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Lognormal Distribution Function for Describing 
Anelastic  and Other  Relaxation  Processes 

II. Data Analysis  and  Applications 

Abstract: The present paper deals with the use of the theory and computations given  in Part I for a relaxa- 

tion process governed by a lognormal distribution of relaxation times. The experimental determination of 

the basic parameters appearing  in the theory i s  shown to require the application of a number of corrections 

to the usual type  of  dynamical data.  General expressions are derived for these corrections, and the data 

necessary for their use are presented in graphical form. Specific examples are  given of the application  of the 

theory to the analysis of anelastic relaxation phenomena. 

Introduction 

The previous  paper1 (which will be designated as I )  has 
dealt  with the behavior of a system  which  exhibits  a log- 
normal distribution of relaxation times. In  particular, 
methods  were given for obtaining the  three relaxation 
parameters, T ~ ,  6 J ,  and p, of such a system from  the 
static response function 3 / (  t ) ,  and  the  dynamic response 
functions JI(o) and J Z ( o ) .  The  purpose of the present 
paper is to deal  with the use of the theory. We first con- 
sider, in  the next  section,  a series of corrections required 
in  the precise evaluation of relaxation parameters  from 
actual dynamical data, taking  cognizance of the  fact  that 
J I (  0) and J Z  ( 0) are  not  quite  the  functions usually  meas- 
ured experimentally.  Finally, the subsequent  section deals 
with possible areas of application of the material  con- 
tained in these  papers,  including  a discussion of some 
specific anelastic  relaxation processes. 

Methods  for the analysis of dynamical  data* 

The theory,  as  presented  in Part I, gives a  detailed  descrip- 
tion of the  static  and  dynamic response functions when  a 
Gaussian distribution in In T prevails, including  methods 
for evaluation of relaxation parameters  (Part I, Table 5). 
Unfortunately, this theory  is not  always  immediately  ap- 
plicable  when  dynamical data  are involved because the 
theory assumes that J1 and JZ are measured  as functions 
*This section may be omitted on a first reading, particularly by a reader 
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of 0, while in practice  deviations from this procedure 
usually occur, as follows: 

(a )  Other  dynamic  functions,  such as tan +( = J 2 / J 1 ) ,  

or J =  ( J I ~ + J ~ ~ ) ~ / ~ ,  are  often measured  instead of J I  and 
J z .  For example,  in  dielectric  relaxation, the loss angle 4 
is often  measured  directly, while in  anelasticity the  in- 
ternal  friction gives tan +. The measurement of J instead 
of J1 does not generally pose any problems,  since the 
difference between J and J1 is only of order +2/2; thus 
for 450.1 (which is so often  the  case) this difference is 
unimportant.  On  the  other  hand,  tan ~ = J z / J I  is a more 
difficult quantity  to  interpret  than J z .  

( b )  The  dynamic response functions  are  more often 
measured  as  a function of T-l than of the frequency. 
This  approach is based on  the validity of the  Arrhenius 
relation (1-32),t which makes  it possible to  change  the 
variable x (  =In O T ~ )  of Eqs. (1-16) and (1-17) by vary- 
ing the  temperature while keeping o constant. It is clear 
from  Eq. (1-32) that  when o is constant, 

where T ,  is the absolute temperature  at which the J z  peak 
occurs  (corresponding to x = O ) .  Thus, it appears  that 
one need  only  insert ( 1) into Eqs. (1-16) and (1-17) to 
PTbe notation ( I  - n) will be used hrrein to refer to equation (n )  in  Part 

~ 

I. Similar notation will be used for the tables and Figures in  Part I. 



obtain J1(T-I) and Jz(T-') .  If  this  were  strictly true  it 
would mean  that J1( T-l) and J 2 (  T - l )  differ from J l ( x )  
and J 2 ( x ) ,  respectively, only in that they are now  cen- 
tered about Tp-l, and  that  the abscissa has  undergone  a 
change in scale factor  (by Q J R ) .  While this statement 
is approximately correct,  the change-over from  the  fre- 
quency  to  the  temperature variable  leads to complica- 
tions,  resulting from  the  fact  that  the  parameters 6 J ,  W, 

and p may  each be explicitly dependent on  temperature. 
(The simple  scale change in  converting from x to 1 / T  is 
based, of course, on  the assumption that these three 
quantities are  constant.) 

The present section deals with the various  corrections 
required  in order  to be  able to utilize the results sum- 
marized in Part I, Tables 1 to 5 for the analysis of actual 
dynamical  measurements. These corrections, though  not 
unimportant, are usually small;  they  may,  therefore, be 
handled as though  each is independent of the others.  We 
will be  primarily  concerned  with the JZ peak  because 
measurements of this quantity (or of the related  function 
tan 9) may be made with sufficient accuracy  to justify 
making the various  corrections. (In  the case of the J I  
function,  corresponding accuracy is not usually attained.) 
Involved  in these corrections are  the width,  position, and 
height of the peak,  since  these are  the quantities used to 
obtain p, rnL, and FJ, respectively. The corrections to be 
considered are those due  to: (1) the conversion from 
tan 9 to J z ;  (2)  the  temperature dependence of 6 J ;  ( 3 )  
the temperature dependence of W; (4) the  temperature 
dependence of ,8. 

In evaluating  these corrections it is useful to consider 
first the general  problem of the  perturbation of a sym- 
metric  peak  function F ( x ) ,  centered at x=O, by a func- 
tion G(x)  to  form a perturbed peak function P ( x )  given 
by 

P ( x )  =F(x)G(x)  , (2) 

where the  perturbation G(x)  has  the  property  that 
G(0)  = 1 and  that G ( x )  is a slowly varying function 
relative to  F(x).  The effect of the  perturbation will in 
general  be to  change  the position, the height, and  the 
width of the peak. A straightforward calculation shows 
that  the position of the peak is shifted by an  amount Fx 
which, to first order, is given by 

Fx=a/A , (3) 

where a is the slope of  the  G-function  at x=O, 

a=G'(O) , (4) 

and A is the negative curvature of the normalized func- 
tion F ( x ) / F ( O )  at  the peak, 

A = - F " ( O ) / F ( O )  . ( 5 )  

In  making these  calculations, it is convenient to  take as 
the small quantity not the  shift in peak position, 6x, but 
rather  the shift  relative to the half-width of the  peak; 
since the half-width is of order l/vx the  quantity 
a/vx is taken to be small. Thus,  for wide peaks 6x may 

not be << 1 ,  yet the approximation a/  v2 << 1 may still 
be valid. The height of the peak is changed  only to second 
order in the quantity a / v x  i.e., 

This change  can,  therefore, be neglected in what follows. 
For present  purposes, the  unperturbed peak F ( x )  will be 
the JZ function with constant values for S J ,  W, and p. The 
peak shift, Fx, due  to  the  perturbation G (x), means  that 
the  condition In wrrn=O, valid at  the peak  in the absence 
of a perturbation, is replaced by 

In or,=Fx=a/A (7)  

when the  perturbation G ( x )  is present. Thus,  the  correct 
value of rm may be located from  the position of the peak 
using Eq. (7). Computation of 6x for each  type of per- 
turbation will require a knowledge of A.  Values of 
A = - [ a 2 f z ( x ,  p)/i3x2]/fZ(n, p )  computed as a func- 
tion of ,8 from  the numerical  tabulation of the  function 
f Z ( x ' ,  p )  in  Table 1-2, are plotted  in Fig. 1.  The  quantity 
A goes from a  value of unity at p=O to  an asymptotic 
value of 2/p2  at  large values of p. 

Finally, the effect of the  perturbation  on  the peak 

as a function of p. 

i 
t 
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width must be considered, It is easy to show that if the 
function G ( x )  - 1 is an  odd  function of x, the width of 
the peak at half-maximum is unchanged by the  perturba- 
tion to a first-order  approximation. Using Eq. (1) com- 
bined with  Eqs. (1-23) and (1-21) then gives for this 
width, in reciprocal temperature units 

R 
Az(T-l) =2.635 - rZ(p)  , (8) 

Qm 

where r z ( P )  is the quantity  plotted in Fig. 1-3. When 
rz = 1 in  Eq. (8), we obtain the well-known result for the 
case of a single relaxation time. It is now possible to pro- 
ceed to consider, in  turn,  each of the complexities men- 
tioned above, which lead to  perturbations of the simple 
J Z  peak. 

Corrections for conversion from tan (p to  J z  

As shown in  I,  the quantity tan ( p = J z / J 1  involves, in 
general,  a ratio of distribution  integrals;  therefore,  the 
theory is more complicated for this quantity than  for J z .  
Only when 6J<< JU can we write tan 9 as  proportional 
to J z .  Otherwise, it is desirable to convert  the experimen- 
tal results for  tan C#I into  the equivalent  results for J z ,  the 
analysis of which has  already been dealt with in Table 
1-5. Assuming that  tan (p and J1 are being measured con- 
currently,  one  method of handling the data is to convert 
tan + into JZ point  for  point,  using  the  definition 
Jz=J1  tan (p. On  the  other  hand, if it is only desired to 
obtain the three  relaxation  parameters, p, T ~ ,  and 6 J  
from  the peak  width,  location, and height, respectively, 
such a  point-for-point conversion is not required;  it is 
only necessary to apply small corrections to  the results 
obtained directly from  the  tan 9 peak. The theory dis- 
cussed in Eqs. (2) to (7)  might  then be applied to  the 
present  problem by taking F ( x )  =Jz(n) / J l ( O ) ,  and the 
perturbation  function G (x) = J l ( 0 )  / J I  ( x ) .  

The peak  width remains  unchanged to first order in the 
transformation  from J z  to  tan (p, since G(x)  - 1 is an odd 
function of x.  The width  obtained from the tan C#I peak 
may accordingly be used to obtain ,!3 from  Eq. (8) and 
Fig. 1-3. 

To obtain  the shift in peak  position, Sx, requires  calcu- 
lation of the  parameter a which appears  in  Eq. ( 3 ) .  From 
the definition of a, Eq. (4), and  the form of G ( x )  given 
above, we may write 

The last expression, which defines h, is adopted because 
Jl’(0) is negative and proportional  to SJ.  Thus, h= 
-af l (x ,  p )  / a x  is a positive dimensionless parameter 
which is equal  to 1/2 for  the case of a single relaxation 
time and becomes smaller with increasing p. It is con- 
venient now to introduce  a dimensionless parameter 
called relaxation strength, AJ, and defined by 

AJ=GJ/J~. (10) 
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Figure 2 The quantity h / A  as a function of p. 

(1-16))  that J1(0)=Ju++AJ are inserted into Eqs. ( 3 )  
and (9), we obtain, for  the displacement of the  peak 
position, 

Values of h / A ,  for  the case of a  lognormal distribu- 
tion,  are  plotted in Fig. 2 as a function of p. This graph 
is obtained from the values A ( P )  plotted in Fig. 1, and 
values of h obtained from Yager’s computations* of J I .  
For p=O,  h / A = 1 / 2 ,  and Eq. (11) is in agreement (up 
to  terms of order A3J) with the exact  relation: 6x= 
4 In( 1 +A,) derived by Zener3 for  the case of a single 
time of re la~at ion.~ Equation (1 1) extends Zener’s result 
in that it permits the calculation of the peak  shift when 
p # 0. The value of 6x so obtained may then be used in 
Eq. (7)  to obtain T ~ .  It is worth noting that  for large p, 
the  quantity h / A  approaches asymptotically ,8/2gT. 

Finally, the peak  height, P ( 0 )  differs from the  height 
of the unperturbed  peak F ( 0 )  only in terms of second 
order (see Eq. (6) ) , which difference may be neglected. 
Therefore, we obtain in the  present case, with the  help 
of Eq. (1-17): 



Equation (12), together  with Fig. 1-3 for  the  function 
f z ( O ,  p )  permits one  to  obtain SJ or AJ from  the  peak 
height of the  function  tan 4. 

In summary, if tan C+ is measured  as  a function of In o 

or of T-l, the  peak width,  location, and height may be 
used to  obtain p, rm, and A J ,  respectively. The peak 
width is unchanged  from  that of the J z  peak, while the 
height of the  tan C+ peak is (to first order)  the  same as 
that of the JZ peak divided by J l (0 ) .  The peak position is 
shifted,  with the value Sx given by Eq. ( 1 1 ) . The  column 
of Table 1 headed “tan 4 to J 2  conversion” serves to  sum- 
marize these corrections. The peak  height will not appear 
in  this  table since, as  shown in  Eq. ( 6 ) ,  the height is not 
affected, to first order, by the  perturbations being con- 
sidered. 

Corrections for SJ(T) 

When  measurements are  made as  a function of T-l rather 
than of W, the  parameter SJ (or the strength, A J )  cannot 
be treated  as  constant,  since it actually  varies with T .  To 
know  how it varies, we must depart  from  the  formal 
theory  and consider the  nature of the relaxation  centers 
and  the quantities  which determine  the energy of order- 
ing of these  centers.  According to  the simplest treatment, 
whereby the  ordering energy  depends  only on u, one 
obtains SJmT-l; on  the  other  hand, when the ordering 
energy is also allowed to depend on the existing state of 
order,  the result  may come  out  in  the  form SJa(T-  TC)-l, 
where T ,  is a  critical t e m p e ~ a t u r e . ~ , ~  (This  last result is 
similar to  that  for  the magnetic susceptibility of a ferro- 
magnetic  material  above the  Curie  point.)  We will use 
here  the  latter  form  for  the  temperature dependence of 
S J ,  recognizing that  the simpler form  may always be ob- 
tained  by  setting T,=O. 

In  order  to  apply  the results of Eqs. ( 3 )  and ( S ) ,  we 
again  develop the exact peak  function as the  perturbation 
of a  symmetrical  peak F ( x ) ,  following the  notation of 
Eq. ( 2 ) .  In  the present case, the  function 1 2  may  be 
written  in terms of the  temperature as 

J z ( x )  = S J ( T ) f 2 ( x ,  p> 

1 - t a x ,  which  obeys the condition that G ( x )  - 1 is an  odd 
function of x. 

Thus,  as  before, the  peak width remains unchanged by 
the  perturbation G ( x ) .  In  the  more general case, where 
T,#O, this same result will be obtained, provided that 
the peak  width is not  very  great and T ,  is not comparable 
to T,, since then G ( x )  can be expressed to sufficient 
accuracy  over  the range of the peak by a Taylor expan- 
sion about x=O. Accordingly, we conclude that, except 
for very  wide  peaks or in cases where T, /T ,  is close to 
unity, the  perturbation  due  to S J (  T )  does  not  appreciably 
affect the peak  width. In cases where  this  approximation 
is not valid the best procedure is probably to  make a 
point-for-point correction, i.e., to multiply each  data 
point by S J (  T , ) / S J (   T ) .  

As for  the peak  position, we again use Eq. (7)  where 
now 

This result,  together  with  values of A given in Fig. 1, 
permits the calculation of the shift  in  peak position, ax, 
using Eq. ( 3 ) .  It is noteworthy that  the sign of the cor- 
rection is the  same as that  for  the conversion of tan + to 
J z ,  given by Eq. ( 1 1 ) .  Unlike this  earlier correction, 
however, the  quantity a is here independent of p. An 
estimate of a is readily obtained,  for  the case in which 
T,/T,<< 1, by utilizing Eq. (1-32) combined  with the 
fact  that x=O at T = T ,  to give 

a-’=Qm/RTp= -In ~ 7 ~ ~ .  ( 1 7 )  

For rOm, the typical value of l@14 sec  may  be inserted, so 
that, for a  typical  frequency range of 103t2 cps, we obtain 
a=0.043 k0.008. Thus,  for example, for a  case  in which 
/3 = 2 and  the  quantity A =0.27 (from  Fig. 1 ) , we find 
6x E 0.15. Such  a correction needs to be taken  into 
account for precise work. 

Finally,  the peak  height  requires no  correction,  to first 
order, as  a  result of  Eq. ( 6 ) .  It is, therefore, expressed 
by J2 , , ,=SJ(TP)  . f 2 ( O ,  p ) ,  or by Eq. ( 1 2 ) .  

A summary of these  results is given in the  column of 
Table 1 headed “ S J (  T )  .” 
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Corrections for o( T )  

where the variables T and x are interconvertible by means 
of Eq. ( 1 ) .  The first factor  on  the right-hand  side of 
Eq. ( 1 3 )  may then be taken as the  unperturbed peak, 
F ( x )  , while the second factor  is  the perturbation, G ( x ) .  
In view of the proposed form SJm ( T -  T , ) - l ,  it is easily 
shown that this  second factor is expressible as 

where 

a = R T p / Q , .   ( 1 5 )  

For T,=O, Eq. ( 1 4 )  goes into  the simple form: G ( x )  = 

The problem to be  considered here is unique  to anelastic 
relaxation  measurements. It  occurs as  a  result of the  fact 
that, in measuring internal  friction  as a function of tem- 
perature, it is experimentally  convenient to work  with  a 
constant inertia rather  than  at a constant frequency; 
changes  in the compliance  (i.e., of the elastic modulus) 
and  in dimensions of the sample  accordingly produce 
small  changes in  the frequency. The  quantity W, there- 
fore, is not  a constant  but a slowly varying function of 
temperature.  The consequence of a change in w as we 
traverse the peak is that  each  point  can  be regarded  as 
belonging to a  peak for which w is constant but  which is 
centered  at a temperature different from T,. To see what 
effect this  dependence of w on T has  on  the peak width, 



we may  compare  the value O (  T') of o at  temperature T', 
at which the  function is equal  to half its maximum value, 
with the value wp=w(TP) .  The  point  at T' appears  to be 
part of a peak centered at reciprocal temperature 
TP-l+S' (T- l ) ,  where 

and G O = W ( T ' ) - O , .  Since the elastic  moduli of a mate- 
rial  always  decrease with increasing temperature, SO will 
be > O  on  the low-temperature (high  T-l) side of the 
peak, and < O  on  the high-temperature side of the peak. 
Therefore,  the effect of the  temperature dependence of o 
is to  make  the  peak narrower relative to  one measured at 
constant frequency.  Accordingly, the correction required, 
which is the negative of S'( T I ) ,  must  serve to widen it.5 
Note  that if SW/O, is equal in absolute  magnitude on the 
two sides of the peak, the second-order correction in Eq. 
(18) cancels out exactly. In  any case, if the two  half- 
maximum values are attained at  temperatures T' and T", 
the peak  width must be increased, to first order, by the 
amount S ( T - l )  given by 

s (T-1)  = - R I w ( T ' ) - o ( T " )  1 
Qm U P  

This  correction  may also be expressed as a fraction of 
', which is given by  Eq. (8), the  total peak width A2( T - l )  

as  follows: 

G(T-1) ( o ( T ' ) " w ( T " )  
" 

A2 ( T-l) 2.635r2(P)oP 
- 

I 

The correction involved in Eqs. ( 19) or (20) may be 
obtained  directly from  the measured values of O; never- 
theless, it is worthwhile to get an idea of its magnitude by 
considering the  two principal effects which contribute  to 
it. These  are as  follows: 

( a )  The dependence of compliance on  frequency  due 
to the GJ-effect, i.e., the relaxation  process itself. (When 
GJ is appreciable  compared  to J u  this will be the principal 
effect . ) 

( b )  The dependence of Jo  on temperature. (This will 
be important only if AJ<< 1.) 

The calculation of these  two contributions is relatively 
straightforward;  therefore, only the results will be quoted 
here. For the relative change in peak width due  to  the SJ 
effect, we find 

For a single relaxation  time, r2= 1,  this correction is 
approximately  0.15AJ,  which is only about 3 % for AJ as 
large as 0.2. As p increases, the increase  in r2 makes  the 

316 correction still smaller. For  the correction due  to  the tem- 

perature dependence of Ju, we obtain 

S ( T-I) r]RTp2 
Az(T-l) 2Qm ' 
" -- 

where r]  = - Ju( T p )  (dJu-l/dT) is the  temperature coeffi- 
cient of the reciprocal  compliance (i.e., of the elastic 
modulus). Typical values of the right-hand  side of Eq. 
(22) are obtained using RTP/Qm-0.04, TP-500"K, 
7-3 X I e 4 / " K ,  to get 3 x or less than 0.5% change 
in peak width due  to this effect. This correction will, 
therefore,  generally be negligible. 

Having disposed of the question of the  correction  to 
the peak width due  to  the W (  T )  dependence, we now turn 
to the  question of peak position and height. From  the 
discussion of the  correction  to  the width,  leading to  Eq. 
(21 ), it is clear that  the W (  T )  dependence produces  a 
symmetrical narrowing of the JZ peak, so that  the  peak 
position and height remain unchanged. The  narrowing 
due  to  the second effect, which  led to  Eq. (22) is not 
exactly  symmetrical, but since  this entire effect is small, 
the shift  in  peak position which it produces is completely 
negligible for all but extremely wide peaks. 

The  column headed o ( T )  in  Table 1 summarizes the 
corrections discussed in  this  section. 

Corrections for P( T )  

The final source of complication,  which appears when 
relaxation data  are obtained  as  a function of temperature, 
comes from  the  temperature dependence of the  param- 
eter P. As  shown in  Part  I, this  distribution parameter will 
be independent of temperature when the distribution is 
entirely  in the  quantity r0, and  it will show  the strongest 
temperature dependence (i.e., /3m T-l )  when  the distribu- 
tion is entirely  in the activation  energy, Q. A more gen- 
eral result, Eq.  (I-33), was  shown to apply to intermedi- 
ate cases. 

To calculate Sx, the shift  in  peak  position, we may use 
the  method of treating the  actual  peak  as a perturbation 
of a  simpler  peak,  in accordance with Eq. (2).  In  the 
present case, the  unperturbed  function F ( x )  and  the  per- 
turbation  function G ( x )  are, respectively, given by 

F ( x )  = S J .  f2(x9 P p )  (23) 

G ( x ) = f 2 ( x ,  P ) / f ~ ( x ,  PPI. (24) 

In these equations x is again  regarded  as  related to T-x 
by  Eq. ( I ) ,  p depends on T according to (1-33) and PP 
is a constant,  equal  to P(  T p )  . To utilize Eq. (7) requires 
a  knowledge of a= G'(0). Straightforward  manipulation 
of Eq. (24) using Eq. (1-17) which defines the  fi(x, P )  
function, shows that 
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relaxation parameters, /?, 6 J ,  and rm, which are derivable 
P P P Q  6 x = a / A = -  -. (27) from  the experimental  measurements. It must be empha- 
2Qm sized that  the use of the  lognormal distribution is only 

Under the condition of strongest dependence of p on justified when it is shown that a complete static or  dynamic 
temperature,  where  the distribution is only  in Q, we have, response function can be fitted by the theory. 
from  Eq. (I-28), / ? Q = / ? ~ R T ~ .  Equation (27) then be- 
comes Determination of /3 

The magnitude of 6x increases  rapidly  with  increasing 
Pp.  For example, for /?=2,  and taking RTp/Q,-0.04, 
we obtain, from  (28), Sx- -0.08, which is for most 
purposes quite a  small  correction. For  larger /?-values, 
however,  this  correction  becomes more significant. 

The peak width is essentially unaffected by the / ? ( T )  
dependence,  because of the  linear variation of p with 
T-l as given by Eq. (1-33). This linearity  assures that 
the half-maximum  points on both  sides of the  peak  are 
shifted by the  same  amount  and in the  same direction.6 
The  fact  that  the width is unaffected by the  temperature 
dependence of /? means  that  the value P p  can be  obtained 
from  the width without corrections,  as  outlined  in Table 
1-5. Values of /? so obtained  may then be plotted vs T-I, 
to  obtain PQ explicitly. Finally, the  PQ-value so obtained 
can  be  used to  correct  the  peak position,  in accordance 
with Eq. (27), when  this  correction is of sufficient mag- 
nitude  to  merit attention. 

The  column headed /?( T )  in Table 1  summarizes the 
corrections discussed in  this  section. 

Applicability of the theory 

Knowledge of the  quantity /? represents  a  knowledge of 
the width of the  Gaussian distribution in In T and,  as such, 
can be useful in  ascertaining the atomistic  mechanisms of 
relaxation. As shown in I, however, more complete  infor- 
mation is obtained  when /? is known as a function of 
temperature;  it then  becomes possible to tell how much 
of the distribution is in the  quantity In r0 and how much 
in the activation  energy.  Such information is much  more 
informative  than  the simple  knowledge of /? at one tem- 
perature. 

By way of illustration,  let us begin with the well-known 
anelastic  relaxation  process  which occurs  in substitu- 
tional solid solutions (the  “Zener relaxation”). This  effect 
has been studied extensively by the authors  and  their col- 
laborators  for  the solid solutions of Zn in Ag7. The effect 
manifests itself as a tan + peak  which is relatively narrow, 
corresponding to @-values in the  range below unity. The 
data  for  the Ag-Zn alloys is fitted very well by  assuming 
the  lognormal distribution in relaxation times. The results 
for /?, obtained by the methods of Table 1-5 and  Table 1 
of this paper,  are  shown in  Fig. 3. In this Figure,  both 
static  (creep)  data  and  dynamic  (tan +) data  are used 
to  obtain results  over  a range of temperatures. At the 
same time, data  for solid solutions of two slightly different 
compositions are included,  since there is every reason to 

In  the present  section we will outline  some of the appli- believe that  the results for these two compositions lie  on 
cations of the  theory contained in the previous  sections essentially the  same  curve.  The  scatter is rather  large 
of this paper. To some  extent, this material will draw partly  because, in this range of comparatively  small 
together suggestions made  at various  points in the earlier ,!i”values, the quantities rZ(P) and Ay’(p) are  not as 
sections; however, it will also  include  some  applications strongly dependent on /? as is the case for  larger p-values. 
not mentioned  earlier,  as well as applications to specific Nevertheless, it is possible to see from Fig. 3 that  the 

Table I Corrections to the location and  width of the J 2  peak 
~ 

tan + to Jz 
Correction for: conversion 

I 

Nonet 

with h / A  from Fig. 2 with A from  Fig. 1 

Peak width Nonet  Nonet  Increase width by Nonet 
6 ( T - ’ )  given by 

Eq. (20) or (21) 

‘Peak location  obtairzd from Eq. ( 7 )  using Fn given  here. 
t N o  correction  to first order. 317 
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distribution  in In T is most likely made up both  of a dis- 
tribution  in  the activation  energy and  one  in In T ~ .  The 
significance of this  result will be discussed in more detail 
in another paper.8 

The above remarks  concerning  the Zener  relaxation 
suggest that a more precise evaluation of P ( T )  may be 
obtained from relaxation processes involving broader dis- 
tributions. An  example is the “grain-boundary  relaxation” 
observed in polycrystalline  metals. The most  complete 
study of this phenomenon  has been made by K&9 using 
both  static and low-frequency dynamic experiments. The 
results are complicated by the presence of an additional 
internal  friction which  increases  monotonically with in- 
creasing temperature  and is superimposed on  the peak. 
This so-called “background”  internal  friction is hard  to 
separate unequivocally from  the peak.  One  way of carry- 
ing out  such a separation is to assume that  the  peak is 
symmetrical in T-l with  its  width given by twice the 
observed half-width of the lower temperature  (high  T-l) 
side of the peak. This  procedure, which  should  not be far 
wrong, gives for  the  grain-boundary relaxation  a  value of 
pr3.30 at 280°C. Since it  can be shown that  the relaxa- 
tion  time for a given boundary is proportional  to its  linear 
dimension,lo  it seems reasonable to’ suggest that  the dis- 
tribution responsible for  the width of the peak is a  distri- 
bution in grain  diameters. It is, therefore,  interesting to 
note  the  work of Felthamll who shows that grain  diame- 
ters  in polycrystalline aluminum vary according to a log- 
normal distribution.  Quantitatively,  however, the above 
suggestion fails, since the  p-value derived by Feltham 
from  the grain-size distribution is only 0.39, which is far 
lower than  the value 3.30 quoted above from  the relaxa- 
tion measurements.  Although  a grain-size distribution 
count was not made  on  the specimens used for  the relaxa- 
tion  studies, it is nevertheless hard  to believe that  the dis- 
tribution would change so appreciably  as to account for 

Figure 3 Variation of p with 7” for two  Ag-Zn solid 
solutions. 
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the difference in ,&values. It must, therefore,  be con- 
cluded that  the distribution  in  relaxation  times will have 
an entirely  different  explanation. One way of shedding 
light on this  problem is to  determine ,Bo and pU separately 
from ,L?(T). Unfortunately, K&’s work allows only one 
other  value of p to be obtained  in addition to  that ob- 
tained from  the peak, viz., a  value from  static  runs  carried 
out  near 200°C. Again the results are complicated by the 
“background”  contribution,  but by using only the  early 
part of the  creep  curve (specifically, the  ratio t l / ~ / t 1 / 4 ,  
where flIC is the  time  for relaxation to go 1/4 of the way 
to  completion),  the  authors  obtain ,8=3.65 at 200°C. 
This result, compared with the value of 3.30 at 280”C, 
suggests that a distribution  in both Q and  in In TO is 
involved. Nevertheless,  this  result  must be regarded as 
tentative  in view of the limited temperature  range cov- 
ered. More extensive measurements of this kind would 
be helpful in our attempt  to  understand the  reason for  the 
broad distribution and, at the  same time, the atomistic 
mechanisms  involved  in the relaxation process. 

Another  broad anelastic  relaxation effect which has 
been studied  in  some  detail is the Bordoni  relaxation due 
to dislocations  introduced into a  crystal  by  plastic defor- 
mation. A recent  paper by Niblett12 attempts  to distin- 
guish between a distribution  in In T” and  one in  activation 
energies by an  approach similar to that of the present 
paper (i.e., by examining  whether the  peak width is or is 
not  a function of temperature). Niblett concerns himself 
only with distinguishing the two  extreme possibilities, Le., 
a  distribution  entirely  in In T~ vs one entirely in Q.  He 
concludes that  the results fit better  to a  distribution in  the 
activation energies. 

Precise  determination of SJ 

One method of obtaining an increased understanding of 
a  relaxation phenomenon in a crystal is in  terms of the 
temperature, orientation, and composition  dependence of 
SJ (or of the relaxation strength, A,). The usefulness of 
such  information is shown, for example, by a recent series 
of papers  dealing  with the  Zener relaxation.7 When  the 
relaxation strength is large  and  the distribution is rela- 
tively narrow, SJ is conveniently  obtained  by  measuring 
the  function J1 at relatively high temperatures  (where it 
equals J R )  and  at relatively low temperatures  (where 
J 1 =  J U ) .  When  the distribution is broad,  however, and 
especially if A, is also  small,  this method will fail.  The 
best way to  attain precision in  the  measurement of the 
relaxation strength is then  to  obtain SJ from  the height 
of the J 2  peak (see Table I-5), or AJ from  the height 
of the  tan $I peak using Eq. ( 12). The  advantage of these 
methods is that they give directly the  strength  at  one 
temperature, T p ,  without the  requirement of advance 
knowledge  concerning the dependence of S J  on  tem- 
perature. 

Precise  determination of T~~ 

Probably the widest use of relaxation  studies is to obtain 
information  on  the kinetics of the process producing  the 
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relaxation,  as typified by the most probable  relaxation 
time, T ~ ,  and  the associated activation energy, Q,, and 
frequency factor,  The  importance of precise deter- 
minations of T,,” are illustrated by recent  concern over 
discrepancies between the activation  energy, ell,, ob- 
tained from relaxation  studies and values obtained from 
the diffusion of radioisotopes  in the  same materials.13”4 
In a typical investigation,  relaxation times are measured 
over  about  three decades. A  systematic error  of 20% in  a 
value of T~ due  to  failure  to take the various  corrections 
into account,  can give an  error in QnL of the  order of 3 % , 
which is not insignificant by current  standards of pre- 
cision. 

The corrections in the calculation of T, from dynami- 
cal data  are summarized in Table 1 in the row  headed 
Peak location. The  correction  for  the conversion of tan (b 
to J z  is important when AJ is large, even for small p- 
values. On  the  other  hand,  the corrections for  the tem- 
perature dependence of 6J  and of p become important 
only for  broad relaxations ( p  > 2 ) .  

In the case of static measurements it is noteworthy that 
f l / 2 / T m  drops  from 0.693 to 0.615 (a  change of 13%) in 
going from p=O to p=2 (see Fig. 1-6). An even greater 
source of error  in  static measurements  comes about when 
the “after-effect” rather  than  the $ function is measured. 
Though  not discussed in  this paper so far,  the after-effect 
is experimentally  a  very  convenient method  for  studying 
relaxation  behavior. (In  fact, most of the  early studies of 
both anelastic and dielectric  relaxation  in the last century 
were  by means of such measurements.) It therefore 
seems appropriate  to review this  type of measurement 
briefly and to consider  how it is affected by the existence 
of a  lognormal  distribution. Specifically, the  procedure is 
to apply  a  “force,” UO, to  the system for a  time to (called 
the hold time) according to  the schedule 

uo ( “ t o < t < O )  

0 (t<-toand t > O )  , 
u= 1 ( 2 9 )  

and  then  to observe the “displacement” E ( t )  for t>O. 
Note  that  the  time scale is chosen so that uo is released 
at t=O.  Since we are  only dealing in the  range where all 
responses of the system are linear, the  quantity of interest 
is ~ ( t )  /ao. This ratio is used to define the “after-effect’’ 
function x t o (  t )  by the  equation 

E ( t ) / u = 8 J * X t 0 ( t ) .   ( 3 0 )  

The subscript to relates to  the  fact  that  the after-effect 
function depends on  how long the “force” uo had been 
applied. The well-known superposition  principle of Boltz- 
mann3  may be used to  relate  the after-effect functions  to 
the  static  function $( t ) .  Specifically, it shows that 

x t o ( t )  = $ ( t + t o )  - $ ( O  . ( 3 1 )  

Note  that for tO+co, x m ( t ) +  1 - $ ( t ) .  Now,  it is easy to 
show that  for  the case of a single relaxation  time (p=O), 
x t o ( t )  is always an exponential, proportional to c t / T ,  

regardless of the value of the hold time, t o .  In this  case, 

Figure 4 After-effect function plotted vs log f / T n t  

for various values of the hold time, f o r  for 
the case of p= 1.5. 

therefore, the relations r=t l Ie= 1.44tIr2 provide  a  con- 
venient way to  get 7 from after-effect measurements, 
where  now t l / z  is the time for  the after-effect function  to 
fall to half of its value at t=O. When p#O, on  the  other 
hand, this simplicity is lost. For low values of t O / ~ m ,  the 
very short relaxation  times  in the distribution will be 
relaxed during  the  hold time,  but  not  the  longer  relaxa- 
tion times. This means  that  the  mean relaxation  time  con- 
tributing to  the after-effect is less than T,, except when 
~ o / T ~  is very  large. This result is illustrated in Fig. 4 ,  
where a group of after-effect functions  have been com- 
puted, using Eq. (3 1 ) and  the  functions in Table 1-3, for 
the case of p= 1.5. The  latter value was selected as typi- 
cal of a  distribution  which is not especially broad. The 
plot of x t o ( t )  vs t / s ,  for different values of the hold 
time,  designated by the dimensionless parameter f O / T m ,  

are given in the Figure. The plots show that  not only  does 
the magnitude of the after-effect increase  with  increasing 
hold times, but  also the decay  time of the after-effect 
distinctly increases. This  latter point is shown  graphically 
in  Fig. 5 which  plots t l /z /~ l , t ,  obtained from after-effect 
curves such as those  in  Fig. 4,  as  a function of t o / T m .  The 
limiting value t l /z/r ,=0.63 is shown by the dashed hori- 
zontal line  at  the  top of the curve. Note  that even for 
t0=5~, ,%,  the limit is not yet  reached, while for to=2rm 
the value f l / Z / T m ,  is 24% lower than  the limiting value. 
Curves  such as  those of Fig. 4 and Fig. 5 for  other 
p-values can be computed with the help of Table 1-3 and 
Eq. (31). Such  curves are necessary if precise values of 
T~~~ are  to be  obtained from after-effect data. 
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1 )  The various  corrections  required  in  order  to  deter- 0.6 - 
mine  precise  values of the  relaxation  parameters  from 
actual  dynamical  data  are  evaluated.  Most  important of 
these is the  shift  in  location  between  the J2 and  the  tan 9 
peaks,  which  generalizes a formula of Zener  valid  only 
for  the  case of  a single  time of relaxation. 
2 )  Applications of the  theory  are  discussed.  Methods  for 
utilizing  after-effect  data,  and of avoiding  error in the 
evaluation  cation  to  some of T~~ specific  therefrom,  anelastic  are  relaxations  included.  Finally,  are  discussed.  appli- d 0.3 ;__111_ 
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