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Dislocations and Plastic Flow in Germani um 

Abstract: Single-crystal specimens of germanium have  been tested in tension over a range  of temperature 

and strain rate. Dislocation density has been determined as a function of plastic strain, and some direct 

measurements of dislocation velocity have  been  made. From these results the plastic behavior of germanium 

can be  explained  in terms of dislocation velocity and dislocation multiplication, and is  analogous to the 

interpretation given  by Johnson and  Gilman for deformation of lithium  fluoride. Effects of crystal purity and 

orientation have  been  examined; strain-aging effects were absent. Conjectures are  made as to the causes of 

work  hardening. 

Introduction 

The study of plastic deformation  and dislocation  behavior 
in  a  semiconductor such as germanium is of interest for 
several reasons. Much of the  theory of dislocations has 
been formulated  from studies of deformation  in metals 
but,  since the crystal structure  and  atomic bondings of 
semiconductors are different from those of metals, the 
deformation characteristics are also different, as would 
be expected. An analysis of the plastic  behavior of ger- 
manium will therefore permit fundamental dislocation 
theory to be  extended. 

Deformation studies may also be of value from  the 
standpoint of solid-state device fabrication. Dislocations 
not  only  have  a direct effect on  the electrical  properties 
of semiconductor devices but, by their interaction with 
impurities and  other crystalline  defects,  may produce a 
secondary effect on  the electrical  properties. The limits 
of stress and  temperature  at which dislocations  move and 
multiply may serve  as  indications of the limits of stress 
and  temperature which are allowable during  fabrication. 

Previous ~ o r k l - ~  has shown that  germanium is plastic 
at  temperatures above about  400°C;  it exhibits during 
creep testing an initial region of slow plastic flow which 
is usually interpreted  as  evidence for a  delay time;  and it 
gives an exaggerated yield point  in a  tensile test. Attempts 
have been to associate both of these effects with 
Cottrell-type  impurity  locking of dislocations. However, 
the  strong similarity between the stress-strain  curves  ob- 
tained during tensile tests on  germanium  and those for 
lithium  fluoride suggests that  the  same explanation so 
successfully given by Johnston  and  Gilmang  for lithium 
fluoride may be valid for germanium. Their  theory is 
based on  two experimental  facts. First, in  any given crys- 
tal, which has  undergone  no previous deformation,  at a 
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constant  temperature  the dislocations move with  a veloc- 
ity  which is dependent only upon  the stress  experienced 
by the dislocation. This follows if it is assumed that a 
moving  dislocation is subjected to a  frictional force which 
increases  with  increasing velocity. Secondly, it is assumed 
that  as a  dislocation moves it creates new dislocations in 
its wake. 

Theory 

The  increment in  plastic strain de contributed by a 
dislocation of Burgers  vector b sweeping out  an element 
of area du on  the slip  plane of a  crystal is given by the 
product bdu divided by the total  projected  area of the slip 
plane times the length of the crystal. For a  crystal  in 
which there  are N dislocations moving, the  total incre- 
ment in strain 

l N  

V l  
A & =  -x b&i , ( 1 )  

where the projected area of the slip  plane times the  crystal 
length is equal  to V ,  the crystal  volume, and bi and dai 
refer  to  the i t ”  dislocation. If the i t h  dislocation has a 
length Li and moves through a  distance dxi then 

1 N  

V I  
A&= - 2 biLidXi. ( 2 )  

The  strain  rate is obtained by differentiation with re- 
spect to time 

where vi is now the instantaneous velocity of the it” dis- 
location. If the subscript i is now transferred  from the it” 279 
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dislocation to  the i th type of dislocation, i.e., all disloca- 
tions of Burgers  vector bi, and velocity wi, with  a  length 
per unit  volume of X i  the strain rate  then becomes 

N 
B =xbihiwi . (4) 

1 

In most  materials the dislocations  responsible for plastic 
deformation  can be resolved into two types, edge and 
screw, with  identical  Burgers vectors. Assuming that we 
can assign one velocity we to all edge dislocations and  one 
velocity wvs to all screw  dislocations, and  that  the  length 
per unit  volume of these  dislocations is X, and X, respec- 
tively, then 

~ = b ( X , ~ , + X , ~ , ) .  ( 5 )  

A dislocation loop lying in  the slip plane will vary in 
character  from edge to screw around its  circumference. 
As it expands under  the  action of the applied  stress it will 
be circular  in  shape only if the velocities of the edge and 
screw segments are equal. If they are  not equal, the  loop 
will assume an elliptical shape. If one  type  has a velocity 
very much higher than  the  other,  then  the segments of 
this type will reach  the edge of the crystal before  the 
segments of the  other type  have separated by very much. 
This leaves two straight  dislocations of the slower type 
lying  across the slip plane. The  larger  term  thus eliminates 
itself from  Eq. (5) and  the strain rate is controlled by the 
smaller term  and is given by: 

8 =nbw , (6)  

where n is now defined as  the active dislocation density 
in  terms of the  number of active  dislocation  lines crossing 
unit  area,  and w is the velocity of dislocations of the 
slowest type. This expression  also holds if the velocities 
of the two types of dislocation are equal. 

Figure l a  shows a  typical  tensile curve  for germanium. 
Johnston  and  Gilman explained  similar tensile curves 

Figure l a  Tensile curves for Ge crystal at  650°C. 

i 

I IMMEDIATE 
2.0- ; 

0 0.1 0.2 0.3 C 

280 ISTRAl  N, € 

IBM JOURNAL OCTOBER 1961 

found  for  lithium fluoride in  the following way. As the 
velocity of screw  dislocations  was found  to be  some 50 
times slower than  that  of edge  dislocations,  they  were 
able to describe the  strain  rate  in  terms of Eq. (6).  In a 
tensile test using a hard machine, the crosshead is driven 
at a constant velocity S,. After a time t the crosshead has 
moved  a  distance 

S, t=Ay=Ay, l fAL, ,  (7) 

where ALP is the plastic elongation of the specimen, and 
Aycl is the elastic  elongation of specimen  plus  machine. 
Ayel is equal  to Ku, where K is the elastic  modulus of 
specimen plus machine, and u is the stress  now imposed 
on  the specimen. The plastic strain of the specimen is 
E = A L ~ / L ~ = ( S , ~ - K U ) / L ~ ,  (8) 

where LO is the initial  gauge length of the specimen.  Dif- 
ferentiating with  respect to time, 

i = ( S , - K & ) / L o .  (9) 

At  the  maximum in the stress-strain curve, u = O  and 8, 
=S,/Lo. From Eq. (6),  8=nbw and w is some  function 
of u, say w=f(u), then: 

nbf (u)  = ( S , - K u ) / L o .  (10) 

The  shape of the stress-strain curve  may now  be explained. 
As  the specimen is loaded, it  deforms elastically until 
some stress uU is reached at which a significant, but ini- 
tially  assumed to be small, number of dislocations begin 
to move and  to  contribute  to plastic strain.  Continuing 
deformation causes both n,  through dislocation  multipli- 
cation, and u to increase, and  hence  the  contribution of 
plastic strain  rate  to  the over-all strain  rate increases. At 
some  point, n and u reach values such  that  the plastic 
strain rate is exactly  equal to  the  rate of crosshead mo- 
tion. The plastic strain  rate now  stays essentially constant, 
(ignoring  the small  elastic  relaxation  as u decreases),  but 
dislocations are still moving; n continues to increase, and 
the dislocation velocity, and  hence u decrease. This ex- 
plains the yield drop;  the subsequent  increase  in u is due 
to strain-hardening and will not  be discussed here. 

The  shape of the creep  curves,  shown  in Fig.  lb, is 
similarly  explained. This type of curve is obtained under 
constant stress and  thus  the dislocation velocity is con- 
stant. The  strain  rate,  from Eq. (6),  now  depends  only 
upon n. The initial number of active  dislocations is small 
and increases  as deformation progresses. The strain rate 
is therefore initially low but increases  with  increasing 
deformation until  strain-hardening  causes it  to decrease. 

A  theoretical  expression for the initial portion of the 
curve is obtained by assuming9 that as  a  dislocation moves 
it leaves behind 6 new  dislocations per centimeter of wake 
of each of the two  ends of the expanding  loop. At  any 
instant  the  rate of production of new dislocations  is: 

dn=26ndx=26nwdt. (11) 

Integrating, 

n=no exp(2dwt), ( 1 2 )  
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Figure I b  Creep curves for Ge crystals at 650°C. 

where no is the initial density of active dislocations. Sub- 
stituting  in Eq. ( 6 ) ,  

i=bnv=bnvo exp(2Svt).  (13) 

Integrating,  and applying the  boundary condition that  at 
t=O,  & = O ,  

F = [brio exp(2Sw) - bno]/2S (14) 

or 

&=b(n"no) /ZS .  (15) 

Equation ( 14) predicts that  the initial  portion of a  con- 
stant-stress creep  curve should show  an exponential 
dependence of strain with  respect to time. Penning and 
de Wind5 state  that  their  creep curves on  germanium can 
be fitted to  such  an expression, but  prefer  to fit them to 
another expression based on a theory proposed by van 
Bueren.l0  However, their  actual curves are not  published, 
and  therefore  cannot be  analyzed in  terms of the above 
theory. Equation (15) predicts  a linear dependence of 
dislocation  density on plastic  strain  provided that all the 
dislocations  stay in  the material, and  Johnston  and Gil- 
man9  have experimentally verified this  relation for lithium 
fluoride. The agreement between their experimental and 
theoretical  constants is very good. 

If the observed  plastic  behavior of germanium is to be 
explained by the above, three basic assumptions  must  be 
valid. 

(i)  As dislocations  move  they create new dislocations 
by some  mechanism. The  number of dislocations  increases 
during deformation, and  there is a  relation between dis- 
location  density and plastic  strain. 

(ii)  For similar  crystals, at  the  same  temperature, 
dislocations move with a velocity uniquely  related to  the 

applied stress. 
(iii)  The  number of dislocations which are initially 

mobile is small. It should  be  noted here  that  the grown-in 
dislocations appear  to play no  part in the plastic deforma- 
tion process in  both lithium  fluorideg and g e r m a n i ~ m . ~  
Apparently they are rendered  immobile by impurities. 

The  work described in this paper was an  attempt to 
verify that  the above  assumptions are applicable to the 
plastic deformation of germanium. 

Experimental methods 

Single crystals of germanium were  grown  either  in  a  zone 
leveller or  in a Czochralski puller  from zone-refined 
material. In  the  zone leveller, the freshly  grown  crystal 
passed  immediately into  an annealing chamber which 
allowed very slow cooling of the crystal from a little 
below the solidification temperature. The levelled crystals 
contained as the  major electrically  active impurity ap- 
proximately IOl3 atoms/cc of a deep-level acceptor,  pre- 
sumably copper,  and a  dislocation  density of IO4 lines/sq 
cc. It is believed that because of the higher  dislocation 
density and because of the annealing treatment,  the 
levelled crystals contain fewer  vacancies than  the pulled 
crystals. These latter  had dislocation densities varying 
from  zero  to lo3 lines/sq cc  and  contained  about IOl3 
atoms/cc of a donor impurity,  probably  arsenic.  Crystals 
were  grown  with both  (321)  and  (110) growth axes. One 
crystal containing 5 x 1o19 atoms/cc of gallium was 
grown with  a (321) axis. 

Tensile  specimens  with rectangular cross-section were 
cut  from these  crystals,  parallel to  the growth axis, with 
one  pair of faces  parallel to a { 1 1 I ]  plane, by an ultra- 
sonic  impact grinding  machine. The gauge  length was one 
inch, in  some cases 1.25 inches, and  the cross-section 
2 x  3 mm.  The shoulders of the specimens  were rounded, 
and were  individually  lapped into  the grips of the testing 
machine.  Specimens  were  etched in  CP4  prior  to testing, 
and in  some cases the { 1 11 } faces  were  lapped using a 
coarse  grit  after  the etch.  Specimens  were  tested  over  a 
temperature  range  from 575°C to 850°C in  a forming gas 
atmosphere  in a specially designed high-temperature cell 
mounted  on  an  Instron tensile  testing  machine.  A  simple 
lever-loading creep tester  was also used. On  both ma- 
chines the  strain could be read  to  Temperature 
control was * 2°C. 

Dislocation densities were  determined by counting  etch 
pits on { 1 1  1 )  faces after  etching  in  CP4  and dislocation 
velocities were  calculated from tensile data by using 
formula (6). This calculation assumes that  the  strain  rate 
is controlled by only one dislocation velocity. At  the 
maximum in the stress-strain curve d,=s,/L~. The dis- 
location  density at this point is taken  to be the value cor- 
responding to  the plastic strain as given by the graph 
(Fig. 2) of dislocation  density  versus  plastic  strain. The 
value of plastic strain  at  the  maximum is obtained directly 
from  the stress-strain  curve. The plot of E versus n was 
made by straining a  specimen  in  tension  by a known 
amount in the  creep tester under a 1 kg  load  at 650°C 



Figure2 Dislocation density as function of plastic 
strain in germanium. 

and  then measuring the dislocation  density. 
Direct estimates of dislocation velocity were made  in 

the following manner.  An etched  specimen  was scratched 
with  a razor blade to provide  a source of dislocations. The 
crystal was placed under load for a known length of 
time, usually five or  ten seconds, in  the  creep tester. An 
etch  in CP4 showed that  the dislocations had moved out 
from  the  scratch along slip planes. The average  distance 
moved by the leading  dislocations was measured using a 
microscope fitted with  a micrometer stage. From this dis- 
tance  and  the time of application of the  load,  the disloca- 
tion velocity was calculated. These estimates can be 
regarded as accurate  only  to within  a factor of two and 
will tend to give values which are lower than  the peak 
velocities attained. 

Creep testing was also carried  out,  but  the results 
showed such lack of reproducibility that only one  or two 
generalizations  could be drawn  from  them.  The  lack 
of reproducibility and  the large amount of scatter  in  the 
tensile data,  are  both believed to result from  the difficulty 
of exactly  determining the onset of plastic deformation 
due to the  large  amount of elastic deformation  in  the 
testing machines. This problem can be overcome  only by 
measuring strain directly from  the specimen itself, a pro- 
cedure  which is rather difficult when the specimen  must 
be  maintained at a  high temperature. 

Results and discussion 
Dislocation multiplication 

Crystals  with  a (1  10) tensile axis  were found  to deform 
simultaneously on  two slip systems, and  the  majority of 
tests were performed  on crystals  with  a (321) orientation, 
in which only  one slip system is operative. The first series 
of experiments was carried  out  to establish the relation 
between strain  and dislocation  density. Data were ob- 
tained on two levelled crystals and  on two pulled crystals, 
all with a (321) orientation.  The results  coincided with 
the  curve given by Patel  and Alexander3  who  measured 

282 dislocation  density  as  a function  of compressive strain  at 
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Figure3 Dislocation velocity as function of stress 
for levelled germanium crystals. 

600°C under  an unspecified load  on crystals  with an 
orientation  near  to (321). The combined  results are 
plotted in  Fig. 2. The agreement  between the  two sets of 
data indicate that  for a given strain,  the dislocation  den- 
sity in  similarly  oriented  crystals is not  much affected by 
temperature or method of loading. Figure 2 gives an 
approximate relation: n=5 X 109&E3/2 which disagrees with 
the theoretical  prediction of Eq. (1 5). Dislocation density 
increases more rapidly with strain in germanium  than in 
lithium fluoride and hence the dislocation  multiplication 
mechanism must be different in  the two  materials. Fur- 
ther evidence for this is provided  by the initial portion of 
the  creep curves,  which  could not be fitted to  an exponen- 
tial time dependence. 

A model to  account  for dislocation  multiplication  in 
germanium must  not only give the correct relation of 
n to E ,  but  must  also  explain the observed distribution of 
dislocations. In  deformed  lithium fluoride the dislocations 
are congregated  in slip bands, and  an over-all  increase  in 
dislocation  density is accomplished not only  by the pro- 
duction of new bands, but also by the widening of bands 
already  present. The widening of the slip bands follows 
directly from  the model of dislocation multiplication.11 
Slip bands are not generally observed  in germanium.  The 
dislocations  lie  in  individual  slip lines, and though the 
distance between adjacent slip lines is not  constant, the 
dislocation  density over  any  area which  includes several 
slip  lines  does  tend to be quite constant." Thus  the distri- 
bution of dislocations is much  more  uniform  throughout 
a deformed  germanium crystal than  throughout a  de- 
formed lithium  fluoride  crystal.  A  model of dislocation 
multiplication for  germanium which will explain the 
above facts  has  not  yet been  developed, but  it  must rely 
on a more complicated  distribution of dislocation  sources, 
or of source  activation stresses, than envisaged by John- 
ston and  Gilman  for lithium  fluoride. It is not known if 
cross-slip is possible in germanium  but it was not ob- 
served  in this investigation. This might account  for  the 
difference between germanium  and lithium fluoride. 

*The tensile  specimen  on back cover was kindly  furnished by G .  E. Brock. 

IBM JOURNAL OCTOBER 1961 



I Dislocation  velocities 

Zone-levelled  crystals. A series of tensile tests was run  on 
levelled crystals over a range of strain rates  and  tempera- 
tures. With  the exception of a  group of (1 10) crystals 
tested at 650"C, all of the crystals had a (321) orientation. 
The results are shown  in terms of calculated  dislocation 
velocity w as  a function of resolved shear stress 7 in Fig. 3 .  
Though  there is some scatter,  the points define fairly well 
a series of curves for  the different temperatures,  with 
higher velocities for the higher  temperatures.  Using the 
slowest crosshead speed available on  the tensile  machine, 
it was  not found possible to test at a temperature lower 
than 575°C. 

Pulled  crystals. The above  series of tests was  repeated on 
(321) pulled  crystals and  the results  shown in  Fig. 4. 
These crystals  exhibited  somewhat less plasticity than  the 
levelled crystals and could not  be tested below 600°C. For 
a given stress and  temperature, dislocation velocity was 
generally  lower in  the pulled than  in the levelled crystals. 
Direct measurements of dislocation velocities for two 
stresses at 650°C are in  excellent  agreement  with values 
calculated from  the stress-strain  curves. This not only 
confirms the  method of calculation but also indicates that 
at  the maximum in  the stress-strain curve  the  number of 
mobile  dislocations  in the crystal is equal,  to within  a 
factor of two, to  the  total  number of dislocations  present. 

Figures 3 and 4 show that, within the limits of experi- 
mental accuracy,  dislocation velocity (calculated from 
tensile data)  for  constant  temperature,  purity  and  orienta- 
tion, is a single-valued function of the applied stress. If 

l Figure 4 Dislocation velocity as function of stress 
for pulled germanium crystals. 
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the (generally small)  curvature of the plots is neglected, 
the velocity may  be  represented as an exponential function 
of the stress, the  value of the  exponent lying  between 1.3 
and 2, with the larger values occurring at  higher  tempera- 
tures. This is in marked  contrast  to  exponent values of 15 
to 25 for  LiF  (Ref. 9) and -40 for silicon-iron (Ref. 20). 
An interesting difference  appears between the levelled and 
the pulled crystals: the velocities are generally  lower in  the 
latter. The pulled  crystals are believed to contain  many 
more vacancies than  the levelled crystals, and these extra 
vacancies can  account for the difference in behavior. 
Vacancies  may interact with  dislocations in  three ways. 
One is an elastic interaction  as  the dislocation  moves 
through  the  nonuniform  strain field introduced  into  the 
lattice  by the presence of vacancies. Another  may be 
called a  chemical interaction  and is caused  by the  crea- 
tion of tracks of vacancies in  the wake of a moving dis- 
location. The energy required  to  produce  such a vacancy 
trail will increase as the  number of vacancies  originally 
present  in the crystal increases. The  third is also an elastic 
interaction  with the  strain field of collapsed sessile dis- 
location  loops formed  from  the condensation of these 
excess vacancies. All of these  interactions will cause  an 
increase in the effective frictional  force  on a  moving 
dislocation. 

Temperature  dependence. Values of velocity versus  tem- 
perature were taken  from  the curves in Figs. 3 and 4 at 
three stress levels, and  are plotted  as in w against T-l in 
Fig. 5. The plots for  the levelled crystals (solid lines) yield 
reasonably  straight  lines  which suggest that  over  the range 
of temperature  and stress  studied,  dislocation velocity in 

Figure 5 Temperature dependence of dislocation 
velocity. 
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Figure 6 Diffusional motion of crack vs tempera- 
ture for levelled  and  pulled crystals. 

these crystals obeys an Arrhenius  relation. Not much 
weight can be attached to this, as the temperature and 
stress range is relatively narrow, but  the activation energy 
calculated from  the plot, 1.8 ev, is very close to what is 
believed to be the activation energy for formation of 
Schottky defects in g e r m a n i ~ m . ~ ~ - ~ ~  This is not unex- 
pected, as moving dislocations may leave in  their wakes 
trails of vacancies. Plots for the pulled crystals (dashed 
lines) show considerable curvature,  and  the  temperature 
dependence of velocity cannot be represented by an 
Arrhenius relation. No reasonable explanation can be 
offered for this at present. 

An explanation for  the temperature dependence of 
dislocation velocity in materials with the diamond cubic 
structure  has been given by Haa~en.1~  He  suggests that 
there is a  crack of atomic dimensions in the  core of a 
dislocation in  the diamond  structure. In order to move 
the dislocation, the crack must diffuse with it, assisted by 
the applied stress. The dislocation velocity is then equal 
to the diffusion velocity of the  crack 

where D is the diffusion constant of the crack, F is the 
force on  the dislocation, and U is the activation energy 
for motion of the crack. The  other symbols have  their 
usual meaning. Values of In ( v T / T )  versus T-l are plotted 
for both levelled and pulled (321) crystals in Fig. 6. This 
plot reduces the curvature  in the  data  for  the pulled 
crystals, and brings values for both types of crystals at 
different stresses closer together, though the scatter is 

284 still rather large. This indicates that  a diffusion equation 

of the type given by Eq. (16) more closely describes dis- 
location velocity than does a simple Arrhenius  relation. 
The activation energy for  the motion of the crack, calcu- 
lated from Fig. 6, is approximately 1.9 ev, which is some- 
what larger than  that for the motion of a single vacancy 
in germanium ( 1 e P ) .  This is expected, as the  crack will 
be smaller in dimensions than a single vacancy. The diffu- 
sional  motion of a  crack  cannot completely account for 
the dislocation velocity, as  Eq. (16) predicts a  linear de- 
pendence of velocity upon stress, which is not found  to 
be the case. 

Lapped  crystals. The experimental results on crystals 
with lapped surfaces lend further support to  the theoret- 
ical explanation of the shape of the stress-strain rate 
curve. From Eq. ( l ) ,  for two crystals subjected to the 
same  strain  rate, if the dislocation density in one is higher, 
then  the dislocation velocity, and hence the stress, will be 
lower. Also the plastic strain at which the maximum 
occurs will be higher. When  the crystals are lapped,  the 
number of surface dislocation sources is increased and 
more dislocations are active during  deformation.  When 
compared with etched crystals tested at  the same tem- 
perature and strain-rate, the lapped crystals gave tensile 
curves with maxima at lower stresses; the plastic strains 
associated with these maxima were larger, and  the calcu- 
lated values of dislocation velocity versus stress fell on the 
same curves as for the etched crystals. 

Orientation  dependence. The calculated values od disloca- 
tion velocity for the (110) crystals tested at  650°C  are 
higher than corresponding values for (321) crystals. The 
calculations depend on a value of dislocation density 
which is obtained from Fig. 2 .  The  data in Fig. 2 are 
plotted for (321) crystals. In (110) crystals deformation 
takes place on two intersecting slip systems simultane- 
ously, and  it may be that  the  rate of dislocation multi- 
plication will be higher in these crystals. The value of n 
obtained from Fig. 2 will then be too low for  the (1 10) 
crystals, resulting in a calculated value for the velocity 
that is too high. 

Heavily  doped  crystals. Shown also in Fig. 4 are  the 
results of a tensile test and a direct velocity measurement 
at  650°C  on the two specimens cut from the heavily 
gallium-doped crystal. The direct velocity measurement 
gave for  the same stress a higher velocity than in  the 
undoped crystal. In  the tensile test the value of stress at 
the maximum was much higher than  that  for  an undoped 
crystal  deformed at  the  same strain  rate, and the calcu- 
lated velocity was much lower. 

To explain these results it is first necessary to consider 
a suggestion that, since vacancies in germanium are accep- 
tors, a heavy concentration of an acceptor  impurity such 
as gallium will suppress the formation of  vacancies.17 Not 
only will there be few vacancies in the crystal, but the 
number of condensed vacancy clusters typical of all these 
crystals, particularly the dislocation-free crystals,* will 
*The  gallium-doped crystal was, in fact, dislocation-free. 

IBM JOURNAL OCTOBER 1961 



be considerably  reduced. The high  measured  value for 
dislocation velocity follows directly from  the low vacancy 
concentration. An explanation for the  very low calculated 
value for  the dislocation velocity at a  very  high stress can 
be based on a suggestion by Wilsdorf18 as to the mechan- 
ism of dislocation  multiplication.  Condensed  vacancy 
clusters form prismatic  loops of dislocation.  Segments of 
these  loops  lie in active slip planes, and if the local  stress 
is raised to a sufficiently high value by the passage of a 
nearby  dislocation, then these  segments can  act as Frank- 
Read  sources. With few of these loops  present, the  rate of 

~ dislocation  multiplication will be much lower than  nor- 
mal, and again  a  value for dislocation  density taken  from 
Fig. 2 will be in error.  In this instance n will be  too  high, 
and will give a  calculated  value of v which is too low. 

Strain aging 

Some strain aging experiments  were  performed. A pulled 
crystal was tested at 650°C in the tensile machine. After 
the initial yield drop  had  occurred,  the crystal  was un- 
loaded and immediately  reloaded. Deformation continued 
at essentially the  same stress at which the test had been 
interrupted,  though  a  very  small yield drop was found. 
The dislocation  configuration of  the crystal will, under  the 
influence of the internal  stress field, relax slightly upon 
unloading, and  upon reloading  must  be  “unrelaxed” 
before deformation can  continue.  This  explains the small 
yield drop.  After  further plastic deformation of a few 
per cent, the crystal was again  unloaded,  annealed for 
2% hr  at  800°C  and  then retested at  650°C.  Deforma- 
tion  continued at a  value of stress about 15 per  cent lower 
than  that  at which  the  previous test had been  stopped, 
and  the small yield drop was more pronounced  (it can 
clearly be seen in Fig. la,  which shows the curves for 
this experiment).  The annealing treatment failed to re- 
produce  the initial tensile curve, showing that strain aging 
had  not  occurred.  The lower  value of the yield stress is 
presumably due  to some  dislocation rearrangement  during 
annealing. This  rearrangement  has also introduced  a 
larger relaxation which must be overcome  before dislo- 
cations  may start  to move again,  accounting for  the 
enhancement of the small yield drop. The test was re- 
peated on a  similar  specimen,  and on  the heavily doped 
gallium specimen (annealed  for 20 hrs  at 850°C because 
of the  much slower diffusion of gallium in  germanium) 
with  identical results. 

The absence of strain aging may be explained  by  con- 
sidering the relative numbers of active  dislocations and 
impurity atoms. The  fact  that  the initial dislocation  den- 
sity has little effect on subsequent plastic deformation 
suggests that grown-in  dislocations are immobile,  prob- 
ably due  to Cottrell-type  locking by impurity  atoms. 
There  are  up to lo4 dislocation  lines/sq  cc  in  these  crys- 
tals, and  the impurity content of 1013 atoms/cc present 
is adequate  to supply more  than  one  atom for every atom 
length of dislocation  line.  Strain-aging effects are not 
observed because the dislocation density rises to between 
lo6 and lo7 lines/sq cc  after yielding, and 1014 to 1015 

impurity atoms/cc  are required to provide one  atom per 
atom length of dislocation. The crystal  containing 5 x 1 OI9 

atoms/cc of gallium  does  contain  enough impurity  to 
show a strain-aging effect, provided that gallium atoms 
are  able to lock  the dislocations. This is unlikely, however, 
since the  strain introduced into  the germanium  lattice by 
the presence of this amount of gallium is so small  as to 
be undetected by x-ray parameter measurements,19 and 
it is therefore  not surprising that strain-aging effects are 
also absent in these crystals. 

Strain hardening 

Although  this investigation has  not been  concerned  with 
strain hardening, it is perhaps worthwhile to mention 
some  conclusions  which can be drawn  about this very 
important aspect of plastic deformation.  The case of 
creep is the simplest to consider, and again use will be 
made of formula (6),  and of the  fact  that  for all creep 
tests made,  the onset of strain hardening occurred  at 
lower strains  for lower stresses and lower  temperatures. 
In  the strain-hardening range of creep  deformation,  the 
strain-rate is decreasing. From  Eq. (6) this can be due 
either to a  decrease  in the  number  of active  dislocations 
or to a  decrease in dislocation velocity. If,  after a  certain 
amount of plastic deformation, dislocations are blocked 
by obstacles of some sort,  then  the number of mobile 
dislocations is reduced. The back-stress from  the blocked 
dislocations will also reduce the effective stress on  other 
moving  dislocations and their velocity will decrease. 
Blocking will occur  more easily at lower stress levels and 
temperatures, explaining why the strain-hardening region 
begins after a lesser amount of total  strain in  crystals 
tested at lower stresses or  at lower  temperatures. The 
drawback  to this model is that blocked dislocations have 
not been seen in  germanium. Up  to  the limit at which 
individual dislocations can be resolved, the spacing of 
dislocations  along slip lines is quite  uniform. A  technique 
for looking  directly at dislocations  which is more refined 
than  the etch-pit method  may eventually reveal blocked 
dislocations  in germanium,  but until they are seen, it is 
wise to consider other models for  strain hardening. A 
dislocation will have greater difficulty in moving through 
a  crystal as the  amount of plastic deformation increases, 
because of trails of imperfections left by dislocations 
which have previously passed through  the lattice. Under 
a constant applied stress, the dislocation velocity would 
decrease as the  amount of deformation increases. This 
effect will cause some  strain-hardening,  but is thought  to 
be large enough to  account  for only  a small part of the 
observed hardening. Another possibility is that dislocation 
multiplication slows down  or ceases because of exhaus- 
tion of multiplication  sources. If it is assumed that these 
sources exist with a spectrum of operating stresses, then 
at lower  stress levels fewer  sources will be brought into 
operation  and exhaustion will occur  after lesser amounts 
of strain.  Thermal assistance of source activation  explains 
the  temperature dependence. No proposal  as to why 
these  sources  should  become  exhausted is made, except 285 
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that  perhaps  each  source  can  operate  only once. At 
present  there is not sufficient evidence to  favor  any  one 
of the proposed  mechanisms for strain-hardening. The 
above  ideas have been  described in  terms of creep;  they 
apply  equally well to tensile deformation,  though in this 
case, the  strain-rate is the  constant in Eq. (6) .  

Effect of number  of initially mobile dislocations on 
deformation  behavior 

In all  materials so far examined,  dislocation  multipli- 
cation occurred  during plastic deformation. A moving 
dislocation in  any crystal  must  experience  a  frictional 
force,  which is the  sum of the  Peierls-Nabarro  force  and 
the forces arising from  the interaction of the dislocation 
with other imperfections, and which  increases  with  in- 
creasing velocity of the dislocation. Thus dislocations in 
all materials will move  with  a velocity characteristic of 
the  applied stress. This has also been demonstrated  in 
silicon-iron.20 The  important criterion for  the observation 
of a Johnston  and  Gilman type  stress-strain curve is 
therefore that  the  number of initially  mobile  dislocations 
be small.  Mathematically the  condition is that no is small 
enough such  that Se/Lo>nobw(o,), that is, the  strain  rate 
imposed on  the specimen is greater  than the product of 

the  number of mobile dislocations, their Burgers vector, 
and  the dislocation velocity characteristic of the yield 
stress q,. This yield stress is the stress necessary to acti- 
vate the first dislocation  sources. If uY is high, or disloca- 
tion velocities are high at relatively low stresses, or if no 
is high, such  that  the above product is greater  than  the 
imposed strain-rate,  then  a  stress-strain curve of this  type 
is not obtained. The reasons that  such a curve is not seen 
when  most common metals are subjected to a tensile test 
are  that no and w are  both  much  larger  than in  ionic and 
covalent  materials  which do  show  a large yield point. 
Presumably  this  type of curve  can be  obtained on any 
material if the imposed strain-rate could  be made suffi- 
ciently  high. 
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