
where now t, 2 is the time for the after-effect function to
fall to half of its value at 1=0. When 870, on the other
hand, this simplicity is lost. For low values of /7, the
very short relaxation times in the distribution will be
relaxed during the hold time, but not the longer relaxa-
tion times. This means that the mean relaxation time con-
tributing to the after-effect is less than 7, except when
to/Tm is very large. This result is illustrated in Fig. 4,
where a group of after-effect functions have been com-
puted, using Eq. (31) and the functions in Table I-3, for
the case of B=1.5. The latter value was selected as typi-
cal of a distribution which is not especially broad. The
plot of x; (¢) vs t/7n for different values of the hold
time, designated by the dimensionless parameter to/7m,
are given in the Figure. The plots show that not only does
the magnitude of the after-effect increase with increasing
hold times, but also the decay time of the after-effect
distinctly increases. This latter point is shown graphically
in Fig. 5 which plots ¢;,2/7m, obtained from after-effect
curves such as those in Fig. 4, as a function of ¢,/ 7.,. The
limiting value #1/2/7,=0.63 is shown by the dashed hori-
zontal line at the top of the curve. Note that even for
to=>57m, the limit is not yet reached, while for # =2,
the value t1,2/7m, is 24% lower than the limiting value.
Curves such as those of Fig. 4 and Fig. 5 for other
B-values can be computed with the help of Table 1-3 and
Eq. (31). Such curves are necessary if precise values of
Tm are to be obtained from after-effect data.
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Summary

The substance of this second paper is as follows:

1) The various corrections required in order to deter-
mine precise values of the relaxation parameters from
actual dynamical data are evaluated. Most important of
these is the shift in location between the J; and the tan ¢
peaks, which generalizes a formula of Zener valid only
for the case of a single time of relaxation.

2) Applications of the theory are discussed. Methods for
utilizing after-effect data, and of avoiding error in the
evaluation of 7, therefrom, are included. Finally, appli-
cation to some specific anelastic relaxations are discussed.
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