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Abstract: Such phenomena as dielectric, magnetic, and anelastic relaxation are often described in terms of

a distribution of relaxation times. It is shown that a relaxation process which exhibits a Gaussian distribution

in the logarithm of the relaxation times (a ‘‘lognormal distribution) can be specified completely by three

parameters. These are: the mean relaxation time (7,,), the width of the distribution (8), and the magnitude of

the relaxation (8J). The relationships of these parameters to experimentally measurable functions are usually

complicated. These relationships were obtained in numerical form by machine computation. Finally, a simple

formula is derived which expresses the parameter 8 in terms of the widths of the distribution of the activation

energies and that of the attempt frequencies.

Introduction

The term “relaxation” is used to denote the time-depend-
ent self-adjustment of a system to a new equilibrium
condition when an external variable is changed. In the
static manifestation of relaxation an appropriate “force”
is usually changed abruptly and held at a new value while
the conjugate “displacement” is observed as a function
of time. Thus, in the case of dielectric relaxation, the
polarization (and therefore the electric displacement) is
observed to change with time in response to an instanta-
neous change in the applied electric field; in magnetic
relaxation the “force” is the magnetic field, while the
“displacement” is the magnetic induction; in anelastic
relaxation a time-dependent strain may be observed when
the applied stress is changed.

In the present paper we will deal with equations that
relate to all of these relaxation phenomena in linear sys-
tems. In order to express the results compactly, however,
only the notation of anelastic relaxation will be used. In
this notation the static behavior may be expressed as the
time dependence of the strain, £(r), when a stress, o, is
abruptly imposed at t=0 and held constant for ¢>0.
Under the assumption that the response of the system is
linear, its static behavior may be expressed as:

e(t)/o=Tu+{Tr—Tu)Yy()=Ty+8] - ¢(1), )

where /(¢) is a dimensionless function which goes from
zero at t=0 to unity as t~>o (and which will here be
called the static response function); J; is the compliance
of the sample (strain/stress) measured at =0, and is,
therefore, called the unrelaxed compliance; and Jg is the
compliance of the sample under equilibrium conditions
(at t=c0), called the relaxed compliance.? The quantity
8J=Jg—1Jy is then a measure of the magnitude of the
relaxation effect. For conversion of this notation into the
terminology of dielectric and magnetic relaxation, use
may be made of Table 1, which serves as a dictionary.
Henceforth, we will continue to use the terminology of
anelasticity, recognizing that translation is easily possible.

The dynamic manifestations of a relaxation may be
studied by the application of a periodic force. In com-
plex notation, the stress may be given by

o=aqoet? (2)

where o is the circular frequency of the applied stress.
The strain will, in general, not be in phase with the stress
if relaxation effects are present but rather will lag behind
the stress by an angle ¢, so that

e=goet @9 = (e1—iez) €'t 3)
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Table 1 Relationship between quantities which appear in various relaxation phenomena.

. Symbol .
Type of quantit;
ype of q y used here Name of quantity

Dielectric Magnetic Anelastic
relaxation relaxation relaxation

“Force” a Electric field Magnetic field Stress

“Displacement” £ Electric displacement Magnetic induction Strain

Ratio: Permittivity or

displacement /force J dielectric constant Permeability Compliance

where £; and &, are, respectively, the components of
strain in phase with, and in quadrature with, the stress.
The relationship between stress and strain may, there-
fore, be expressed as

e=J*cg, “4)
where J* called the complex compliance, is given by
F=J(0) —ily (o) . (5)

Note that the real part of J¥, J,=¢1/00, and the imaginary
part, Jo=¢2/09, are in general both functions of the ap-
plied frequency.* The relationship of the phase angle ¢
to these quantities is, from Eq. (3),

tan ¢p=Jo/Js . (6)

The quantities J1(w), J2(0) and tan ¢(o) constitute the
“dynamic response functions.”

In the description of relaxation phenomena, it is cus-
tomary to start with the simple case in which the function
Y (t) is an exponential, of the form 1—e-*/7, Here 7 is
called the relaxation time® and the relaxation process is
described as showing a “single time of relaxation.” Corre-
spondingly, the dynamic properties J1{0) and J2(o) are
described by the well-known Debye equations:

87

Ty =Tyt ——

W) =dot 90 )
Jo(0) =87 ——

2(0) =8 @)

The function J,, when plotted against log o, gives a
symmetrical peak centered about log or=0 (called the
Debye peak), while on the same plot, the function Jq is
antisymmetrical about the point Ji=(Jy+Jg)/2, log
or=0. Many phenomena in crystals are describable in
these terms, in the sense that J» vs In o7 gives a well-
defined peak, but it is often, if not generally, found that
the J; peak is somewhat broader than that predicted by
the simple theory. Correspondingly, the static response
function ¢(t) changes in time more gradually than a
simple exponential. Such behavior is undoubtedly due to
the existence of a distribution of relaxation times rather
than a single relaxation time. Nevertheless, many authors
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have tended to fit the observed behavior to the theory of
a single relaxation time as well as possible. For example,
the quantity tan ¢ (which is often measured directly®)
shows a peak which is commonly broader than that given
by inserting the Debye equations into Eq. (6). In spite of
this fact, it is often customary to use the Debye equa-
tions to obtain an effective relaxation time from the posi-
tion of the peak, and the strength or magnitude of the
relaxation from the height of the peak. The difference be-
tween the actual behavior and that of a single relaxation
is then quoted as the percentage by which the width of
the actual peak exceeds that predicted from the Debye
equations. Such a procedure has two weaknesses: 1) it
essentially ignores valuable additional information con-
tained in the experimental data, and 2) it leads to errors
in the value of the mean relaxation time obtained from
the data.

The purpose of the present pair of papers is to study
the manner in which the introduction of a distribution in
the relaxation times produces a broadening in the J» and
tan ¢ peaks, as well as to obtain the equivalent changes
in the other properties, J1(») and ¢ (¢). It is hoped in this
way to lead to a formal description of solids which will
in turn be valuable in the analysis of the detailed atom-
istic mechanisms in crystals. Attention will be focused
on the information to be gathered by adopting the as-
sumption that the relaxation times are distributed accord-
ing to a Gaussian (or normal) distribution in In 7. This
distribution, which is also known as the lognormal dis-
tribution, was originally suggested by Wiechert as early
as 1893 to explain the elastic after-effect of solids. It was
later applied in more detail to dielectric relaxation by
Wagner® and further developed for dielectrics by Yager,®
who also carried out some numerical computations for
the functions Ji(») and J:(w). Although the formal
theory has been in the literature for quite some time,
methods for utilizing it fully have not been recognized.
In order to achieve these ends, the present papers will
have as their principal objectives: a) to give methods for
obtaining the lognormal distribution parameter from
experimental data, including the case where the dynamic
data are measured as a function of temperature rather
than the frequency; b) to obtain the theoretical signifi-




cance of the temperature dependence of the Gaussian
distribution parameter; and c¢) to show how to obtain
precise values of the mean relaxation time from static
and dynamic data. Item (c) is particularly important
when the activation energy for the relaxation process is
to be determined precisely, so that, for example, a com-
parison may be made with high-temperature diffusion
data.

Mathematical formalism and
numerical computations

As already mentioned in the Introduction, the existence
of a distribution of relaxation times leads to a broadening
of the J: peak. Such a distribution may consist of a dis-
crete set of r-values or of a continuous distribution. In
general, unless a detailed knowledge of the relaxation
mechanism gives one reason to believe that the possible
7-values form a discrete set, it seems most sensible to
assume a continuous distribution. For example, in a
crystal, internal strains or statistical variations in local
composition can produce a continuous distribution of
relaxation times,

General formalism

It is most convenient to define the distribution in terms
of the variable In 7, rather than in r itself.1° Accordingly,
we obtain for the dynamic response functions?

© g(l
Ji(w) =JU+SJ/ YD) i, )
_o w?7?
I(o)—81 [ w@ il
g(m)~ -W‘I’(HT)mdlnT (10)

and for the static function

0 =/°°~1r(1n P (1—et/dln+

%]

o0
=1—/ ¥(nr)et/7dIn~. (11)
-0

In these equations, ¥(In v)d In = is the relative number
of contributing processes for which the logarithm of the
relaxation time falls in the range between In 7 and In 7+
dln 7. 1t should be noted that the function ¥(In 7) is
defined in such a way that

/ Y(In7)dlnr=1. (12)
The function ¥ (In 7) therefore represents the normalized
distribution function.

The function tan ¢=Jo/J; is now a ratio of two in-
tegrals, given by Egs. (9) and (10), and is, therefore,
not expressible in a simple form unless 8J<<Jy; when
this latter approximation is valid, tan ¢ =J»/Jy, so that
tan ¢ and J; then differ only by a constant factor. In gen-
eral, however, this approximation is not valid. Methods
for dealing with data for tan ¢ will be discussed in Part

II. For the present, we will confine ourselves to the
dynamical functions J; and J» only.

Equations for the lognormal distribution

In principle, it is possible to invert Eqs. (9) to (11) to
obtain the distribution function from an experimental
response function.!! In practice, however, this inversion
is not easily accomplished. There is, on the other hand, a
considerable advantage to working with a definite form
for the distribution function, ¥(In 7), namely, that it
makes possible the description of the specific distribution
function by a single parameter. Various choices have
been made in the past. The “box distribution,” which is
constant and finite over a limited range of In » and zero
elsewhere, has been a popular choice!? because it makes
possible evaluation of the integrals in Eqgs. (9) to (11) in
terms of known functions; nevertheless, it has the distinct
disadvantage that it cannot be expected to represent a
physical situation realistically. The use of a Gaussian
distribution in In r (the lognormal distribution), is more
likely to represent realistically a case in which a distribu-
tion of relaxation times arises as the result of the dis-
tribution of atomic environments about some mean value.
Numerous other distribution functions have been sug-
gested in the literature, usually on empirical rather than
theoretical grounds. Many of these have been compiled
by Gross.1t

The authors have made a comparison of widely differ-
ent distribution functions and have found that the shapes
of the J, peaks are not very sensitive to the choice of the
distribution function, up to values of the peak width
about twice that for a single relaxation. Accordingly, the
present approach is to use the Gaussian as a reasonable
distribution function and to explore fully the conse-
quences of the existence of such a distribution. In the
notation of Wagner, we introduce a variable

z=In(v/1m), (13)

where ., is the most probable value of 7. The normalized
distribution function ¥ (ln 7) may then be written:

exp[—(z/8)°],
(14)

where b is the Gaussian distribution parameter. The
quantity 8=»"' measures the half-width of the distribu-
tion at the point where ¥(z) falls to 1/e of its maximum
value, ¥(0). Substituting (14) into the general equations
(9)to (11) and introducing the variables

x=In o, $
E

y=In(t/rm)
we obtain for the dynamic response functions J;(x) and
JZ (x) ]

J(x)—Jy B _1_*/“’ » du
8 Vr)e  dvexpl2(xtpu)]

b
T(z) = —— exp{—b%z%) =

1
NE BV

(15)

Efl(xs B)
(16)
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Figure I Normalized plots of the function F,(x’, B) for different values of the distribution parameter, 8.

Jz(x) _ _L- o (_ 2 h(x+ Ydu=
=7 " N _wexp u?)sech(x+Bu)du=f.(x, B)
(17)

and for the static response function ¢ (y),

1—p(y) = 71_; _:exp(—u?)exp[—ew—ﬁu)]duzg@, 8.
(18)

Since these integrals cannot be evaluated in terms of
well-tabulated functions, numerical computations are re-
quired. In each of these equations, the quantity 8 appears
as a parameter. For =0, the Gaussian function goes
into a Dirac §-function, and Eqgs. (16) to (18) degenerate
into the corresponding equations for the case of a single
300 relaxation time. It is, therefore, appropriate to regard (3,
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which measures the width of the Gaussian distribution,
as the most convenient parameter in terms of which our
numerical computations may be expressed.

Results of computations for the lognormal distribution®®

The above description gives the functions J1(w) and
e(t) /e in terms of four parameters Jy, 8J, 7, and 3, and
the function J2(w) in terms of the last three of these pa-
rameters. This amounts to the addition of just one param-
eter, 3, above and beyond those required to describe the
behavior of a material for the case of a single relaxation
time. We will now be concerned with methods for obtain-
ing the three parameters of the relaxation (8J, 7, and )
from experimental data, as well as for checking that the
lognormal distribution fits the data in a satisfactory way.
The fourth parameter, Jy, is not a parameter of the relax-




ation; it may be obtained directly from the value of J; at
high frequencies.

For actual applications, it is useful to obtain J; and J;
not as functions of x, but of the variable

x'=logio wrr=x/2.303 (19)
and ¢ as a function of
y' =logio(t/mm) =y/2.303 . (20)

The functions fi1(x’, 8) and f2(x’, 8), given by Eqgs.
(16) and (17), (with the change of variables given by
(19) and (20)) have been computed by Yager? for the
range 3=0 to 6.7, but the intervals selected for both 8
and x’ were rather large, thus limiting the precision of the
information that may be derived from his computations.**
We have, therefore, recomputed the function f-(x" ) and
at the same time calculated g(y’, 8) over the range =0
to 7 in close intervals, using an IBM 704. We found that

the infinite integrals could be replaced by integrals from
—4 to +4 with no errors up to the sixth decimal place.
The finite integrals were then evaluated by the trapezoidal
rule. Typical results for the normalized peak function,
f2(x', B)/12(0, B), and for the function g(y’, 8) are
plotted in Figs. 1 and 2, respectively. At the same time,
the numerical results for these functions are listed in
Tables 2 and 3, respectively. The peak height f.(0, 8) is
tabulated as a function of 8 in Table 4.

Results for the J» peak will first be examined. For the
case of a single relaxation time, the peak occurs at wr=1,
which makes possible the determination of + from the
value of o at the peak. In the present more general case,
we have the peak at x=0, or wr»=1. The value of 7,, is,
therefore, obtainable from the peak position. For a single
relaxation time, 8=0, the height of the J; peak is (from
Eq. (8)) 87/2, while the peak width is given by

Dax'(0) =1.144 . (21)

Figure2 Plots of the function gly’, B) for different values of the distribution parameter, §.
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Table 2 Results of numerical computations for the normalized peak functions f,(x’, 8)/£(0, B).

x! B=0 0.2 0.4 0.6 0.8 1.00 1.25 1.50 1.75 2,00 2,25

0,00 14000 1,000 1,000 1,000 1.000 1.000 1.000 1,000 1.000 1,000 1000
0405 09938 49936 9942 +9949 +9956 9963 49969 <9974 L9978 .9981 .9984
04610 o9740 9750 +9773 9801 9829 +9853 9878 <9898 .,9914 69927 .9937
0015 9431 o9451 49501 9561 9621 49674 ¢9729 +9774 <9809 49837 .9860
0620 9025 49057 «9138 49239 +9339 49430 49525 09602 9663 9713 <9753
0625 «8544 8588 o8702 ¢8847 48994 49127 ,9270 09386 «948B0 +9555 <9617
0e30 48011 o8066 <8210 o8399 o8593 8774 8970 +9130 9261 49367 9454
0635 27447 o7511 «7682 47910 8151 <8379 8629 8838 +,9009 +9150 9264
0e40 46872 46943 7133 47394 o7677 o7950 8256 «8514 o8729 48905 +9051
O0el5 6302 46377 46580 o6865 o7184 o7498 o7856 28164 <8422 48637 8816
0050 «5749 5825 46034 46336 +6681 +7020 7436 7792 +8094 o8348 8561
0655 5221 65296 +5507 5816 +6180 +6556 47004 <7404 7748 +8041 .8288
0660 4725 4798 +5004 5314 o5687 <6082 46565 o70046 7389 47719 ,8000
0665 04263 44332 4531 44835 5209 45616 +6125 ¢6598 47019 <7385 <7699
0s70 3837 +3902 44090 44383 L4752 ,5164 5689 46189 L6643 o,7042 7388
0e75 3447 o3507 +3684 3962 44320 +4728 45263 o5786 46264 46693 7069
0480 +3092 3147 <3311 3572 43915 +4314 L4850 45384 ¢5886 +6341 46744
0085 2769 2820 42971 3214 ¢3538 43923 (4453 44994 45512 o5988 L6417
090 o2478 ¢2524 42662 o2886 o3189 23557 L4075 44616 5144 <5638 .6088
0695 42216 42258 22383 42588 42870 43217 3717 4252 4785 65292 45760
1400 <1980 42018 42131 42318 42577 ,2903 +3381 3905 .44638 44953 45435
1s05 o1768 41802 o1904 42074 42312 42614 o3068 3576 <4104 44623 45115
1410 41578 41609 1701 <1855 42071 2350 2777 3266 o3784 4302 4801
1415 <1408 41436 o1519 41657 +1854 42110 2508 2974 43479 43993 4494
1420 41256 41281 ,1355 41480 41658 41892 42261 42703 3191 43697 +4197
1425 1121 41143 41209 1321 1481 1694 42035 42451 42919 43413 43910
1630 40999 L1019 41079 <1179 1323 41516 1829 42218 2664 43144 43634
1635 +0891 40909 40962 +1052 +1181 1355 o1642 +2003 +2426 +2889 43370
1440 ,0794 L0810 L0858 40938 41054 41211 41472 1806 2205 2649 3118
1,45 0708 0722 0765 <0837 0941 1082 41318 <1626 +2000 +2424 <2878
1650 40631 40644 0682 o0746 +0839 o0966 1180 1462 +1811 2213 42651
1655 +0563 ,0574 40608 40665 o0748 +0862 41055 1313 L1637 42017 +2437
1660 o0502 40512 40542 0593 L0667 +0769 0943 o1178 1477 1834 42236
1665 00447 40456 o0483 0528 40595 0686 +0842 <1056 1331 ,1666 42047
1670 40398 ,0406 o0430 +0471 <0530 0612 40752 40965 o1198 41510 1871
1e75 0355 0362 40384 +0420 L0473 40546 +0671 +0846 41077 1366 41707
1480 o0316 40323 40342 40374 40421 +0486 +0599 40756 0967 61235 41555
1485 0282 40288 .0305 40333 .0376 <0434 405346 40676 <0868 <1114 <1414
1690 40251 40256 0271 «0297 0335 <0386 +0477 +0604 0778 1005 1283
1695 ¢0224 40228 ,0242 40265 +0298 +0344 40425 &40539 L0697 0904 41164
2400 40199 .0203 L0216 40236 +0266 <0307 <0379 +048B1 L0624 L0813 L1053
2:05 L0178 40181 L0192 40210 40237 40274 40338 40430 <0558 40731 .0952
2010 40158 40162 0171 40187 40211 40244 40301 +0383 +0499 40656 <0860
2015 o0141 L0144 L0152 (0167 <0188 40217 <0268 40342 ,0446 0588 0776
2620 +0126 40128 L0136 40149 o0168 «0194 40239 40305 +0398 40527 +0699
2625 0112 0114 L0121 40133 L0149 L0173 0213 +0272 40355 40472 40629
2430 L0100 40102 L0108 40118 40133 0154 40190 40262 L0317 L0422 <0566
235 L0089 L0091 L0096 40105 +0119 +0137 40169 <0216 <0283 L0378 L,0508
2.40 0079 L0081 L0086 0094 L0106 40122 40151 <0192 0252 40338 L0456
2445 - 40070 L0072 L0076 0083 L0094 40109 <0134 <0172 .0225 40302 L0409
2450 0063 40064 L0068 <0074 +0084 +0097 +0120 <0153 40201 +0270 40367
2455 +0056 +0057 L0060 40066 +0075 <0086 0107 0136 40179 40241 L0328
260 L0050 L0051 L0054 40059 40066 <0077 +0095 +0121 ,0160 40215 <0294
265 40044 o,0045 L0048 +0052 40059 +0068 +0085 0108 40142 0192 .0263
2.70 40039 ,0040 L0043 40047 40053 +0061 0075 40096 40127 40171 L0235
2675 o0035 L0036 L0038 40042 L0047 <0054 <0067 0086 <0113 L0153 40210
2080 o0031 L0032 L0034 40037 o0042 <0048 +0060 +0076 +0101 40136 .0188
2085 L0028 L0028 L0030 40033 ,0037 40043 .0053 L0068 L0090 L,0121 .0168
2090 40025 40025 L0027 40029 L0033 L0038 <0047 +0061 L0080 <0108 40150
2695 40022 40022 ,0024 40026 40029 +0034 o0042 +0054 L0071 <0096 0134
302 3,00 o0020 L0020 L0021 40023 40026 +0030 +0038 +0048 .,0063 0086 40119
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Table 2 (Contd.)

x pB=250 275 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

0.00 14000 1.000 1,000 1,000 14000 1,000 1.000 1,000 1,000 1,000 1000
0e05 ¢9986 9988 49989 49991 9993 49994 49995 49996 9996 49997 +9997
00610 «9946 09952 49958 +9967 9973 49978 9981 49984 +9986 <9988 49990
0el5 «9878 49894 49906 <9926 9940 49951 9959 49965 9970 49974 +9977
0e20 «9785 49812 «9835 9869 49894 49913 49927 49938 49947 49954 49960
0625 29667 49709 +9743 9797 9836 49865 9887 +9904 49918 49929 +9938
0430 9525 49584 9633 49709 49765 +9806 <9838 «9863 ,9882 49898 49911
0e35 ¢9359 #9438 <9504 49606 9681 «9737 #9780 49814 49840 49862 #9879
0es0 9172 49273 49357 +9489 49586 9659 «9714 9758 9792 49820 49842
0645 oB8965 49089 49194 49358 49479 49570 9640 9694 <9738 49772 +9801
0e50 8739 48889 <9015 9214 9361 49472 <9557 9624 #9677 49720 L9755
0e55 ¢84696 8672 48821 49057 49232 49365 #9467 9547 49611 49662 L9704
0.60 8239 48442 8614 8889 49094 9249 49369 <9463 49539 49599 9649
0665 «7968 8198 8395 48710 48945 49125 49264 9373 9461 49532 L9590
0e70 «7687 7944 48165 8520 58787 8992 49151 49277 9377 9459 49526
0675 o7396 7680 27925 48321 48621 (8852 49032 49175 49289 .9382 49458
0eB0 o7099 o7408 7676 8114 o¢B447T 48705 48906 49066 #9195 +9300 9386
0eB85 o6796 7129 7421 7899 +8266 +8551 8775 8953 9096 49213 49309
090 46490 46846 7159 o7677 48078 8391 48637 8834 <8992 49122 49229
0695 26182 46559 6894 27450 oT884 48224 48494 o8T10 8884 49027 9145
1400 «5875 46271 46625 7218 47685 48053 +8346 48581 8771 8928 49057
1605 45569 5982 +6354 46982 7481 L7876 48192 48447 8654 48824 48966
1610 45266 5694 +46082 +6743 7273 <7696 8035 8309 8533 8718 L8871
1015 4969 +5408 45810 #6502 «7061 «7511 7873 48168 8409 48607 8772
1620 44677 45126 o5540 46260 +6847 7323 +7708 8022 +8280 <8493 #8671
1425 #4393 44849 45273 46018 46631 (7132 7540 7874 8148 48376 8567
1630 44116 4577 o5009 o5776 o6414 46938 7368 47722 8014 8256 8459
1635 #3848 44311 <4789 45535 46195 <6743 7194 47567 «7876 #8133 <8349
1440 43590 44053 ,4494 45295 45977 +6546 L7018 <7410 <7735 8007 8236
1645 03342 43802 44245 45059 o5759 46348 46840 +47250 7592 47879 8121
1450 3105 3560 <4003 «4825 5542 46150 6661 7089 <7447 47749 8003
1655 2879 43327 43768 44596 45326 +5951 <6481 46926 «7300 7616 7883
1660 42664 3103 3540 4370 5112 o5753 46299 6761 7151 7481 7762
165 2460 2889 43320 4150 44901 45556 6118 46596 47001 47345 7638
1470 +2268 42685 23108 43935 44692 45360 5936 6429 46849 47207 #7512
1e75 2086 42490 #2905 3725 #4487 45165 5755 #6262 +6696 #7068 7385
1480 41916 42306 2711 43521 o4285 44972 +5574 46095 46563 46927 72517
1685 «1757 42131 +2525 +3324 +4087 4781 45394 45928 6389 46785 7127
16490 41608 41967 2348 43133 43894 44593 45216 45761 6234 46643 6996
1695 1469 41812 42180 2949 43705 44408 <5039 +5594 <6079 46500 6864
2000 1340 01666 2021 «2772 43521 L4225 <4863 5429 .5924 46356 6731
2,05 1221 1530 1870 42601 3342 L4046 44690 5264 5770 46212 46598
2¢10 1111 1403 61728 2438 43169 +3871 44518 45100 «5615 46068 «+6464
2415 41009 +1284 +1594 42282 +3000 43699 4350 #4938 45462 45924 46330
2,20 +0915 1174 1469 42132 +2838 43532 44183 <4777 45309 «5780 46195
2425 0829 41072 41351 41990 42681 43368 44020 44618 L5157 45636 46060
2630 40750 +0977 41241 «1855 42529 43209 3860 <4461 L5006 45493 45926
2435 40678 0889 41139 41727 2383 43054 3703 44306 <4857 #5351 45791
2640 40612 <0809 61043 41605 42243 42904 3549 44154 44708 45209 <5657
2445 40552 40734 0954 41490 <2109 42759 3398 <4004 44562 45068 45523
2450 20498 40666 <0B72 41382 41981 L2618 43251 3856 4417 .4928 5390
255 +0448 0603 <0796 +1279 41858 42481 43108 3711 <4274 44790 45257
2460 <0403 0546 <0725 1183 L1741 42350 +42969 3569 44133 L4653 45125
20465 40362 0494 40660 1093 51629 42223 «2833 #3430 43994 4517 4994
2670 40325 40446 L0600 <1008 +1523 42101 #2701 43293 43857 .4382 L4864
2075 0292 o0402 0545 0929 41422 41984 2573 #3160 43723 4249 44735
2080 L0262 40363 40495 40855 1326 41871 42450 3030 3591 4118 44607
2085 0234 40327 40448 o07B6 41236 1763 +2330 42903 <3461 .3989 ,4480
2690 40210 60294 0406 0722 41150 41660 42214 <2780 <3334 43862 4355
2095 40188 40264 +0367 <0662 1069 61561 42102 #2659 43210 43736 4231
3.00 «0168 40237 40332 L0606 «0993 41467 41994 <2542 L3088 3613 44108 303
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Table 3 Results of numerical computations for the function gly’, 8).

¥ B=0 0.25 0.50 0.75 1.00 1.25 1.50 1.75
-1,50 0.9689 0.9684 09670 009645 09607 009555 0e9496 049400
~1le46 0.9659 09654 0.9638 049611 09570 09514 0e9440 069348
-le42 09627 0.9621 09604 09575 049531 0e9470 0.9391 0e9293
-1.38 09592 049586 Ca9567 0.9535 0.9487 09422 049337 069234
~le34 09553 0.9547 049527 0e9492 0e9440 049370 069279 09170
-1.30 049511 09504 069482 0e9444 0.9389 09313 0.9217 09102
~1e26 009465 0.9458 069434 09393 09333 049252 0.9150 0.9028
-1e22 0e9415 09407 0,9381 049337 0.9272 049186 049078 08950
~1.18 0.9361 09352 09324 069276 009207 09114 09000 048867
-l.14 0.9301 0.9291 069262 0.9210 0.9138 049038 0.8917 0.8778
-1.10 0492736 09226 069194 0.9138 0.9059 048954 08828 048683
-1le06 09166 09154 09120 0.5060 0.8976 08865 08732 0«8583
~1.02 0.9089 0,9077 049040 048976 0.8886 08769 0.8631 08476
-0.98 049006 0.8993 08952 0.8885 0.8789 08666 0e8522 08364
-0.94 08915 0.8901 0.8858 08786 0.8684 08556 0.8407 0.8245
-0,90 0.8817 0.8802 0.8756 0.8679 08572 0.8438 0.8284 0.8119
~-0.86 0.8711 048694 08646 0e8564 08452 08312 08155 0.7988
~0,82 08595 0.8578 0.8526 0.8440 0.8322 08179 0.8018 0«7849
~-0,78 0.8471 048452 0.8398 0.8307 0.8184 08036 07873 07704
-0674 0.8336 0.8317 0.8259 0.8164 0.8037 0+7886 07721 0e7552
-0,70 0.8191 0.,8171 048110 0.8011 0.7880 067726 0e7561 Ne7394
~0466 0.8035 0.8014 0.7950 0e7848 0.7714 047558 0+7394 07230
-0.62 0.7867 0.7845 067779 0e7674 0.7537 0.7381 0.7219 07059
-0458 0.7687 067664 047596 0e 7488 0.7350 07195 07036 0.6883
~-0e54 067495 0.7471 0.7401 047291 0.7153 0.7001 06847 06700
-0450 0.7289 07264 067194 0.7083 0.6947 06798 046651 046512
~0e46 07070 0.7045 046970 066864 0.6730 046587 06448 046320
~0e42 06837 0.6812 06741 0.6633 06504 0.6369 046239 046122
-0.38 046591 0.6566 06496 0.6391 0.6268 06143 06025 05920
~0.34 0.6331 046307 046239 066139 06025 045910 0.5806 05714
-0.30 0.6058 0.6035 05970 05877 05773 0e5672 045582 0.5505
-0e26 05772 045750 045690 0.5606 0e5514 05428 045354 045293
-0622 0.5474 05454 045400 045326 045249 045180 0e5123 045079
-0.18 0e5165 0.5147 0.5101 0.5039 044979 044928 04890 04864
-0.14 0+4846 0.4831 Oe& 794 Oe&747 Ce4705 0e4674 064656 0e4647
-0410 0.4519 0.4508 0e4481 0.4451 004429 De4419 0e4421 0e4431
-0.06 0.4186 064179 0e4164 0e.4152 04152 0.4164 044186 0«4215
-0.02 0.3848 043846 0.3844 0.3852 03874 03909 0.3953 04000

0.02 0.3509 0e3512 03526 03554 043600 043657 043721 03787
0.06 063172 03181 03209 043260 03328 0¢3408 03493 063577
0.10 0,2840 0.2854 0.2898 02970 0.3062 0e3164 0+3268 03370
Oul4 0.2515 0.2535 02596 0.2688 0.2802 042925 03048 03166
0.,18 0.2201 0.2228 042303 042416 042551 002693 02834 042968
0e22 0.1902 0.1934 02024 0.2156 0+2309 0.2468 02625 0e2774
0426 0.1621 0.1658 0e1760 0.1908 0.2078 042253 0e2424 02586
0.30 0.1360 0.1401 0.1514 0.1675 0.1858 02047 002230 042403
0434 001122 0.1166 0.1287 001458 0.1651 0.1850 042044 042228
0.38 0.0908 040955 0.1080 0.1257 0.1458 041665 0.1867 0.2059
0e42 0.0721 0.0768 0.0895 0,1074 0.1279 041491 01699 001897
D.46 0.,0559 0.,0605 0.0731 00909 O.1114 0.1328 0e1540 0¢1743
0450 040423 0.0467 0.0588 0.0761 0.0964 0.1177 0.1390 01597
0e54 0.0312 0.0353 0e0466 0.,0631 0.0827 0.1038 0.1250 01458
0.58 0.0223 0.0260 0.0363 0.0517 0.0705 0.0910 0.1120 01327
0e62 0,0155 0.0186 00278 0,0419 0.0596 040793 040999 01204
0e66 00104 040130 0.0209 0.0336 0.0500 0.0688 0.0887 0.1089
0470 0.0067 0.0088 0.0154 0.0266 0e0416 040593 0.0785 0.0982
0.74 0.0041 0.0058 0.0111 0.0208 040343 0.0508 00691 0+0882
0,78 0,0024 0.0036 00079 0.0160 0.0281 040433 00606 00790
0,82 0.0014 0.0022 0.0054 0.0122 00228 0.0366 0.0529 00705
0.86 00007 0.0013 0.0037 Ne0092 0.0183 00308 0.0459 Ne0627
0490 N,0004 0.0007 0.N024 0.0068 0.0146 00258 00397 0+0555
0.94 0.0002 00004 NeN016 0.,0050 0.0115 0.0214 00342 0.0490
304 0.98 0.0001 0,0002 0.0010 0.0036 0.0090 0.0177 0.0293 0.0432
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Table 3 (Contd.)

y' 8=2.00 2.50 3.00 3.50 4.00 5.00 6.00 7.00
-1450 0.9297 0.9051 0.8779 08505 048246 047794 0.7430 0e7140
-1.46 049240 0.8985 08706 048430 08170 0.7721 07363 07079
~1le42 0.9179 0.8914 08630 048351 0.8092 0e7647 047295 0e7016
-1.38 0.9114 0.,8840 08550 0.8270 0.8011 07571 0.7226 06954
~le34 09044 0.8762 08468 0.8186 047929 0e7495 07156 06891
-1.30 08970 ‘08680 0.8382 048100 Oes7844 07417 0.7085 046827
~-1e26 0.8892 0.8594 048293 0.8011 07759 07337 0.7014 06762
-1le22 0.8808 0.8504 0.8200 047920 07669 047257 046942 06698
-1.18 0.8720 0.8409 08105 047826 07579 07175 06868 06632
-lelé 0.8627 0.831C 08006 07729 Oe7486 07092 046795 Ce6566
-1.10 N.8528 0.8208 07903 047630 047392 047008 0.6720 06500
-1406 08424 0.8100 067797 0.7528 07295 046923 0e6645 06433
-1.02 0.8314 0.7989 07688 0e7424 0.7197 0+6836 046569 06366
-0.98 0.8199 0.7873 07576 0.7318 0.7097 046749 06492 046298
=094 08078 047753 0+7461 0.7209 0.6996 0.6661 0.6415 0.6230
=0,90 0.7951 0.7629 07343 047098 0.6892 06571 06337 0.6161
~-0.,86 0.7819 07500 07221 0.6985 0.6788 0.6481 06259 06092
-0.82 0.7681 0.7368 0.7097 046870 0.6681 046390 0.6180 Ne.6023
-0.78 0.7538 0.7231 046970 0.6753 0.6573 0.6298 0.6101 05953
~0.74 0.7389 0.7091 06840 0.6634 046464 066205 0.6021 0.5884
-0,70 0.7234 046946 0.6708 0.6513 06353 06112 05940 05813
-0466 07074 06799 06573 046390 0.6241 0.6018 0+5860 05743
-0.62 046910 06648 046436 046266 0.6128 045923 0.5778 0+5672
-0,58 0.6740 06494 06297 0+6140 0.6014 0.5828 065697 05601
~0454 06566 046336 06155 0.6013 0.5899 0e5732 05615 05530
-0450 0.,6387 0.6176 06012 0.5885 0.5784 045635 05533 05459
~0446 0.6204 0.6014 045868 05755 0.5667 045538 0.5451 05387
-0442 0.6018 0.5849 0.5722 045625 05550 0e5441 0.5368 0.5316
-0,.38 0.5828 D¢5682 05574 0.5494 0.5432 045344 0.5285 045244
~0.34 045636 0.5514 05426 045362 0.5313 045246 0+5203 0.5172
-0,30 0.5441 0e5344 05277 0.522¢% 0.5195 0.5148 0.5120 045100
=0e26 0.5244 0.5173 05127 0.5097 0+5076 045051 0.5037 05028
-0e22 045045 0.5001 04977 064964 04957 0.4953 044954 04956
-0.18 04846 0.4829 04826 0.4830 0.,4838 0+4854 044870 0e¢4884
=014 044646 0+4657 0e4676 0e4697 04719 04757 0.4788 0.4812
-0.10 0e4446 04485 044526 0e4564 0.4600 064659 04705 04740
-0.06 004247 04313 04376 0e4432 0.4481 0.4561 0e4622 0¢4669
-0.,02 04,4049 Oe&4143 064227 044300 0.4363 De4464 044539 044597

0,02 0.3852 043973 044079 0.4169 0.4245 0.4366 0446457 04526
0,06 0.3658 0.3805 043932 044038 04128 04270 0.4374 Oe4454
0.10 0e3466 043639 043786 043909 0.4012 0e4173 044292 0«4383
Oe14 0.3278 043476 0e3642 0+3780 0.3896 044077 0.4211 044312
0,18 0.3093 0.3314 043499 03653 0.3782 0.3982 0.4129 Oe&241
0622 002912 0.3156 0.3358 043527 0.3668 0.3887 0.4048 044170
0,26 0.2736 0.3000 0.3220 043403 0.3555 03793 03968 04100
0.130 0.2564 0.2848 0.3084 0.3280 03444 043700 0.3888 044030
0.34 0.2398 0.2699 0.2950 0.3159 0.3334 043607 0.3808 043960
0,38 0.2238 02554 0.2818 0¢3040 03225 043515 0.3728 03891
0.42 0,2083 062412 0.2690 062922 0.3118 043424 0.3650 0.3822
Ce46 0.1934 02276 0e2564 0.2807 043012 03334 0e3572 043753
0.50 001792 042143 0e2442 042694 0.2908 0e3244 03494 043685
0.54 0.1656 0.2014 02322 0.2583 0.2805 0.3156 03417 043617
0.58 0.1526 0.1890 0+2206 062475 042704 043068 0e¢3341 043550
0.62 0.,1403 0.1771 042092 042369 062605 0.2982 0.3265 0e3482
0.66 0.1287 0.1656 01983 0.2265 0.2508 0.2897 03190 03416
0.70 00,1177 01547 0.1876 0.2164 0e2413 0.2813 0.3116 043350
0e74 0.,1074 001442 061774 062066 0.2319 0.2730 003042 Ne3284
0,78 0,0977 0.1341 0.1674 0.1970 0.2228 02648 062970 03219
0.82 0.0886 01246 01579 0.1877 0.2139 0.2568 0.2898 03155
0.86 0.0802 0.1155 0.1487 0.1786 0.2052 0.2489 0.2827 03091
0.90 0.0724 0.1069 0.1398 0.1698 0.1966 0e2411 042756 003027
0.94 0.0652 0.0987 Ce1313 041614 0.1884 042335 02687 02964
0,98 0.0585 0.,0910 0.1232 0,1531 0.1803 02260 0.2618 042902
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Figure 3 Dependence of relative peak height,
2f,{0, B), relative peak width, r,(8), and
the product of these quantities, on the
distribution parameter, 8.

For a distribution of relaxation times, the height is smaller
than the corresponding value for a single relaxation. This
is apparent from the tabulated dependence of the peak
height on the distribution width, 8, in Table 4. It is also
shown in Fig. 3, where we have plotted 2f-(0, 8) =
f2(0, B) /f2(0, 0), which is the height of the J, peak
relative to the height for the case of a single relaxation
time of the same 3J. It is easy to show?s from Eq. (17)
that for large B the peak height asymptotically ap-
proaches the value

200, BY=J2(0) /8T ~~\/=/28.. (22)

Further, this asymptotic expression must always be
greater than the exact expression. It is noteworthy that
for 8=7 the exactly computed value (Table 4) is 4%
below that obtained from Eq. (22). The width of the J
peak may also be obtained from the numerical values in
Table 2. The ratio of the width of the J. peak at half
maximum, Agx'(8), relative to the width for a single
relaxation, Azx’(0), is

r2(B)=20:x"(£) /22x'(0) . (23)

This quantity is plotted vs 8 in Fig. 3 and the computed
values are also listed in Table 4. The quantity A»x'(0) is
given by Eq. (21). The purpose in plotting and tabulating
the ratio r, rather than the width A,x’ itself is in recog-
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nition of the fact (see Part II), that the dynamic func-
tions are often measured as a function of 7! rather than
of x' (where T is the absolute temperature). When this
is the case, it is convenient to obtain an experimental
value for r» by dividing the observed width A;(T-!) by
the corresponding width for the case of a single relaxa-
tion (see Eq. (8) in Part IT).

An asymptotic form for the peak width Apx’ which is
valid for large B8, may be derived from Eq. (17). The
result (which is always less than the exact expression) is

A2x'(8)~28+/In2/2.303=0.72383 . (24)

For 8=17, the exact value is 4.5% greater than that ob-
tained from Eq. (24).

The way in which the three relaxation parameters may
be obtained from experimental data for the J. function is
summarized in the first row of Table 5. First, the width,
relative to that of a single time of relaxation, rs, is deter-
mined from the data and used to obtain 8 from the r2 ()
plot of Fig. 3. Then the known value of 8 is used to read
off the value 2£,(0, 8) from this same Figure. Comparison
of this last result with the measured peak height, J.(0) =
12(0, B) - 8J, gives the value of 8J. Finally, as already
mentioned, 7, is obtained from the condition that
otm=1 at the peak. Thus, it is possible to obtain the
three parameters 7,,, 8, and 8J from the peak location,
width, and height, respectively. If one now wishes to
check how well the lognormal distribution actually fits
the entire peak, the normalized experimental curve may
be plotted together with the calculated curves for the
nearest B values from Table 2. If the lognormal distribu-
tion actually applies, the experimental curve will agree
with the curve obtained by interpolation from the two
closest theoretical curves.

It is interesting to note that the magnitude of the re-
laxation effect, 8J, can always be obtained, without a
knowledge of 8, from the area under the J» peak. It is

oC
readily shown, from Egs. (10) and (12), that/ Jodx =

—c0
(w/2) 81, i.e., the same result as in the case of a single re-
laxation time. Since area under an experimental peak is
not conveniently obtained, it is interesting to see how
accurately the product of height times width may be
regarded as an indication of the area. For a single relaxa-
tion this product is J2(0) - Asx'=(0.5720)8J. The re-
sults of Fig. 3 make it possible to investigate how this
product varies with 8 for the case of a lognormal dis-
tribution. The top curve of Fig. 3 shows this product,
relative to that for a single relaxation of the same &J,
plotted as a function of 8. It is clear that, unlike the area,
the product of height and width does vary with 8, but this
variation is slow, going from a relative value of unity for
B=0 to an asymptotic value of 1.120 for f—>c. (The

latter value is obtained from Egs. (22) and (24).)

The parameters of the relaxation may also be obtained
from a knowledge of the function Ji(x). Yager® has
calculated the function f1(x’, 8) of Eq. (16) for several
values of B8, but unfortunately the increments both in x’




and in 3 are relatively large. Since the J; function is not
usually studied experimentally as often, and with as great
a precision, as the J. peak, we have not recomputed the
function f1(x', 8). Nevertheless, it is possible to make
use of Yager’s calculations to obtain a relevant param-
eter. In this connection, it is noteworthy that the absolute
magnitude of the slope 9f;(x’, 8) /0x" at x'=0 decreases
steadily with increasing 8. A knowledge of this slope
could then be used to obtain 8 from experimental data.
However, at small 8-values the slope varies rapidly near
the inflection point (x'=0), so that an experimentally
measured slope will always be somewhat lower in magni-
tude than the theoretical slope. It therefore appeared to
the authors to be more useful to define a related quantity
which measures the range of rapid decrease of the func-

Table 4 Results of numerical computations for the
dependence of relative peak height,
2f,(0, B), and relative peak width, r;(3) on
the distribution parameter, S.

B 2£2(0, B) r2(B)
0.00 1.00000 1.00000
0.10 0.99752 1.00327
0.20 0.99024 1.01296
0.30 0.97866 1.02866
0.40 0.96346 1.04981
0.50 0.94540 1.07576
0.60 0.92520 1.10585
0.70 0.90350 1.13946
0.80 0.88088 1.17605
0.90 0.85774 1.21515
1.00 0.83448 1.25637
1.25 0.77722 1.36670
1.50 0.72316 1.48480
1.75 0.67332 1.60849
2.00 0.62798 1.73640
2.25 0.58698 1.86763
2.50 0.54998 2.00159
2.75 0.51664 2.13783
3.00 0.48654 2.27602
3.25 0.45934 2.41590
3.50 0.43466 2.55727
3.75 0.41224 2.69996
4.00 0.39182 2.84382
4.25 0.37314 2.98873
4.50 0.35604 3.13459
4.75 0.34032 3.28130
5.00 0.32584 3.42879
5.25 0.31248 3.57698
5.50 0.30010 3.72580
5.75 0.28860 3.87522
6.00 0.27792 4.02517
6.25 0.26796 4.17559
6.50 0.25866 4.32647
6.75 0.24996 4.47776
7.00 0.24180 4.62943

tion f;. This quantity is A;x’, defined as the difference in
the variable x" between the point at which f,=0.25 and
that at which f1=0.75. For the case of a single relaxation
time, the function J, gives the value A,x'=0.4722. For
the case of a Gaussian distribution, the dependence of
Aix" on B is obtained from Yager’s calculations and
plotted in Fig. 4 relative to the value for 8=0. This ratio
Ax'(B)/A1x'(0) is defined as r,(8) by analogy to Eq.
(23). The plot of r1(B) vs B given in Fig. 4 may then be
used to obtain 8 from the experimentally measured value
of ri. The asymptotic value of A;x" at large S-values is
readily found, with the help of a table of the error in-
tegral, to be

Arx'~0.4148 . (252)

As for the additional parameters to be determined, it
should be realized that J;(0=0) =Jp and J1(0=x) =Jp,
so that Jy and 87 are obtained directly. The final param-
eter 7, is obtained from the symmetry of the function
f1(x, B), since it is readily shown that, regardless of the
value of B, fi=% when x=0 (or wr,r=1). The second
row in Table 5 summarizes the methods for obtaining
the parameters 8, 8J, and 7, from the J; function.

It should be noted that both J; and J» are often ob-
tained in the same experiment. Provided that 8/ is not
too small, this quantity can then be obtained from the
difference between Jy and Jr measured as the limiting
values of J;. The quantity 8 is usually best obtained,
utilizing Fig. 3, from the width of the J, peak. Thus the
height of the J» peak represents additional information
which can be used to determine 87, as described above.
Agreement between the two values of 8J, obtained on
the one hand from the height of the J» peak, and on the
other from the limiting values of Ji, serves as a check
on the validity of the lognormal distribution.

Figure 4 Dependence of the relative range of de-
crease, r,(f), of the f,-function on the dis-
fribution parameter, .
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Finally, we turn to the problem of obtaining the re-
laxation parameters from static measurements. Here Jy
is obtained from the instantaneous value of ¢, and Jg
from its final value (see Eq. (1)); therefore, as for the
J1 function, 38J is again measured directly. The problem
then centers about means for obtaining 7., and 8 from
the normalized function, ¢(y'). For this purpose, the
tabulation of the function g(y’, 8) in Table 3 is most
useful.*®¢ By analogy to the procedure for the f; function,
it is convenient to define a quantity Ay’, which measures
the range of rapid increase of the  function, and which
is defined as the difference in the variable y’ between the
point at which ¢=0.75 (or g=0.25) and that at which
¢¥=0.25 (or g=0.75). For the case of a single relaxation
time the value of Ay’ is 0.6829, while for the case of a
Gaussian distribution, values of Ay’ may be obtained as a
function of B8 from the computed results in Table 3.
These values are given in Fig. 5. This plot may then be
used to obtain S from the experimental value, Ay’, for
the range of increase of the static function ¢(y’). For
large 3 values, the function g(y, 8) goes asymptotically
into the same error integral as the function f1(x, B). Ac-
cordingly, Ay’ asymptotically approaches

Ay ~0.4148 . (25b)

The problem of obtaining the mean relaxation time,
Tm, 18 NOt as simple here as it was for the dynamic func-
tions, since y/(y) does not have the symmetry property
about y=0 which the functions f; and f. have about
x=0. To determine how to proceed, we refer first to the
case of a single time of relaxation, ¢y=1-¢-%/7, The re-
laxation time 7 is usually obtained from the time for the
exponential to fall to a fixed fraction. Thus, for the case
of a single relaxation, = is equal to the time, t1,., for the
quantity 1— to fall to 1/e; it is also related to the time,
t1/2, for ¢ to reach the value 1/2, viz., r=t1,2/(In2) =
1.44t, 2. Now, in passing from the case of a single time
of relaxation to one in which a lognormal distribution is
involved, the same method may be employed to obtain
7m. Thus, Fig. 6 shows a plot of #1,2/7,, as a function of

B, obtained from the material in Table 3. This plot can
be used to obtain 7, once B is obtained from the ob-
served value of Ay’ and Fig. 5. It is important to note
that the ratio t1,2/7, is no longer equal to In 2 when
B0, and that correspondingly #1,. is no longer equal to
m. These changes with increasing 8 are not negligible
and must be considered if precise values of r,, are de-
sired (as, for example, in obtaining an accurate value for
the activation energy governing the quantity =n,). The
methods for obtaining the relaxation parameters from
the static function are reviewed in the third row of
Table 5.

Dependence of the distribution
parameter on the temperature

In the previous section, methods were given for obtaining
the distribution parameter, 3, of the lognormal distribu-
tion, from the dynamic response functions Ji(x) and
J2(x) and from the static function ¢(y). In Part II,
consideration will be given to methods of obtaining the
relaxation parameters from dynamic data in which tan ¢
is measured rather than J., and in which measurements
are made as a function of temperature rather than of
frequency. Thus, it can be assumed that we know how to
obtain 8 from experimental data and that, by using a
variety of both static and dynamic techniques, it is possi-
ble to obtain 8 over a range of temperatures. In the
present section we consider the manner in which the
parameter 8 varies with the temperature. Such considera-
tions will bring out more clearly the theoretical signifi-
cance of 8.

Whenever the relaxation processes are controlled by
atom movements, one may expect that each relaxation
rate, =1, will vary with temperature according to an
Arrhenius relation, i.e., —1xe9/ET, where Q is the acti-
vation energy for the process. Thus, we may write, for
any relaxation time 7 in the distribution,

In 7=In To—f'Q/RT- (26)

In view of this equation, it becomes clear that a distribu-

Table 5 Methods for obtaining relaxation parameters from dynamic and static functions.

Function Parameter
B 8 T
From peak width relative From peak height J2(0) =
Ts(x') to that for a single relaxa- 87 f2(0, B), using f2(0, B) From peak position, using
2

tion, using Fig. 3 (or
Table 4) and Eq. (21).

From “range of decrease,”
Ax'(B), relative to that
Ji(x") for a single relaxation,
using Fig. 4 and

A1x'(0) =0.4772.

, From “range of increase,”
v(y') Ay’ (Fig. 5)
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obtained from Fig. 3 or
Table 4.

Ji(—0)—Ji(x)

orm=1

From center of symmetry:
Ji=Jy+387J at

otTm=1

.- From t2(B)/7m (Fig. 6)
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Figure 5 Dependence of the range of increase,
Ay’, of the g-function on the distribution
parameter, .

tion in  is due either to the existence of a distribution in
the temperature independent parameter,’® 74, or in the
activation energy, Q, or in both. The quantities @ and
In 7o may be regarded as the fundamental parameters
which determine the relaxation time, . (The choice of
In 1o rather than 7o is based on the fact that In r is
linearly related to the entropy of activation.)

In order to obtain the relationship of the parameter 3
to the distributions in the quantities In 7o and Q, we make
use of the following theorem, which is easily verified: If
two variables u and v are linearly related, i.e., u=cv+d
(where ¢ and d are constants), and if values of u are dis-
tributed about a mean value u,, according to a Gaussian
(normal) distribution of the form exp[ — (u—u) /8412
then the values of v are also distributed in a Gaussian
manner, with distribution parameter given by

Bo=Bu/c (27)

and mean value v,, = (u,,—d) /c.

In applying this theorem, we consider first the case in
which the distribution is only in the quantity In 7o, i.e.,
when the activation energy of all contributing relaxation
processes is a constant. From the above theorem and
Eq. (26) it is clear that a Gaussian distribution in In 7o
results in a Gaussian distribution in In 7, with the same
distribution parameter 8. Next we consider the other
limiting case, where the distribution is only in the activa-
tion energy, and 7 is a constant for all relaxation
processes. Under these circumstances, a Gaussian dis-
tribution in Q about a mean value Q,, with a distribution
parameter (¢ is equivalent to a Gaussian distribution in
In r with parameter

B=PBo/RT (Q-distribution only) . (28)

'&/Tm

Figure 6 Dependence of t,/;/7,, on the distribution
parameter, §. (,/; is the time for the func-
tion y(t) to reach the value 1/2, and 7, is
the most probable relaxation time.}

Since B¢ may be considered independent of temperature
(insofar as the activation energies themselves are inde-
pendent of temperature), we are led to the conclusion
that Eq. (28) defines the temperature dependence of
for this limiting case. So far, then, we have found that
either a Gaussian distribution in In 7o (with Q = con-
stant) or a Gaussian in @ (with ro=constant) gives rise
to a Gaussian in In 7. In the former case, the parameter
B is independent of temperature; in the latter case B
varies inversely as T. These conclusions are rigorous, in
the sense that they follow directly from Eq. (26) and
the concept that the distributions of Q and 7, are inde-
pendent of temperature.

To consider the more general case in which distribu-
tions exist for both 7o and Q, an assumption is needed
concerning the relation between 7o and Q. One reason-
able assumption that can be made, without further
knowledge of the system being studied, is that 7, and Q
do not vary independently, but that both depend on a
single internal parameter p, e.g., local composition or
local order. The dependence of In 7o and Q on p can be
described by a Taylor expansion about the mean value
Pm in which only the first derivative term is retained
(certainly this is approximately correct if the distribu-
tion is not a broad one). Thus

In ro—1In 70m=C(p—pm)
Q—Qun=D(p—pmn)

where C and D are constants. If we now assume that the
parameter p varies according to a Gaussian distribution
about a most probable value p,,, then Q must be dis-
tributed as a Gaussian about the value Q.. and similarly
for In 7y about In 7¢,,. The variable p may be eliminated

> (29)
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from Eqgs. (29) to obtain
In 7o—In 70,=K(Q—0) , (30)

where K=C/D. Finally, Eq. (30) may be combined
with (26) and (13) to obtain

zEln(r/rm)=(K+ —%)(Q*Qm), (31)

where ., is defined by
In 7=1n 76m+Qm/RT . (32)

The theorem which led to Eq. (27) then establishes that
the distribution of the quantity z is Gaussian about the
value z=0, and that its width 8 is related to the width,
Bo, of the Q-distribution according to

1

b=t (K+ ) ~fo+ e (33)
Note that, from Eq. (30), Bo=Kf is the distribution
parameter for the quantity In 7. Since the parameters
Bo and B¢ are regarded as being independent of tem-
perature, it is concluded that if the assumptions which
led to Eq. (33) are correct, the parameter 8 deduced
from measurements at different temperatures should
plot as a straight line against T-* with slope equal to
Bo/R and intercept the axis 1/7=0 at B,. Such a plot
enables us to obtain separately the distribution para-
meters for the In 7 and Q distributions. The two limiting
cases, of either a distribution in In 7o or in Q only, can
now be regarded as special cases of the present more
general result. It should be kept in mind that the results
obtained for these two limiting cases were rigorous while
Eq. (33) is based on the assumptions involved in Egs.
(29). It may be pointed out, however, that not only
are these assumptions reasonable, but that the resuit
obtained, i.e., Eq. (33), is the simplest equation for
covering the range between the two limiting cases. The
usefulness of Eq. (33) is that it provides a means of
separating out the extent to which the distribution in In 7
represents a distribution in In 7, and one in Q.

A somewhat different result is obtained if it is as-
sumed, in place of Eq. (29), that In 7 and Q are un-
correlated, but that both distributions are Gaussian.
Under these circumstances the temperature dependence
of f is given as®

B=[Bo*+(Be/RT)*]*/*. (34)

It would be difficult to distinguish Egs. (33) and (34)
experimentally unless measurements were made over a
wide range of temperature. In the absence of such data
a choice between Eqs. (33) and (34) must be based on
what is known about the specific relaxation phenomenon.
For processes controlled by elementary atom movements
in crystals, a correlation between In 7o and Q can be
expected. Since the applications to be considered in
Part II fall into this category, Eq. (33) will be employed
in our analysis.
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Summary

The content of the present paper may be summarized as
follows:

(1) Equations for the static and dynamic response func-
tions are reviewed for the case of a lognormal distribution
of relaxation times.

(2) Numerical computations for the integrals involved
in the expressions for the static function and the J. func-
tion are presented.

(3) Methods are presented for obtaining the three re-
laxation parameters 8J, mm, and B8 from the response
functions.

{4) 1t is shown how the variation of 8 with temperature
can be used to determine separately the parameters for
the distribution in In 7o and that in the activation energy.

Appendix . Application of the Gaussian distribu-
tion to anelastic functions which cor-
respond to a specified strain.

In the case of anelastic relaxation one may study the
relaxation of stress under a given (static) strain or, in the
dynamic case, the behavior of a system under a specified
periodic strain. In the static case, the appropriate func-
tion to consider is the stress relaxation function, ¢(t),
defined by

o(t)

£

=Mp+8M¢p(1), (A-1)

where o(t) is the dependence of stress on time, ¢ the
constant specified strain, My the “relaxed modulus™
(=Jg1) and

SM=My—Mpg, (A-2)

where My=J, ! is the “unrelaxed modulus.” The func-
tion ¢(t) therefore ranges from ¢(0)=1 to ¢(0)=0.
Similarly, the dynamic properties are describable in terms
of the complex modulus

M*=M1(®)+1Mz(w) (A'3)

and therefore by the variation of My and M, with fre-
quency. The existence of a distribution in relaxation
times means here that M,, M., and ¢ are expressible in
the forms?®

[ @ 1 (’2 2
M (o) =MR+8M/ 2D n- (A-4)
e 1+ w272
«° T
- Y __din- AS
M:(w) SM‘/,,,O(I)(IH 7) Tt In (A-5)
d(1) = d(In7)et/7dilnT, (A-6)

-0
where the distribution function ®(In 7) obeys the con-
dition

/wmm Sdinr=1. (A-T)




In general, the ® distribution is not the same as the ¥
distribution which is used to express the functions Jy, Jo,
and . If one assumes that the & distribution is log-
normal (and hence that the ¥ distribution is not) then,
using the variables x, ¥, and 8 defined in Eqs. (14) and
(15), the following relationships are obtained:

My—M;

_W__ =f1(x, ﬂ) (A-8)
M:2/3M~=fs(x, B) (A-9)
d(y)=g(y,8). (A-10)

In these equations the functions f1, /2, and g are precisely
those defined in Eqs. (16) to (18) and tabulated in
Tables 2 and 3 and in Yager’s article.?

It is therefore concluded that the integrals fi(x, 8),
f2(x, B) and g(y, B) evaluated numerically by Yager and
by the present authors are equally useful in the analysis
of the “strain-given” functions My, M., and ¢, when the
& distribution is Gaussian, as it is for the “stress-given”
functions J1, J2, and ¢, when the ¥ distribution is Gaus-
sian. The methods discussed in Section B (Table 5) and
in Part II (Table 1) may then be used in the evaluation
of the parameters S, 7., and 8M which appear in Eqgs.
(A-8) to (A-10).
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