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R. W. Keyes

The Electronic Contribution
to the Elastic Properties of Germanium

Abstract: Theories of several elastic effects resulting from the contribution of electrons to the strain energy

function of germanium are presented. They show that the elastic properties are appreciably changed by

doping with donor and acceptor impurities. The properties considered are: (1} volume, (2) elastic constants

of degenerate n-type material, (3) third-order elastic constants of degenerate n-type material, (4) elastic

constants of degenerate p-type material, (5) elastic constants of material containing electrons bound to
donors, (6) elastic constants of material containing electrons bound to pairs of donor atoms, The most striking
effect is found for the case of degenerate n-type germanium, in which the theory predicts that c,, can be

lowered by 8% with attainable doping levels.

1. Introduction

Piezoresistance experiments show that the electronic
energy levels of a multivalley semiconductor depend on
the state of strain of the semiconductor crystal.! The
dependence of the electronic energy levels on strain
implies that the strain energy function of the crystal will
depend on the occupation of the electronic levels. The
purpose of this paper is to evaluate the effect of the
electronic part of the strain energy on the elastic prop-
erties of germanium. Several of the effects which we
predict here should be experimentally observable.

Electronic effects are very important in metals. Jones
and co-workers? have attempted to interpret some fea-
tures of the elastic properties of metals in terms of
multivalley-type models similar to those used here. A
quantitative interpretation of the effects in metals is not
possible at present, however, because of the lack of
information concerning parameters of the models such
as deformation potential constants, effective masses, and
carrier concentrations. Such parameters are accurately
known for germanium, which therefore offers a unique
opportunity for the study of the influence of the elec-
tronic energy on the elastic constants.

Impure germanium can be divided into two classes:
(1) If there are more than about 2 x 10!7 electrically
active impurities per cm® the electrons remain in the
conduction band at all temperatures. They therefore
form a degenerate electron gas at very low temperature.
This kind of germanium is called degenerate germanium.
(2) If there are less than 10'7 impurities per cm?® the
electrons are trapped in localized states associated with

IBM JOURNAL * OCTOBER 1961

the impurity atoms at low temperatures. These localized
states have energies just beyond the edge of the relevant
band and are derived from and have properties closely
related to the states of that band. The two cases are
described by different models and will be treated sep-
arately here.

The values of various parameters of germanium
which will be needed in the subsequent calculations are
given in Table 1.

2. Model of the conduction band

The model of the conduction band used here is the
multivalley model as described by Herring.? The energy
surface has four minima, one on each of the (111) type
axes at the Brillouin zone boundary. The states in the
conduction band which are occupied by electrons have
energies near the minimum energy and crystal momen-
tum vectors p grouped around the position of the
minima in p space. The states near minimum (i) are
said to constitute “valley” (i).

The valleys can be transformed into one another by
the crystal symmetry transformations in an unstrained
germanium crystal. Therefore any scalar property must
have the same value for all valleys. Any second-rank
tensor property must differ only in the orientation of the
tensor for different valleys. Further, since the (111) axes
are axes of three-fold symmetry, a second-rank tensor
property of valley (i) must be invariant under a rotation
(27/3) about the (111) axis which locates valley (i).




Thus it must have the form

M., 0
M® = 0 M, 0 , (2.1a)
0 0 M,

where coordinate z is the coordinate along the axis of
valley (i). Let a(® be a unit vector along the (111) axis
of valley (i). Then Eq. (2.1a) can be written in the form

M) =M1+ (M. —M,)a®a® . (2.1b)

Here 1 is the identity tensor.

The effect of elastic strain on the band structure can be
described by the deformation potential approximation.
Strain changes the band structure only by changing the
energy of all states of a particular valley by the same
amount in the deformation potential approximation. The
effect of strain on valley (i) can therefore be described
by the change of E, the energy of the state of lowest
energy in valley (i). The most general linear dependence
of E( on the strain tensor € has the form

E0_E® : ¢, (2.2)

Here E( is measured from its value in the unstrained
crystal as zero of energy. € is the strain tensor and =% is
a second-rank tensor called the deformation potential
constant tensor. The components of E( are called defor-
mation potential constants. Z( must have the form of
Eq. (2.1b). It is customary to define E,=7Z, and E,=

b et

E.—E. and to write

E0) —Ed+Eabdat®, (2.3)

Table 1 Properties of germanium

Property Value

Elastic Constant

B=(1/3) (c11+2c12) 0.76 x 102 dynes /cm?
Ciy 0.68
C'=(1/2) (cu1—ci2) 0.415

Conduction Band

m*=(my2m;)1/3 0.22 my
= 19 evabeo
Ea —8 evab
Valence Band
mu:i: 0.3 Mo
Es’ 5 eva d
=7y -2 eva

2 See Reference 1 for discussion and references.

bC, Herring and E. Vogt, Phys. Rev. 101, 944 (1956) ; W. Dumke, Phys.
Rew. 101, 531 (1956); C. Herring, T. H. Geballe and J. E. Kunzler,
Bell System Tech. J. 38, 657 (1959).

¢ See Reference 8.

dW, H. Kleiner and L. M, Roth, Phys. Rew. Letters 2, 334 (1959).

3. Volume

The contribution of the effect of dilatational strain on
the electronic energy to the total energy of the crystal will
be examined in this section. Dilatational strain does not
destroy the crystal symmetry. The E(9 are therefore all
the same. The effect of dilatational strain on the energy
of an electronic state is the same for the states of the con-
duction band and for the bound donor states. Therefore,
the considerations of this section are applicable to both
of the classes of germanium described in Section 1. The
electronic energy in the presence of a dilatational strain is:

W.=NE® , (3.1)

where N is the electron concentration and E(® is given
by Eq. (2.2). The strain tensor has the form

e=1(d¢/c) (3.2)

where c is the lattice constant. It can be seen from Egs.
(2.3) and (3.2) that for all (i),

EW =(3E;+E.) (8c/c) .

The total energy of dilatation is the sum of an elastic part,
W,, and the electronic part:

W=(9/2)B(8c/c)*+N(3Ea+Eu) (8c/c) .

Here B is the bulk modulus and is related to the ordinary
elastic constants by B=(c11+2c¢12)/3. Minimizing the
energy with respect to (8c¢/c) shows that the electronic
effect changes the lattice parameter by an amount

(8c/¢)=—N(3Es+E.)/9B . (3.3)

Values of (3Z;+5,) derived from experiment contain
considerable experimental uncertainty. It appears, how-
ever, that (354+5,) lies between —4 ev and — 8 ev. We
have chosen the value —6 ev for use in the calculations
of this section and have entered this value in Table 1.
Thus

(5c/c)=+1.4x10-N,

where N is the concentration of donors in cm-2. The solu-
bility of donor impurities limits the maximum value of N
which can be attained to about 5x 10 c¢cm3. Thus the
maximum value of (8c/c) is about +7x 10-5, a barely
observable effect.

A similar calculation can be carried out for p-type ger-
manium. The quantity 32, which corresponds to (32,+
=.) for p-Ge, has a value of about —6 ev. The energy of
the unoccupied electronic states in the valence band must
be subtracted from the energy of the intrinsic crystal, so
that the effect is again an expansion of the lattice. Its
magnitude is roughly

(8c/c)=+14x10"2N .

Acceptor impurities are more soluble than donors. A solu-
bility of 5 x 102° cm~2 has been reported for gallium. Thus
the maximum effect for p-Ge is (8c¢/c)=10-%, which
should be easily observable.
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4. Shear elastic constants of degenerate n-type Ge

The application of a pure shear strain to n-type germa-
nium does not change the total electronic energy to terms
of first order in the strain. The energy may be changed in
terms of second order in the strain, however. This depend-
ence of the energy on terms of second order in the strain
amounts to a change in the elastic constants, which will
be calculated in this section for the degenerate case, in
which the electrons remain in the conduction band at all
temperatures.
The density of electronic states of valley (i) is

NG (E) = :_’3’ (2m*)3/2(E—E®)1/z2 | (4.1)

Here m* is the density of states effective mass of a valley
and EM® is the minimum energy of valley (i). (m* is
related to the transverse effective mass m, and the longi-
tudinal effective mass m; by m*=(m2m;)*/3). A para-
bolic band has been assumed. n'¥), the concentration of
electrons in valley (i), is determined by the Fermi level.
It is

O NG (E)fo(E)dE

Pl

=27"Y2 N,F1/2(n—w®). (4.2)
Here the following notation has been introduced:
fo=[1+exp(E—¢/kT)] (4.3)
¢=Fermi energy (4.4)
n=C/kT (4.5)
w =FE® /kT (4.6)
N=2(2xm*kT/h%)%/%. 4.7)

F1 2 is the Fermi integral as usually defined.* { is deter-
mined by the condition that the n(¥ must add up to the
total concentration of electrons

N—Snti) (4.8)

3 as used here means summation over the four valleys.
The total free energy per unit volume of the electrons
in valley (i) is

A”)=n”>Z+kT/ NW(E)log fo(E)dE

o)
=27-1/2 N AT [9F1,2(n—w®)—%F3,p(n—w®)] .
(4.9)
In this section the w(® will be regarded as arising from
the strain according to Eqgs. (2.2) and (4.6). The strain

also changes the Fermi level, {. The change in { is deter-
mined by Eq. (4.8). From Egs. (4.2) and (4.8)

N=2x"1/2 NCEFl/z(’/]_W(i)) .

The elastic constants are calculated by considering
infinitesimal strains and expanding the strain-dependent

TBM JOURNAL »OCTOBER 1961

parts of the Fermi integrals in terms of quantities pro-
portional to the strain. To this end it is convenient to
write 7 as

77:7]0—}_8 s

where 7o is ({/kT) in the unstrained lattice and § is
the change of n with strain. Thus

N=2712 N3 [F1/2(n0) + (§—w®)Fy .’
+3(S—w@D)2Fy "] . (4.10)

Here F1,,’ means dFi1,2(n)/dy evaluated at n=no and
F1,2" means d? F12/dn? evaluated at p=no. Bringing X
through the square bracket gives

N=27r_1/2 . 4N0[F1/2('r)0) + (S—W)Fyzl
+1(82—28W+w?)F1"] . (4.11)
Here

B=3Sw®) wr=4Sw2

N as given by Eq. (4.11) must be equal to N in the
unstrained state:

N=27"12 N.- 4F1,2(n0) . (4.12)
Eqs. (4.11) and (4.12) give for § to terms of second
order in the w®)

F1/2 ”

L (w2—w?). (4.13)
Fi/2

S=w—1%

Expanding the free energy in a similar way gives

A,=3SA =272 NkT - 4( (no+8) F1/2(n0)
+"]0(8—M—/)F1/2I+(sthW)Fl/zl
+%n0(32—28w+F)F1/2"—(2/3)F3/2(?70)

—(2/3)(8— W) Fay2' —3(82—28W+w?) Fa/2"].
(4.14)

Here primes have been introduced to denote derivatives
in the way described in connection with Eq. (4.10).

Introducing Eq. (4.12) and Eq. (4.13) into Eq.
(4.14) gives the energy in terms of the w{®):

2 F
A,=NKT [no—-ﬂz(ﬂ)—] +NKTw
3 Fy/2(n0)
+ NkT(wZ—w?) [— —FW—] . (4.15)
2F1/2("]0)

The first term here is the free energy of the electron gas
when the crystal is unstrained. The second term is linear
in the strain and gives rise to the dilatation described in
the preceding section. The third term is quadratic in the
strain and represents a change in the elastic constants.
This change can be elucidated by comparing Eq. (4.15)
with the elastic strain energy:




1 4
W,= > [B(511+522+533)2+ 5 C'(e112+ e20% +£332

—e11822 — E22833 — £11833) +4Cas(£232 +£15%+ 8122)] .

(4.16)

Here the coordinates 1, 2, 3 are the fourfold axes of the
crystal. B is the bulk modulus and C’ is the shear con-
stant C'=(1/2)(cu1—c12). When w®, defined by Egs.
(2.2) and (4.6) is written in terms of the strain com-
ponents referred to the cubic crystal axes it has the form

. 1
w) = T [(Ea+3Eu) (e11+eoetess)

+3E.(feozteiztern)] . (4.17)

In Eq. (4.17) the sign of gu, is the same as that of
ay®a,®, It is easily shown by using Eq. (4.17) that
— 4 E.2

wz_w2=_____
9 (kT)2
Substituting this into Eq. (4.15) and comparing with
Eq. (4.16) shows that the only elastic constant affected
by the electronic energy is c4. The change of cyy is

F NE,2 Fy,2
Cu _ 12 ] (4.18)
Cis 9csakT | F1/2(n0)

In Eq. (4.18) o is to be determined from Eq. (4.12) at
temperature 7T,

The temperature dependence of (8css/css) is con-
veniently referred to the degeneracy temperature 7p,

(e232 +e132 +e127) .

Figurel1 The functions L,lyp), Eq. (4.20), and
Lisslno), Eq. (4.26), which describe the tem-
perature dependence of the electronic
contribution to the elastic constants,

T T

0.2

1/Tp

defined by the statement that the Fermi level approaches
kTp as T approaches zero. Tp is related to N by

3 \2/3 h2N2/3

Tp={|—— _—

327 2m*k
no can be regarded as a parameter which determines
T by
T=Tp(3F1/2(ne) /2)7%* (4.19)
and 3044/6‘44 by
(8c1a/c14) = (8cas/cas) 0 L1a(no)

Lyy(no) =(2/3) (3F1/2(70) /2)*/*(F12'/F1/2(10) ) .
(4.20)

8 4 4 2/3 *Eule/s
Ca) 2 —’T> A (4.21)
cs Jo 3\ 3 H2cas

L44(n0) approaches unity as T—0. At high tempera-
tures 8cys/c44 approaches the nondegenerate limit:

NE.2
o | _NEZ (4.22)
Cia 9C4,1kT

The temperature dependence of (8css/cas) is plotted in
Fig. 1. Numerical values for germanium are

(8044/044)0= —2.1x10-8 N1/3
Tp—7.3 x 10-11 N2/3 ,

where N is in cm=3 and Tp is in “K. These values are
plotted in Fig. 2.

Figure 2 Values of T, and (8¢y/cs)o for germa-

nium.
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The results obtained by retaining the terms of third
order in the strain in the expansions of Eqgs. (4.11), (4.14)
and (4.15) are also presented here. The essential result is
a value for the electronic contribution to the third-order
elastic constants. The interest in this problem stems from
the fact that the third-order elastic constants of pure ger-
manium have recently been measured by Bateman, Mason
and McSkimin.?

The retention of terms of third order in the strain in
the earlier expansions of this section gives rise to an addi-
tional term in the equation for the electronic free energy,
Eq. (4.15), of magnitude

A, =NET(W3+2w3—3ww2) [Fy,2" /6F12(n0) 1. (4.23)
Here
wi=3Swhs

When w(® is expressed in terms of the strain components
referred to the cubic crystal axes it is found that

- — 16 [E.\?
wi 2w —3pwi= 5 (ﬁ) £23€31£12 - (4.24)

A comparison of Egs. (4.23) and (4.24) with the
phenomenological definition of the third-order elastic
constants® ¢ shows that they represent a contribution to
css6. The electronic contribution to ¢yse is

4 NES [ Fis
Scase—= — [ 2 ] (4.25)
27 (kT)2 | Fi/2(no)

When the temperature dependence of cas¢ is referred
to the degeneracy temperature as described in connection
with Eqs. (4.19) to (4.21), it can be written in the form

dcas6=(8cy56) 0 L1ss(n0)

L456("IO) = (4/3) (3F1/2(’%) /2)4/3(F1/2”/F1/2(“f)0) )
(4.26)

(8cuse) 0=228/3 7#/8 3-10/3 2 B 3 /R NY/5 (4.27)

The temperature-dependent function Lse (50) is plotted
in Fig. 1. The calculated values of 8cise at 77°K and
300°K are shown as functions of electron concentration
in Fig. 3. Similar curves for other temperatures can easily
be constructed with the aid of Eqgs. (4.26) and (4.27)
and Fig. 1.

The most interesting feature of 8cuss is its large magni-
tude. Bateman, et al,> found that cise=— 1.65% 1012
dyne/cm? for pure germanium. Thus, as can be seen from
Fig. 3, the electronic contribution to css¢ can be much
larger than c4s6 of pure germanium. It appears that the
measurement of the third-order elastic constants, although
considerably less accurate than that of second-order con-
stants, may provide a more sensitive test for electronic
effects.

The high sensitivity of the third-order elastic constants
to the electronic contribution is a result of the fact that in
the electronic theory the strain is multiplied by a factor
(E./&). Therefore, as the order of a term in the strain
components increases, it contains an increasing number
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of powers of the factor (=,/{). Since deformation poten-
tial constants are usually in the range 1 to 10 ev, the
result that third-order elastic constants have a high sen-
sitivity to electronic contributions should be generally
applicable to systems with an electronic degeneracy tem-
perature of less than, say, 1000°K.

5. Model of the valence band

The structure of the valence band is much more compli-
cated than that of the conduction band. Several simpli-
fying approximations will be introduced here in order to
obtain a tractable problem. As a consequence the results
obtained must be regarded as suggestive rather than
quantitative.

The model used is as follows:

(1) The valence band is regarded as an isotropic
parabolic band. In other words, the hole energy as a
function of crystal momentum is assumed to have the
form E=p?/2m,*. In particular, the effect of the valence
band which is split off by spin-orbit coupling is neglected.
This is a rather crude approximation, as doping levels
at which the Fermi energy is larger than the spin-orbit
splitting of the bands can be attained in germanium.

(2) Only the “heavy hole” band will be considered.
This is because most of the holes are in the large mass
band.

(3) The effect of strain on the band will be treated in
the approximation introduced by Brooks,” according to
which the effect of strain on the energy of the state of
crystal momentum p is

SE(p)= [ 2/ 145/ (p—f’-% 1)] :
=

25 J

[

(5.1)

20
é" K

V.

8 case (101%dyne/cm2)
w

1ol7 ]018 1019

N (cm-3)

Figure 3 Values of the electronic contribution to
¢ss in degenerate germanium at 77°K
and 300°K.




The parameters Z,’ and E," are again known as deforma-
tion potential constants. Eq. (5.1) is only true for states
sufficiently far from p=0 that E(p)>> §E(p). The frac-
tion of states excluded by this condition is negligible in
the present problem.

(4) The calculations will be carried out only for the
strictly degenerate case, {>> kT. A temperature depend-
ence of the effect will appear when T approaches the
degeneracy temperature.

6. Shear elastic constants of degenerate p-type Ge

As in the case of n-type germanium, the dilatational
effect, described by E,', leads to the change in volume
previously discussed, but to no change in the elastic
constants. It will not be considered further here. The
effect on the shear constant will be investigated by cal-
culating the energy of a pure axially symmetric shear
strain:

e=c(ee—1 1). (6.1)
With this strain the energy of state p is
E(p)=(p*/2m,*) +E/e(cos2 §—1/3). (6.2)

Here 6 is the angle between p and the axis of strain, e.

First it is necessary to calculate the Fermi level of the
strained crystal. This is determined by the condition that
the concentration of holes is N:

T P9
N= / ] (2/h%)2ap2dp sin 6d8 . (6.3)
0 0

From Eq. (6.2)
p(L, 0)=[2m*{—2m* 2/ e(cos® §—1/3)]%/2. (6.4)

When Eq. (6.3) is evaluated with the limit given by
Eq. (6.4) it is found that

8 1 /E/e ¥
= #* 3/2 I
N Tx (2m,*&) [: 1+ 30 < R >:| (6.5)

to terms of second order in ¢. The condition that N is
independent of the strain shows that

1 RN
C*§0[1“25<50>], (6.6)

where (o is the Fermi energy in the unstrained crystal.
The energy of the holes is

T D0

We=/ / (2/h*)E(p)2wp3dp sin 6d6 . (6.7)
[ 0

By using Eqs. (6.4), (6.5) and (6.6), W, is found to be

3 2 8 2/3
e=—'N§0— - _ﬂ- mv:}: Es’z e2 N1/3 |
15\ 3

The elastic energy per unit volume of the strain defined
by Eq. (6.1) is

2
W= —Ce2,
3

where C is an elastic shear constant. (Because of the
approximate nature of the calculation no attempt is
made to distinguish between the two types of shear.)
The change of C is therefore

8C 1 <87r>2/3 my* B2 N1/3

Cc  5\3 rC

The resemblance of Eq. (6.8) to the corresponding
equation for n-type germanium, Eq. (4.21) is apparent.
Substituting values for p-type germanium from Table 1
Eq. (6.8) becomes

8C
— =—-33x10-19 N1/3 |
C

(6.8)

It is seen that this effect is two orders of magnitude
smaller than the effect in n-type germanium. Two factors
contribute to this result: (1) the numerical coefficient
which appears in Eq. (6.8) is about one order of magni-
tude smaller than the coefficient in Eq. (4.21); (2) the
deformation potential constant Z,’ is less than one-third
Zu. Thus, in spite of the facts that considerably larger
values of N can be attained in p-type than in n-type
germanium and that the theory presented is extremely
crude, it appears that a much smaller effect is available
for study in p-type germanium.

7. Effect of donors on the shear elastic constants of
Ge

As explained in Section 1, electrons in germanium with
fewer than 107 donors per cm?® are trapped in localized
levels associated with the donor atoms at low tempera-
tures. Experiments show that the energy of the bound
electronic states is changed by elastic strain.®-1! The
theory of the change has been given by Price.1*1* The
energy of occupied donor levels is part of the total
energy of the semiconductor crystal. The change of the
donor energy with strain is a contribution to the strain
energy of the crystal. This dependence of the strain
energy function of the crystal on the number of occu-
pied donor levels implies a dependence of the elastic
constants on donor concentration. The electronic con-
tribution to the elastic constants of germanium contain-
ing donor impurities will be calculated in the following
sections.

8. Model of the donor states

The reader is referred to papers published by several
authors in 1955 and to the paper of Price for the full
theory of the hydrogen-like donor states in germa-
nium.'2-16 Only a brief description of the content of
these papers is given here.

In the effective mass approximation the hydrogenic
1s-like ground state of an electron bound to a donor has
a degeneracy of four in an unstrained crystal. The four
wave functions are the hydrogenic functions derived
from the four valleys. Thus the Hamiltonian which
determines the energy levels can be written
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_ 0 —E, 0 0
=1 0 —E 0 (8.1)
0 0 0  —E,

in a representation based on the individual single-valley
hydrogenic wave functions. Here E, is the effective
Rydberg in germanium and the zero of energy is the
energy of the lowest state of the conduction band. Devi-
ations from the effective mass approximation introduce
additional elements JC; into this Hamiltonian. Because
of the equivalence of the valleys the most general way
of introducing such elements modifies the Hamiltonian
of Eq. (8.1) to the form

—Ey—A —A —A —A
—A —Eo—A —A A

K= _a —A —Eo—A —A (8.2)
A —A A —Ey—A

The energy levels determined by Eq. (8.2) are

E.=—Es—A—3A  (single)

(triple) . (8.3)

Experiment shows that A and A are of the same order
of magnitude. The quantity 4A is known as the chemi-
cal shift.

According to the theory of Price,’? when the crystal
is subjected to a homogeneous strain the Hamiltonian of
Eq. (8.2) is to be modified by displacing each of the
single-valley hydrogenic energies, the diagonal terms in
Eq. (8.2), by the amount by which the strain displaces
the energy of the valley from which the state is derived.
In the following, for simplicity of notation we choose
the zero of energy as (Eo+A) below the bottom of the
conduction band, since the parameters E, and A do not
enter into the theory of the effects of strain. Thus the
Hamiltonian which determines the energy levels of a
donor in a strained germanium crystal is

Es=—Eo—A+A

E®m  —A  —A —A
~-A  E®  —A  —A

X=l_a -2 E® -2 (8.4)
-A A -—A E®

Here the E® are defined by Egs. (2.2) and (2.3).

We shall also have occasion to refer to the form of
the donor wave functions. The single-valley hydrogenic
wave function of valley (i) has the form?®s

YO () =¢® (r)ulk®,r). (8.5)

Here u(k(,r) is the Bloch function at k(®, the mini-
mum point of valley (i) in k space, normalized in a unit
cell. ¢ (r) is an envelope function which has the ap-
proximate form

$3) () = (wba) /2 exp(— [ (x*+y?) b2+ 22/a2] 1}
(8.6)

The right-hand side of Eq. (8.6) is expressed in a
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coordinate system in which the Z axis is the symmetry
axis of the valley, one of the [111] type axes, Since a
and b are large compared to the lattice parameter of the
crystal, ¢(¥ (r) is a slowly varying function of position.
It can be regarded as a constant over each unit cell for
most purposes.

072

o
3
w

(8caa/ caa)

1017

Figure 4 Calculated values for the electronic con-

tribution to the elastic constant c,; of ger-
manium at very low temperatures.
The lines in the left part of the Figure are cal-
culated from the independent donor model,
and refer to antimony and arsenic donors,
respectively. The line in the right part of the
Figure is calculated from the degenerate elec-
tron gas model, Sec. 4. The dotted line shows
the estimate of the decrease in the effect due
to interaction between donor states which is
given in Sec. 10.
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Figure 5 The temperature dependence of the elec-
tronic contribution to ¢, due to excitation
of electrons from the singlet ground state
to the triplet.




The wave function of any bound donor state is a
linear combination of the (¥ given by Eq. (8.5). The
wave function of the lowest state in an unstrained crys-
tal contains equal contribution from all of the valleys:

Y(r)=(1/2) % ¢N(r).

The coefficients of the ¢ in the donor wave functions
of a strained crystal can be found from the Hamiltonian
of Eq. (8.4).

The parameters of the donor states associated with the
most important donor impurities are given in Table 2.

9. Calculation of ¢,
The effect of the electronic energy on the elastic con-

stants is determined by the solutions of Eq. (8.4)
expanded to terms of second order in the E(®. This

Table 2 Properties of hydrogenic donor states in

germanium

Property  Donor  Value
E, —0.0091 ev2

4A P 3.0x 103 evP

4A As 4.1x103 evb- e d
4A Sb 5.6 x10tevd

b 64 %x108cm?

a 23 x10% cm®

aSee References 14, 15 and 16.
bSee Reference 10.

¢See Reference 9.

dSee Reference 8.

expansion can be worked out by first diagonalizing JC
with respect to A.
In one form this gives

—12A+(EW +E® +E® +EW) (—EW—E® 4 E® +E®)

(—EW—E® 4L E® L E#)
(EW —E® 4 EG) _FE®#))
(EM—E® —E®) L E®W)

=%

(E®D —E®@ L E® —E®W)
(—ED+E® L E® —E®)

4A+(EWLE@ +E® +EW)
(—EW+E®LE® —E®)
(—EW+E® _E® {E®)

(EV—E® —EG +EM®)
(—EQ+E@ _E® LEMW)

4A+(EW+E®+E® +E@W) (EW4E@ _E® _E®)

(E®W4+E® _E® —E®)

Now the terms in the E( can easily be treated as a
perturbation. The energy of the lowest state to terms of
second order in the energy is

——3A+(1/4)SE®D — (64A)-! [4SEM2— (SEM)?] .
(9.1)

As before, 3 means sumimation over the four valleys.
We have previously used the result expressed by Eq.
(9.1) in the theory of the scattering of phonons by
donors in germanium.?? The similarity of Eq. (9.1) to
Eq. (4.13) is evident and the evaluation of (w2—w?)
given by Eq. (4.17) and the equation which follows it
is also useful here. The total electronic energy in the
low-temperature limit is N, the electron concentration,
times the E given by Eq. (9.1). Thus it is seen, again by
comparison with Eq. (4.16), that the change of c4, is

8044 N EuZ
=— (9.2)

Caa Jobp 18c44A
and that the other elastic constants are not changed.
(The subscript D is intended to indicate that the effect

arises from donor impurity states.)
For antimony donors in germanium

(8C44/C44)01)=—N/3.5X1018. (93)

This value and that for arsenic donors are plotted in

QA+ (EWH+E®D LE® LEM®)

Fig. 3. A is larger for arsenic and phosphorus donors
and the calculated value of 8csy/cas is correspondingly
smaller. The values calculated for the degenerate case in
Sec. 4 are also shown in Fig. 4 for comparison.

Egs. (9.2) and (9.3) refer to the case in which all of
the electrons are in the singlet state. Electrons will be
excited out of this state at relatively low temperatures.
In the case of antimony donors the triplet state is very
close to the singlet, and excitation of electrons from the
singlet into the triplet will destroy the effect in question
at low temperatures. Other electronic states of the donor
are much higher than the triplet, at least for antimony
donors, and are ignored here.

The temperature dependence of (8cus/cs4)p due to
excitation of electrons from the singlet to the triplet is
most easily obtained by calculating the electronic free
energy from the energy levels of a donor in a crystal
subjected to a shear strain with a (111) axis. The energy
levels for this case have been given by Price.’? The
details will not be given here. The result is that at finite
temperature the value of (8c/cas)p given by Eq. (9.2)
must be multiplied by the factor

Lp=[1—e/AT 4 (AA/kT)e40/¥T] /(14 3e-44/k7) |
(9.4)

This factor is plotted in Fig. 5.
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10. Effect of donor interactions

The donors were considered as isolated non-interacting
centers in the preceding section. In fact, however, the
donor wave functions have a fairly large range, and at
the concentrations at which the donor contribution to
the elastic energy is measurable they overlap appreci-
ably. The phenomenon of impurity conduction is a man-
ifestation of this overlap of the donor wave functions.

The problem of the energy levels of a system of inter-
acting donor states is extremely complicated. Progress
is possible only when drastic simplifying approximations
are introduced. One attempt to estimate the magnitude
and type of effects to be expected is presented in the
Appendix, in which the effect of strain on the energy of
an electron bound to a pair of donor atoms is calculated.
The calculations of the Appendix suggest that the inter-
action of donor states can have an important effect on
the electronic strain-energy. Some generalization from
the results for the two simple cases considered there is
necessary for an evaluation of this effect. Such a gener-
alization and evaluation is the objective of this section.

The strength of the interaction between donor states
is measured by K, an exchange integral between elec-
tronic wave functions on different donor atoms. As dis-
cussed in the Appendix, there are two cases which can
be treated simply: (1) the exchange integral has the
value K for the wave functions derived from one valley
and vanishes for the wave functions derived from the
other three valleys; (2) the exchange integral has the
value K for the wave functions derived from two of the
valleys and vanishes for the wave functions derived from
the other two valleys.

The electronic effect on the elastic constant is reduced
by a factor of two when K=4A and by a factor 10 when
K=8A in case (1), the case of interaction through one
valley (see Fig. 7). On the other hand, in the case of
interaction through two valleys the effect is almost un-
affected by the interaction, its value for very large K
being 4/3 of its value for K=0. The difference be-
tween the two cases can be readily understood by con-
sidering Fig. 5. The effect becomes small in case (1)
because the lowest state rapidly moves away from the
other states when K increases. This has two conse-
quences: (1) the energy denominators of the second-
order perturbation all become large; (2) the matrix
elements of the perturbation all become small because
the ground state develops into a state derived from only
one valley.

Case (2), two interacting valleys, is different because
the energy difference between the lowest state and the
next state remains small, approaching 2A at large K.
The fact that no term in K is found in the lowest energy
denominator here is a consequence of the assumption
that K™ is exactly equal to K, Such a phenomenon
will not occur in general. In general the K9 will all be
different, will appear in all of the energy denominators
to some degree, and will therefore reduce the electronic
strain energy if they are much larger than A. In the
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general case we expect that the energy levels will be
rather haphazardly distributed through a region of width
2K in energy, where K is some sort of average of the
K@,

When the interaction is large and of a general type
some idea of the nature of the elastic phenomena can be
obtained by treating A in the Hamiltonian of Eq. (A2)
as a perturbation. We have not done this completely,
but only to see the nature of the terms which occur. A
typical quadratic term in the expansion of the energy in
terms of the E( is

—ANEW—E®)2/(K®) —K@)2 (10.1)

Now, it can be seen that the first terms of the factors L,
Eq. (A8), and M, Eq. (Al4), i.e., the terms (1/y?) and
(1/83), are terms in the energy of just this form. They
have the value one in the absence of interaction and the
value (4A/K)® in the case of large K. Thus they repre-
sent a change in the electronic contribution to the strain
energy by a factor:

0—=64(A/K)? . (10.2)

The comparison with Eq, (10.1) suggests that these first
parts of L and M are typical of the general case and that
the fact that the remaining parts of L and M have differ-
ent form is a result of the special character of the interac-
tion assumed in the derivation of Egs. (A6) and (A12).
Thus we conclude that the electronic strain energy should
be modified by a factor given roughly by Eq. (10.2) ina
theory of pairwise interaction of donors.
‘We use a simple scaled hydrogenic value

K=(q*/Kb)[1+(R/b)] exp(—R/b) (10.3)

for K in order to obtain numerical estimates. Here R is
the distance between donors. It is related to the donor
concenfration by (w/6)R3=N-', The Bohr radius has
been replaced by b (see Eq. (8.6)) because the exchange
integrals will receive their greatest contributions in cases
in which the overlap of the wave functions is determined
by b rather than by a.

The result of modifying the calculation of Sec. 9 by
the present method is shown by the dotted lines in Fig. 3.
When the interaction is small and Egs. (10.2) and (10.3)
give O>1, (8csa/csa)op is calculated from Eq. (9.2).
When Q<1 the result of Eq. (9.2) is multiplied by Q.
The transition between formulas occurs at a donor con-
centration of about 6x 10¢ cm=® for antimony donors.
For arsenic donors Q is less than one up to the degener-
acy concentration, 2 X 10'* cm~32. This very rough estimate
of the effects of interaction of donors suggests that
(8c44/Caa)op Will attain values greater than 1% in anti-
mony-doped germanium and greater than 0.5% in
arsenic-doped germanium.

11. Relation to experiment

Several experimental results which are relevant to the
above calculations are available. The dilatational effect
of gallium acceptors in germanium is definitely smaller




by at least a factor of two than that calculated? in Sec. 3.
The reason for this is not understood. It is possible, how-
ever, that the value used for &, in Sec. 3 is in error by
this amount.

Modern techniques for determining elastic constants
usually depend on measurements of the velocity of elastic
waves. It is therefore necessary to examine the effect of
the temporal variation of the strain on the electronic
strain energy. According to the theory presented in Secs.
3 and 4, the lowering of the energy of the strained crystal
which accounts for the decrease of ¢4« depends on a re-
establishment of statistical equilibrium of the electron
populations of the valleys when the strain is applied. If
the strain varies so rapidly that the electron populations
cannot follow their equilibrium values, then the effect in
question will not be present. The equilibrium of the elec-
tron populations is achieved by intervalley scattering.
Hence, the condition for the existence of the effect in the
presence of an oscillatory strain is that the frequency of
the strain be small compared to the intervalley scattering
rate. The total scattering rate in degenerate n-type germa-
nium is about 2x 10 sec-!, which provides an upper
limit to the intervalley scattering rate. A lower limit can
be estimated to be 10° sec? in degenerate germanium.!®

Thus it is seen that the elastic constants measured by
the ordinary ultrasonic methods should include the effect
of the electronic energy. In fact, the general features of
the effect on ¢4, have recently been observed's by meas-
urements at 10 Mc/sec on germanium with a donor con-
centration of 3.5Xx 10 c¢cm-3. However, the measured
effect was only about three-fourths as great as the pre-
dicted one.

Another property which is sensitive to the elastic con-
stants is the low-temperature specific heat. Bryant and
Keeson have recently measured the Debye temperature
of heavily doped n-type germanium.2° It is not clear that
the present calculation applies to the elastic waves which
are important in this experiment, since phonons with
frequencies up to 5 X 10 sec~! make significant contribu-
tions to the specific heat at 4°K. In any case, by using the
tables of deLaunay?' and Eq. (4.21) it can be estimated
that (86,/60¢) =—6x10-? N1/? for germanium. The ef-
fect found by Bryant and Keeson?’ has this sign and
order of magnitude. The extent of quantitative agreement
is difficult to evaluate because of the uncertainty of the

E®4J0 A —A —A
—A E®_—J@ —A —A
—A —A E® 4J® —A
Jp=| -A —A —A E® 4]
K@ 0 0 0
0 K® 0 0
0 0 K& 0
0 0 0 K@

experimental resulit.

The interaction between elastic strain and donor elec-
trons which is responsible for the change of ¢44 calculated
here also is responsible for the scattering of phonons by
occupied donors.?? 23 The rapid disappearance of this
interaction when the antimony concentration is raised
above 6x 106 ¢cm-3 which is predicted by the theory of
interaction of donor pairs should also be effective in elim-
inating the thermal resistance due to the donors. Goff and
Pearlman?* have measured the low-temperature thermal
resistance of antimony-doped germanium over the con-
centration of range 5x 105 cm=3 to 2x 10'® cm-3. They
find that the thermal resistance varies smoothly and mon-
otonically between the independent donor and the degen-
erate regimes, without evidence of the disappearance of
the strain-electron interaction indicated by the dotted line
of Fig. 3. This result suggests that our method of esti-
mating the effect of the interaction of donor states is
inadequate. It appears that although the effects of donor
interaction are very important in the range 5 X 1016 cm=3
to 2 x 1017 cm-3, available theory does not furnish a satis-
factory method of treating such effects.

Appendix: The effect of strain on the energy of an
electron bound to a donor pair

The problem of the energy levels of an electron bound to
a pair of donor atoms is similar to that of the hydrogen
molecule ion.25 It is, however, much more complex be-
cause of the fact that the single donor hydrogenic wave
functions are linear combinations of wave functions de-
rived from the four valleys. The problem of the energy
levels of two electrons bound to a pair of donor atoms is
analogous to that of the hydrogen molecule.?¢ This prob-
lem, is, however, related to that of the molecule-ion by
the molecular orbital approximation, in which the energy
of the molecule is regarded as the sum of contributions
from one-electron states of the molecule-ion type.2” Thus,
in order to gain some insight, admittedly very rough, into
the question of the effect of the interaction of donor
states on the electronic contribution to the elastic con-
stants, we will investigate the effect of strain on the energy
levels of an electron bound to a pair of donors.

The Hamiltonian of an electron bound to a pair of
donors has the form, by extension of Eq. (8.4):

K® 0 0 0
0 K® 0 0
0 0 K® 0
0 0 0 K@ | (A1)
EM4Jw —A —A —A
—A E@ L J@ —A —A
—A —A E® —J® —A
—A —A —A E® 1]
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Figure 6 The energy levels of a pair of donor
atoms.
(a) Overlap in only one valley, K=K,
K®=K®=K®=0, (b) Overlap in two
valleys, KM =K@ =K, K& =K® =0,

(al (b1

A

o -2 | |

K/A

Here the first four states are the single-valley hydrogenic
states of an electron on donor 4 and the second four
states are the single-valley hydrogenic states of an elec-
tron on donor B. K is the exchange integral of the
wave functions of valley (i), Eq. (42.12) of Reference
21. The K® will be different in general because of the
differing anisotropies of the single-valley wave functions.
The matrix elements of the type JC(4iB) (iz=j) are negli-
gible because of the orthogonality of the wave functions
of different valleys in the unit cell.2® J(%) is the coulombic
energy of an electron in the (i) wave function on donor
A due to the presence of donor B, Eq. (42-8) of Refer-
ence 20. The orthogonality integral, Eq. (42-11) of
Reference 14 has been neglected, since in the case of
importance here the donors are separated by many effec-
tive Bohr radii. For the same reason the J(*) are essen-
tially independent of (i), and will be omitted below by
shifting the zero of energy by an amount J(. Then the
Hamiltonian (A1) is easily diagonalized with respect to
the K to give

EW+K®  —A —A —A

—A E®@+K®  —A —~A

—A —A E®4K®  —A

Je=| -—a —A —A E®+K®

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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Figure 7 The ratio of the effect of strain on the

energy of a system of donor pairs to the
effect of strain on the energy of isolated
donors as a function of the exchange
integral.
Curve L is given by Eq. (A8) and refers to
exchange in only one valley. Curve M is
given by Eq. (Al4) and refers to exchange
in two valleys.

M

05l L

0 4 8 12

K/A

Thus the K appear in the Hamiltonian in the same way
as the shifts of the valley energies with strain. However,
the K® are not necessarily small compared to A, and
cannot be treated by the perturbation theory used in de-
riving Eq. (9.1). In fact, the energy levels determined by
(A2) cannot be found in the general case by simple
algebraic methods.

In certain very special cases (A2) reduces to forms
for which the energy levels have been given by Price.*?
These are (1) three of the K(!) have one value and the
remaining K has a different value; (2) two of the K(®
have one value and the other two have a different value.
Case (1) is equivalent to that of a (111) axis of strain
and case (2) is equivalent to that of a (110) axis of strain
as considered by Price.!?

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 (A2)
EW—_K®  —A —~A —A
—A E®@ _K® —A —A
—A —A E®—K®  _A
—A —A —A EW_K®




To investigate case (1) let KW =K and K =K®) =
K@ =0. Then the energy levels determined by the Ham-
iltonian of Eq. (A2) are?

E=A (four) (A3)
E=—A(1%2y)=3K (A4)
where

y=[1+(K/4A) +(K/4A)2]1/2. (A5)

Egs. (A4) and (AS) determine four energy levels, since
the sign of K and the sign of y may be chosen independ-
ently. The sign of K must be the same in Eqs. (A4) and
(AS). The energy levels are shown in Fig. 6a. (It should
be remembered that the functions shown in Fig. 6 do not
include the coulombic integral, J.) The dependence of
the energy of the lowest state on strain is found by a
procedure analogous to that leading to Eq. (9.1), namely,
the Hamiltonian is diagonalized exactly with respect to
K and A, and the effects of strain are included by per-
turbation theory. The result is

E=—A(142y) = 3K +3[E® +}(E® +E® +EW)]

1 K
——(14+ — ) [E®W—L(E®@+E® 4+E®
47< m)[ 3( +E®)]

Gaypn [EHEQHED L)
Y

1 1—(K/20)+2y
36yA 1+(K/4A)+7

[E(2)2_+_E(3)2+E(4)2

—E®E® _EWE® _E®E®)] . (A6)

The valley which gives rise to the exchange integral will
be randomly distributed among the four valleys of ger-
manium in a doped crystal. Thus, to find the contribution
of donor pairs to the strain energy function of the crystal
we assume that the valley (1) of Eq. (A6) has a proba-
bility of one-fourth of being each of the four valleys.
Summing over the four cases with (N/4) electrons in
each case we find for the quadratic term in the energy of
the crystal

N
= —_—— SE(M2_(SE(())2
W.(quad) L< 64A>[4‘4E (SE)2] (A7)

171 4 1+2y—K/2A
Le—| —+({— )| ——|. (A8)
3 [ 7? <3Y>|: 1+y+K/4a ]
It is apparent that the second part of Eq. (A7) is identi-
cal with the quadratic term in Eq. (9.1). Therefore the
factor L, Eq. (A8), represents the change of the elec-
tronic contribution to the elastic constant due to the
interaction of donors. The dependence of L on (K/A) is
shown in Fig. 7.
To investigate case (2) above let K =K® =K and
K=K =0, Then the energy levels determined by the
Hamiltonian of Eq. (A2) are!?

E=A (two) (A9)

E=AxK (A10)
E=—A(1x£28)+=K/2, (All)

where £=[1+(K/4A)2]¥/2. Four levels are obtained
from Eq. (A11) by choosing the signs of £ and of K inde-
pendently. The levels are shown in Fig. 6b.

We obtain for the energy of the lowest state in a
strained crystal

E=—A(1+£)—K/2+3HE® +E® 4 E® LE®)
(E® 4 E® —E®) —E®)

16A¢
— 1 (E(1)+E(2)_E(3)_E(4))2
64A88
+ 1 1—&1(K/4A) (E® —E®):2

320 14£+(K/4A)
. 1 14+&7(K/4A)
32A  1+£—(K/40)

As in case (1), the contribution of the electrons to the
strain energy function involves averaging over all possi-
ble orientations of the valleys. Thus

W.(quad) =M (—N/64A) [4SE®2— (SE™)2] (Al3)

171 2 2(K/4A)>
= = — 1. Al4
M-l )] (0

The factor M, which represents the change of the elec-
tronic contribution to the elastic constant because of the
interaction of donors, has the values shown in Fig. 7.

(E®—-E®)2,  (Al2)
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