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The Electronic Contribution 
to  the Elastic Properties of Germanium 

Abstract: Theories of  several elastic effects resulting from the contribution of electrons  to the strain energy 

function of germanium are presented. They show that the elastic properties are appreciably  changed by 

doping with donor and acceptor impurities. The properties considered are: (1) volume, (2) elastic constants 

of  degenerate  n-type  material, (3) third-order elastic constants of degenerate  n-type material, (41 elastic 

constants of  degenerate p-type material, (5) elastic constants of material containing electrons bound to 

donors, (6) elastic constants of material containing electrons bound to pairs  of donor atoms. The  most striking 

effect is found for the case of  degenerate n-type germanium, in which the theory predicts that c44 can be 

lowered  by 8% with  attainable doping levels. 

1. Introduction 

Piezoresistance experiments show that the electronic 
energy levels of a multivalley semiconductor  depend on 
the state of strain of the semiconductor crystal.1 The 
dependence of the electronic energy levels on strain 
implies that the strain energy function  of the crystal will 
depend on  the occupation of the electronic levels. The 
purpose of this paper  is to evaluate the effect of the 
electronic part of the strain energy on  the elastic prop- 
erties of germanium. Several of the effects which we 
predict here should be experimentally observable. 

Electronic effects are very important in metals. Jones 
and co-workers2 have  attempted to interpret some fea- 
tures of the elastic properties of metals in terms of 
multivalley-type models similar to those used here. A 
quantitative  interpretation of the effects in metals is not 
possible at present, however, because of the lack of 
information  concerning  parameters of the models such 
as deformation potential constants, effective masses, and 
carrier concentrations. Such  parameters are accurately 
known for germanium, which therefore offers a unique 
opportunity for  the study of the influence of the elec- 
tronic energy on the elastic constants. 

Impure germanium  can be divided into two classes: 
( 1 )  If there  are more than about 2 X electrically 
active impurities per cm3 the electrons remain in the 
conduction band at all temperatures. They therefore 
form a degenerate  electron gas at very low temperature. 
This kind of germanium is called degenerate germanium. 
(2) If there  are less than lo1? impurities per  cm3 the 

266 electrons are trapped  in localized states associated with 

the  impurity  atoms at low temperatures.  These localized 
states have energies just beyond the edge of the relevant 
band and are derived from and have properties closely 
related to  the states of that band. The two cases are 
described by different models and will be  treated sep- 
arately here. 

The values of various parameters of germanium 
which will be needed in  the subsequent calculations are 
given in Table 1. 

2. Model of the conduction band 

The model of the conduction band used here  is the 
multivalley model as described by Herring.3 The energy 
surface  has four minima, one  on each of the ( 1  11) type 
axes at  the Brillouin zone boundary. The states in the 
conduction  band which are occupied by electrons have 
energies near the minimum energy and crystal momen- 
tum vectors p grouped around the position of the 
minima in p space. The states near minimum (i) are 
said to constitute “valley” (i> . 

The valleys can be  transformed  into one another by 
the crystal symmetry transformations in  an unstrained 
germanium crystal. Therefore  any scalar property must 
have the same value for all valleys. Any second-rank 
tensor  property must differ only in the orientation of the 
tensor for different valleys. Further, since the ( 11 1)  axes 
are axes of three-fold symmetry, a second-rank tensor 
property of valley (i) must be invariant  under  a  rotation 
( 2 ~ / 3 )  about the ( 1  11  ) axis which locates valley (i) . 
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I Thus it must  have  the form 

1 where coordinate z is the coordinate  along the axis of 
valley (i) . Let a(i)  be  a  unit  vector  along the ( 11 1)  axis 
of valley (i) . Then Eq. (2.la)  can be  written  in the  form 

Mci) =MJ+  (M,-M,)a(i)a(i) . (2.lb) 

Here 1 is the identity  tensor. 
The effect of elastic strain  on  the  band  structure  can be 

described by the deformation  potential  approximation. 
Strain  changes the  band  structure only  by  changing the 
energy of all  states of a particular valley by the  same 
amount in the  deformation potential  approximation. The 
effect of strain on valley (i)  can  therefore  be described 
by the  change of E(i), the energy of the  state of lowest 
energy in valley (i) . The most  general  linear  dependence 
of E(i) on  the strain  tensor E has  the  form 

E ( i ) = E ( i )  : E .  (2.2) 

Here Et i )  is measured from  its value  in the unstrained 
crystal as zero of energy. E is the  strain tensor and E(i) is 
a  second-rank  tensor called the  deformation  potential 
constant  tensor. The  components of E(i) are called defor- 
mation potential constants. E(i) must  have the  form of 
Eq. (2.lb).  It is customary to define E d  = a, and E,,= 
E,-& and  to write 

ZCi) =E,l+E,a(i)a(i). (2.3) 

Table I Properties of germanium 

Property I Value 

0.76 X 1OI2 dynes/cm2 
0.68 
0.415 

0.22 rno 
19 evar 

-8 eva, 

0.3 rno 
5 eva> 

-2 eva 

*.See Reference 1 for discussion  and  references. 
b C .  Herr ing   and  E. Vogt, Phys.  Rev.  101, 944 (1956) ;  W. Dumke,  Phys.  

Re*. 101, 531  (1956);  C. Herring,  T. € I .  Geballe  and J. E. Iiunzler, 
Bell System Tech. J .  38, 657 (1959) .  
See Reference 8. 

dW. H. Kleiner  and L. hl. Roth, Phyr. Rev.  Letters 2, 334 (1959). 

3. Volume 

The  contribution of the effect of dilatational strain  on 
the electronic  energy to  the  total energy of the crystal will 
be examined in this  section. Dilatational  strain does not 
destroy the crystal  symmetry. The E(i) are  therefore all 
the same. The effect of dilatational strain  on  the energy 
of an electronic state is the  same  for  the states of the con- 
duction band and  for  the  bound  donor states. Therefore, 
the considerations of this  section are applicable to  both 
of the classes of germanium described in Section  1. The 
electronic  energy in  the presence of a  dilatational  strain is: 

W,=NE(%) , (3.1) 

where N is the electron concentration  and E ( i )  is given 
by Eq. (2.2).  The strain  tensor  has the  form 

E=l(SC/c) (3.2) 

where c is the lattice  constant. It can be seen from Eqs. 
(2.3)  and  (3.2)  that  for all ( i) ,  

E ( i ) = ( 3 E d + & ) ( 8 ~ / ~ )  . 
The total  energy of dilatation is the sum of an elastic part, 
W,, and  the electronic part: 

w=(9/2)B(6c/c)2+N(38d+Zu) ( 6 C / C ) .  

Here B is the bulk  modulus and is related to  the  ordinary 
elastic  constants  by  B = ( cI1 + 2c12) / 3. Minimizing the 
energy  with  respect to ( W c )  shows that  the electronic 
effect changes the  lattice  parameter by an  amount 

(6C/C)=-N(3&+Eu)/9B . (3.3) 

Values of (35d+5u) derived from experiment  contain 
considerable  experimental  uncertainty. It appears, how- 
ever, that (3&+Z:u) lies between -4 ev and - 8 ev. We 
have  chosen the value -6 ev for use in the calculations 
of this section and have entered this  value in Table 1. 
Thus 

(SC/C) = + I . ~ x  1 0 - 2 4 ~  

where  N is the  concentration of donors in cm-3. The solu- 
bility of donor impurities  limits the maximum  value of N 
which can be attained to  about 5 x 1019 ~ m - ~ .  Thus  the 
maximum value of ( S c / c )  is about +7 X lO-j,  a  barely 
observable effect. 

A  similar  calculation can be carried  out  for p-type ger- 
manium.  The  quantity 3Ed', which  corresponds to ( 3 Z f  
E,) for p-Ge, has a  value of about -6 ev. The energy of 
the unoccupied  electronic  states  in the valence band must 
be subtracted  from  the energy of the intrinsic  crystal, SO 

that  the effect is again an expansion of the lattice. Its 
magnitude is roughly 

( s c / c )  = + 1.4 X 10 -24~  . 

Acceptor  impurities are  more soluble than  donors. A soh- 
bility of 5 x 1020 cm-3 has been reported  for gallium. Thus 
the maximum effect for  p-Ge is ( S C / C ) Z  10-37 which 
should  be easily observable. 267 
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4. Shear elastic constants of degenerate n-type Ge 

The application of a pure  shear  strain  to n-type germa- 
nium  does not  change  the  total electronic  energy to terms 
of first order  in  the strain. The energy may be  changed  in 
terms of second order  in  the  strain, however. This depend- 
ence of the energy on  terms of second order  in  the strain 
amounts to a change  in the elastic  constants, which will 
be calculated in this  section for  the degenerate case, in 
which the electrons remain in the  conduction  band  at all 
temperatures. 

The density of electronic  states of valley (i) is 

4x 
h3 

N ( ~ ) ( E )  == - ( 2 m * ) 3 / 2 ( ~ - ~ ~ ~ ) ) 1 / 2  . (4.1) 

Here  m* is the density of states effective mass of a valley 
and E ( i )  is the  minimum energy of valley (i). (m* is 
related to  the transverse effective mass mt and  the longi- 
tudinal effective mass ml by m*=(mtZml)1/3). A para- 
bolic band  has been  assumed. n ( i ) ,  the  concentration  of 
electrons  in valley (i) , is determined by the  Fermi level. 
It is 

n ( i )  = Irn N(i)  (E) jo(E)dE 
g(i) 

=2x-l/' N,F1/z(T-W(i)). (4.2) 

Here  the following notation  has been introduced: 

fo=[l+exp(E-Y/kT)l-' 

[=Fermi energy 

rl=%/kT (4.5) 
~ ( i )  =E( i ) /kT (4.6) 

N, = 2 (2xm*kT/ h Z )  3/2 . (4.7) 

FlIz is the  Fermi integral  as usually defined4 5 is deter- 
mined  by the condition that  the nci) must add  up  to  the 
total  concentration of electrons 

N=X,n(i), (4.8) 

Z as used here  means  summation over the  four valleys. 
The total free energy per unit volume of the electrons 

in valley (i) is 

ACi) = n ( i ) < + k T  l r ) N ( i ) ( E ) l o g  fo(E)dE 

-2x-'/' - N , ~ T [ ~ F I / ~ ( ~ - w ( ~ ) )  -3F3/z(7-WW('))] . 
(4.9) 

In this section the w ( ~ )  will be  regarded as arising from 
the  strain according to Eqs. (2.2) and (4.6). The  strain 
also changes the  Fermi level, <. The  change  in 5' is deter- 
mined by Eq. (4.8). From Eqs. (4.2) and (4.8) 

N=27i-'/Z N , Z F ~ / ~ ( ~ ] - W ( ~ ) ) .  

The elastic  constants are calculated  by  considering 
268 infinitesimal strains and expanding the strain-dependent 

parts of the  Fermi integrals in  terms of quantities pro- 
portional to  the strain. To this end it is convenient to 
write r]  as 

r ] = r ] o + s ,  

where v0 is ([/kT)  in the unstrained lattice and 6 is 
the  change of 7) with strain. Thus 

N=2x-l/' N,ZIF, /z(r]o)+(S-W(i))Fl /z '  

+ + ( S - W ( ~ ) ) '  FI/z"] . (4.10) 

Here Fl/z' means dFl/z(r]) /dr] evaluated at 17 =r]o and 
F1/21' means dZ F1/z/dr]2 evaluated at  TO. Bringing S 
through  the  square bracket gives 

N = 2 ~ ~ 1 '  . 4Nc [ Fl/z (70) + ( S - W )  K / Z '  

+~(S'-2sw+W")F1/2"] . (4.11) 

Here 
- 

g=#xW(i),  WY=#&v( i )z .  

N as given by Eq. (4.11) must  be equal  to N in  the 
unstrained state: 

N=2n"/' N, * 4F1/2(r]o) . (4.12) 

Eqs. (4.1 1 ) and (4.12) give for S to  terms of second 
order in the w ( ~ )  

- FI/z" ( W Z - W ? ) ,  - (4.13) 
FI/z' 

Expanding  the  free energy in a similar way gives 

A,=L$4(i)=2rr-1/2 N,kT. 4[(r]o+6)Fl/z(r]o) 

+ ~ o ( S - W ) F ~ / z ' + ( S 2 - S ~ ) F ~ / z '  

+3770(6~-26W+~)F1/Zn- (2/3)F3/z(r]o) 

- (2/3) ( S - ~ ) F ~ / z " ~ ( S 2 - 2 S ~ + w " ) F 3 / 2 " I  * 

- 

(4.14) 

Here primes  have  been introduced  to  denote derivatives 
in  the way described  in  connection  with Eq. (4.10). 

Introducing Eq. (4.12) and  Eq. (4.13) into Eq. 
(4.14) gives the energy  in terms of the w ( ~ )  : 

(4.15) 

The first term  here is the  free energy of the electron gas 
when  the crystal is unstrained. The second term is linear 
in  the  strain  and gives rise to  the dilatation described in 
the preceding  section. The  third  term is quadratic in the 
strain  and represents  a change  in  the elastic  constants. 
This change can be  elucidated by comparing Eq. (4.15) 
with the elastic  strain  energy: 
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4 wg=- B(&11+&22+&33)2+ - C ' ( & 1 1 2 f E 2 2 2 + & 3 3 2  
2 ' [  3 

-EllE22-&22E33-&1lE33)  +4C44(&232+E132+&122) 1 
(4.16) 

Here  the coordinates 1, 2, 3 are  the  fourfold axes of the 
crystal. B is the bulk modulus  and C' is the  shear  con- 
stant C'=(l/2)(cl1-cl2). When w ( ~ ) ,  defined by Eqs. 
(2.2) and (4.6) is written  in  terms of the strain com- 
ponents  referred  to  the  cubic crystal axes it  has  the  form 

1 
W ( i )  - 

kT 
[(Ed++Eu) (&11+&22+E33) 

+ * E 2 3  5 E 1 3  * E 1 2 ) ]  . (4.17) 

In Eq. (4.17) the sign of is the  same as that of 
ap(i)uv(i). It is easily shown by using Eq. (4.17) that 

Substituting  this into Eq. (4.15) and  comparing with 
Eq. (4.16) shows that  the  only elastic constant affected 
by the electronic  energy is c44. The  change of ~4~ is 

(4.18) 

In Eq. (4.18) v0 is to be  determined from Eq. (4.12) at 
temperature T .  

The  temperature dependence of (Sc44/c44) is con- 
veniently referred to  the degeneracy temperature TO, 

Figure1 The  functions L44(70)# Eq. (4.201, a n d  
L456(~0), Eq. (4.261, which  describe  the  tem- 
perature  dependence  of  the  electronic 
contribution  to  the  elastic  constants. 

1 . 2 ,  I 1 I 

I 
0 
0 1 2 3 

l / T D  

(4.22) 

The  temperature dependence of is plotted in 
Fig, 1. Numerical values for  germanium  are 

(8~44/~44)0=-2.1 X lo-' N1I3 

T 0 ~ 7 . 3  X N2/3 , 
where N is in ~ m - ~  and TD is in OK. These values are 
plotted  in  Fig. 2. 

269 
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The results obtained by retaining the terms of  third 
order  in  the  strain in the expansions of Eqs. (4.1 l), (4.14) 
and (4.15) are  also presented here.  The essential result is 
a value for the  electronic  contribution  to  the  third-order 
elastic  constants. The interest in this  problem  stems from 
the  fact  that  the  third-order elastic constants of pure ger- 
manium  have recently  been  measured  by  Bateman,  Mason 
and M~Skimin .~  

The retention of terms of third  order  in  the  strain in 
the earlier  expansions of this  section gives rise to  an addi- 
tional term  in  the  equation  for  the electronic free energy, 
Eq. (4.15), of magnitude 

Ae=NkT(P+2C03-3V6G2) [F1/2”/6Fl/z(qo)] .  (4.23) 

Here 
- 
W S = # - & v ( i ) 3  . 
When d i )  is expressed in  terms of the  strain  components 
referred to  the cubic  crystal axes it is found  that 

A comparison of Eqs. (4.23) and (4.24) with the 
phenomenological definition of the  third-order elastic 
constants5r6 shows that they  represent  a contribution  to 
c456. The electronic contribution  to c456 is 

(4.25) 

When  the  temperature dependence of c456 is referred 
to  the degeneracy temperature  as described  in  connection 
with  Eqs. (4.19) to (4.21), it  can be written  in the  form 

~c456=(SCgSF)OL456(rlO) 

L456(70) =(4/3) (3F1/2(”/2)4’3(F1/2’’/F1/2(7)o)) 
(4.26) 

( sc456)o=226/3 = 4 / 3  3-10/3 m“? EU3/h4N1/3 . (4.27) 

The temperature-dependent function L456 (TO) is plotted 
in  Fig. 1. The calculated values of Sc45f at 77°K and 
300°K are shown as functions of electron  concentration 
in  Fig. 3. Similar  curves for  other  temperatures  can easily 
be  constructed  with the aid of Eqs. (4.26) and (4.27) 
and Fig. 1.  

The most  interesting feature of  6c456 is its large magni- 
tude.  Bateman, et al,5 found  that c456=- 1.65 X 10l2 
dyne/cm2 for  pure germanium. Thus,  as  can be  seen from 
Fig. 3, the electronic contribution  to C456 can be much 
larger than c456 of pure germanium. It appears  that  the 
measurement of the third-order elastic constants, although 
considerably  less accurate  than  that of second-order  con- 
stants, may provide  a more sensitive test for electronic 
effects. 

The high sensitivity of the third-order  elastic  constants 
to the electronic contribution is a result of the  fact  that in 
the electronic theory  the  strain is multiplied by a factor 
( E , / < ) .  Therefore, as the  order of a term  in  the  strain 

270 components  increases, it contains an increasing number 
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of powers of the  factor (a,/%). Since deformation poten- 
tial  constants are usually in  the  range 1 to 10 ev, the 
result that  third-order elastic  constants have a  high  sen- 
sitivity to electronic  contributions  should be generally 
applicable to systems with an electronic  degeneracy  tem- 
perature of less than, say, 1000°K. 

5. Model of the valence band 

The  structure of the valence band is much  more compli- 
cated  than  that of the conduction band. Several simpli- 
fying  approximations will be  introduced here  in  order  to 
obtain a tractable problem. As a  consequence the results 
obtained must  be regarded  as suggestive rather  than 
quantitative. 

The model  used is as  follows: 
(1) The valence  band is regarded as  an isotropic 

parabolic  band. In  other words, the  hole energy  as  a 
function of crystal momentum is assumed to have  the 
form E=p2/2m,*. In  particular,  the effect of the valence 
band which is split off by  spin-orbit  coupling is neglected. 
This  is a rather  crude approximation,  as  doping levels 
at  which  the  Fermi energy is larger  than  the spin-orbit 
splitting of the  bands  can be  attained  in  germanium. 

( 2 )  Only the “heavy hole”  band will be considered. 
This is because  most of the holes are in the  large mass 
band. 

(3) The effect of strain on  the  band will be treated in 
the  approximation introduced  by  brook^,^ according to 
which the effect of strain  on  the energy of the  state of 
crystal momentum p is 

S E ( p )  = [ B d )  l + E , ’ ( F - +  l)] : e .  

Figure3 Values of the electronic contribution to 
c . , ~ ~  in degenerate  germanium at 77°K 
and 300°K. 



The  parameters Es' and Sd' are again known as deforma- 
tion  potential  constants. Eq. (5.1) is only true  for states 
sufficiently far  from p=O that E(p)>> SE(p). The  frac- 
tion of states  excluded  by  this  condition is negligible in 
the present  problem. 

(4) The calculations will be carried  out only for  the 
strictly degenerate case, [>> kT.  A temperature depend- 
ence of the effect will appear when T approaches  the 
degeneracy temperature. 

6. Shear elastic constants of degenerate p-type Ge 

As in the case of n-type germanium,  the dilatational 
effect, described by Zd', leads to  the  change  in volume 
previously discussed, but  to  no  change in the elastic 
constants. It will not be considered further here. The 
effect on  the  shear  constant will be investigated by cal- 
culating the energy of a pure axially symmetric shear 
strain : 

E = F ( e e - $  1 ) .  (6.1) 

With this strain the energy of state p is 

7 

E(p)=(p'/2mv") + E J ' ~ ( ~ ~ ~ '  6'-1/3). (6.2) 

Here 6' is the angle between p and the axis of strain, e. 
First it is necessary to calculate the  Fermi level of the 

strained  crystal.  This is determined by the condition that 
the  concentration of holes is N:  

J o  J o  

From Eq. ( 6 . 2 )  

p(b, 0 )  =[2mv" 5-2mv'"Es' &(cosz  0-1/3)]1/2. (6.4) 

When Eq. (6.3) is evaluated  with the limit given by 
Eq. (6.4) it is found  that 

to  terms of second order  in E .  The condition that N is 
independent of the  strain shows that 

where [ O  is the  Fermi energy in the unstrained  crystal. 
The energy of the holes is 

By using Eqs. (6.4),  (6.5) and (6.6), W e  is found  to be 

The elastic  energy per unit  volume of the  strain defined 
by Eq. (6.1) is 

n 

w - " E 2 ,  
L 

g- 3 

where C is an elastic shear constant.  (Because of the 
approximate  nature of the calculation no  attempt is 
made  to distinguish between the two types of shear.) 
The change of C is therefore 

The resemblance of Eq. (6.8) to  the corresponding 
equation for n-type germanium,  Eq. (4.21) is apparent. 
Substituting values for p-type germanium  from  Table 1 
Eq. (6.8) becomes 

It is seen that this effect is two orders of magnitude 
smaller than  the effect in n-type germanium. Two factors 
contribute to this result: ( 1)  the numerical coefficient 
which appears  in  Eq. (6.8) is about  one  order of magni- 
tude smaller than  the coefficient in  Eq. (4.21); ( 2 )  the 
deformation potential constant Z8' is less than one-third 
E,. Thus, in  spite of the  facts  that considerably  larger 
values of N can be attained  in  p-type than  in n-type 
germanium  and  that  the  theory presented is extremely 
crude,  it  appears  that a much smaller effect is available 
for study in p-type  germanium. 

7. Effect of donors on the shear elastic constants of 
Ge 

As explained  in Section 1, electrons in germanium  with 
fewer than 1017 donors per cm3  are  trapped in localized 
levels associated with the  donor  atoms  at low  tempera- 
tures.  Experiments  show that  the energy of the bound 
electronic  states is changed  by  elastic strain.8-11 The 
theory of the change  has been given by Price.l2>l3  The 
energy of occupied donor levels is part of the  total 
energy of the semiconductor  crystal. The  change of the 
donor energy  with strain is a contribution  to  the strain 
energy of the crystal. This dependence of the strain 
energy function of the crystal on  the  number of occu- 
pied donor levels implies  a  dependence of the elastic 
constants on  donor concentration. The electronic  con- 
tribution  to  the elastic constants of germanium  contain- 
ing donor impurities will  be calculated  in the following 
sections. 

8. Model of the donor states 

The  reader is referred  to papers published by several 
authors in 1955 and  to  the  paper of Price for  the full 
theory of the  hydrogen-like donor states  in  germa- 
nium.l2-lG  Only a brief  description of the  content of 
these papers is given here. 

In  the effective mass approximation the hydrogenic 
1s-like ground state of an electron  bound to a donor  has 
a degeneracy of four in an  unstrained crystal. The  four 
wave functions  are  the hydrogenic functions derived 
from  the  four valleys. Thus  the  Hamiltonian which 
determines  the  energy levels can be written 
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-Eo 0 0 0 
0 -Eo 0 0 
0 0 -Eo 0 
0 0 0 -Eo 

x= 

in  a  representation based on  the individual single-valley 
hydrogenic wave functions. Here Eo is the effective 
Rydberg in  germanium  and  the  zero of energy is the 
energy of the lowest state of the  conduction  band. Devi- 
ations from  the effective mass approximation  introduce 
additional  elements X i j  into this Hamiltonian. Because 
of the equivalence of the valleys the most  general way 
of introducing  such elements modifies the  Hamiltonian 
of Eq. (8.1 ) to  the  form 

I -Eo-A - A   - A  -A I 
- A  " E o - A  - A  - A  
-A - A  -Eo"h - A  

I - A  - A   - A  

The energy levels determined  by Eq. (8.2) are 

E1=-Eo-A"3A (single) 

E ~ = - E o - A + A  (triple). ( 8 . 3 )  

Experiment shows that A and A are of the  same  order 
of magnitude. The  quantity 4A is known  as the chemi- 
cal  shift. 

According to  the  theory of Price,lZ when the crystal 
is subjected to a  homogeneous strain  the  Hamiltonian of 
Eq. ( 8 . 2 )  is to be modified by displacing each of the 
single-valley hydrogenic energies, the diagonal terms in 
Eq. ( 8 . 2 ) ,  by the  amount by which the strain displaces 
the energy of the valley from which the  state is derived. 
In  the following, for simplicity of notation we choose 
the  zero of energy  as (Eo+A)  below the bottom of the 
conduction band, since the  parameters EO and A do not 
enter  into  the  theory of the effects of strain. Thus the 
Hamiltonian which  determines the energy levels of a 
donor  in a  strained germanium crystal is 

Here  the E ( i )  are defined by Eqs. ( 2 . 2 )  and ( 2 . 3 ) .  

We  shall  also have occasion to  refer to the  form of 
the  donor wave  functions. The single-valley hydrogenic 
wave function of valley ( i )  has  the form13 

$Ai)(r) =+ci)(r)u(k(i), r) . ( 8 . 5 )  

Here u(kci),  r) is the Bloch function  at kc$), the mini- 
mum  point of valley ( i )  in k space,  normalized  in  a unit 
cell. +(i)(r) is an envelope function which has  the  ap- 
proximate  form 

~ $ ( ~ ) ( r )  = (Xb2a)-1/2 exp{- [ ( ~ z + y 2 ) / b ~ + z ~ / a ~ ] ~ / ~ }  . 
(8.6) 

272 The right-hand  side of Eq.  (8.6) is expressed in a 
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coordinate system  in  which the 2 axis is the symmetry 
axis of the valley, one of the [ 11 1 1  type axes. Since a 
and b are  large  compared to the lattice parameter of the 
crystal, +(i) (r) is a slowly varying function of position. 
It  can be regarded  as  a constant over each  unit cell for 
most purposes. 

! / be9e"- 

10- * 

\ a 10-3 
ce 
I :i N 10'6 10" 10'8 1 019 

Figure4 Calculated values for the electronic  con- 
tribution to the elastic constant c44 of ger- 
manium at very low temperatures. 
The lines in the left part o f  the Figure are cal- 
culated from the independent  donor model, 
and refer to antimony and arsenic donors, 
respectively.  The line in the right part of the 
Figure is calculated from the degenerate elec- 
tron gas model,  Sec. 4 .  The  dotted line shows 
the estimate of the decrease in  the effect due 
to interaction between donor  states  which is 
given in Sec. 10. 

3 0  I I I I I 

0 1 2 3 

I T / ( 4 A / k )  

Figure 5 The temperature dependence of the elec- 
tronic contribution to c44 due to excitation 
of electrons from the singlet ground state 
to the triplet. 



The wave function of any bound donor  state is a 
linear  combination of the I / ( i )  given by Eq. (8.5). The 
wave function  of  the lowest state in an unstrained  crys- 
tal contains equal  contribution  from all of the valleys: 

#(r)  =(1/2) 2 I/ti)(r) . 
The coefficients of the +(i) in the  donor wave functions 
of a  strained  crystal can be found  from  the  Hamiltonian 
of Eq. (8.4). 

The  parameters of the  donor states associated with the 
most important  donor impurities are given in Table 2. 

9. Calculation of c44 

The effect of the electronic energy on  the elastic con- 
stants is determined by the solutions of Eq. (8.4) 
expanded to  terms of second order  in  the E ( i ) .  This 

Table2 Properties of hydrogenic  donor states in 
germanium 

"" ~ ~ ~~ ~ 

Property Donor Value 

Eo - 0.009 1 ev5 
4A P 3.0 x 1 0-3 evb 
4A As 4.1 x 10-3 evb, c ,  

4A Sb 5.6 x lW4 evd 
b 64 x cm" 
a 23 x cm" 

~ ~~ ~ " _  ~~ ~ - ~ ~~ 

=See References 14, I S  and 16. 
bSee Reference 10. 
 see Reference 9. 
dSee  Reference 8. 

expansion can be worked out by first diagonalizing 3% 
with  respect to A. 

In  one  form this gives 

Now the  terms  in  the ECi) can easily be treated as a 
perturbation.  The energy of the lowest state  to  terms of 
second order in the energy is 

As before, X means summation over the  four valleys. 
We have previously used the  result expressed by Eq. 
(9.1) in the theory of the scattering of phonons by 
donors  in  germanium.22  The similarity of Eq. (9.1) to 
Eq. (4.13) is evident and  the evaluation of (3-W) 
given by Eq. (4.17) and  the  equation which follows it 
is also  useful  here. The total  electronic  energy in  the 
low-temperature  limit is N ,  the electron concentration, 
times the E given by Eq. (9.1). Thus  it is seen, again  by 
comparison  with Eq. (4.16), that  the change of c44 is 

and  that  the  other elastic  constants are not  changed. 
(The subscript D is intended to indicate that  the  effect 
arises from  donor impurity states.) 

For antimony  donors  in germanium 

( 8 ~ 4 4 / ~ 4 4 ) 0 D =  - N/3.5 X 10" . (9.3) 

This value and  that  for arsenic donors  are plotted  in 

Fig. 3. A is larger  for arsenic and  phosphorus  donors 
and  the calculated  value of Bc44/c44 is correspondingly 
smaller. The values calculated for  the degenerate  case  in 
Sec. 4 are also shown in Fig. 4 for comparison. 

Eqs. (9.2) and (9.3) refer to  the case  in  which all of 
the electrons are in the singlet state.  Electrons will be 
excited out of this state  at relatively low temperatures. 
In  the case of antimony donors  the triplet state is very 
close to  the singlet, and excitation of electrons from  thc 
singlet into  the triplet will destroy the effect in question 
at low temperatures. Other electronic  states of the  donor 
are  much higher than  the triplet, at least for antimony 
donors,  and  are ignored here. 

The  temperature dependence of ( G c ~ ~ / c ~ ~ ) D  due  to 
excitation of electrons from  the singlet to  the triplet is 
most easily obtained by calculating the electronic free 
energy from  the energy levels of a donor  in a  crystal 
subjected to a shear  strain with a (1  11) axis. The energy 
levels for this  case  have been given by Price.12 The 
details will not be given here. The result is that  at finite 
temperature  the value of ( Bca4/c44)~ given by Eq. (9.2) 
must  be multiplied by the  factor 

LD = [ 1 - e-4A/k*+ (4A/kT) e-4AIkT] /( 1 + 3e-4A/w) . 
(9.4) 

This  factor is plotted  in  Fig. 5. 273 
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10. Effect of donor interactions 

The  donors were  considered  as isolated non-interacting 
centers in  the preceding  section. In  fact, however, the 
donor wave functions  have a  fairly  large  range, and  at 
the concentrations at which the  donor contribution to 
the elastic  energy is measurable  they  overlap  appreci- 
ably. The  phenomenon of impurity  conduction is a man- 
ifestation of this overlap of the  donor wave functions. 

The problem of the energy levels of a system of inter- 
acting donor states is extremely  complicated.  Progress 
is possible only when  drastic simplifying  approximations 
are introduced. One  attempt  to estimate the magnitude 
and type of effects to be expected is presented in  the 
Appendix, in which the effect of strain  on  the energy of 
an electron  bound to a pair of donor  atoms is calculated. 
The calculations of the Appendix suggest that  the  inter- 
action of donor states can  have  an  important effect on 
the  electronic  strain-energy.  Some  generalization from 
the results for the two  simple cases considered there is 
necessary for  an evaluation of this effect. Such a gener- 
alization and evaluation is the objective of this section. 

The  strength of the interaction between donor states 
is measured by K ,  an exchange  integral  between elec- 
tronic wave functions on different donor atoms. As dis- 
cussed in  the Appendix, there  are two cases which can 
be treated simply: (1)  the exchange  integral has  the 
value K for  the wave functions derived from  one valley 
and vanishes for  the wave functions derived from  the 
other  three valleys; (2)  the exchange  integral has  the 
value K for  the wave functions derived from two of the 
valleys and vanishes for  the wave functions  derived from 
the  other two valleys. 

The electronic effect on  the elastic constant is reduced 
by a factor of two when K=4A and by a factor 10 when 
K = 8 A  in case ( 1 ), the case of interaction  through  one 
valley (see Fig. 7). On  the  other  hand, in the case of 
interaction  through two valleys the effect is almost un- 
affected by the interaction,  its  value for very large K 
being 4/3 of its  value for K=O. The difference be- 
tween the two cases can  be readily  understood by con- 
sidering  Fig. 5. The effect becomes small  in  case (1) 
because the lowest state rapidly  moves  away from  the 
other states when K increases. This  has two conse- 
quences: (1)  the energy denominators of the second- 
order  perturbation all become  large; (2) the matrix 
elements of the  perturbation all become  small  because 
the ground state develops into a state derived from only 
one valley. 

Case ( 2 ) ,  two interacting valleys, is different because 
the energy difference between the lowest state  and  the 
next state remains  small, approaching 2A at large K .  
The  fact  that  no  term in K is  found in the lowest energy 
denominator  here is a  consequence of the assumption 
that K(l)  is exactly equal  to K(Q. Such  a  phenomenon 
will not occur in  general. In general  the KCi) will all be 
different, will appear  in all of the energy  denominators 
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to some  degree, and will therefore reduce the electronic 
strain  energy if they are  much  larger  than A. In  the 
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general  case we expect that  the energy levels will be 
rather  haphazardly distributed through a  region of width 
2R in energy,  where is some sort of average of the 
KCi). 

When  the  interaction is large  and of a  general type 
some  idea of the  nature of the elastic phenomena  can be 
obtained  by treating A in  the  Hamiltonian of Eq. (A2) 
as a perturbation.  We  have  not  done this completely, 
but  only to see the  nature of the terms  which  occur. A 
typical quadratic  term in the expansion of the energy  in 
terms of the E ( i )  is 

-Az(E(1)-E(*))Z/(K(l)_K(2))3. (10.1) 

NOW, it can  be seen that  the first terms of the  factors L, 
Eq. (A8), and M ,  Eq. (A14), i.e., the  terms ( l / y 3 )  and 
( l / t3),  are  terms  in  the energy of just  this form.  They 
have  the value one  in  the absence of interaction and  the 
value ( 4 A / K ) 3  in  the case of large K .  Thus they  repre- 
sent a change in the electronic  contribution to  the strain 
energy  by  a factor: 

Q=64(A/K)3. (10.2) 

The comparison  with Eq. ( 10.1) suggests that these first 
parts of L and M are typical of the general  case and  that 
the  fact  that  the remaining parts of L and M have differ- 
ent  form is a  result of the special character of the interac- 
tion assumed in the derivation of Eqs. (A6) and  (A12). 
Thus we conclude that  the electronic  strain  energy  should 
be modified by a factor given roughly by Eq. (10.2) in a 
theory of pairwise interaction of donors. 

We use a simple scaled hydrogenic  value 

E=(q2/Kb)[ l+(R/b) l  exp(-R/b)  (10.3) 

for K in  order  to  obtain numerical estimates. Here R is 
the distance between donors. It is related to  the  donor 
concentration by (r/6)R3=N-l. The Bohr radius  has 
been  replaced by b (see  Eq. (8 .6)  ) because the exchange 
integrals will receive their greatest contributions  in cases 
in  which the overlap of the wave functions is determined 
by b rather  than by a. 

The result of modifying the calculation of Sec. 9 by 
the present method is shown  by the dotted lines in Fig. 3. 
When  the  interaction is small and Eqs. (10.2) and  (10.3) 
give Q>l ,  (sc44/C44)OD is calculated from  Eq. (9.2). 
When Q<l the result of Eq. (9.2) is multiplied by Q. 
The transition  between formulas occurs at a donor con- 
centration of about 6 X 1016 cm-3 for  antimony donors. 
For arsenic donors Q is less than  one  up  to  the degener- 
acy concentration, 2 x lOI7  ~ m - ~ .  This very rough estimate 
of the effects of interaction of donors suggests that 
( k 4 4 / C 4 4 ) O D  will attain values greater  than 1 % in  anti- 
mony-doped  germanium  and  greater  than 0.5% in 
arsenic-doped  germanium. 

1 1. Relation to experiment 

Several  experimental  results which are relevant to  the 
above  calculations are available. The dilatational effect 
of gallium acceptors  in  germanium is definitely smaller 



by at least  a factor of two than  that calculated17 in Sec. 3. 
The reason for this is not understood. It is possible, how- 
ever, that  the value used for &' in Sec. 3 is in  error by 
this amount. 

Modern techniques for determining  elastic  constants 
usually depend on measurements of the velocity of elastic 
waves. It is therefore necessary to examine the effect of 
the temporal variation of the  strain  on  the electronic 
strain  energy.  According to the theory  presented  in Secs. 
3 and 4, the lowering of the energy of the strained  crystal 
which accounts  for  the decrease of c44 depends on a re- 
establishment of statistical  equilibrium of the  electron 
populations of the valleys when the  strain is applied. If 
the strain varies so rapidly that  the electron  populations 
cannot follow their equilibrium  values, then  the effect in 
question will not be present. The equilibrium of the elec- 
tron populations is achieved by intervalley  scattering. 
Hence, the condition for  the existence of the effect in the 
presence of an oscillatory strain is that  the  frequency of 
the strain  be  small compared  to  the intervalley  scattering 
rate.  The total  scattering rate in  degenerate  n-type  germa- 
nium is about 2 X 1013 sec-l, which provides an  upper 
limit to  the intervalley  scattering rate. A lower limit  can 
be  estimated to be lo9 sec-l in  degenerate  germanium.ls 

Thus it is seen that  the elastic constants  measured by 
the  ordinary ultrasonic methods should  include the effect 
of the electronic energy. In  fact,  the general features of 
the effect on c44 have  recently been observed15 by meas- 
urements  at 10 Mc/sec on germanium  with  a donor con- 
centration of 3 . 5 ~  1019 ~ m - ~ .  However, the measured 
effect was only about three-fourths as great  as the pre- 
dicted  one. 

Another  property which is sensitive to  the elastic  con- 
stants is the low-temperature specific heat.  Bryant  and 
Keeson  have  recently  measured the  Debye  temperature 
of heavily doped n-type germanium.2o It is not  clear that 
the present  calculation  applies to the elastic waves which 
are  important in  this  experiment,  since phonons with 
frequencies up  to 5 X sec-I make significant contribu- 
tions to  the specific heat  at  4°K.  In  any case, by using the 
tables of deLaunayZ1 and  Eq.  (4.21) it can be estimated 
that ( S80/80) = - 6 x N1/3 for germanium. The ef- 
fect  found by Bryant and K e e s o P  has this sign and 
order of magnitude. The extent of quantitative  agreement 
is difficult to evaluate  because of the uncertainty of the 

experimental  result. 
The  interaction between elastic  strain and  donor elec- 

trons which is responsible for  the  change of c44 calculated 
here also is responsible for  the scattering of phonons by 
occupied donors.22) 23 The  rapid disappearance of this 
interaction when the  antimony concentration is raised 
above 6 X 1016  cm-3 which is predicted  by the  theory of 
interaction of donor pairs  should also be effective in elim- 
inating the  thermal resistance due  to  the donors. Goff and 
PearlmanZ2  have measured the low-temperature thermal 
resistance of antimony-doped germanium over the con- 
centration of range 5 x 1015 cm-3 to 2 x l0ls c m 3 .  They 
find that  the  thermal resistance  varies  smoothly and mon- 
otonically between the independent donor  and  the degen- 
erate regimes, without evidence of the disappearance of 
the strain-electron interaction indicated by the dotted  line 
of Fig. 3. This result suggests that  our method of esti- 
mating  the effect of the  interaction of donor states is 
inadequate. It  appears  that  although  the effects of donor 
interaction  are very important  in  the  range 5 x ~ m - ~  
to 2 X 1017  cm-3, available theory does  not furnish a satis- 
factory method of treating such effects. 

Appendix: The effect of strain on the  energy of an 
electron bound to a donor pair 

The problem of the energy levels of an electron bound  to 
a pair of donor  atoms is similar to  that of the hydrogen 
molecule ion.25 It is,  however, much  more complex be- 
cause of the  fact  that  the single donor hydrogenic wave 
functions  are  linear combinations of wave functions de- 
rived from  the  four valleys. The problem of the energy 
levels of two electrons bound  to a  pair of donor atoms is 
analogous to  that of the hydrogen  molecule.2F This prob- 
lem, is, however,  related to  that of the molecule-ion by 
the molecular orbital approximation,  in  which the energy 
of the molecule is regarded  as the sum of contributions 
from one-electron  states of the molecule-ion type.27 Thus, 
in order  to gain some insight, admittedly  very rough,  into 
the question of the effect of the interaction of donor 
states on  the electronic contribution  to  the elastic  con- 
stants, we will investigate the effect of strain on  the energy 
levels of  an electron bound  to a pair of donors. 

The  Hamiltonian of an  electron bound to a  pair of 
donors  has  the  form, by extension of Eq. (8.4) : 
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Here  the first four states are  the single-valley hydrogenic 
states of an electron on  donor A and  the second four 
states are  the single-valley hydrogenic  states of an elec- 
tron on donor B.  KCi) is the exchange  integral of the 
wave functions of valley ( i ) ,  Eq. (42.12) of Reference 
21. The KCi)  will be different in  general  because of the 
differing anisotropies of the single-valley wave functions. 
The  matrix elements of the type X(aiBj) ( i # j )  are negli- 
gible because of the orthogonality of the wave functions 
of different valleys in  the  unit cell.z8 P i )  is the coulombic 
energy of an electron in  the ( i )  wave function  on  donor 
A due  to  the presence of donor B, Eq. (42-8) of Refer- 
ence 20. The orthogonality  integral, Eq. (42-11) of 
Reference 14 has been neglected,  since  in the case of 
importance  here  the  donors  are separated by many effec- 
tive Bohr  radii. For  the  same reason the . I C i )  are essen- 
tially independent of ( i )  , and will be omitted below by 
shifting the  zero of energy  by an  amount J ( i ) .  Then  the 
Hamiltonian (A1 ) is easily diagonalized with respect to 
the KCi) to give 

x= 
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f strain on the Figure 7 The ratio  of the effect o 
energy  of  a system of donor pairs to the 
effect of strain on the energy of isolated 
donors as a function of the exchange 
integral. 
Curve L is  given  by Eq. ( A S )  and refers to 
exchange in only one  valley.  Curve M is 
given  by Eq. (A14)  and refers to exchange 
in two valleys. 

I I 
4 6 

( / A  

Thus  the KCi) appear  in  the  Hamiltonian in the  same way 
as the shifts of the valley energies with strain. However, 
the KCi) are not necessarily small compared  to A, and 
cannot be treated by the  perturbation  theory used in de- 
riving  Eq. (9.  l ).  In  fact,  the energy levels determined by 
(A2) cannot be found in the general  case by simple 
algebraic  methods. 

In certain  very special cases (A2) reduces to  forms 
for which the energy levels have been given by Price.12 
These  are (1) three of the KCi) have one value  and the 
remaining KCi) has a  different  value; (2) two of the KCi) 
have one value and  the  other two have  a  different value. 
Case ( 1 ) is equivalent to  that of a ( 1 11 ) axis of strain 
and case (2) is equivalent to  that of a ( 110) axis of strain 
as  considered by Price.12 

-A 

-A 

-A 

E(4) +K(4) 

0 

0 

0 

0 
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To investigate case (1) let K ( l )   = K  and K ( 2 )   = K ( 3 )  = 

K ( 4 )  =O. Then  the energy levels determined by the  Ham- 
iltonian of Eq. (A2) are12 

E = A  (four) (A3 1 
E = - A ( 1 + 2 y ) + + K  (A41 

where 

y = [ 1 + ( K / 4 A )  + ( K / 4 A )  2 ]  . (A5 1 
Eqs. (A4) and (A5) determine  four energy levels, since 
the sign of K and  the sign of y may be chosen  independ- 
ently. The sign of K must  be the  same  in Eqs. (A4)  and 
(AS). The energy levels are shown in Fig. 6a.  (It should 
be  remembered that  the  functions shown  in Fig. 6 do not 
include the coulombic  integral, J . )  The dependence of 
the energy of the lowest state  on  strain is found by a 
procedure analogous to that leading to  Eq. (9.1 ) , namely, 
the  Hamiltonian is diagonalized  exactly with respect to 
K and A, and  the effects of strain are included by per- 
turbation theory. The result is 

E=-A(l+2y)-+K+&[E(1)+~(E(2)+E(3)+E(4))] 

E = A i . K  (A101 

E = - A ( 1 * 2 # ) t K / 2 ,  (A1  1) 

where t [ 1 + ( K / 4 A )  2 ]  Four levels are obtained 
from  Eq.  (A1 1) by choosing the signs of and of K inde- 
pendently. The levels are shown in Fig.  6b. 

We  obtain  for  the energy of the lowest state in a 
strained  crystal 

As in case ( 1 ) ,  the  contribution of the electrons to  the 
strain energy function involves averaging  over all possi- 
ble  orientations of the valleys. Thus 

W,(quad) =M(--N/64A) [ 4 ~ E ( i ) 2 - ( P E ( i ) ) 2 ]  (A131 

The  factor M ,  which  represents the  change of the elec- 
tronic  contribution to  the elastic constant because of the 
interaction of donors,  has  the values shown in  Fig. 7. 

-E(3)E(4)   -E(4)E(Z)  -E(2)E(3))]  . (A6) 

The valley which gives rise to  the exchange  integral will 
be randomly distributed among  the  four valleys of ger- 
manium in  a  doped  crystal. Thus,  to find the  contribution 
of donor pairs to  the strain  energy function of the crystal 
we assume that  the valley (1) of Eq.  (A6) has  a  proba- 
bility of one-fourth of being each of the  four valleys. 
Summing  over the  four cases with ( N / 4 )  electrons  in 
each case we find for  the  quadratic  term in the energy of 
the crystal 

W,(quad) = L  (- &) [4CE(i)2-(PE(i))2] (A7) 

It is apparent  that  the second part of Eq.  (A7) is identi- 
cal  with the  quadratic  term  in  Eq. (9.1 ) . Therefore  the 
factor L, Eq. (A8), represents the  change of the elec- 
tronic  contribution to the elastic constant  due  to  the 
interaction of donors. The dependence of L on ( K / A )  is 
shown  in  Fig. 7. 

To investigate case ( 2 )  above  let K ( l )   = K @ )   = K  and 
K ( 3 )   = K ( 4 )  =O. Then  the energy levels determined by the 
Hamiltonian of Eq. (A2) are1? 

E = A  (two) (A91 

Acknowledgment 

We  are indebted to J.  C. Marinace  for supplying the 
specimen used to illustrate the elastic deformation  of 
germanium on  the  front cover. 

References 

1. C .  S. Smith, Phys.  Rev. 94,42 (1954); for a recent review 
see R. W.  Keyes, Solid  State  Physics 11, 149 (1960). 

2. H. Jones, Phil.  Mag. 41, 663 (1950); R. S. Leigh, Phil. 
Mag.  42, 139 (1951).  

3.  C .  Herring, Bell  System  Tech. J .  34, 237 (1955). 
4. J. McDougall and E. C .  Stoner, Phil.  Trans.  Roy. SOC. 

5. T. Bateman, W. P. Mason  and  H. J. McSkimin, J .  Appl .  

6. F. Birch, Phys.  Rev. 71, 809 (1947). 
7. H. Brooks in Advances i n  Electronics  and  Electron 

A237, 67 (1938). 

Phys. 32, 928 (1961). 

Physics 7, 117 (1955). 

(1960).  
8. H. Fritzsche, Pkys.   Rev.  115, 336 (1959); 119, 1899 

9. G. Feher, D. K.  Wilson  and E. Gere, Pkys.  Rev.  Letters 
3, 25 (1959); D. K. Wilson and G. Feher, BLIII. A m .  
Phys.  Soc. 5, 60  (1960). 

10. G. Weinreich and H. G. White, BLI~I .   Am.   Phys .   SOC.  5, 
60  (1960). 

1 1 .  J .   J .  Hall, unpublished. 
12. P. J .  Price, Phys.  Rev. 104, 1223 (1956). 
13. W. Kohn, Solid  State  Physics 5, 258 (1957). 277 

IBM JOURNAL OCTOBER 1961 



14. C .  Kittel and  A.  H. Mitchell, Phys.  Rev. 96, 1488 (1955). 
15. M. Lampert, Phys.  Rev. 97, 352 (1955). 
16. W. Kohn  and  J. Luttinger, Phys.  Rev. 97, 1721 (1955); 

17. N. Stempel,  private  communication. 
18. G. Weinreich, T. M. Sanders, Jr.  and H. G.  White, Phys. 

Rev. 114, 33 (1959); P. J. Price, J .  Appl.  Phys. 31, 949 
(1960). 

19. L. J. Bruner and R. W. Keyes, Phys.  Rev.  Letters 7, 55 
(1961). 

20. C.  Bryant and P. Keeson, to be published. I thank these 
authors  for communicating  their results prior to publica- 
tion. 

98, 915 (1955). 

21. J. delaunay, Solid  State  Physics 2, 220 (1956). 

22. R. W. Keyes, Phys.  Rev. 122,117  (1961). 
23. R. J. Sladek and R. W. Keyes, to be published. 
24. J. Goff and N. Pearlman, in Proceedings of the  Seventh 

International  Conference on Low  Temperature  Physics 
(1960), (University of Toronto Press, to be published). 

25. L. Pauling and E. B. Wilson, Introduction to Quantum 
Mechanics, McGraw-Hill Book Company,  Inc., New 
York, 1935, pp. 327-340. 

26. Zbid., pp. 340-358. 
27. Ibid., pp. 381-382. 
28. A. Miller and E. Abrahams, Phys.  Rev. 120,  745 (1960). 

Received  June I ,  1961. 

278 

IBM JOURNAL OCTOBER 1961 


