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Dislocations and Plastic Flow in Germanium

Abstract: Single-crystal specimens of germanium have been tested in tension over a range of temperature

and strain rate. Dislocation density has been determined as a function of plastic strain, and some direct

measurements of dislocation velocity have been made. From these results the plastic behavior of germanium

can be explained in terms of dislocation velocity and dislocation multiplication, and is analogous to the

interpretation given by Johnson and Gilman for deformation of lithium fluoride. Effects of crystal purity and

orientation have been examined; strain-aging effects were absent. Conjectures are made as to the causes of

work hardening.

Introduction

The study of plastic deformation and dislocation behavior
in a semiconductor such as germanium is of interest for
several reasons. Much of the theory of dislocations has
been formulated from studies of deformation in metals
but, since the crystal structure and atomic bondings of
semiconductors are different from those of metals, the
deformation characteristics are also different, as would
be expected. An analysis of the plastic behavior of ger-
manium will therefore permit fundamental dislocation
theory to be extended.

Deformation studies may also be of value from the
standpoint of solid-state device fabrication. Dislocations
not only have a direct effect on the electrical properties
of semiconductor devices but, by their interaction with
impurities and other crystalline defects, may produce a
secondary effect on the electrical properties. The limits
of stress and temperature at which dislocations move and
multiply may serve as indications of the limits of stress
and temperature which are allowable during fabrication.

Previous work'-> has shown that germanium is plastic
at temperatures above about 400°C; it exhibits during
creep testing an initial region of slow plastic flow which
is usually interpreted as evidence for a delay time; and it
gives an exaggerated yield point in a tensile test. Attempts
have been mades-3 to associate both of these effects with
Cottrell-type impurity locking of dislocations. However,
the strong similarity between the stress-strain curves ob-
tained during tensile tests on germanium and those for
lithium fluoride suggests that the same explanation so
successfully given by Johnston and Gilman?® for lithium
fluoride may be valid for germanium. Their theory is
based on two experimental facts. First, in any given crys-
tal, which has undergone no previous deformation, at a
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constant temperature the dislocations move with a veloc-
ity which is dependent only upon the stress experienced
by the dislocation. This follows if it is assumed that a
moving dislocation is subjected to a frictional force which
increases with increasing velocity. Secondly, it is assumed
that as a dislocation moves it creates new dislocations in
its wake.

Theory

The increment in plastic strain de contributed by a
dislocation of Burgers vector b sweeping out an element
of area da on the slip plane of a crystal is given by the
product bda divided by the total projected area of the slip
plane times the length of the crystal. For a crystal in
which there are N dislocations moving, the total incre-
ment in strain

1 N
Ag= 7; bda; , (N

where the projected area of the slip plane times the crystal
length is equal to V, the crystal volume, and b; and da;
refer to the i** dislocation. If the i** dislocation has a
length L; and moves through a distance dx; then

1 N
Ag= ——E biL,»de-. (2)
v

The strain rate & is obtained by differentiation with re-
spect to time
N

1
f = — biLﬂ)i , 3
i= g 3)

where »; is now the instantaneous velocity of the i** dis-
location. If the subscript i is now transferred from the it
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dislocation to the i** type of dislocation, i.e., all disloca-
tions of Burgers vector b;, and velocity v;, with a length
per unit volume of A; the strain rate then becomes

N
é=2bi/\i’vi . (4)
1

In most materials the dislocations responsible for plastic
deformation can be resolved into two types, edge and
screw, with identical Burgers vectors. Assuming that we
can assign one velocity v, to all edge dislocations and one
velocity v, to all screw dislocations, and that the length
per unit volume of these dislocations is A, and A, respec-
tively, then

g=b(AeVe+As0s) . (5)

A dislocation loop lying in the slip plane will vary in
character from edge to screw around its circumference.
As it expands under the action of the applied stress it will
be circular in shape only if the velocities of the edge and
screw segments are equal. If they are not equal, the loop
will assume an elliptical shape. If one type has a velocity
very much higher than the other, then the segments of
this type will reach the edge of the crystal before the
segments of the other type have separated by very much.
This leaves two straight dislocations of the slower type
lying across the slip plane. The larger term thus eliminates
itself from Eq. (5) and the strain rate is controlled by the
smaller term and is given by:

é=nbv, (6)

where n is now defined as the active dislocation density
in terms of the number of active dislocation lines crossing
unit area, and v is the velocity of dislocations of the
slowest type. This expression also holds if the velocities
of the two types of dislocation are equal.

Figure 1a shows a typical tensile curve for germanium.
Johnston and Gilman explained similar tensile curves

Figure la Tensile curves for Ge crystal at 650°C.
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found for lithium fluoride in the following way. As the
velocity of screw dislocations was found to be some 50
times slower than that of edge dislocations, they were
able to describe the strain rate in terms of Eq. (6).In a
tensile test using a hard machine, the crosshead is driven
at a constant velocity S.. After a time ¢ the crosshead has
moved a distance

Sct=Ay=Ayel+ALp; (7)

where AL, is the plastic elongation of the specimen, and
Ay, is the elastic elongation of specimen plus machine.
Ay, is equal to Ko, where K is the elastic modulus of
specimen plus machine, and ¢ is the stress now imposed
on the specimen. The plastic strain of the specimen is

e=AL,/L,—=(S.t—Ko)/L,, (3)

where L, is the initial gauge length of the specimen. Dif-
ferentiating with respect to time,

¢=(S.—K&) /Lo . (9)

At the maximum in the stress-strain curve, 6=0 and é,,
=S./Lo. From Eq. (6), é=nbv and v is some function
of o, say v=f(o), then:

nbf(e) =(S.—K¢&) /Lo . (10)

The shape of the stress-strain curve may now be explained.
As the specimen is loaded, it deforms elastically until
some stress oy is reached at which a significant, but ini-
tially assumed to be small, number of dislocations begin
to move and to contribute to plastic strain. Continuing
deformation causes both #n, through dislocation multipli-
cation, and ¢ to increase, and hence the contribution of
plastic strain rate to the over-all strain rate increases. At
some point, n and ¢ reach values such that the plastic
strain rate is exactly equal to the rate of crosshead mo-
tion. The plastic strain rate now stays essentially constant,
(ignoring the small elastic relaxation as ¢ decreases), but
dislocations are still moving; » continues to increase, and
the dislocation velocity, and hence o decrease. This ex-
plains the yield drop; the subsequent increase in ¢ is due
to strain-hardening and will not be discussed here.

The shape of the creep curves, shown in Fig. 1b, is
similarly explained. This type of curve is obtained under
constant stress and thus the dislocation velocity is con-
stant. The strain rate, from Eq. (6), now depends only
upon n. The initial number of active dislocations is small
and increases as deformation progresses. The strain rate
is therefore initially low but increases with increasing
deformation until strain-hardening causes it to decrease.

A theoretical expression for the initial portion of the
curve is obtained by assuming? that as a dislocation moves
it leaves behind 8 new dislocations per centimeter of wake
of each of the two ends of the expanding loop. At any
instant the rate of production of new dislocations is:

dn=28ndx=238nvdt . (11)
Integrating,
n=ng exp(28vt), (12)
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Figure 1b  Creep curves for Ge crystals at 650°C,

where 7, is the initial density of active dislocations. Sub-
stituting in Eq. (6),

¢=bnv=>bnv, exp(28vt). (13)

Integrating, and applying the boundary condition that at
t=0, £=0,

e=[bng exp(28vt) —bny]/28 (14)
or
e=b(n—no) /28 . (15)

Equation (14) predicts that the initial portion of a con-
stant-stress creep curve should show an exponential
dependence of strain with respect to time. Penning and
de Wind® state that their creep curves on germanium can
be fitted to such an expression, but prefer to fit them to
another expression based on a theory proposed by van
Bueren.'® However, their actual curves are not published,
and therefore cannot be analyzed in terms of the above
theory. Equation (15) predicts a linear dependence of
dislocation density on plastic strain provided that all the
dislocations stay in the material, and Johnston and Gil-
man? have experimentally verified this relation for lithium
fluoride. The agreement between their experimental and
theoretical constants is very good.

If the observed plastic behavior of germanium is to be
explained by the above, three basic assumptions must be
valid.

(i) As dislocations move they create new dislocations
by some mechanism. The number of dislocations increases
during deformation, and there is a relation between dis-
location density and plastic strain.

(ii) For similar crystals, at the same temperature,
dislocations move with a velocity uniquely related to the

applied stress.

(iii) The number of dislocations which are initially
mobile is small. It should be noted here that the grown-in
dislocations appear to play no part in the plastic deforma-
tion process in both lithium fluoride? and germanium.5
Apparently they are rendered immobile by impurities.

The work described in this paper was an attempt to
verify that the above assumptions are applicable to the
plastic deformation of germanium.

Experimental methods

Single crystals of germanium were grown either in a zone
leveller or in a Czochralski puller from zone-refined
material. In the zone leveller, the freshly grown crystal
passed immediately into an annealing chamber which
allowed very slow cooling of the crystal from a little
below the solidification temperature. The levelled crystals
contained as the major electrically active impurity ap-
proximately 10'® atoms/cc of a deep-level acceptor, pre-
sumably copper, and a dislocation density of 10* lines/sq
cc. It is believed that because of the higher dislocation
density and because of the annealing treatment, the
levelled crystals contain fewer vacancies than the pulled
crystals. These latter had dislocation densities varying
from zero to 10°® lines/sq cc and contained about 102
atoms/cc of a donor impurity, probably arsenic. Crystals
were grown with both (321) and (110) growth axes. One
crystal containing 5x 10'® atoms/cc of gallium was
grown with a (321) axis.

Tensile specimens with rectangular cross-section were
cut from these crystals, parallel to the growth axis, with
one pair of faces parallel to a {111} plane, by an ultra-
sonic impact grinding machine. The gauge length was one
inch, in some cases 1.25 inches, and the cross-section
2 x 3 mm. The shoulders of the specimens were rounded,
and were individually lapped into the grips of the testing
machine. Specimens were etched in CP4 prior to testing,
and in some cases the {111} faces were lapped using a
coarse grit after the etch. Specimens were tested over a
temperature range from 575°C to 850°C in a forming gas
atmosphere in a specially designed high-temperature cell
mounted on an Instron tensile testing machine. A simple
lever-loading creep tester was also used. On both ma-
chines the strain could be read to 10-*. Temperature
control was =2°C.

Dislocation densities were determined by counting etch
pits on {111} faces after etching in CP4 and dislocation
velocities were calculated from tensile data by using
formula (6). This calculation assumes that the strain rate
is controlled by only one dislocation velocity. At the
maximum in the stress-strain curve ém»=3S./Lo. The dis-
location density at this point is taken to be the value cor-
responding to the plastic strain as given by the graph
(Fig. 2) of dislocation density versus plastic strain. The
value of plastic strain at the maximum is obtained directly
from the stress-strain curve. The plot of ¢ versus n was
made by straining a specimen in tension by a known
amount in the creep tester under a 1 kg load at 650°C
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Figure 2 Dislocation density as function of plastic
strain in germanium.

and then measuring the dislocation density.

Direct estimates of dislocation velocity were made in
the following manner. An etched specimen was scratched
with a razor blade to provide a source of dislocations. The
crystal was placed under load for a known length of
time, usually five or ten seconds, in the creep tester. An
etch in CP4 showed that the dislocations had moved out
from the scratch along slip planes. The average distance
moved by the leading dislocations was measured using a
microscope fitted with a micrometer stage. From this dis-
tance and the time of application of the load, the disloca-
tion velocity was calculated. These estimates can be
regarded as accurate only to within a factor of two and
will tend to give values which are lower than the peak
velocities attained.

Creep testing was also carried out, but the results
showed such lack of reproducibility that only one or two
generalizations could be drawn from them. The lack
of reproducibility and the large amount of scatter in the
tensile data, are both believed to result from the difficulty
of exactly determining the onset of plastic deformation
due to the large amount of elastic deformation in the
testing machines. This problem can be overcome only by
measuring strain directly from the specimen itself, a pro-
cedure which is rather difficult when the specimen must
be maintained at a high temperature.

Results and discussion
Dislocation multiplication

Crystals with a (110) tensile axis were found to deform
simultaneously on two slip systems, and the majority of
tests were performed on crystals with a (321) orientation,
in which only one slip system is operative. The first series
of experiments was carried out to establish the relation
between strain and dislocation density. Data were ob-
tained on two levelled crystals and on two pulled crystals,
all with a (321) orientation. The results coincided with
the curve given by Patel and Alexander? who measured
dislocation density as a function of compressive strain at
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Figure 3 Dislocation velocity as function of stress
for levelled germanium crystals.

600°C under an unspecified load on crystals with an
orientation near to (321). The combined results are
plotted in Fig. 2. The agreement between the two sets of
data indicate that for a given strain, the dislocation den-
sity in similarly oriented crystals is not much affected by
temperature or method of loading. Figure 2 gives an
approximate relation: n=>5 X 109?/2 which disagrees with
the theoretical prediction of Eq. (15). Dislocation density
increases more rapidly with strain in germanium than in
lithium fluoride and hence the dislocation multiplication
mechanism must be different in the two materials. Fur-
ther evidence for this is provided by the initial portion of
the creep curves, which could not be fitted to an exponen-
tial time dependence.

A model to account for dislocation multiplication in
germanium must not only give the correct relation of
n to ¢, but must also explain the observed distribution of
dislocations. In deformed lithium fluoride the dislocations
are congregated in slip bands, and an over-all increase in
dislocation density is accomplished not only by the pro-
duction of new bands, but also by the widening of bands
already present. The widening of the slip bands follows
directly from the model of dislocation multiplication.!!
Slip bands are not generally observed in germanium. The
dislocations lie in individual slip lines, and though the
distance between adjacent slip lines is not constant, the
dislocation density over any area which includes several
slip lines does tend to be quite constant.* Thus the distri-
bution of dislocations is much more uniform throughout
a deformed germanium crystal than throughout a de-
formed lithium fluoride crystal. A model of dislocation
multiplication for germanium which will explain the
above facts has not yet been developed, but it must rely
on a more complicated distribution of dislocation sources,
or of source activation stresses, than envisaged by John-
ston and Gilman for lithium fluoride. It is not known if
cross-slip is possible in germanium but it was not ob-
served in this investigation. This might account for the
difference between germanium and lithium fluoride.

*The tensile specimen on back cover was kindly furnished by G. E. Brock,




Dislocation velocities

Zone-levelled crystals. A series of tensile tests was run on
levelled crystals over a range of strain rates and tempera-
tures. With the exception of a group of (110) crystals
tested at 650°C, all of the crystals had a (321} orientation.
The results are shown in terms of calculated dislocation
velocity v as a function of resolved shear stress = in Fig. 3.
Though there is some scatter, the points define fairly well
a series of curves for the different temperatures, with
higher velocities for the higher temperatures. Using the
slowest crosshead speed available on the tensile machine,
it was not found possible to test at a temperature lower

than 575°C.

Pulled crystals. The above series of tests was repeated on
(321) pulled crystals and the results shown in Fig. 4.
These crystals exhibited somewhat less plasticity than the
levelled crystals and could not be tested below 600°C. For
a given stress and temperature, dislocation velocity was
generally lower in the pulled than in the levelled crystals.
Direct measurements of dislocation velocities for two
stresses at 650°C are in excellent agreement with values
calculated from the stress-strain curves. This not only
confirms the method of calculation but also indicates that
at the maximum in the stress-strain curve the number of
mobile dislocations in the crystal is equal, to within a
factor of two, to the total number of dislocations present.

Figures 3 and 4 show that, within the limits of experi-
mental accuracy, dislocation velocity (calculated from
tensile data) for constant temperature, purity and orienta-
tion, is a single-valued function of the applied stress. If

Dislocation velocity as function of stress
for pulled germanium crystals.
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the (generally small) curvature of the plots is neglected,
the velocity may be represented as an exponential function
of the stress, the value of the exponent lying between 1.3
and 2, with the larger values occurring at higher tempera-
tures. This is in marked contrast to exponent values of 15
to 25 for LiF (Ref. 9) and ~40 for silicon-iron (Ref. 20).
An interesting difference appears between the levelled and
the pulled crystals: the velocities are generally lower in the
latter. The pulled crystals are believed to contain many
more vacancies than the levelled crystals, and these extra
vacancies can account for the difference in behavior.
Vacancies may interact with dislocations in three ways.
One is an elastic interaction as the dislocation moves
through the nonuniform strain field introduced into the
lattice by the presence of vacancies. Another may be
called a chemical interaction and is caused by the crea-
tion of tracks of vacancies in the wake of a moving dis-
location. The energy required to produce such a vacancy
trail will increase as the number of vacancies originally
present in the crystal increases. The third is also an elastic
interaction with the strain field of collapsed sessile dis-
location loops formed from the condensation of these
excess vacancies. All of these interactions will cause an
increase in the effective frictional force on a moving
dislocation.

Temperature dependence. Values of velocity versus tem-
perature were taken from the curves in Figs. 3 and 4 at
three stress levels, and are plotted as in v against T-! in
Fig. 5. The plots for the levelled crystals (solid lines) yield
reasonably straight lines which suggest that over the range
of temperature and stress studied, dislocation velocity in

Figure 5 Temperature dependence of dislocation
velocity.
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Figure 6 Diffusional motion of crack vs tempera-
ture for levelled and pulled crystals.

these crystals obeys an Arrhenius relation. Not much
weight can be attached to this, as the temperature and
stress range is relatively narrow, but the activation energy
calculated from the plot, 1.8 ev, is very close to what is
believed to be the activation energy for formation of
Schottky  defects in germanium.'2-1¢ This is not unex-
pected, as moving dislocations may leave in their wakes
trails of vacancies. Plots for the pulled crystals (dashed
lines) show considerable curvature, and the temperature
dependence of velocity cannot be represented by an
Arrhenius relation. No reasonable explanation can be
offered for this at present.

An explanation for the temperature dependence of
dislocation velocity in materials with the diamond cubic
structure has been given by Haasen.1® He suggests that
there is a crack of atomic dimensions in the core of a
dislocation in the diamond structure. In order to move
the dislocation, the crack must diffuse with it, assisted by
the applied stress. The dislocation velocity is then equal
to the diffusion velocity of the crack

oo D .. Dok’ U e
I R S = (16)

where D is the diffusion constant of the crack, F is the
force on the dislocation, and U is the activation energy
for motion of the crack. The other symbols have their
usual meaning. Values of In (vT/7) versus T-1 are plotted
for both levelled and pulled (321) crystals in Fig. 6. This
plot reduces the curvature in the data for the pulled
crystals, and brings values for both types of crystals at
different stresses closer together, though the scatter is
still rather large. This indicates that a diffusion equation
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of the type given by Eq. (16) more closely describes dis-
location velocity than does a simple Arrhenius relation.
The activation energy for the motion of the crack, calcu-
lated from Fig. 6, is approximately 1.9 ev, which is some-
what larger than that for the motion of a single vacancy
in germanium (1 ev'®). This is expected, as the crack will
be smaller in dimensions than a single vacancy. The diffu-
sional motion of a crack cannot completely account for
the dislocation velocity, as Bq. (16) predicts a linear de-
pendence of velocity upon stress, which is not found to
be the case.

Lapped crystals. The experimental results on crystals
with lapped surfaces lend further support to the theoret-
ical explanation of the shape of the stress-strain rate
curve. From Eq. (1), for two crystals subjected to the
same strain rate, if the dislocation density in one is higher,
then the dislocation velocity, and hence the stress, will be
lower. Also the plastic strain at which the maximum
occurs will be higher. When the crystals are lapped, the
number of surface dislocation sources is increased and
more dislocations are active during deformation. When
compared with etched crystals tested at the same tem-
perature and strain-rate, the lapped crystals gave tensile
curves with maxima at lower stresses; the plastic strains
associated with these maxima were larger, and the calcu-
lated values of dislocation velocity versus stress fell on the
same curves as for the etched crystals.

Orientation dependence. The calculated values of disloca-
tion velocity for the (110) crystals tested at 650°C are
higher than corresponding values for (321) crystals. The
calculations depend on a value of dislocation density
which is obtained from Fig. 2. The data in Fig. 2 are
plotted for (321) crystals. In (110) crystals deformation
takes place on two intersecting slip systems simultane-
ously, and it may be that the rate of dislocation multi-
plication will be higher in these crystals. The value of n
obtained from Fig. 2 will then be too low for the (110)
crystals, resulting in a calculated value for the velocity
that is too high.

Heavily doped crystals. Shown also in Fig. 4 are the
results of a tensile test and a direct velocity measurement
at 650°C on the two specimens cut from the heavily
gallium-doped crystal. The direct velocity measurement
gave for the same stress a higher velocity than in the
undoped crystal. In the tensile test the value of stress at
the maximum was much higher than that for an undoped
crystal deformed at the same strain rate, and the calcu-
lated velocity was much lower.

To explain these results it is first necessary to consider
a suggestion that, since vacancies in germanium are accep-
tors, a heavy concentration of an acceptor impurity such
as gallium will suppress the formation of vacancies.'” Not
only will there be few vacancies in the crystal, but the
number of condensed vacancy clusters typical of all these
crystals, particularly the dislocation-free crystals,* will

*The gallium-doped crystal was, in fact, dislocation-free.




be considerably reduced. The high measured value for
dislocation velocity follows directly from the low vacancy
concentration. An explanation for the very low calculated
value for the dislocation velocity at a very high stress can
be based on a suggestion by Wilsdorf*8 as to the mechan-
ism of dislocation multiplication. Condensed vacancy
clusters form prismatic loops of dislocation. Segments of
these loops lie in active slip planes, and if the local stress
is raised to a sufficiently high value by the passage of a
nearby dislocation, then these segments can act as Frank-
Read sources. With few of these loops present, the rate of
dislocation multiplication will be much lower than nor-
mal, and again a value for dislocation density taken from
Fig. 2 will be in error. In this instance n will be too high,
and will give a calculated value of v which is too low.

Strain aging

Some strain aging experiments were performed. A pulled
crystal was tested at 650°C in the tensile machine. After
the initial yield drop had occurred, the crystal was un-
loaded and immediately reloaded. Deformation continued
at essentially the same stress at which the test had been
interrupted, though a very small yield drop was found.
The dislocation configuration of the crystal will, under the
influence of the internal stress field, relax slightly upon
unloading, and upon reloading must be “unrelaxed”
before deformation can continue. This explains the small
yield drop. After further plastic deformation of a few
per cent, the crystal was again unloaded, annealed for
2Y2 hr at 800°C and then retested at 650°C. Deforma-
tion continued at a value of stress about 15 per cent lower
than that at which the previous test had been stopped,
and the small yield drop was more pronounced (it can
clearly be seen in Fig. 1a, which shows the curves for
this experiment). The annealing treatment failed to re-
produce the initial tensile curve, showing that strain aging
had not occurred. The lower value of the yield stress is
presumably due to some dislocation rearrangement during
annealing. This rearrangement has also introduced a
larger relaxation which must be overcome before dislo-
cations may start to move again, accounting for the
enhancement of the small yield drop. The test was re-
peated on a similar specimen, and on the heavily doped
gallium specimen (annealed for 20 hrs at 850°C because
of the much slower diffusion of gallium in germanium)
with identical results.

The absence of strain aging may be explained by con-
sidering the relative numbers of active dislocations and
impurity atoms. The fact that the initial dislocation den-
sity has little effect on subsequent plastic deformation
suggests that grown-in dislocations are immobile, prob-
ably due to Cottrell-type locking by impurity atoms.
There are up to 10¢ dislocation lines/sq cc in these crys-
tals, and the impurity content of 1013 atoms/cc present
is adequate to supply more than one atom for every atom
length of dislocation line. Strain-aging effects are not
observed because the dislocation density rises to between
10% and 107 lines/sq cc after yielding, and 1014 to 1015

impurity atoms/cc are required to provide one atom per
atom length of dislocation. The crystal containing 5x 10'®
atoms/cc of gallium does contain enough impurity to
show a strain-aging effect, provided that gallium atoms
are able to lock the dislocations. This is unlikely, however,
since the strain introduced into the germanium lattice by
the presence of this amount of gallium is so small as to
be undetected by x-ray parameter measurements,™® and
it is therefore not surprising that strain-aging effects are
also absent in these crystals.

Strain hardening

Although this investigation has not been concerned with
strain hardening, it is perhaps worthwhile to mention
some conclusions which can be drawn about this very
important aspect of plastic deformation. The case of
creep is the simplest to consider, and again use will be
made of formula (6), and of the fact that for all creep
tests made, the onset of strain hardening occurred at
lower strains for lower stresses and lower temperatures.
In the strain-hardening range of creep deformation, the
strain-rate is decreasing. From Eq. (6) this can be due
either to a decrease in the number of active dislocations
or to a decrease in dislocation velocity. If, after a certain
amount of plastic deformation, dislocations are blocked
by obstacles of some sort, then the number of mobile
dislocations is reduced. The back-stress from the blocked
dislocations will also reduce the effective stress on other
moving dislocations and their velocity will decrease.
Blocking will occur more easily at lower stress levels and
temperatures, explaining why the strain-hardening region
begins after a lesser amount of total strain in crystals
tested at lower stresses or at lower temperatures. The
drawback to this model is that blocked dislocations have
not been seen in germanium. Up to the limit at which
individual dislocations can be resolved, the spacing of
dislocations along slip lines is quite uniform. A technique
for looking directly at dislocations which is more refined
than the etch-pit method may eventually reveal blocked
dislocations in germanium, but until they are seen, it is
wise to consider other models for strain hardening. A
dislocation will have greater difficulty in moving through
a crystal as the amount of plastic deformation increases,
because of trails of imperfections left by dislocations
which have previously passed through the lattice. Under
a constant applied stress, the dislocation velocity would
decrease as the amount of deformation increases. This
effect will cause some strain-hardening, but is thought to
be large enough to account for only a small part of the
observed hardening. Another possibility is that dislocation
multiplication slows down or ceases because of exhaus-
tion of multiplication sources. If it is assumed that these
sources exist with a spectrum of operating stresses, then
at lower stress levels fewer sources will be brought into
operation and exhaustion will occur after lesser amounts
of strain. Thermal assistance of source activation explains
the temperature dependence. No proposal as to why
these sources should become exhausted is made, except
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that perhaps each source can operate only once. At
present there is not sufficient evidence to favor any one
of the proposed mechanisms for strain-hardening. The
above ideas have been described in terms of creep; they
apply equally well to tensile deformation, though in this
case, the strain-rate is the constant in Eq. (6).

Effect of number of initially mobile dislocations on
deformation behavior

In all materials so far examined, dislocation multipli-
cation occurred during plastic deformation. A moving
dislocation in any crystal must experience a frictional
force, which is the sum of the Peierls-Nabarro force and
the forces arising from the interaction of the dislocation
with other imperfections, and which increases with in-
creasing velocity of the dislocation. Thus dislocations in
all materials will move with a velocity characteristic of
the applied stress. This has also been demonstrated in
silicon-iron.2° The important criterion for the observation
of a Johnston and Gilman type stress-strain curve is
therefore that the number of initially mobile dislocations
be small. Mathematically the condition is that n is small
enough such that S./Lo>nobv(ay), that is, the strain rate
imposed on the specimen is greater than the product of

the number of mobile dislocations, their Burgers vector,
and the dislocation velocity characteristic of the yield
stress o,,. This yield stress is the stress necessary to acti-
vate the first dislocation sources. If o, is high, or disloca-
tion velocities are high at relatively low stresses, or if no
is high, such that the above product is greater than the
imposed strain-rate, then a stress-strain curve of this type
is not obtained. The reasons that such a curve is not seen
when most common metals are subjected to a tensile test
are that ny and v are both much larger than in ionic and
covalent materials which do show a large yield point.
Presumably this type of curve can be obtained on any
material if the imposed strain-rate could be made suffi-
ciently high.
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