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Abstract: Such phenomena a s  dielectric, magnetic, and anelastic relaxation  are often described in terms of 
a distribution of relaxation times. It i s  shown that  a relaxation process which exhibits a Gaussian distribution 

in the logarithm  of  the relaxation times (a ”lognormal” distribution) can be specified completely by three 

parameters. These are: the mean  relaxation time ( ~ ~ 1 ,  the width of the distribution (PI, and the magnitude of 

the relaxation ( S J ) .  The relationships of these parameters to experimentally  measurable functions are usually 

complicated. These relationships were  obtained in numerical form by machine computation. Finally, a simple 

formula is  derived which expresses the parameter P in terms of the widths of the distribution of the activation 

energies and  that of the attempt frequencies. 

Introduction 

The  term “relaxation” is used to denote the time-depend- 
ent self-adjustment of a  system to a new equilibrium 
condition  when an external  variable is changed. In  the 
static manifestation of relaxation an  appropriate “force” 
is usually  changed abruptly  and held at a new value  while 
the conjugate  “displacement” is observed  as  a function 
of time. Thus, in the case of dielectric  relaxation, the 
polarization (and  therefore  the electric  displacement) is 
observed to  change with time in  response to  an instanta- 
neous change  in  the applied  electric field; in magnetic 
relaxation the “force” is the magnetic field, while the 
“displacement” is the magnetic  induction; in anelastic 
relaxation  a  time-dependent strain  may be observed when 
the applied  stress is changed. 

In  the present paper we will deal  with equations  that 
relate to all of these relaxation  phenomena  in  linear sys- 
tems. In  order to express the results  compactly,  however, 
only  the  notation of anelastic relaxation will be used. In 
this  notation  the static  behavior  may  be  expressed as  the 
time  dependence of the  strain, E ( t )  , when a stress, u, is 
abruptly imposed at t = O  and held constant for t >O. 
Under  the assumption that  the response of the system is 
linear, its static behavior  may be expressed as: 

where $ ( t )  is a dimensionless function which goes from 
zero  at t = O  to unity  as t+ce (and which will here be 
called the static response function) l; J o  is the compliance 
of the sample (strain/stress) measured at t = O ,  and is, 
therefore, called the unrelaxed compliance; and J R  is the 
compliance of the  sample  under equilibrium  conditions 
(at t =  co ) , called the relaxed compliance.2 The  quantity 
S J = J R -  J u  is then a measure of the magnitude of the 
relaxation effect. For conversion of this  notation into  the 
terminology of dielectric and magnetic  relaxation, use 
may be made of Table 1, which serves as  a  dictionary. 
Henceforth, we will continue  to use the terminology of 
anelasticity, recognizing that  translation is easily possible. 

The dynamic manifestations of a  relaxation may be 
studied by the application of a  periodic  force. In com- 
plex notation,  the stress  may be given by 

(r=uoeiOt ( 2 )  

where is the  circular frequency of the applied stress. 
The strain will, in  general, not be  in  phase  with the stress 
if relaxation effects are present but  rather will lag  behind 
the stress  by an angle 9, so that 
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Table I Relationship between  quantities which appear in various relaxation  phenomena. 

Type of quantity 

“Force” 

“Displacement” 

Ratio : 
displacement/force 

Symbol 
used here 

Dielectric 
relaxation 

Electric field 

Electric displacement 

Permittivity or 
dielectric constant 

where ~1 and ~2 are, respectively, the components of 
strain  in  phase with, and in quadrature with, the stress. 
The relationship between stress and  strain may,  there- 
fore, be expressed as 

&=.leu, (4) 

where J*, called the complex  compliance, is given by 

J ” = J ~ ( o ) - ~ J z ( o ) .  ( 5 )  

Note  that  the real part of J”, J1 =el/uO, and  the imaginary 
part, J 2 = & 2 / u o 0 ,  are  in general both  functions of the  ap- 
plied f req~ency .~   The  relationship of the  phase angle b, 
to these  quantities is, from  Eq.  (3), 

tan b, = J z / J 1  . (6) 

The quantities J l ( o ) ,  J z ( o )  and  tan + ( o )  constitute the 
“dynamic  response  functions.” 

In  the description of relaxation phenomena,  it is cus- 
tomary  to  start with the simple  case  in  which the  function 
I/( t )  is an exponential, of the  form 1 Here T is 
called the relaxation time5 and  the relaxation  process is 
described as  showing  a “single time of relaxation.” Corre- 
spondingly, the  dynamic  properties J1( a) and J z ( o )  are 
described by the well-known Debye equations: 

The  function J 2 ,  when  plotted  against  log UT, gives a 
symmetrical peak centered about log OT=O (called the 
Debye  peak), while on  the  same plot, the  function J1 is 
antisymmetrical about  the  point J1= ( J u + J R )  / 2 ,  log 
OT=O. Many  phenomena in  crystals are describable  in 
these  terms,  in the sense that J Z  vs In OT gives a well- 
defined peak, but  it is often, if not generally, found  that 
the J z  peak is somewhat  broader  than  that predicted by 
the simple  theory.  Correspondingly, the  static response 
function I/( t )  changes in  time  more gradually than a 
simple  exponential. Such behavior is undoubtedly due  to 
the existence of a  distribution of relaxation times rather 

298 than a single relaxation time. Nevertheless, many  authors 

Name of quantity 

Magnetic Anelastic 
relaxation relaxation 

Magnetic field Stress 

Magnetic  induction Strain 

Permeability Compliance 

have tended to fit the observed behavior to  the  theory of 
a single relaxation  time  as well as possible. For example, 
the  quantity  tan b, (which is often measured  directly“) 
shows a  peak  which is commonly broader  than  that given 
by  inserting the  Debye equations into  Eq. (6).   In spite of 
this fact, it is often  customary to use the  Debye  equa- 
tions to  obtain  an effective relaxation  time from  the posi- 
tion of the peak, and  the  strength or magnitude of the 
relaxation from  the height of the peak. The difference  be- 
tween the  actual behavior and  that of a single relaxation 
is then  quoted as the percentage by which the width of 
the  actual peak exceeds that predicted from  the  Debye 
equations. Such a procedure  has  two weaknesses: 1) it 
essentially ignores  valuable  additional information con- 
tained  in the experimental data,  and 2) it leads to errors 
in the value of the  mean relaxation  time  obtained from 
the  data. 

The purpose of the present  pair of papers is to study 
the  manner  in which the introduction of a  distribution  in 
the  relaxation  times  produces  a broadening  in  the J Z  and 
tan + peaks,  as well as to  obtain  the equivalent  changes 
in  the  other properties, J1( a) and $ ( t )  . It is hoped in this 
way to lead to a formal description of solids which will 
in turn be  valuable  in the analysis of the detailed atom- 
istic mechanisms  in  crystals. Attention will be  focused 
on  the  information  to be  gathered  by  adopting the as- 
sumption  that  the relaxation  times are distributed  accord- 
ing to a Gaussian (or normal) distribution  in In T. This 
distribution,  which is also known as the lognormal dis- 
tribution, was originally suggested by Wiechert7 as early 
as 1893  to explain the elastic after-effect of solids. It was 
later applied in  more detail to dielectric  relaxation by 
Wagner8 and  further developed for dielectrics by Yage~- ,~  
who also carried  out some  numerical  computations for 
the  functions Jl(a) and J 2 ( 0 ) .  Although the  formal 
theory  has been in the  literature for quite some  time, 
methods for utilizing it fully have  not been recognized. 
In  order  to achieve  these  ends, the present papers will 
have as  their principal objectives: a)  to give methods for 
obtaining the lognormal  distribution parameter  from 
experimental data, including the case where  the  dynamic 
data  are measured  as  a function of temperature  rather 
than  the  frequency; b)  to  obtain  the theoretical signifi- 
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cance of the  temperature dependence of the Gaussian 
distribution  parameter;  and c)  to show how to  obtain 
precise values of the  mean relaxation  time from  static 
and  dynamic  data.  Item  (c) is particularly  important 
when  the activation  energy for  the relaxation  process is 
to be  determined precisely, so that,  for example,  a com- 
parison may be made with  high-temperature diffusion 
data. 

Mathematical formalism and 
numerical computations 

As  already  mentioned  in the  Introduction,  the existence 
of a  distribution of relaxation times leads to a  broadening 
of the J z  peak. Such a  distribution may consist of a dis- 
crete  set of T-values or of a continuous distribution. In 
general, unless a  detailed  knowledge of the relaxation 
mechanism gives one reason to believe that  the possible 
?-values form a  discrete  set, it seems most sensible to 
assume  a continuous distribution. For example,  in  a 
crystal, internal  strains  or statistical  variations in local 
composition can  produce a  continuous  distribution of 
relaxation times. 

General formalism 

It is most  convenient to define the  distribution  in  terms 
of the variable In T ,  rather  than  in T itself.1° Accordingly, 
we obtain  for  the  dynamic response functions3 

and  for  the  static  function 

+ ( t ) =  P ( l n T ) ( l - e - t / T ) d l n ~  1: 
= 1 - 1: *(ln T)e-tIT  d In T . (11) 

In these  equations, *(ln ~ ) d  In T is the relative number 
of contributing processes for which the logarithm of  the 
relaxation time falls  in the  range between In T and In T+ 
d In T. It should  be noted  that the function P( ln  T )  is 
defined in such a way that 

The  function *(ln T) therefore represents the normalized 
distribution function. 

The  function  tan 4 = J 2 / J 1  is now a ratio of two  in- 
tegrals, given by  Eqs. (9) and (lo), and is, therefore, 
not expressible in  a  simple form unless GJ<<J"; when 
this latter  approximation is valid, tan +=Jz /Ju ,  so that 
tan 4 and Jz then differ only by a constant  factor.  In gen- 
eral,  however,  this approximation is not valid. Methods 
for dealing  with data  for  tan + will be discussed in Part 

11. For the present, we  will confine ourselves to  the 
dynamical functions J1 and J z  only. 

Equations  for the lognormal distribution 

In principle, it is possible to  invert Eqs. (9) to (1 1 ) to 
obtain  the distribution function  from  an experimental 
response function.11 In  practice,  however,  this  inversion 
is not easily accomplished. There is, on  the  other  hand, a 
considerable advantage to working  with  a definite form 
for  the distribution function, k ( l n  T )  , namely, that it 
makes possible the description of the specific distribution 
function by a single parameter.  Various choices have 
been made  in  the past. The "box distribution,"  which is 
constant  and finite over a  limited range of In T and  zero 
elsewhere, has been  a popular choice12 because it makes 
possible evaluation of the integrals  in  Eqs. (9) to ( 11 ) in 
terms of known functions; nevertheless, it  has  the distinct 
disadvantage that  it  cannot be  expected to  represent a 
physical situation realistically. The use of a Gaussian 
distribution in In T (the  lognormal  distribution), is more 
likely to represent realistically a  case  in  which a distribu- 
tion of relaxation  times arises as  the result of the dis- 
tribution of atomic environments about some mean value. 
Numerous  other distribution functions  have been sug- 
gested in  the  literature, usually on empirical rather  than 
theoretical  grounds. Many of these have been  compiled 
by Gross.11 

The  authors  have  made a comparison of widely differ- 
ent distribution functions  and  have  found  that  the  shapes 
of the J z  peaks are  not very sensitive to  the choice of the 
distribution function,  up to values of the  peak width 
about twice that  for a single relaxation.  Accordingly, the 
present approach is to use the Gaussian as  a  reasonable 
distribution function  and  to explore  fully the conse- 
quences of the existence of such a distribution. In  the 
notation of Wagner, we introduce a  variable 

z=ln(r / rm),   (13)  

where rrn is the most probable value of T. The normalized 
distribution function  *(ln T) may  then be written: 

where b is the  Gaussian distribution parameter.  The 
quantity p E b-1 measures the half-width of the distribu- 
tion at  the point  where *(z) falls to   l / e  of its  maximum 
value, !P( 0). Substituting ( 14)  into  the general equations 
(9) to ( 11 ) and introducing the variables 

x=ln O T ~  

y=ln(t/Tm) i y  (15) 

we obtain  for  the  dynamic response functions J I ( x )  and 
J z ( x ) ,  
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Figure I Normalized plots of the function f2(x’, /?I for different values of the distribution parameter, p. 

and for the static response function $ ( y ) ,  

I r m  

Since these integrals cannot be evaluated in terms of 
well-tabulated functions, numerical computations are re- 
quired. In each of these equations, the  quantity p appears 
as a  parameter. For p=O, the Gaussian function goes 
into a Dirac &function,  and Eqs. (16) to (18) degenerate 
into  the corresponding equations for  the case of a single 

300 relaxation time. It is, therefore, appropriate to regard p, 

which measures the width of the Gaussian distribution, 
as the most convenient parameter in  terms of which our 
numerical computations may be expressed. 

Results of computations for the lognormal distrib~tionl~ 

The above description gives the functions JI(o) and 
E ( t )  /a in terms of four parameters Ju ,  6 J ,  Tm, and p ,  and 
the function JZ(o)  in  terms of the last three of these pa- 
rameters. This amounts to  the addition of just one param- 
eter, /?, above and beyond those required to describe the 
behavior of a material for  the case of a single relaxation 
time. We will now be  concerned with methods for obtain- 
ing the three  parameters of the relaxation ( 6 J ,  T ~ ,  and p) 
from experimental data,  as well as for checking that  the 
lognormal distribution fits the data in  a satisfactory way. 
The  fourth parameter, Ju, is not  a  parameter of the relax- 
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ation; it may  be  obtained  directly from  the value of J 1  at 
high  frequencies. 

For  actual applications, it is useful to  obtain JI and J Z  
not  as  functions of x,  but of the variable 

X’=lOglo orrn=x/2.3O3 (19) 

and $ as  a function of 

y’=loglo(t/Trn) =~/2 .303  . (20) 

The  functions f l ( x ’ ,  p )  and fz(x’, p )  , given by Eqs. 
(16) and (17), (with  the  change of variables given by 
(19) and (20) ) have been computed by Yagerg for  the 
range p=O to 6.7, but the intervals selected for  both p 
and x’ were rather large, thus limiting the precision of the 
information  that may be derived from his computations.14 
We have, therefore,  recomputed  the  function fz(x’  p) and 
at  the  same  time calculated g(y ’ ,  p)  over the  range p=O 
to 7 in close intervals, using an IBM 704. We  found  that 

the infinite integrals  could be replaced by integrals from 
-4  to +4 with no  errors  up  to  the sixth  decimal place. 
The finite  integrals  were then evaluated  by the trapezoidal 
rule. Typical  results for  the normalized  peak function, 
f~(x’ ,  P ) / f 2 ( 0 ,  p) ,  and  for  the  function g(y’, p )  are 
plotted in Figs. 1 and 2, respectively. At  the  same time, 
the numerical  results for these functions  are listed  in 
Tables 2 and 3, respectively. The  peak height f z ( O ,  p )  is 
tabulated as  a function of ,8 in Table 4. 

Results for  the J z  peak will first be  examined. For  the 
case of a single relaxation  time, the peak occurs  at UT= 1, 
which makes possible the  determination of T from  the 
value of o at  the peak. In  the present more general case, 
we have  the  peak  at x=O, or W T ~  = 1.  The value of T~~ is, 
therefore,  obtainable from  the peak position. For a single 
relaxation  time, p=O, the height of the JZ peak is (from 
Eq. ( 8 )  ) SJ/2, while the peak  width is given by 

Azx’(0) e1.144.  (21) 

Figure 2 Plots of the function g(y’, PI for different values of the distribution parameter, p. 
1.0 I I I I I I I I I 



Table2 Results of numerical computations for the normalized peak functions fZ(x’, p)/fz(o, PI.  
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X’ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
Om30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1.70 
le75 
1.80 
le85 
1.90 
le95 
2.00 
2.05 
2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 
2.55 
2.60 
2.65 
2.70 
.2.75 
2.80 
2.85 
2.90 
2.95 
3.00 

8= 0 
1.000 . 9934 
09740 
09431 
e 9025 
8544 
08011 . 7447 
e 6872 
e6302 . 5749 
5221 

e4725 
e4263 . 3837 
e 3447 
e 3092 
2769 
2478 

e2216 
e 1980 
e 1768 
e 1578 
e 1408 
e 1256 
0 1 1 2 1  
e0999 
00891 
e 0794 
-0708 
00631 
00563 
00502 
00447 
00398 
00355 
e0316 
00282 
e0251 
0224 

00199 
e0178 
00158 
00141 
eo126 
00112 
.0100 
,0089 
e0079 
.0070 
0063 

e 0056 
.0050 
0044 
e0039 
003 5 
003 1 

.0028 
e 002 5 . 0022 
e 0020 

0.2 
1 . 000 
e9936 
9750 
945 1 

e9057 
8588 

e8066 
07511 
06943 
e6377 
e 5 825 
5296 

e 4798 
e4332 
03902 
3507 

e 3 147 
e 2820 
e 2 524 
e2258 
e2018 . 1802 
e 1609 
1436 

e 1281 
e 1143 
1019 

00909 
00810 
e0722 
e 0 644 
e0574 
e 0 5 1 2  
00456 
00406 
00362 
e0323 
00288 
e0256 
e 0 228 
e0203 
e o  181 
e 0 162 
e 0 144 
e o  128 
00 114 
00102 
e0091 . 008 1 
e0072 
0064 

-0057 
00051 
0045 

e0040 
e0036 
e0032 
.0028 
00025 . 0022 
e0020 

0.4 

1 e 0 0 0  
e 9942 . 9773 
09501 
e9138 
08702 
e8210 
7682 

e7133 
e 6580 
6034 

e 5507 
e 5004 
e4531 
e 4090 
e 3 584 
0 3 3 1 1  
e 2971 
e 2662 
e2383 
0 2 1 3 1  
1904 
1701 
1519 

e 1355 
e 1209 
1079 

e0962 
e0858 
e0765 
00682 
00608 
e0542 
00483 
0430 
00384 
00342 
e0305 
00271 
00242 
00216 
00 192 
00171 
00 152 
e0136 
e0121 
.O 108 
e0096 
,0086 
e0076 
e 0068 
moo60 
e 0054 
e 0048 
e0043 
e0038 
e 0034 
.0030 
e0027 
00024 . 0021 

0.6 
1 .ooo 
e 9949 
09801 
09561 
e9239 . 8847 
e 8399 
07910 
e 7394 
06865 
e6336 
05816 
e5314 
e4835 
04383 
3962 
3572 

03214 
02886 
2588 

e2318 
e 2074 
1855 
1657 
1480 
1321 
1179 
1052 

00938 
e0837 
00746 
e0665 
e0593 
00528 
00471 
e0420 
e0374 
00333 
00297 
00265 
e0236 
00210 
00187 
e 0  167 
e 0  149 
00133 
e0118 
e0105 
00094 
00083 
e0074 
00066 
e0059 
e0052 
00047 
e0042 
00037 
e0033 
e0029 
00026 
e0023 

0.8 
1 e 000 
09956 
9829 
e9621 
09339 . 8994 
e8593 
08151 
7677 
71 84 

06681 
06180 
e5687 
5209 

04752 
e4320 
a3915 
e 3538 
03189 
02870 
e2577 
02312 
02071 
1854 
1658 

e 1481 
1323 

01181 
1054 

00941 
e0839 
0 748 
00667 
00595 
e0530 
00473 
00421 
e0376 
00335 
-0298 
e0266 
e0237 
00211 
.O 188 
e0168 
00149 
00 133 
00 119 
.oio6 
00094 
e0084 
00075 
00066 
00059 
e0053 
00047 
e0042 
00037 
e0033 
00029 
00026 

1 .oo 
1 e 000 
9963 
09853 
e 9674 
09430 
09127 
08774 
e 8379 
7950 . 7498 

e 7030 
65 56 
e6082 
56  16 

05164 
e4728 
43 14 
3923 

* 3557 
m3217 
e 2903 
02614 
e2350 
e 2 1 1 0  
e 1892 
e 1694 
01516 
1355 

e 1211 . 1082 
0966 

e0862 
e0769 
e0686 
00612 
0546 

e 0486 
0434 
0386 
00344 
00307 
e0274 
00244 
00217 
e0194 
00173 
e0154 
.01?7 
00122 
e0109 
e 0097 
0086 
0077 
0068 

e 006 1 
0054 

e 0048 
e 0043 
0 0 0 3 8  
0034 

e0030 

1 .25  

1.000 
09969 
09878 
9729 

09525 
09270 
e8970 
8629 
e8256 
e 78 56 
e 7436 
7004 
06565 
06125 
5689 
05263 
e4850 
a4453 
04075 
e3717 
e3381 
3068 

e2777 
e2508 
e2261 
e 2035 
1829 
1642 

e 1472 
e1318 
e1180 
1055 

00943 
e0842 
e0752 
00671 
00599 
05 34 
00477 
e0425 
a0379 
00338 
00301 
00268 
e0239 
00213 
e0190 
00169 
00151 
00134 
00120 
e0107 
e0095 
00085 
e0075 
00067 
00060 
e0053 
00047 
0042 
e0038 

1 .50 
1 e000 
09974 
e 9898 
09774 
960 2 
09386 
09130 
e8838 
08514 
e8164 
7792 
740  4 
7004 
6598 

06189 . 5784 
05384 . 4994 
e4616 
04252 
390 5 

03576 
3266 

e 2974 
e 2703 
a 245 1 
e2218 
e 200 3 
e 1806 
e 1626 
1462 

e1313 
1178 

e 1056 
00945 
e 0846 
00756 
e0676 
e 0604 
e0539 
0048 1 
00430 
e0383 
e0342 
00305 
00272 
00242 
e0216 
00192 
e0172 
e0 1 5 3  
00136 
00121 
00108 
00096 
e0086 
00076 
00068 
00061 
e0054 
00048 

1.75 

1. 000 
09978 
09914 
9809 

e 9663 
09480 
9261 

e 9009 
8729 
08422 
e 8094 . 7748 
e 7389 
07019 
6643 

e 6264 
5886 

-5512 
e 5144 . 4785 . 4438 
e4104 
3784 

6 3479 
3191 

e 2919 
e 2664 
2426 

02205 
02000 
01811 
e 1637 
1477 
1331 
1198 
1077 

00967 
e0868 
0 778 
e0697 
e0624 
00558 
0499 
00446 
0 398 
e0355 
00317 
00283 
e0252 
00225 
00201 
00179 
e 0  160 
00 142 
e0127 
e0113 
.0101 
e0090 . 0080 
e0071 
00063 

2.00 
1 e 000 
e9981 
9927 
09837 
09713 
09555 
e 9367 
e9150 
e 8905 
e 8637 
8348 

e8041 
7719 
7385 
7042 
6693 
e6341 
e 5988 
5638 
5292 

04953 
e4623 
04302 . 3993 
e3697 
03413 
e 3 144 
02889 
2649 

e2424 
,02213 
e2017 
1834 

e 1666 
e1510 
1366 
1235 

e1114 
e 1005 
00904 
e0813 
e0731 
e0656 
e 0 5 8 8  
00527 
00472 
00422 
00378 
00338 
e0302 
e0270 
00241 
00215 
00192 
00171 
e0153 
e0136 
00121 
e0108 
e0096 
00086 

2.25 
1 . 000 
9984 

e9937 
09860 
09753 
e9617 
e 9454 
e9264 
09051 
e8816 
e8561 
08288 . 8000 
7699 

07388 
7069 
6744 
06417 
e6088 
05760 
e5435 
05115 
e480 1 . 4494 
e4197 
e3910 
3634 

03370 
e3118 
e2878 
02651 
02437 
e2236 
2047 

e1871 
1707 

e 1555 
e 1414 
1283 
1164 
1053 

00952 
e0860 
00776 
00699 
00629 
00566 
00508 
00456 
00409 
00367 
e0328 
00294 
e0263 
e0235 
00210 
00188 
e0168 
e0150 
e0134 
e0119 
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Table 2 (Contd.) 

x' p =  2.50 
0.00 1.000 
0.05 09986 
0.10 0 9 9 4 6  
0.15 - 9 8 7 8  
0.20 09785 
0.25 -9667  
0.30 09525  
0.35 0 9 3 5 9  
0.40 e9172 
0.45 08965 
0.50 0 8 7 3 9  
0.55 0 8 4 9 6  
0.60 0 8 2 3 9  
0.65 0 7 9 6 8  
0.70 07687 
0.75 07396 
0.80 07099 
0.85 0 6 7 9 6  
0.90 0 6 4 9 0  
0.95 0 6 1 8 2  
1.00 05875 
1.03 0 5 5 6 9  
1.10 0 5 2 6 6  
1.15 0 4 9 6 9  
1.20 04677 
1.25 0 4 3 9 3  
1.30 e4116 
1.35 0 3 8 4 8  
1.40 03590 
1.45 0 3 3 4 2  
1.50 0 3 1 0 5  
1.55 0 2 8 7 9  
1.60 0 2 6 6 4  
1.65 0 2 4 6 0  
1.70 0 2 2 6 8  
1.75 0 2 0 8 6  
1.80 0 1 9 1 6  
1.85 0 1 7 5 7  
1.90 0 1 6 0 8  
1.95 0 1 4 6 9  
2.00 1340 
2.05 0 1 2 2 1  
2.10 01111 
2.15 0 1 0 0 9  
2.20 00915  
2.25 00829 
2.30 0 0 7 5 0  
2.35 00678 
2.40 00612 
2.45 0 0 5 5 2  
2.50 - 0 4 9 8  
2.55 -0448  
2.60 ,0403 
2.65 00362 
2.70 00325 
2.75 0 0 2 9 2  
2.80 e0262 
2.85 0 0 2 3 4  
2.90 00210 
2.95 0 0 1 8 8  
3.00 00168 

2.75 
1 . 000 

9988  
9952 . 9 8 9 4  

09812  
.9709 
09584  

9 4 3 8  
0 9 2 7 3  
09089  
08889  
e 8672  

8 4 4  2 
8 198  . 7 9 4 4  
7 6 8 0  
7 4 0 8  

0 7 1 2 9  
6 8 4 6  

06559  
e6271  
e 5982 

5 6 9 4  
e 5408 

5126  
0 4 8 4 9  
04577  
0 4 3 1  1 
0 4 0 5 3  

3802 
3560  

e3327 
0 3 1 0 3  
0 2 8 8 9  
0 2 6 8 5  

2490  
2306  

C2131 
1967 . 1812  
1666  
1 5 3 0  
1 4 0 3  
1 2 8 4  
1 1 7 4  
1072  

00977  
0 0 8 8 9  
0 0 8 0 9  

0 7 3 4  
0 666  

0 0 6 0 3  
0 546 
0 4 9 4  
0 4 4 6  
0402, 

0 0 3 6 3  
0 0 3 2 7  

0 294  
0 264  

0 0 2 3 7  

3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 

1 . 000 1 .ooo 
9989  0 9 9 9 1  

0 9 9 5 8  09967  
0 9 9 0 6  0 9 9 2 6  

9835 9869  
09743 09797 
,9633 e9709 
09504  0 9 6 0 6  
0 9 3 5 7  0 9 4 8 9  
09194 09358 
0 9 0 1 5  0 9 2 1 4  
0 8 8 2 1  0 9 0 5 7  
08614 0 8 8 8 9  
0 8 3 9 5  0 8 7 1 0  
~ 8 1 6 5  0 8 5 2 0  
e7925 e8371 
07676 0 8 1 1 4  

7421 7 8 9 9  
0 7 1 5 9  0 7 6 7 7  
06894 0 7 4 5 0  
06625 0 7 2 1 8  
06354 e6982 
0 6 0 8 2  0 6 7 4 3  

5810 0 6 5 0 2  
5540 06260 

0 5 2 7 3  0 6 0 1 8  
0 5 0 0 9  0 5 7 7 6  
04749  05535 
e 4494  5 295 
0 4 2 4 5  0 5 0 5 9  
0 4 0 0 3  0 4 8 2 5  
- 3 7 6 8  0 4 5 9 6  

3540 0 4 3 7 0  
3320 0 4  150 

0 3 1 0 8  0 3 9 3 5  
0 2 9 0 5  03725  
0 2 7 1 1  0 3 5 2 1  
0 2 5 2 5  0 3 3 2 4  
0 2 3 4 8  0 3 1 3 3  
0 2 1 8 0  0 2 9 4 9  
0 2 0 7 1  0 2 7 7 2  
0 1 8 7 0  0 2 6 0 1  

1728 2478 
0 1 5 9 4  0 2 2 8 2  
0 1 4 6 9  0 2 1 3 2  
0 1 3 5 1  0 1 9 9 0  
e1241 01855  
e 11   39  1727 

1043 1605 
0 0 9 5 4  e1490 
e 0872 e 1382 
0 0 7 9 6  0 1 2 7 9  
e0725 01183  
0 0 6 6 0  0 1 0 9 3  
.0600 e1008 
0 0 5 4 5  0 0 9 2 9  
0 0 4 9 5  0 0 8 5 5  
0 0 4 4 8  0 0 7 8 6  
0 0 4 0 6  00722  
0 0 3 6 7  0 0 6 6 2  
~ 0 3 3 2  0 0 6 0 6  

1.000 1.000 
e9993 09994 
09973 09978 
e9940 0 9 9 5 1  
0 9 8 9 4  0 9 9 1 3  
0 9 8 3 6  09865  
0 9 7 6 5  0 9 8 0 6  

9681  9737 
0 9 5 8 6  0 9 6 5 9  
e9479 e9570 
0 9 3 6 1  e9472 
0 9 2 3 2  09365  
e9094  0 9 2 4 9  
0 8 9 4 5  09125 
08787 08992 
08621 08852  

8447 e 8 705 
0 8 2 6 6  0 8 5 5 1  
0 8 0 7 8  0 8 3 9 1  
07884 08224 

7685  e 8053  
0 7 4 8 1  07876  
0 7 2 7 3  0 7 6 9 6  
0 7 0 6 1  0 7 5 1 1  
e6847 07323 

6 6 3 1  7 1  32 
64   14  6938  

0 6 1 9 5  0 6 7 4 3  
e5977 06546 
0 5 7 5 9  0 6 3 4 8  
0 5 5 4 2  0 6 1 5 0  
0 5 3 2 6  0 5 9 5 1  
05112 05753 
0 4 9 0 1  5556 
0 4 6 9 2  0 5 3 6 0  
e4487 e5165 
0 4 2 8 5  0 4 9 7 2  
0 4 0 8 7  0 4 7 8 1  
03894  04593 
0 3 7 0 5  0 4 4 0 8  
e3521 e4225 
0 3 3 4 2  0 4 0 4 6  
0 3 1 6 9  0 3 8 7 1  
.3000 0 3 6 9 9  

2838 3532 
e2681 0 3 3 6 8  
e2529 0 3 2 0 9  
0 2 3 8 3  0 3 0 5 4  

2243 2904  
0 2 1 0 9  0 2 7 5 9  
- 1 9 8 1  02618 

1858  0 2 4 8 1  
1 7 4 1  0 2 3 5 0  

0 1 6 2 9  0 2 2 2 7  
0 1 5 2 3  e2101 

1422 1 9 8 4  
0 1 3 2 6  0 1 8 7 1  
e1236 0 1 7 6 3  
0 1 1 5 0  0 1 6 6 0  
0 1 0 6 9  e1561 
0 0 9 9 3  1467 

1.000 1.000 
0 9 9 9 5  e9996 
0 9 9 8 1  0 9 9 8 4  
0 9 9 5 9  09965  
09927  0 9 9 3 8  
09887  0 9 9 0 4  
09838  0 9 8 6 3  
0 9 7 8 0  0 9 8 1 4  
0 9 7 1 4  0 9 7 5 8  
0 9 6 4 0  0 9 6 9 4  
09557  0 9 6 2 4  
09467  09547  
0 9 3 6 9  094.63 
0 9 2 6 4  0 9 3 7 3  
0 9 1 5 1  09277  
e9032 0 9 1 x 5  
0 8 9 0 6  0 9 0 6 6  
08775  0 8 9 5 3  
08637  0 8 8 3 4  
0 8 4 9 4  08710  
08346  0 8 5 8 1  
08192  08447  
08035  0 8 3 0 9  
0 7 8 7 3  0 8 1 6 8  
07708  0 8 0 2 2  
07540 0 7 8 7 4  

7368 7 7 2 2  
0 7 1 9 4  07567  
e7018 0 7 4 1 0  
0 6 8 4 0  e7250 
0 6 6 6 1  0 7 0 8 9  
0 6 4 8 1  0 6 9 2 6  
06299 0 6 7 6 1  
0 6 1   1 8  e6596 
05936 0 6 4 2 9  
05755 06262  
0 5 5 7 4  0 6 0 9 5  
0 5 3 9 4  e5928 

52 16 5761 
05039 05594 
04863 0 5 4 2 9  
0 4 6 9 0  0 5 2 6 4  
04518  05100  
0 4 3 5 0  e4938 
0 4 1 8 3  04777  
0 4 0 2 0  04618  
e3860 e4461 
0 3 7 0 3  0 4 3 0 6  
e3549 m4154 
0 3 3 9 8  0 4 0 0 4  
03251 03856  
03108  0 3 7 1 1  
02969 0 3 5 6 9  
e2833 e3430 
e2701 e3293 
0 2 5 7 3  03160  
e2450 03030  
0 2 3 3 0  0 2 9 0 3  

22  14 02780  
e2102 0 2 6 5 9  

1994  02542  

1.000 1.000 
- 9 9 9 6 '  0 9 9 9 7  
0 9 9 8 6  .998& 
09970  0 9 9 7 4  
09947 09954 
09918 0 9 9 2 9  
09882 a9898 
a9840 0 9 8 6 2  
09792 0 9 8 2 0  
e9738 e9772 
09677 e9720 
a9611 0 9 6 6 2  
09539 e9599 
0 9 4 6 1  0 9 5 3 2  
09377 09459 
e9289 e9382 
0 9 1 9 5  0 9 3 0 0  
0 9 0 9 6  0 9 2 1 3  
0 8 9 9 2  0 9 1 2 2  
e 8 8 8 4  9027 
0 8 7 7 1  e8928 
0 8 6 5 4  0 8 8 2 4  
0 8 5 3 3  0 8 7 1 6  
0 8 4 0 9  0 8 6 0 7  
08280 0 8 4 9 3  
0 8 1 4 8  0 8 3 7 6  
0 8 0 1 4  e8256 
0 7 8 7 6  0 8 1 3 3  
0 7 7 3 5  0 8 0 0 7  

7 5 9 2  7 8 7 9  
07447 07749 
0 7 3 0 0  0 7 6 1 6  
0 7 1 5 1  0 7 4 8 1  
0 7 0 0 1  0 7 3 4 5  
- 6 8 4 9  e7207 
- 6 6 9 6  0 7 0 6 8  
0 6 5 4 3  0 6 9 2 7  
- 6 3 8 9  0 6 7 8 5  
06234 0 6 6 4 3  
06079  e6500 
05924  0 6 3 5 6  
05770 0 6 2 1 2  
0 5 6 1 5  0 6 0 6 8  
e5462 0 5 9 2 4  
e5309 0 5 7 8 0  
05157  0 5 6 3 6  
e5006 0 5 4 9 3  
04857 0 5 3 5 1  
0 4 7 0 8  0 5 2 0 9  
0 4 5 6 2  0 5 0 6 8  
04417 0 4 9 2 8  
a4274  0 4 7 9 0  
04133  e4653 
0 3 9 9 4  0 4 5 1 7  
e3857 0 4 3 8 2  
,3723 0 4 2 4 9  
03591  04118 
0 3 4 6 1  0 3 9 8 9  
03334  0 3 8 6 2  
0 3 2 1 0  0 3 7 3 6  
03088 0 3 6 1 3  

7.00 
1 .ooo . 9997 

9990 
e9977 

9960 
9938 
991  1 

09879 
e9842 
e9801 . 9755  
0 9 7 0 4  
0 9 6 4 9  
0 9 5 9 0  

9 526 
09458 
0 9 3 8 6  
0 9 3 0 9  

9229  
0 9 1 4 5  
09057  

8966 
0 8 8 7 1  
e8772 
e8671 
08567  

8459  . 8 349 
8236 

08121 
08003 
0 7 8 8 3  

7762  
e 7 6 3 8  
e7512 

7385 
07257  
e7127 

6996  
6 8 6 4  

e6731 
6598  

e 6464 
e6330 

6 195 
6 0 6 0  
5926 

0 5 7 9 1  
0 5 6 5 7  
0 5 5 2 3  

5 390 
0 5 2 5 7  
0 5 1 2 5  . 4994  

4864  
e4735 
e 4607 
0 4 4 8 0  
04355 
0 4 2 3 1  
04108  303 
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Table 3 Results of numerical computations for the function g[y', PI. 
Y' 8= 0 0.25 0.50 0.75 1 .oo 1.25 1.50 1.75 

-1.50 
-1  0 46 
-1 42 
-1.38 
-1 34  
-1.30 
- 1  26 
-1 . 22 
-1.18 
-1.14 
-1.10 
-1 06 
-1.02 
-0 98 
-0 94  
-0.90 
-0.86 
-0.82 
-0 7 8  
-0 7 4  
-0 70 
-0 66  
-0.62 
-0.58 
-0.54 
-0 50 
-0 46  
-0.42 
-0 0 38  
-0.34 
-0.70 
-0.26 
-0 . 22 
-0.18 
-0.14 
-0.10 
-0.06 
-0.02 

0.02 
0.06 
0.10 
0. 14  
0. 18 
0.22 
0.26 
0. 30 
0. 7 4  
0.  38 
0. 42 
9.46 
0.50 
0. 54 
0. 58 
0. 62 
Om 66  
0. 7 0  
0. 74  
0 0  78 
0.82 
0.86 
0 0  90 
0.94 

304 0. 98 

009689  
0.9659 
0.9627 
0.9592 
0.9553 
Om9511 
0 9465 
0.9415 
Om9361 
0 0 9 3 0 1  
0.9236 
0.9166 
0.9089 
0 9006  
0.8915 
0.8817 
0 0 8 7 1 1  
0 0 8 5 9 5  
0 0 8 4 7 1  
0.8336 
0 0 8 1 9 1  
0.8035 
0.7867 
0.7687 
0.7495 
0.7289 
0 7 0 7 0  
0.6837 
Om6591 
0.6331 
0.6058 
0.5772 
0. 5474  
0.5165 
0.4846 
0.4519 
0.4186 
0.3848 
0.3509 
0.3172 
0.2840 
0.2515 
Om2201 
0. 1902  
0 0 1 6 2 1  
0.1360 
0.1122 
0.0908 
0 0 0 7 2 1  
0 ,0559 
0.0423 
0.0312 
0.0223 
0 0 0 1 5 5  
Om0104 
Om0067 
0.0041 
0.0024 
0.0014 
0 0 0 9 0 7  
0.0004 
0.0002 
0.0001 

0.9684 
0.9654 
0.9621 
0.9586 
0.9547 
0.9504 
Om9458 
Om9407 
0.9352 
0 0 9 2 9 1  
0.9226 
0 0 9 1 5 4  
0.9077 
Om8993 
Om8901 
Om8802 
0 8694  
008578 
0 8452 
Om8317 
0.8171 
0.8014 
0.7845 
0.7664 
0.7471 
O 7 2 6 4  
Om7045 
0.6812 
Om6566 
0.6307 
0.6035 
Om5750 
0.5454 
0 0 5 1 4 7  
0.4831 
Om4508 
0.4179 
0.7846 
0.8512 
0.3181 
0.2854 
0.2535 
0.2228 
0. 1934  
001658  
0.1401 
0. 1166  
0.0955 
0.0768 
0.00605 
0 00467  
0 0 0 3 5 3  
0.0260 
0.0186 
0.0130 
0.0088 
0.0058 
0.0036 
0.0022 
0.0013 
0.0007 
0 9004  
0.0002 

0 0 9 6 7 0  
0.9638 
0 9604  
C.9567 
Om9527 
0 9482 
0 9434  
0.9381 
0 9324  
0 9262 
0.9194 
0.9120 
0 9040 
0 8952 
0.R858 
0.8756 
0 8646 
0.8526 
0 8398 
0 0 8 2 5 9  
0.8110 
0 0 7 9 5 0  
0 7 7 7 9  
0 7596  
0 .7401 
0.7194 
0 6 9 7 4  
Om6741 
0 6496  
0.6239 
Om5970 
0 0  5690 
0.5400 
0.5101 
0 4794  
0.4481 
0.4164 
0 3844 
0.3526 
0 3209 
0.2898 
Om2596 
0.2303 
0 2024  
0.1760 
0.1514 
0.1287 
0.1080 
0.0895 
0.0731 
0.0588 
0 0466 
0.0363 
0.9278 
Om0209 
0.0154 
0.0111 
0 0079  
0.0054 
0 0037 
0.9024 
0.0016 
0.0010 

0 9645 
0.9611 
0 9575 
0.9535 
0 9492 
0 0 9 4 4 4  
0 9393  
0.9337 
0 9276  
0 0 9 2 1 0  
Om9138 
O m  9060  
0 8976 
Om 8885 
0 8786 
0 8679  
0 8 5 6 4  
00 8440 
0 8307 
0.8164 
0.8011 
0 7 8 4 8  
0 7 6 7 4  
0 7488  
0.7291 
0.7083 
0 6 8 6 4  
0.6633 
0 .6391 
0.6139 
0. 5877 
0 5606 
0.5326 
0. 5039  
0 4747 
9.4451 
0.4152 
Om3852 
0. 3554 
0 3260 
0 2970  
0 2688 
0. 2416 
0 .2156 
00 1908 
0. 1675 
0. 1458 
0. 1257 
Om 1074  
0 0909  
0.0761 
0 ,0631  
Om0517 
0.0419 
Om0336 
0.0266 
0.0208 
0.0160 
0.0122 
r) 0092 
0. 0068  
0.0050 
0.0036 

0.9607 
0.9570 
0.9531 
0 09487  
0 9 4 4 0  
0.9389 
0.9333 
0 0 9 2 7 2  
Om9207 
0 0 9 1 3 6  
0.9059 
0.8976 
0.8886 
0.8789 
0.8684 
Om8572 
0.8452 
0.8322 
0.8184 
0 0 8 0 3 7  
0.7880 
0.7714 
0.7537 
0.7350 
0 0 7 1 5 3  
0.6947 
0.6730 
0.6504 
0.6268 
0.6025 
0.5773 
0.5514 
0 0 5 2 4 9  
0.4979 
0.4705 
0 0 4 4 2 9  
0.4152 
0.3874 
0.3600 
Om3328 
0.3062 
0.2802 
0.2551 
Om2309 
0.2078 
0.1858 
0.1651 
0.1458 
0.1279 
0.1114 
0 0 0 9 6 4  
0 0 0 8 2 7  
0.0705 
0.0596 
0.0500 
0.0416 
0.0343 
0.0281 
0 0 0 2 2 8  
0.0783 
0.0146 
0.0115 
0.0090 

0.9555 
0.9514 
0 9470 
0.9422 
0.9370 
0.9313 
0.9252 
Om9186 
0 0 9 1  14 
0 9038 
0.8954 
0 08865 
Om8769 
0 8666 
Om8556 
0.8438 
Om8312 
0.8179 
0 8036 
0.7886 
0 7726 
0.7558 
0.7381 
0.7195 
0 7 0 0 1  
0.6798 
0.6587 
0.6369 
Om6143 
oms910 
0 5672 
0 5428 
0.5180 
0 4928 
Om4674 
0.4419 
0.4164 
0 3909 
0.3657 
0 3408 
0.3164 
0 0 2 9 2 5  
0 0 2 6 9 3  
Om2468 
0.2253 
0.2047 
0.1850 
Om1665 
0.1491 
0.1728 
0.1177 
0 0 1 0 3 8  
0.0910 
0.00793 
0.0688 
0.0593 
0.0508 
0.0433 
0.0366 
0 0308 
000258 
0.0214 
Om0177 

0 9496  
0 9440 
0 0 9 3 9 1  
0.9337 
Om 9279  
0.9217 
0.9150 
0 0 9 0 7 8  
0 9000  
0.8917 
0 8828 
0 8732 
0.8631 
0.8522 
0 8407 
0.8284 
0.8155 
0.8018 
00 7873  
0.7721 
0.7561 
0 . 7 3 9 4  
0 0 7 2 1 9  
0.7036 
0 6847 
0 0 6 6 5 1  
0 6448  
0.6239 
0.6025 
0 0  5806 
0. 5582 
0 0  5354  
0.5123 
0 4890 
0.4656 
Om4421 
0.4186 
0.3953 
0.3721 
0 3493 
0 3268 
0. 3048 
0.2834 
0 2625 
0 0  2424  
Om 2230 
0. 2044  
0.1867 
0 1699  
Om1540 
Om1390 
0.1250 
Om1120 
0 0999  
Om0889 
0.0785 
Om0691 
0 0 0 6 0 6  
0.0529 
Om0459 
Om0397 
0.0342 
0.0293 

0. 9400 
0 9348 
0 9293 
0 ,9234 
Om9170 
0.9102 
0.9028 
0.8950 
0 8867 
0. 8778 
0.8683 
0.8583 
0. 8476 
0 8364  
O m  8245 
0 0  81 19 
0 7 9 8 8  
0. 7849  
0 7 7 0 4  
0.7552 
r) . 7 3 9 4  
0 7 2 3 0  
0.7059 
0.6883 
0 6700  
Om6512 
0.  6320  
0.6122 
0 5920 
0.5714 
0 0 5 5 0 5  
0.5293 
0. 5079  
0 0 4 8 6 4  
0.4647 
0.4431 
0.4215 
0 4000  
0 3787 
0 3577 
0.3370 
0.3166 
0 0 2968 
0 2774  
0 2586 
0 2403 
0.2228 
0.2059 
0. 1897 
O m  1743 
0. 1597 
0 1458 
0. 1327 
0. 1 2 0 4  
0. 1089  
0 0 0 9 8 2  
0.0882 
0. 0790  
00 0705 
no0627 
0.0555 
0. 0 4 9 0  
0 0 0 4 3 2  
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Table 3 (Contd.) 

Y'  @= 2.00  2.50 3.00 3.50 4.00 5.00 6.00 7.00 
-1  50 
-1 046 
-1.42 
-1.38 
-1 34 
-1.30 
-1.26 
-1.22 
-1.18 
-1 1 4  
-1.10 
-1 06  
-1 . 02 
-0.98 
-0 9 4  
-0 90 
-0.86 
-0.82 
-0 . 78 
-0.74 
-0.70 
-0 6 6  
-0.62 
-0.58 
-0.54 
-0 50 
-0 46 
-0 42 
-0.38 
-0.34 
-0 . 70 
-0 26 
-0.22 
-0.18 
-0 1 4  
-0.10 
-0.06 
-0.02 

0.02 
0.06 
0.10 
0. 1 4  
00 1 8  
0.22 
0. 26 
0.70 
0. 34 
0.38 
0.42 
0. 46 
0.50 
0.54 
0.58 
0.62 
0. 6 6  
0.70 
0.74 
0.78 
0.82 
0.86 
0.90 
0.94 
0. 98 

0.9297 
0.9240 
0.9179 
0.91 14 
0 9 0 4 4  
0.8970 
0.8892 
0.8808 
0.8720 
0.8627 
0.8528 
0.8424 
0.8314 
0.8199 
0 8078 
0.7951 
0.7819 
0.7681 
0.7538 
0.7789 
0.7234 
0 7 0 7 4  
0.6910 
0.6740 
0.6566 
0.6387 
0.6204 
0.6018 
0.5828 
0.5636 
0.5441 
0.5244 
0.5045 
0 4 8 4 6  
0 4646  
0 4 4 4 6  
0.4247 
0 4049  
0.3852 
0.3658 
0 3466  
0.3278 
0.3093 
0.2912 
0.2736 
0.2564 
0.2398 
0.2238 
0 2083 
0. 1 9 3 4  
0.1792 
0. 1656  
0.1526 
0 0 1 4 0 3  
0.1287 
0.1177 
0.1@74 
0.0977 
0.0886 
0.0802 
0.0724 
0.0652 
0.0585 

0.9051 
0.8985 
0.8914 
0.8840 
0.8762 
0.8680 
0.8594 
0.8504 
0.8409 
0.831C 
0.8208 
0.8100 
0.7989 
0.7873 
0.775'3 
0.7629 
0 7 5 0 0  
0.7768 
0.7231 
0.7091 
0 6946  
0 0 6 7 9 9  
0 6648  
0 6 4 9 4  
0 6336  
0.6176 
0.6014 
0 5849  
0 568 2 
0.5514 
0 5344  
0.5173 
0.500 1 
0.4829 
0.4657 
0 0448  5 
0.4313 
0.4143 
0.3973 
0.3805 
0 3639 
0 3476 
0.3314 
0.3156 
0. 3000  
0 2848 
0.2699 
0.2554 
0.2412 
0.2276 
0.2143 
0.2014 
0.1890 
0.1771 
0.1656 
0.1547 
0. 1442  
001,341 
0.1246 
0.1155 
0. 1069  
0.0987 
0.0910 

0.8779 
0.8706 
0 8630 
0.8550 
0 8468 
0.8382 
0 8293 
0 .8200 
0.8105 
0 ROO6 
0 7903  
0.7797 
0 7688 
0 7576  
0.7461 
0 7343 
0.7221 
0 7097  
0 6 9 7 0  
0 6840  
0 0 6 7 0 8  
0 6573 
0 6436  
0.6297 
0.6155 
0.6012 
0 5868 
0.5722 
0.5574 
0 5426 
0.5277 
0.5127 
0 4977 
0.4826 
0 4676  
0 - 4 5 2 6  
0.4376 
0.4227 
0 4079  
0 3932 
0 3786 
0.3642 
0 7 4 9 9  
0.3358 
0.3220 
0 0 7 0 8 4  
0.2950 
0.2818 
0 2690 
0.2564 
0 2442 
0.2722 
0.2206 
0. 2092 
0. 1983 
0.  1876  
0.1774 
0 .  1 6 7 4  
0.1579 
0. 1487 
0.1398 
0.1313 
0.1232 

0. 8505 
0 8430 
0 8351  
0. 8270 
0.8186 
0 . 8100 
0.8011 
0 7920  
0 7826  
0 7 7 2 9  
0 7 6 3 0  
0.7528 
0 7424  
0.7318 
0.7209 
0 7098  
0.6985 
0 6870  
0. 6753  
0 e 6 6 3 4  
0 .6513 
0 6390  
0 6266  
0.6140 
0 .6013 
0. 5885 
0 5755 
0 5625 
0 . 5494 
0 5362 
0.5229 
0.5097 
0 4964 
0.4R30 
0 4697 
0 4564. 
0 .4432 
0 4700 
0 .4169 
0 4038 
0. 3909 
0. 3780 
0.3653 
0.3527 
0 3403 
0. 3280 
0.3159 
0 3040 
0.2922 
0 0  2807 
0 2694  
0.2583 
0 2475 
0 2369 
0. 2265 
0.2164 
0.2066 
0.1970 
0. 1877 
0 1786  
0. 1698 
0.1614 
0 1 5 3 1  

0.8246 
0.8170 
0.8092 
0.8011 
0. 7 9 2 9  
0 0 7 8 4 4  
0.7759 
0.7669 
0.7579 
0 7486  
0 7 3 9 2  
0.7295 
0.7197 
0 .7097 
0 e 6 9 9 6  
0.6892 
0.6788 
0.6681 
0.6573 
0 6 4 6 4  
0.6353 
0.6241 
0.6128 
0.60 14  
0.5899 
0 .5784 
0.5667 
0.5550 
0.5432 
0 .5313 
0.5195 
0.5076 
0.4957 
0.4838 
0.4719 
0.4600 
0.4481 
0.4763 
0.4245 
0 - 4  128 
0.4012 
0.3896 
0.3782 
0.3668 
0.3555 
0 3 4 4 4  
0 .3334 
0.3725 
0.3118 
0.3012 
0.2908 
0 e 2805 
0 2 7 0 4  
0.2605 
0.2508 
0.2413 
0.2319 
0.2228 
0.2139 
0.2052 
0.1966 
0. 1 8 8 4  
0.1803 

0 7794  
0.7721 
0.7647 
0.7571 
0. 7495 
0.7417 
0.7337 
0.7257 
0.7175 
0 7092 
0 7008 
0 6923 
0 e6836 
0 06749  
0.6661 
0.6571 
0.6481 
0 6390 
0 06298 
0 6205 
0.6112 
0 e 6018 
0 5923 
0.5828 
0 5732 
0 5635 
0 5538 
0 5441 
0 5344 
0 5246 
0.5148 
0.5051 
0.4953 
0 04854 
0.4757 
0 04659 
0.4561 
0 4464 
0.4366 
0.4270 
0.4173 
0.4077 
0.3982 
0 e 3887 
0 3793 
0 3700 
0.3607 
0.3515 
0. 3424 
0.3334 
0 3244 
0.3156 
0.3068 
0.2982 
0.2897 
0.2813 
0.2730 
0 2648 
0.2568 
0 2489 
0.2411 
0.2375 
0.2260 

0.7430 
0. 7 3 6 3  
0 7295  
0.7226 
0.7156 
0.7085 
0 .7014 
0 6942  
0 0 6868  
0 6795 
0.6720 
0 6645 
0 6 5 6 9  
0 6492  
0.6415 
0.6337 
0 .6259  
0 .6180 
0.6101 
0 .6021 
0.5940 
0 5860 
0.5778 
0 5697 
0.5615 
0.5533 
0.5451 
0 5368 
0 e 5285 
0.5203 
0.5120 
00 5037 
0 4954  
0 4870 
0 4788 
0 4705 
0 4622 
0 4539  
0 4457 
0.4374 
0 4292 
0.4211 
0.4129 
0.4048 
0.3968 
0. 3888 
0.3808 
0.3728 
0. 3650 
0.3572 
0.3494 
0.3417 
0 3341 
0.3265 
0. 3190 
0.3116 
0 3042 
0.2970 
0. 2898 
0. 2827 
0. 2756 
0. 2687 
0.2618 

0. 7 1 4 0  
0 7 0 7 9  
0.7016 
0 6 9 5 4  
0.6891 
0.6827 
0 6762  
0 6698  
0 6632  
C 6566  
0 6500  
0 6433  
0 6366  
0 e 6298 
0.6230 
0 .6161 
0.6092 
0 .6023 
0.5953 
0 .5884 
0 .5813 
0 .5743 
0 5672 
0.5601 
0 5530 
00 5459 
0. 5387 
0 .5316 
0 5244  
0.5172 
0.5100 
0 .5028 
0.4956 
0 4884  
0.4812 
0 4740  
0 4669  
0.4597 
0.4526 
0 . 4454  
0.4383 
0.4312 
0.4241 
0.4170 
0.4100 
0.4030 
0.3960 
0.3891 
0.3822 
0. 3753 
0 3685 
0.3617 
0.3550 
0 3482 
0.3416 
0. 3350 
0.3284 
0.3219 
0.3155 
0.3091 
0.3027 
0. 296'4 
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Figure3 Dependence of relative  peak  height, 
2f2(0, PI, relative peak width, rzCp), and 
the product of these quantities, on the 
distribution parameter, p. 

For a  distribution of relaxation times, the height is smaller 
than  the corresponding  value for a single relaxation. This 
is apparent  from  the tabulated  dependence of the  peak 
height on  the distribution  width, p, in Table 4. It  is also 
shown in Fig. 3, where we have plotted 2fz(O, p )  = 
f z (0 ,  p ) / f ~ ( O ,  0), which is the height of the JZ peak 
relative to  the height for  the case of a single relaxation 
time of the  same SJ .  It is easy to  from Eq. (17) 
that  for large p the  peak height  asymptotically  ap- 
proaches the value 

M O ,  p ) = J Z ( O ) / w - ~ 7 2 p .  ( 2 2 )  

Further, this  asymptotic  expression must always  be 
greater than  the  exact expression. It  is  noteworthy  that 
for p= 7 the exactly computed value (Table 4)  is 4% 
below that obtained from Eq. (22). The width of the JZ 
peak  may also be obtained  from  the numerical  values in 
Table 2.  The  ratio of the width of the J Z  peak  at half 
maximum, Azx‘(p), relative to  the width for a single 
relaxation, A,x’( 0 )  , is 

rz(P)rA~x’(p)/A~x’(O). (23) 

This  quantity is plotted vs p in  Fig. 3 and  the  computed 
values are also listed in Table 4. The  quantity Azx’(0) is 
given by Eq. (21 ) . The purpose  in  plotting and tabulating 

306 the  ratio rz rather  than  the width Azx’ itself is in recog- 

nition of the  fact (see Part 11), that  the  dynamic  func- 
tions are  often measured as a function of T-I rather  than 
of x‘ (where T is the absolute temperature).  When this 
is the case, it is convenient to  obtain  an experimental 
value for r2 by dividing the observed  width Az( T - l )  by 
the corresponding  width for  the case of a single relaxa- 
tion (see Eq. (8) in  Part 11). 

An asymptotic form  for  the peak  width Apx‘ which is 
valid for large p, may be derived from Eq. (17). The 
result (which is always less than  the exact  expression) is 

Azx’(P)-Zp-\/ln 2/2.303=0.723p. (24) 

For p=7, the exact  value is 4.5% greater than  that ob- 
tained from Eq. (24). 

The way in  which the  three relaxation parameters  may 
be obtained  from experimental data  for  the J z  function is 
summarized in  the first row of Table 5. First,  the width, 
relative to  that of a single time of relaxation, rz, is deter- 
mined from  the  data  and used to  obtain p from  the r z ( p )  
plot of Fig. 3. Then  the  known value of /3 is used to  read 
off the  value 2f2(0, p )  from this same  Figure.  Comparison 
of this  last  result  with the measured peak height, JZ (0) = 

fz( 0, p )  SI, gives the value of SJ .  Finally, as already 
mentioned, rm is obtained from  the condition that 
W T ~ =  1 at  the peak. Thus,  it is possible to obtain the 
three  parameters T ~ ,  p, and SJ from  the  peak location, 
width, and height, respectively. If one now wishes to 
check  how well the lognormal  distribution  actually fits 
the  entire peak, the normalized  experimental curve  may 
be plotted  together  with the calculated  curves for  the 
nearest p values from  Table 2. If the  lognormal distribu- 
tion actually applies, the experimental curve will agree 
with the  curve obtained  by  interpolation from  the  two 
closest theoretical curves. 

It is interesting to  note  that  the magnitude of the  re- 
laxation effect, S J ,  can always  be  obtained,  without  a 
knowledge of p, from  the  area  under  the Jz peak. It  is 

readily  shown, from Eqs. (10) and (12), that Jzdx= 

(x/2) S J ,  i.e., the  same result  as  in the case of a single re- 
laxation  time.  Since area  under  an experimental  peak is 
not conveniently obtained,  it is interesting to see  how 
accurately the  product of height  times  width may be 
regarded  as an indication of the  area.  For a single relaxa- 
tion this product is J z ( 0 ) .  Azx’=(0.5720)6J.  The re- 
sults of Fig. 3 make  it possible to investigate  how  this 
product varies  with p for  the case of a lognormal dis- 
tribution. The  top  curve of Fig. 3 shows this product, 
relative to that for a single relaxation of the  same S J ,  
plotted as a function of p. It is clear  that, unlike the  area, 
the  product of height and width  does  vary  with p, but this 
variation is slow, going from a relative value of unity for 
p=O to  an asymptotic  value of 1.120 for p+w. (The 
latter value is obtained from Eqs. (22) and (24) .) 

The  parameters of the relaxation  may  also  be  obtained 
from a knowledge of the  function Jl(x). Yagerg  has 
calculated the  function fl(x’, p )  of Eq. (16) for several 
values of p, but  unfortunately  the increments both in x’ 

- 
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a precision, as  the JZ peak, we have  not  recomputed the 
function fl(x', P ) .  Nevertheless, it is possible to  make 
use of Yager's  calculations to obtain  a  relevant param- 
eter. In this  connection, it is noteworthy that  the absolute 
magnitude of the slope af~(x',  P)/ax' at x'=O decreases 
steadily  with  increasing p. A knowledge of this slope 
could then be used to  obtain P from experimental data. 
However, at small  p-values the slope  varies  rapidly near 
the inflection point (x'=O), so that  an experimentally 
measured  slope will always  be  somewhat  lower in magni- 
tude  than  the theoretical slope. It therefore  appeared  to 
the  authors  to be more useful to define a  related quantity 
which  measures the  range  of  rapid decrease of the  func- 

Table4 Results of numerical computations for the 
dependence  of  relative  peak  height, 
2f2(0, PI, and relative peak width, rApI on 
the distribution parameter, ,8. 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1 .oo 
1.25 
1 .so 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 

1 .ooooo 
0.99752 
0.99024 
0.97866 
0.96346 
0.94540 
0.92520 
0.90350 
0.88088 
0.85774 
0.83448 
0.77722 
0.72316 
0.67332 
0.62798 
0.58698 
0.54998 
0.5 1664 
0.48654 
0.45934 
0.43466 
0.41224 
0.39182 
0.37314 
0.35604 
0.34032 
0.32584 
0.31248 
0.30010 
0.28860 
0.27792 
0.26796 
0.25866 
0.24996 
0.24180 

1  .00000 
1.00327 
1.01296 
1.02866 
1.0498 1 
1.07576 
1.10585 
1.13946 
1.17605 
1.21515 
1.25637 
1 .3 6670 
1.48480 
1.60849 
1.73640 
1.86763 
2.00159 
2.13783 
2.27602 
2.41590 
2.55727 
2.69996 
2.84382 
2.98873 
3.13459 
3.28130 
3.42879 
3.57698 
3.72580 
3.87522 
4.025 17 
4.17559 
4.32647 
4.47776 
4.62943 

that  at which fl=0.75. For the  case of a single relaxation 
time, the  function J 1  gives the value Arx'=0.4722. For 
the case of a Gaussian distribution, the dependence of 
A,x' on ,G is obtained from Yager's calculations and 
plotted  in  Fig. 4 relative to  the value for P=O.  This  ratio 
Alx'(p)/A1x'(O) is defined as r l ( P )  by  analogy to Eq. 
(23). The plot of r l ( P )  vs /3 given in  Fig. 4 may then be 
used to  obtain /3 from  the experimentally  measured  value 
of r l .  The asymptotic  value of A,x' at large p-values is 
readily found, with the help of a table of the  error in- 
tegral, to be 

Alx"0.414P . (25a) 

As for  the additional parameters  to be determined, it 
should  be realized that J 1 ( 0 = 0 )  = J E  and Jl(w= co) =IL,, 
so that Ju and SJ are obtained directly. The final param- 
eter rrn is obtained from  the symmetry of the function 
fl (x, p )  , since it is readily  shown that, regardless of the 
value of P, fl = 4 when x=O (or O T ~ =  1 ) . The second 
row  in Table 5 summarizes the methods for obtaining 
the parameters ,G, S J ,  and T~ from  the J1 function. 

It should be noted that  both J1 and J z  are often  ob- 
tained  in the  same experiment.  Provided that SJ is not 
too small, this quantity  can  then be  obtained from  the 
difference between JO and JR measured  as the limiting 
values of J1. The  quantity p is usually best obtained, 
utilizing  Fig. 3, from  the width of the Jz peak. Thus  the 
height of the JZ peak  represents  additional information 
which can be used to  determine S J ,  as described above. 
Agreement between the  two values of 6J, obtained on 
the  one  hand  from  the height of the J 2  peak, and  on  the 
other  from  the limiting  values of J1, serves as  a  check 
on  the validity of the  lognormal distribution. 

Figure 4 Dependence of the relative  range of de- 
crease, rl(,Bll of the fl-function on the dis- 
tribution parameter, ,8. 
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Finally, we turn  to  the problem of obtaining the re- 
laxation parameters  from  static measurements. Here J u  
is obtained from  the instantaneous  value of E ,  and J R  

from its final value (see  Eq. ( 1) ) ; therefore, as for  the 
J1 function, 6 J  is again  measured  directly. The problem 
then centers  about means for obtaining T~ and P from 
the normalized function, #(y’) .  For this purpose, the 
tabulation of the  function g ( y ’ ,  P) in  Table 3 is most 

By analogy to the  procedure  for  the fl function, 
it is convenient to define a quantity Ay‘, which measures 
the  range of rapid increase of the $ function, and which 
is defined as  the difference in the variable y’ between the 
point at which #=0.75 (or  g=0.25)  and  that  at which 
$ ~ 0 . 2 5  (or  g=0.75).  For  the case of a single relaxation 
time the value of Ay‘ is 0.6829, while for  the case of a 
Gaussian distribution, values of Ay’ may be obtained  as  a 
function of p from  the  computed results  in Table 3. 
These values are given in  Fig. 5. This plot  may  then  be 
used to  obtain ,6 from  the experimental value, Ay‘, for 
the  range of increase of the  static  function #(y’) .  For 
large P values, the  function g ( y ,  P) goes asymptotically 
into  the  same  error integral as the  function f l ( x ,  P). Ac- 
cordingly, Ay‘ asymptotically approaches 

Ay’-0.414/3. (25b) 

The problem of obtaining the  mean relaxation  time, 
im, is not as simple here  as  it was for  the  dynamic  func- 
tions, since $(y )  does not have the  symmetry  property 
about  y=O which the functions fl and f2 have about 
x=O. To determine  how to proceed, we refer first to  the 
case of a single time of relaxation, $ = 1 - e-t/T. The  re- 
laxation  time T is usually obtained from  the time for  the 
exponential to fall to a fixed fraction.  Thus,  for  the case 
of a single relaxation, T is equal to the time, tile, for  the 
quantity 1 -$ to fall to  l/e;  it is also related to the  time, 
tllz, for $ to  reach  the value 1/2, viz., ~ = = h / ~ / ( l n   2 )  = 

1.44t1l2. Now,  in passing from  the case of a single time 
of relaxation to one  in  which a lognormal distribution is 
involved, the same  method  may  be employed to  obtain 
rm. Thus, Fig.  6 shows a  plot of fl/Z/Tm as  a function of 

p, obtained from  the  material  in  Table 3. This plot can 
be  used to obtain T ~ ,  once /3 is obtained from  the ob- 
served  value of Ay‘ and Fig. 5. It is important  to  note 
that  the  ratio t l / Z / T m  is no  longer  equal  to In 2 when 
p # 0, and  that correspondingly is no longer equal to 
T ~ .  These changes  with  increasing ,l3 are  not negligible 
and must  be  considered if precise values of T~ are de- 
sired  (as, for example,  in  obtaining an  accurate value for 
the activation  energy  governing the  quantity T ~ ) .  The 
methods for obtaining the relaxation parameters  from 
the static function  are reviewed in the  third row of 
Table 5. 

Dependence of the distribution 
parameter on the temperature 

In  the previous  section, methods were given for obtaining 
the distribution parameter, P, of the  lognormal distribu- 
tion, from  the  dynamic response  functions Jl(x) and 
J z ( x )  and  from  the  static  function # ( y ) .  In Part 11, 
consideration will he given to methods of obtaining the 
relaxation parameters  from  dynamic  data in  which tan + 
is measured rather  than J z ,  and  in which measurements 
are  made as  a function of temperature  rather  than of 
frequency. Thus,  it  can be assumed that we know  how to 
obtain ,!3 from experimental data  and  that, by using a 
variety of both  static  and  dynamic techniques, it is possi- 
ble to  obtain ,8 over  a range of temperatures. In  the 
present  section we consider the  manner in which the 
parameter P varies with the temperature. Such considera- 
tions will bring out  more clearly the theoretical signifi- 
cance of P. 

Whenever the relaxation processes are controlled by 
atom movements, one  may expect that  each relaxation 
rate, T - ~ ,  will vary  with temperature according to an 
Arrhenius relation, i.e.,  T-l=e-Q/RT, where Q is the acti- 
vation energy for  the process. Thus, we may  write, for 
any relaxation  time T in the distribution, 

In T=ln T ~ + Q / R T .  (26) 

In view of this equation, it becomes  clear that a  distribu- 

Table 5 Methods for obtaining relaxation parameters from dynamic and static  functions. 

Function 

P 
From peak  width  relative 
to that  for a single relaxa- 
tion,  using  Fig. 3 (or 
Table 4)  and  Eq.  (21). 

From “range of decrease,” 
A~x’(p) ,  relative to  that 
for a single relaxation, 
using Fig.  4 and 

AlX’(0) =0.4772. 

From “range of increase,” 
Ay‘ (Fig. 5 )  

Parameter 

63 

From  peak height Jz(0) = 

6J-f2(0, PI ,  using f2(0, P) 
obtained from  Fig. 3 or 
Table 4. 

7 m  

From  peak position, using 
OTm= 1 

From  center of symmetry: 
J 1 = J o + 3 6 J  at 

OTm’l 
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Figure5 Dependence of the range of increase, 
Ay’, of the g-function on the distribution 
parameter, p. 

Figure6 Dependence of t l / * / T m  on the distribution 
parameter, ,8. (ill2 i s  the time for the func- 
tion $Afl to reach the value 112, and T~ is  
the most probable  relaxation time.) 

tion  in T is due either to  the existence of a  distribution  in 
the  temperature independent  parameter,l8 T ~ ,  or  in  the 
activation  energy, Q, or in  both. The quantities Q and 
In T~ may be regarded  as the  fundamental  parameters 
which determine  the relaxation time, T.  (The choice of 
In T~ rather  than T~ is based on  the  fact  that In T~ is 
linearly  related to the entropy of activation.) 

In  order  to  obtain  the relationship of the  parameter ,l3 
to  the distributions in the quantities In T O  and Q, we make 
use of the following theorem, which is easily verified: If 
two  variables u and v are linearly  related, i.e., u=cv+d 
(where c and d are  constants),  and if values of u are dis- 
tributed  about  a mean value urn according to a Gaussian 
(normal) distribution of  the  form exp [ - ( u  - u,) /&I 2, 

then  the values of v are also distributed  in  a  Gaussian 
manner, with  distribution parameter given by 

p u  =Pu/c (27) 

and  mean value vm = (urn- d )  /c. 
In applying  this theorem, we consider first the case  in 

which the distribution is only in  the quantity In rO, i.e., 
when the activation  energy of all contributing relaxation 
processes is a  constant. From  the  above  theorem  and 
Eq. (26) it is clear  that a Gaussian distribution in In TO 

results in a Gaussian distribution in In T ,  with the  same 
distribution parameter p. Next we consider the  other 
limiting case, where the distribution is only  in the activa- 
tion  energy, and TO is a constant for all  relaxation 
processes. Under these  circumstances,  a Gaussian dis- 
tribution  in  Q about a mean value Qm with  a  distribution 
parameter ,GQ is equivalent to a  Gaussian  distribution in 
In T with parameter 

P=PQ/RT (Q-distribution only) . (28) 

Since PB may be considered independent of temperature 
(insofar as the activation energies themselves are inde- 
pendent of temperature), we are led to  the conclusion 
that  Eq. (28) defines the  temperature dependence of p 
for this  limiting case. So far,  then, we have  found  that 
either a Gaussian distribution in In T~ (with Q =con- 
stant) or a  Gaussian  in Q (with  TO=constant) gives rise 
to a Gaussian in In T .  In  the  former case, the  parameter 
,8 is independent of temperature; in the  latter case p 
varies inversely as T .  These conclusions are rigorous,  in 
the sense that they  follow  directly from  Eq. (26) and 
the concept that  the distributions of Q and rQ are inde- 
pendent of temperature. 

To consider the  more general  case  in  which  distribu- 
tions exist for both TO and Q, an assumption is needed 
concerning the relation between TO and Q. One reason- 
able assumption that  can be made,  without further 
knowledge of the system being  studied, is that TO and Q 
do  not  vary independently, but  that  both  depend  on a 
single internal parameter p ,  e.g., local  composition or 
local order.  The dependence of In TO and Q on p can be 
described  by  a Taylor expansion about  the  mean value 
pm in which only  the first derivative term is retained 
(certainly this is approximately correct if the distribu- 
tion is not a broad  one).  Thus 

where C and D are constants. If we now  assume that  the 
parameter p varies according  to a  Gaussian  distribution 
about a  most probable value pm, then Q must  be dis- 
tributed  as a Gaussian  about  the  value Qm and similarly 
for In rO about In  TO^. The variable p may be  eliminated 309 
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from Eqs. (29) to obtain 

In  To-ln T O ~ = K ( Q - Q ~ ) ,  

where K = C / D .  Finally, Eq. (30) may be combined 
with (26) and ( 13) to  obtain 

(30) 

where T,,, is defined by 

In Tm=ln 7orn+Qm/RT. (32) 

The theorem  which  led to  Eq. (27) then establishes that 
the distribution of the  quantity z is Gaussian  about  the 
value z=O, and  that its  width /3 is related to  the width, 
PQ, of the  Q-distribution  according to 

Note  that,  from  Eq. (30), P o = K ~ Q  is the distribution 
parameter  for  the  quantity In TO.  Since the  parameters 
PO and  are regarded  as  being  independent of tem- 
perature,  it is concluded that if the assumptions  which 
led to  Eq. (33) are correct, the  parameter p deduced 
from measurements at different temperatures should 
plot  as a  straight line against T-1 with  slope equal  to 
P g / R  and  intercept  the axis 1/T=O at PO. Such a  plot 
enables us to  obtain separately the distribution para- 
meters for  the In TO and Q distributions. The two  limiting 
cases, of either  a  distribution in In TO or in Q only,  can 
now be regarded as special cases of the present more 
general  result. It should be kept in mind  that  the results 
obtained for these two  limiting cases were  rigorous while 
Eq. (33) is based on  the assumptions involved in Eqs. 
(29).  It  may be pointed out, however, that  not only 
are these  assumptions  reasonable, but  that  the result 
obtained, i.e., Eq. (33), is the simplest equation  for 
covering the  range between the  two limiting cases. The 
usefulness of Eq. (33) is that  it provides  a means of 
separating  out  the extent to which the distribution  in In T 

represents  a  distribution  in In TO and  one  in Q. 
A somewhat different  result is obtained if it is as- 

sumed,  in  place of Eq. (29),  that In TO and Q are  un- 
correlated,  but  that  both distributions are Gaussian. 
Under these  circumstances the  temperature dependence 
of /3 is given as19 

p= [PO’+(PQ/RT)211’2 . (34) 

It would  be difficult to distinguish Eqs. ( 3 3 )  and (34) 
experimentally unless measurements  were made over  a 
wide range of temperature.  In  the absence of such  data 
a  choice between Eqs. (33) and (34) must  be based on 
what is known about  the specific relaxation  phenomenon. 
For processes controlled by elementary atom movements 
in crystals, a correlation between In T~ and Q can be 
expected.  Since the applications to be  considered  in 
Part I1 fall  into this  category, Eq. (33) will be employed 

31 0 in our analysis. 

Summary 

The  content of the present paper may  be  summarized as 
follows: 
( 1 )  Equations  for  the  static  and  dynamic response func- 
tions are reviewed for  the case of a lognormal distribution 
of relaxation times. 
(2) Numerical computations for  the integrals involved 
in the expressions for  the static function  and  the JZ func- 
tion are presented. 
(3) Methods  are presented for obtaining the  three  re- 
laxation parameters S J ,  T,,,, and p from  the response 
functions. 
(4)  It is shown  how the variation of P with temperature 
can be used to  determine separately the  parameters  for 
the distribution in In T~ and  that in the activation  energy. 

Appendix 1. Application of the Gaussian distribu- 
tion to anelastic functions which cor- 
respond to a specified strain. 

In  the case of anelastic  relaxation one  may study the 
relaxation of stress under a given (static)  strain or, in the 
dynamic case, the behavior of a system under a specified 
periodic  strain. In  the  static case, the  appropriate  func- 
tion to consider is the stress  relaxation  function, + ( t ) ,  
defined by 

where ~ ( t )  is the dependence of stress on time, E the 
constant specified strain, MR the “relaxed  modulus” 
( = J R - l )  and 

S M = M U - M R ,  (A-2) 

where MU=JU-l is the “unrelaxed  modulus.” The  func- 
tion + ( t )  therefore ranges from +(O)  =1 to +( 00) =O. 
Similarly, the  dynamic properties are describable in terms 
of the complex  modulus 

M*=Ml( O )  + iMz( 0) (A-3 1 
and  therefore by the variation of M i  and MZ with fre- 
quency. The existence of a  distribution in relaxation 
times means here  that M I ,  M z ,  and + are expressible in 
the  forms3 

M ~ ( w )  =SM/:@(ln T )  07 d l n  T 
1 + 0 2 T 2  

+ ( t )  = @(In .)&IT d In T , 

where the distribution function  @(ln T )  obeys the con- 
dition 

l I @ ( l n  T)dln T = l  . (A-7) 

m 

(A-6) 
-m 
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In general,  the @ distribution is not the  same  as  the k 
distribution  which is used to express the functions J 1 ,  J z ,  
and $. If one  assumes  that  the @ distribution  is  log- 
normal  (and hence that the zk distribution  is  not)  then, 
using  the  variables x, y ,  and ,B defined  in Eqs. (14) and 
(15), the  following  relationships  are  obtained: 

In these  equations  the  functions fi, fi, and g are precisely 
those  defined  in Eqs. ( 16) to  (18)  and  tabulated  in 
Tables 2 and 3 and  in  Yager’s a r t i ~ l e . ~  

It is  therefore  concluded  that  the  integrals fl(x, p) ,  
f 2 ( x ,  p )  and g ( y ,  P )  evaluated  numerically  by  Yager and 
by the present  authors  are  equally  useful in the analysis 
of the  “strain-given”  functions M I ,  M t ,  and +, when the 
@ distribution  is  Gaussian, as it is for  the “stress-given” 
functions J 1 ,  J 2 ,  and +, when the k distribution is Gaus- 
sian. The  methods  discussed  in  Section B (Table 5 )  and 
in  Part I1 (Table 1) may  then  be  used  in  the  evaluation 
of the  parameters P, T ~ ,  and SM which  appear  in  Eqs. 
(A-8)  to (A-10). 

References and footnotes 

1. We  will use the  usual terminology that “static” properties 
are those measured  under  conditions  in which either u or 
E is held constant for some period of time, while “dy- 
namic” properties are those for which u and E are peri- 
odic. 

2. In anelasticity, the meaning of the J’s depends on the 
nature of the stress which is applied. For  the purpose of 
the present  paper, the particular type of stress is best left 
unspecified. However,  it is important to note that compli- 
cations can arise  in the interpretation of the response 
functions  in crystals, and even in isotropic  materials when 
the  mode of deformation is such that both  shear and bulk 
relaxation  occur simultaneously. See Ref. 3. 

3. A. J. Staverman and F. Schwartzl, Die  Physik  der  Hoch- 
polymeren, Vol. IV, Chap. I. (Ed. H. A. Stuart). J .  
Springer, Berlin, 1956. 

4. In  the anelastic case, one sometimes studies the  relaxation 
of stress at constant strain  or, in the  dynamic case, the 
behavior of a system under a given sinusoidal  strain. It 
will later be shown in  the Appendix that the  mathematical 
functions  computed in this  paper for  the calculation of the 
functions \ I . ( ? ) ,  JI (w) ,  and J z ( w ) ,  are also applicable to 
the  situation  in which the strain is prescribed rather than 
the stress. 

5. In anelasticity,  it is customary to distinguish between the 
“relaxation time at constant stress” which appears  above, 
and  the  “relaxation time at constant  strain” which is 
obtained from a stress relaxation  experiment at constant 
strain. In the  literature on high polymers  the former is 
generally called  the retardation  time and  the  latter the 
relaxation time. In order  to be consistent with the termi- 
nology of dielectric relaxation, however, we have chosen 
the simplified terminology quoted above. 

6. In the  study of dielectric relaxation @ is called the loss 
angle, while in anelasticity tan @ is the internal  friction. 

7 .  E. Wiechert, Annalen d. Physik, 50, 335, 546  (1893). 
8. K. W. Wagner, Annalen d .  Physik, 40, 817 (1913). 
9. W. A. Yager, Physics, 7,434 (1936). 

10. C. Zener, Elasticity  and  Anelasticity of Metals, U. 
Chicago  Press, Chicago, 1948. 

11. B. Gross, Mathematical  Structure of  the  Theories of 
Viscoelasticity, Hermann  and Co., Paris, 1953, Ch. XIII. 

12. A. V. Tobolsky, Properties  and  Strucfure of Polymers, 
J. Wiley, New York, 1960. 

13.  Appendix I shows how the mathematical  functions  com- 
puted  here  may be applied to the  situation  in which the 
strain rather  than the stress is the prescribed variable. 

14. In addition,  recalculation  has shown that a number of 
Yager’s figures are slightly in error. 

15. By making the change  in  variable z=pu in  Eq. (17), it 
readily follows that  the asymptotic form of the  function 
for large p is f z ( x ,  p ) - ( v ~ / 2 p )  exp(--xz/pz). 

16. In the case of dielectric relaxation it is not  the  electric 
displacement (or polarization) which is  measured directly 
but rather  the  current density, which is a  time derivative 
of the  polarization. For such  measurements, the deriva- 
tive ag(y’, p)ay’  is  the more useful  function. In  fact, using 
the work of Wagner,s Jahnke and_Emdel7 tabulate  a func- 
tion which is, in our notation, v/7-rpe-vag(y, p )  /ay. These 
tables cover only cases of p>1 and  for both p and Y’ 
spaced at inconveniently large intervals. The present 
results for g(y ’ ,  p )  in Table 4 may be readily  differen- 
tiated  numerically to yield more complete  tables  of  the 
type given by Jahnke  and Emde. 

17. E. Jahnke  and F. Emde, Tables of Functions, Fourth Ed., 
Dover, N. Y., 1945, p. 39. 

18. The reciprocal of TO is commonly  called the frequency 
factor or attempt  frequency. The  fact that 70 and Q may 
be taken  as  independent of temperature  to a high degree 
of approximation is justified by a  combination of the 
following: (a )  the empirical fact  that Eq. (26) is very 
accurately obeyed for  atom movements  in  crystals; (b) 
the theoretical  interpretation of the quantities TO and Q 
in  terms of the thermodynamical  theory of activated pro- 
cesses. See, for example, D. Lazarus’ article in Solid-State 
Physics, vol. 10, Academic Press, New York, 1960. 

19. The  authors  are grateful to  J. R. MacDonald and C. A. 
Barlow, Jr., of Texas Instruments Inc., for having 
pointed out this result. MacDonald  has  also  independently 
derived Eq. (28), in a  paper to be published in J .  Chem. 
Ph ys.  

Received June 6,1961 

31 1 

IBM JOURNAL OCTOBER 1961 


