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J. K. Moser

Bistable Systems of Differential Equations with
Applications to Tunnel Diode Circuits*

Abstract: A mathematical analysis is developed for nonlinear circuits which have at least two stable steady

states, and therefore are of interest as computing or memory elements. Circuits containing one or two

tunnel diodes will be analyzed in detail as applications of the theory.

The method is based on the study of a certain “‘potential function”” whose extrema are the steady states of

the circuit and whose minima correspond to the stable switching states. This study leads to a qualitative

description of all solutions in the large and results in quantitative restrictions on the parameters (R, L, C and

nonlinear characteristics) which seem of practical importance.

1. Introduction

A basic problem of computing machines is the construc-
tion of elements which produce the well-known flip-flop
effect. This means essentially that such elements, which
are usually electrical circuits, have two stable steady
states which represent two binary digits. Such circuits
give rise to challenging mathematical problems in the
field of nonlinear ordinary differential equations. It seems
desirable to develop a mathematical analysis for such
nonlinear circuits to get a better understanding of their
operation and, possibly, to indicate how to choose para-
meters and nonlinear characteristics in the optimal way.

The purpose of this paper is to present a method which
can be used for such a mathematical analysis. In the
following, only the general principle of the method will
be given. A further exploitation of this method for esti-
mating response time and quantitative description of the
solutions is under way but will not be undertaken here.

I want to express my gratitude to W, Miranker and
W. Mayeda for explaining the problem to me and for
many stimulating discussions. Miranker also developed a
theory of his own which is of asymptotic nature.! R.
Brayton and R. Willoughby carried out calculations and
extensions of these problems.?

The circuits to be discussed contain one or two tunnel
diodes whose typical feature is described by the charac-
teristic curve shown in Fig. 1. The fact that this curve
has a region of negative slope, or “negative resistance,”
makes the construction of a bistable circuit possible, as
will be seen later.

*This paper is a revised and shortened version of IBM Research Report
RC-306, August 1, 1960.

IBM JOURNAL * JULY 1961

The twin circuit described by Goto® contains two
tunnel diodes, as shown in Fig. 2. It turns out that for
appropriate choice of the parameters E, L, R, Ci, C, this
circuit is bistable. There are two steady states: one in
which most of the energy is in the first diode, and another
in which most of the energy is in the second diode. There
is a third steady state in which both diodes have the same
energy; this state turns out to be unstable.

During the operation of the circuit the voltage E will
be increased from O to an end-value, and during this
process the solution will fall into one of the two possible
steady states. In the following discussion we will ignore
the time dependence of E and consider E as a parameter
in the equation. For small values of E one has only one
steady state, which at some critical value of E bifurcates
into three stable states.

If one omits in the above circuit one of the diodes, i.e.,
the capacitance C. and f», then one has the single diode
circuit, which also will be discussed.

Instead of explaining the phenomena in terms of the
Goto circuit, we suggest a mechanical analogue which
contains in fact all essential features of bistability.

Consider a curve of the shape shown in Fig. 3, e.g.,
y=x*—2x2—Ex, where the above graph refers to E=0.
On this surface we imagine a mass point sliding under the
influence of gravity and friction. It is clear that the two
minima represent two stable steady states while the maxi-
mum is an unstable steady state.

As E increases the above curve becomes asymmetric,
and for E=E;=8/+/27, the left minimum and the maxi-
mum grow together and disappear.




Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

The operation of the single diode circuit can — in this
analogy — be described as follows: Choose E=FE,(1—38§),
where § is a small positive number, so that the left mini-
mum and the maximum are close together (Fig. 4).

If one now supplies a signal by adding to Eo(1—38) the
value +E;>8E,, then the mass point which initially was
assumed to be in the left trough will remain there if the
signal is —E4, but will run over to the right if the signal
is +E1.

The second analogue which we will need is described
by a mass point sliding on the curve y=x*—Ex?, which
for E<O has only one minimum at x=0. As E increases
from E=O0 three extreme points bifurcate from x=0,
namely, two minima at x=*+/E/2 and a maximum at
x=0, indicated in Fig. 5. A signal E; can be supplied by
tilting the whole curves by a small angle E;. If one starts
with E=0 so that the mass point will rest at the origin
then with increasing values of E the mass point will fall
into one of the minima, depending on the sign of E;.

These two analogues do not only illustrate the bistable
character of a circuit but also the amplification which is
an essential function of a computer device. The signal
may be a very small quantity but the resulting possible
end positions of the mass point will be far apart. Mathe-
matically this amplification has its reason in the discon-
tinuous behavior of the number of extreme points in
dependence on E.

Intuitively it is clear that the second of the above
mechanical analogues will be much more sensitive and
will be able to react to smaller signals than the first, since
in the first analogue |E;| had to be bigger than 8FE,. In
the second analogue such a requirement on E; is not
needed. In fact, the difference in the two analogues is
understood by following the extreme points for differ-
ent values of E. In the first example two stationary
points come together as E approaches the critical value
E=8/~/27 while the third — a minimum — is at a differ-
ent position. In the second example all three stationary
points come together as E—+0.

This difference gives rise to a classification of bistable
systems: Those systems for which at the state of bifurca-
tion only two steady state solutions come together will
be called systems of the first kind; if three steady state
solutions come together we refer to them as systems of
the second kind.
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Obviously bistable systems of the second kind provide
a better amplification than systems of the first kind. It
will be shown that the parametron and the twin circuit,
indeed, belong to the second kind while the single-diode
circuit represents a system of the first kind.*

While circuits of the second kind are candidates for
computer elements, circuits of the first kind probably can
only be used for memory devices (which do not require
a strong amplification).

For actual computer elements the question of the speed
with which the final state is reached is resolved by finding
the response time for a circuit. The above analogues serve
to illustrate an answer to this question: To reach the final
state in a short time one should have a strong friction and
a big curvature at the maximum. It is hoped that the
methods developed here can be used for explicit estimates
of response times; however, this will not be attempted in
this paper.

The above models can then be considered as repre-
sentative for the phenomena to be described. In fact, the
twin circuits and the parametron can be considered an
ingenious realization of the bifurcation of two or three
steady states. On the other hand, the theory developed in
Section 3 will show that those circuits also are comprised
within the frame of the models. This will be done by
construction of a “potential function” for the circuits
which in the analogues is the total energy.

The analogues illustrate another fact: The bistable
character of a circuit, that is, the existence of two stable
steady states, implies the existence of an unstable steady
state. This corresponds to the geometrical (or topologi-
cal) assertion: A positive function in several variables
which has two local minima has at least a third extremum
which is a saddle point or a maximum.

Therefore for the construction of bistable circuits it is
essential to produce unstable steady states. In the twin
circuit, for instance, this is achieved by the negative re-
sistance of the characteristic i=f(v), while in the para-
metron a resonance phenomenon is used.

2. Three circuits
® The single diode circuit

This circuit is described in Fig. 6. Here the square is the
symbol for the nonlinear characteristic, given by i=f(v).
If i is the current and v the voltage in the circuit, then
L di E—Ri

—— =E—Ri—w»

dt 2.1
& _imfw) |

— =i—f(v).

dt
In these equations C is allowed to be a function of v and
L can be a function of i. However, in the following we
discuss mainly the cases where C, L are constants, except
in Section 3 under Nonlinear capacitance, page 233.

® The twin circuit

This circuit (Fig. 2) contains two tunnel diodes. If »,,
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Figure 6

v, are the voltage drops across the first and second diodes,
respectively, and i the current in the circuit, then one has
the equations

di

L — =E—Ri—v—v
dt 1 2

Ce % i o)
N v
13 dt k k

(2.2)
(k=1,2).

® The twin circuit with bias

The above description of the twin circuit is actually a
simplification. In Fig. 7 we give a more realistic descrip-
tion which also contains the signal Eg. It will be shown,
however, that the corresponding equations can be re-
duced completely to (2.2).

The equations for this circuit are:

di RyEg R:Rp .
L — E—— o) —{\Ry+ ——— }i—m
dt R2+RB R2+RB

Rp
Rz:+Rp
dv (2.3)
o] ! =i—fi(v1)
dt
d R Eg—o
Cz V2 _ B B 2 fz .

R2+Rp B

These equations can be reduced to the form (2.2) if one
sets

i+
dt R>+Rp

) ? Ry
=’U , —_ e— Iv
e 2 Ry;+Rp 2
7 i (1+ R fot ve—Es
f1=f1 ’ f2= RB 2 RB
RoRp
R-Rit Roimy
é 14 22
2=C2 RB t4
R
E—=E—E, — > _,
R>+Rp
Then (2.3) takes the form
di
L __dT =E_Ri—@1—‘®2




Figure 7
d’ﬁl

¢ i~h
dé)g

C: i—f2.

Therefore, the effect of Ep can be interpreted as a
modification of fz(v2): The independent variable is
stretched according to

Rp

D= ——2
*" R:ARz -

and a linear function is added to f.:

Rg vo—E B
fo= {1+ + .
fz ( Ry ) f2 Ry
For Rg—> % one has the twin circuit discussed under
(2.2).
From now on this circuit will be dropped since it is —

at least formally — included in (2.2). The influence of
Ep will be interpreted as an asymmetry in the two diodes.

® The potential function

The theory developed in the following section is based on
the observation that the differential equations (2.1),
(2.2), (2.3) can be written in the form

di oP

dr ai (24)

d’l)k oP ’
Ck =— .

dt 0V

This holds even for the complicated differential equations
(2.3) in which case P has the form

Li R 2—jv Ry iv
P=Fi- YT RoAR;
~Eg)®
d dve+ ————— . 2.5
[ﬁ ’U1+/f2 V2 2(R2+RB) (2.5)

In this case v2 in (2.4) has to be replaced by .. The
equations (2.4) are valid even if L=L(i); C,x=Cx(vy).
The function P which has the dimension of a power
suffices to describe the differential equations (2.4).

In order to show that the structure (2.4) seems to be

“typical for electrical circuits we set up the differential

equations for the circuit which is obtained from the
example of the twin diode with bias by inserting an
inductance Ly between Eg and Rp. This circuit gives rise
to four first-order equations.

Denoting the current through L and Lg by i and j and
the voltages across the diodes by v1, v2 we find

dt o1

dvz oP
dt V2 ’

2
where

i .. 72
P=Ei+Egj— {(R1+R2) - +Rzij+ (Rz+Rp) —2-}

vy vy
—i(v1+vz)—jv2+/ fld’l)l‘l‘/ fo(w2)dv: .
0 0

The equations (2.4) are obtained from these by setting
Lg=0. In the following® we will work only with the equa-
tions (2.4).

3. A general method
® The potential function

In this Section we study systems of the form

di »
L2 —E-Ri— 3 n
dt k=1 (3.1)

Gl _ipo) =12 m),
dt

where we consider E as a fixed parameter, i.e., independ-

ent of . As we saw previously this covers the circuits

under discussion.

It is our main purpose here to find conditions which
ensure a bistable situation of the system, for which, more-
over, all solutions tend to steady state solutions. It is well
known that nonlinear systems need not have this prop-
erty, and that there might be bounded solutions which
never approach a steady state. In fact, van der Pol’s
equation which admits a limit cycle, i.e., self-sustained
oscillations, describes a phenomenon of this kind.

It is fortunate that the equations (3.1) allow for very
simple conditions which guarantee that all solutions tend
to steady states, as will be shown in this section. The
method employed is based on an idea of Liapounov to
construct a function which decreases along solutions with
increasing time. While usually the energy can be used as
such a function this is not possible for circuits with
negative resistance. For the construction of such a

229

IBM JOURNAL * JULY 1961




230

Liapounov function the potential function P will be of
basic importance. Moreover, the investigation of the
stability of the solution is particularly simple.

Setting

I(i,v) = %(E—Ri— 2” vk>

k=1
. 1.
Vk(la 'U)= - (l_fk)’ (3'2)
Ch
the above system takes the form

(k=1,2,...,n).
(3.1%)

Observing that the coefficients of vy in LI are —1 and the
coefficient of i in CxV is + 1 we see that
2

?
—— (L) =— — (CiVy).
avk( ) 57 (O

di —I( ) . d’l)k v ( )
I- L, v s _dt__ &I, ¥

This, together with the fact that V; is independent of
v (I7=k) shows that the integral
(i,v)

LIdi— 3 CyViduvy (3.3)

(0,0) k=1

P(i,v)=

taken as a line integral in the n+ 1 dimensional i,v,...,%,
space is independent of the path. Hence integrating from
i=v1=...=v,=0to (i, vy, ..., v,) along any path P
is a function of the end point only.

This quantity P has the dimension of a power (i.e.,
voltage times current) and is attached to any particular
state of the circuit, no matter how it was brought into
this state. This concept is reminiscent of the concept of
potential energy and ought to be of physical significance.
From the mathematical point of view the importance of
the function P(i, v) is put into evidence by the remark
that the differential equations (3.1) are completely deter-
mined by the function P. In fact, from (3.3) it follows
that

oP oP
—=L1 ; - =CiV, (3.4)
0i oV
and (3.1) takes the form
di oP dv oP
e I AL B R
dt 0i dt o0V

Moreover, the extrema (critical points) of P are given by

oP oP

oi a’Uk

=0 (k=1,2,...,n)

and coincide, by (3.4), with the steady state solutions of
the system of differential equations (3.1).

For the following it will be useful to have explicit ex-
pressions for P. Two forms prove especially appropriate:
Direct integration of (3.3) using (3.2) gives

iz n n
—i ¥ vt 3 Fr(vi), (3.5)
k=1 k=1

P=FEi—
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where Fj,(v;) are the integrals of the characteristic non-
linearities fx(v:), that is,

Fi(ve) = / " fe(V)dx
0

Secondly, if one uses I, vy, . . ., v, instead of i, vy, ..., Vn
as independent variables one finds

_L212
P—

+U(v), (3.6)

where the function

(-5
U(v)= ——%(— +7§ Fi(vs) (3.7)

is independent of I. The functions P and U(v) =P/1-0
will be referred to as potential functions.

The formula (3.6) can be derived from (3.5) but one
has an easier approach if one integrates (3.3) by parts:

P=LIi—((Lidl+3CyVidvy) . (3.3%)
Using I, v4, . . . , v, as independent variables one has

i L oi 1
TR wm R

and, therefore, from (3.3*)
oP i L2
a Ha TR

opP oi E—Suv;
. —LI -~ —~CVi=— —= + fu(vr) .

This shows that 0P /dvy, is independent of I, and integra-
tion yields (3.6). The integration constant corresponds
to the normalization P=0 for i=v=0, or LI=E, v,=0,
but this is irrelevant.

e The S-function

For the following we use one more function:
1 1 »

Q= —LI+ — JCVi2, (3.8)
2 2 k=1

which vanishes only on the steady solutions and is posi-
tive otherwise. If one evaluates Q on a solution one finds
for the ¢ derivative

d 80 n 30
_—— 0= = - vV
a2 2 El v "
d no
— — Q=R+ 3 fi'Vi*. (3.9)
dt k=1

If one would assume that f;(v;) are increasing functions,
as is the case for ordinary diodes, then the right-hand
side would be positive if one excludes the steady states
and Q would be a decreasing function and tend to zero
as t—oo. This proves that all solutions tend to steady
states if f1, (vi) >0.




The novel feature of the tunnel diodes, however, is the
fact that ' is negative in some interval (negative resist-
ance). It is this fact which permits bistable behavior.

To take into account characteristics with negative
slope we form

§=0+\P, (3.10)

where P, Q are the functions defined in (3.3) and (3.8)
and A is a positive constant to be chosen appropriately.
An easy calculation [using (3.3) and (3.9)] gives

d n

— — S=(R-ML)I2+ 3 (f1+2C) V2. (3.11)
dt k=1

To ensure that the right-hand side is positive we choose A

in the interval

—f R
<AL — 3.11%)
Cy < L (
assuming here that
4 R
Ji R, (3.12)
Cy L

The last inequality is a restriction on f;. The slope f;
is allowed to be negative but should remain >—CyR/L.
In the existing circuit this condition turns out to be satis-
fied. At a later place we will give further motivation for
the need of such a condition to avoid self-sustained
oscillations.

We show now

® Theorem 3.1

The extreme points (or critical points) of S coincide with
the steady states of (3.1), provided (3.11*) holds.

Proof: We calculate the partial derivatives of §

oS n
— = (R=AL)I+ S Vi
oi k=1 (3.13)
A
=—I—(f +AC) Vi,
avk

and see that the gradient of S vanishes at steady state solu-
tions. By (3.11) the directional deviation dS/dt does not
vanish at any other point, which proves the statement.

® Behavior of the solutions for t—>+

In order to establish the bistable character of a circuit in
the sense that the solutions approach two or more steady
states, it is important to exclude the possibility of self-
sustained oscillations, which indeed can occur for systems
of the form (3.1). From the mathematical point of view
the boundedness of the solution also ought to be guaran-
teed in order to be sure of the existence of the solution for
all +>0. This last fact seems rather obvious from the
practical point of view and we state conditions for bound-
edness of the solutions without proof.

® Theorem 3.2

If
xfr(x) = O for all x and

E? (3.14)
xfr(x) > = for x > Ay

then all solutions of (3.1) remain bounded.

For a proof we refer to the appendix of Section 3. The
above general conditions of f; will be adopted through-
out the following. They are certainly valid for the circuits
considered.

The main result, however, is contained in

® Theorem 3.3
Under the condition

fx R
JE 4 >0
¢ "I

all solutions of (3.1) tend to the steady state solutions
which are assumed to be finite in number.

Proof: From (3.11) it is seen that S is a decreasing
function along the solutions, if A is chosen according to
(3.11*). More precisely: For ¢>0 one has outside the
neighborhoods

PASV,E<e (3.15)

about the steady states
as
e 2ce(IP4+3V2) 2ce ,

where

c=Min(R—-\L, f;, +AC:)>0.

Hence

S§<S8/10—cet. Since, however, S is bounded from below:
2

AU (v
2R+ (v)

S=Q+AP>(R—AL)

> S Fi(v) 20, (3.16)
k=1

S cannot decrease indefinitely and for t>S,/ce the solu-
tion must have penetrated into one of the neighborhoods
described by (3.15). In fact, the total time a solution
spends outside this neighborhood is at most ¢-1£-1S,. This
proves the statement.

® Stable steady states

Since all solutions tend to steady state solutions it seems
most important to investigate their stability behavior
which can be done in two ways:

a) The first method consists in investigating the linear-
ized equations near a steady state and their characteristic
exponents which are given as ecigenvalues ag, a1, ..., an
of the matrix
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( R 1 1 ) Which we combine in vector notation to
T L YaL - VGiL oP
VG % P
1 4 ox
— 1 0 .. 0 .
M— VCiL C: . with
. 0 . J=diag(1, —1, —1,...,—-1).
. . . 0
1 fo! Hence
Wens o - - -0 — C’: 52p
L i n) (a - ) —IM=N
X0
(3.17) ’

which defines the symmetric matrix
evaluated at the steady state to be considered.

B) The second method uses the fact that the steady ( R 1 L. 1)
states are the extreme values of the function S which L VCiL VL
decreases along the solutions. From this fact it follows 1 ,
that a local minimum of S corresponds to stable steady - 11 0 . 0
states. This argument goes back to Lagrange and Dirich- Ne VCiL G .
let® and is well known. Therefore we will try to determine B .
the minima of S. . 0 . .

We remark that S has at least one minimum since S is . 0
nonnegative and tends to % as i, » tend to infinity [here 1 14
we use (3.14)]. This proves the existence of at least one - L 0 . : - 0 C
stable steady state under the conditions (3.12), (3.14). \ VEiL O

To decide whether an extreme point of S is a minimum combining these results we have from J7J=1
or not we compute the symmetric matrix of second deriv- .
atives of S. For this purpose we introduce ( i > —MTM+AN=N2+AN.

J— 0X3.0x
x0=\/fi xk=\/Ckvk o .

_ Denoting the real eigenvalues of N by vq, . . ., v, we have
Xo=+/LI Xe=1/CiVx a minimum of S if
and determine ve(ve+A) >0,

0%§ _ 0 a2P le., if all eigenvalues of N lie outside the interval
0Xx1.0x; 0X10X1 0x1.0X; ) (—)\’ 0) ’

Si Another sufficient condition for a minimum of S seems
ince more useful and will be exploited in the following Sec-

1 » tion: With (3.6) and (3.8) S takes the form
0= — I X;?

2 oo s= L Roan) £ p+ Lsovetavm).  (.8)

= _ (R— _ —_ V). .
and 2 R™T 2
X This formula shows immediately:
=M
< 0x;
T 4

one finds ® Theorem 3

62
Q =M™M .
8xkaxl

The equation (3.3) takes the form

n
k=1

—[Xodxo— S Xydx,
k=1
from which one finds

oP oP

=X, — =—X
232 ox0 % oxn ¥
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The extreme points of S correspond to the extreme points
of U. Every local minimum of U represents a local mini-
mum of S and hence a stable steady state of (3.1).

This theorem allows us to reduce the problem by one
dimension and therefore simplifies many calculations.

Proof: From (3.18) one computes the identity

1
Sou+fiSi=— (R—AL) <? +f,;> I+\U,,

from which it is evident that the points
1=0; U,,,=0

yield extreme points of S. Conversely, at extreme points




of S one has I=0, hence from the above equation U, =0.
This proves the first half of the theorem.

The second part is obvious from (3.14), since at a
minimum point v=v" of U and I=0,

S=\U(®'),

whereas for neighboring values of v, I,
SZAU () 2AUW).

® A Legendre transformation

In the following Section the function U(v) will be stud-
ied for various circuits. Here we remark that if in the
equations for steady states of (3.1)

LI=E—Ri—3v;=0

i—fe(vr)=0,
the variable i is eliminated, one obtains /=0 and
+ —E—:ﬂ —fr(ve) =0,

R

which are precisely the conditions for extreme points of
U,ie.,

oU
a’I)k

=0.

This fact can be understood more clearly if one uses
instead of i, v the variables I, v,. These variables, i, v
and I, v, are related by a Legendre transformation.?
Namely, if one uses (3.3*) with

K(I,v) = {Lidl+ 3 C.Vidvy=LIi—P
K

one has

This transformation can easily be carried out explicitly
since i and I are related by linear equations.

For some purposes it can be useful to go from the
variables i, vx to I, Vi The steady states correspond
exactly to the points I=V;,=0. It is clear, however, that
in the presence of more than one steady state solution the
transformation from the i, vy to the I, V} is not one to
one since all steady states correspond to one point
I—=V,=0. Indeed, this transformation is nonlinear and
rather complicated. However, if one restricts attention to
a domain (in the v; variables) where U is convex then
the correspondence between (i, vy) and (1, V) is one-to-
one and this transformation can be used with success.

To prove this statement we use (3.6). With I, v;, as
independent variables one finds

P
A -
R

oV OV | r=const

Hence, for every given I, V) the value of the v are
uniquely determined. This follows from the convexity of
U and the fact that for a family of parallel planes there

is at most one which touches a convex surface. Indeed
z=U(vy,...,v,) can be considered a convex surface
and the vector

U U
seees s —1
ov1 OVn

defines a normal to the surface. Hence for a given I, Vi
there is at most one vector v;. The current i can then be
found from the linear equation

LI=E—3v.~Ri.

e Nonlinear capacitance

The above results were derived under the tacit assump-
tion that L, C, R were positive constants. This is unreal-
istic but frequently sufficient for the description of a
circuit. For a tunnel diode, however, the capacitance C
is a function of a voltage usually approximated by

-3
C(v)=Cp (1— %) .

It is interesting that the above method can be modified so
as to extend to the equations (3.1) with variable
Cr=C k(’u) >0.

The formulae derived for the potential function P will
generalize without any change. However, the function Q
defined by (3.8) when differentiated will contribute new
terms arising from differentiation of Ck. To avoid these
terms we add to P not Q but a multiple of I2. It turns out
that

2 2

B+P(i,0) = - P+ U() (3.19)

5=

is the appropriate function to work with.?

If we carry out the Legendre transformation of i, v
into I, v discussed under stable steady states, the differen-
tial equations (3.1) go over into

dl R 1 1 =
— =T =g )1t T Sl

dt L cR k=1
d’l)k L
= 1=, (3.20)
With these equations one finds readily
ds L2 dI dvy,
— S - U,
dt R dt ,E *odt
ds L2 /R 1
=2 - (— - —)pe+scUZ, 3.21
d R <L cR 2GaU, 62D
where
1 % 1
C k=1 Ck
We now make the assumption
L SCypt= ! < R (3.22)
R ™" 7 Re L’ ’
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Then § is a decreasing function of ¢ by (3.21) if one
substitutes a solution into S.
Furthermore, the stationary points of 3 are given by

B 1o

oi

a8 L
=2 -~ 1+U,=0,
ok R o
which gives
I=U,=0.

Hence the extreme points of § coincide with the steady
states of the equation.

Following the same ideas as in the Section on solutions
for >+, we have

e Theorem 3.5

Under the condition (3.22):
1

R

1 R
S <=

C L
all solutions of (3.1) (with nonlinear positive Cy) tend to
steady state solutions which are assumed to be finite in
number.

® Theorem 3.6

The extreme points of § coincide with the extreme points
of U(v), I=0. Every local minimum of U corresponds to
a local minimum of § and vice versa.

The proof of the last theorem follows immediately
from (3.19).

The last theorems show that the condition

fi R
+—=>0
Ce L

can be replaced by the new condition

1 R

CR L

without violating the conclusion. The last condition is
satisfied for a simple circuit studied by Esaki where c¢(v)
indeed is assumed to be not a constant. However, in other
cases (3.22) is definitely violated and one has to check
the condition (3.12) which is a restriction on the char-
acteristic function f(v;). Notice that all above condi-
tions are comparisons of two frequencies which have
simple physical interpretations. On the other hand the
potential functions U(v) entering Theorems 3.4 and 3.6
are the same and are basic for the following discussion.

Appendix: Proof of Theorem 3.2
We use the energy expression
W= —1— Liz4- -1— 2" Crvi?

2 2 k=21

of the circuit and restrict attention to large values of W:
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W>W—'1LE +12CA2
0—2 R ? kK" 5

where A4 was defined by (3.14). It is clear that this in-
equality implies that at least one coordinate is large. To
make this more explicit we show that one of the follow-
ing (n+1) relations holds

E
li|>~E; I’l)k|>Ak.
For, if the first is violated, then it follows from the above
SCi? > SCpAi?,
which implies that |vx| >4 for at least one k.
If one differentiates W along a solution one finds

aw n
—_ —_— =Rl2—El+ 2 fkvk
dt k=1

=Ri < i— g) +k§ frvr .

=1

|

If [i|> 3 this is obviously nonnegative. But if |i| <

then |vi| >A;, for at least one k and by assumption

E2
Soife> X so that

E2
— ﬂ/- >Riz2—FEi+ — ZRi*>0
dt R

which proves that
aw
mlre >0for W>W,.

This shows that solutions starting in the bounded domain
W =const (>W,) remain inside this domain for all posi-
tive t. This proves the theorem and, moreover, gives
explicit bounds for the solution.

4. Applications to circuits containing tunnel diodes
® The single diode circuit

The equations for the circuit to be discussed here cor-
respond to n=1 in (3.1). We may assume immediately
that C=C(v) is a function of v.

For the characteristic function f(v) we will assume
that # is positive for v>0 and f<0 for v<0, f(0)=0.
Moreover, the positive v-axis (Fig. 8) decomposes into
three intervals where f is alternately increasing, decreas-
ing and increasing, i.e.,

F>0in —o<v<a, v>b>a>0
<0 in a<v<lb.
The potential function U(v) has the form

(E—v)*?

UWw)= + ff(v)dv




and its derivative

dU E—»

dv R

Therefore the steady state solutions are obtained as
zeros of dU /dv, which geometrically can be constructed
(Fig. 9) by intersecting the graph of the curve i=f(v)
with the straight line

. E—wv
l=
R

+f(@).

(4.0)

as is well known. Depending on the values of E, R one
will obtain 1, 2 or 3 solutions.

The function U(v) can then be interpreted — up to a
constant — as the area between the curve i=f(v) and
the straight line. The graph of U for the above situation
is of the shape depicted in Fig. 10, which shows that U
has two minima and one maximum. Therefore, by the
discussion Section 3: If one of the condition (3.22) or
(3.12) is satisfied then one has two stable steady states.
The third steady state is actually unstable.

To discuss the restrictions on the parameters we make
the requirement that three points of intersection will
occur for appropriate choice of E, so that switching is
possible. This leads to

, 1
Max(—f)>72—. 4.1)

This inequality shows that the condition (3.12)

f e R oran
F T or all v
implies
Lo Max—py< B
crR S\ T

and hence implies (3.22). Therefore it is less restrictive
to assume only

! < R 3.22
CR ~ L~ (3-22)
Moreover the statements concerning the nonlinear ca-
pacitance were derived under this assumption only.
Under this condition we have shown that each solution
tends to one of these three steady state solutions.

A more precise picture can be obtained by studying the
level lines of the function

2

L2
2+ U(v)

S=
2R

which we represent in an I, v plane, Fig. 11. The extreme
points occur all on the » axis and we discuss a case where
all three points occur.

Since the value of the function § along a solution de-
creases, every solution cuts these level lines — always in
the same sense. Almost all solutions tend to the two
stable steady states. The solutions tending to the saddle

Figure 8

Figure 9

Figure 10

point of § form two curves which spiral to infinity. The
existence of these two solutions is an easy consequence
of a theorem of J. Hadamard.?

In the case where E is zero or so large that the straight
line (4.0) hits the curve only in one point, one will have
only one stable steady state, since in this case U and also
S have only one extreme point which is a minimum. The
question how fast a solution approaches this steady state
solution can easily be answered by appropriate estimates
of the right-hand side in (3.21).

In this case one can, for instance, estimate

U
U—-Us

where U, is the minimum value of U and a positive con-
stant. Then one finds from (3.21) an estimate of the form

2o

]
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-

Figure 11

45 .

9 2 a(S§—S0)
and «! represents a certain rseponse time. Refinements
of this method are being worked out numerically by
R. Brayton.z

Finally we discuss the generation and disappearances
of steady state solutions as the parameter E varies. For
E=0 there is one stable steady state only at v=0 which
increases as E increases. The moment when the line
i=(E—v)/R touches i=f another steady state occurs
which bifurcates into a stable and an unstable one. Finally
when E is increased further the first minimum and the
saddle points of § concur and disappear. The situation
can be visualized easily with the graph of U.

The study of the equation with t-dependent E=E(t)
will not be undertaken here but requires special attention.

® Occurrence of limit cycles

In the previous investigation two frequency relations
were required, namely (3.12) and (3.22). We want to
show that some frequency restrictions of this type are
necessary indeed for the bistable character of the sys-
tem. We discuss the equation (3.1) for n=1 and a
constant capacitance C. For the convenience of the argu-
ment we assume

, 1
—'< =’ (4.2)

which guarantees the existence of only one steady state
[reversed inequality of (4.1)]. If one now violates condi-
tion (3.12) and assumes

f R
Max <— _[;_> > T ’ (4.3)
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then the argument of Section 3 breaks down since in
(3.11) the right-hand side cannot be made positive. In
this case, however, we can prove that all solutions tend
to one or possibly several limit cycles for =+, i.e.,
one has a self-sustained oscillation, if E is chosen so that
(4.3) holds at the steady state solution.

For the proof of this statement we remember that all
solutions are bounded as was shown in the appendix of
Section 3. There exists exactly one steady state solution
at which the matrix of the linearized equation is

R 1
T L
1
Lt
C C

The eigenvalues of this matrix, say ai, as, satisfy

ta=— (L + 2 >0
e (? L

and

1+Rf
LC

This implies that Rea1>0, Reaz>>0 so that all solutions
escape from the steady state as t—>+- . In other words
one can construct an ellipse about the steady state solu-
tions in such a manner that the vector field points out-
wards on this ellipse. The theory of Poincare-Bendixson
applies exactly to this situation and guarantees the ex-
istence of at least one limit cycle. (We refer to E. A.
Coddington and N. Levinson.?)

The conditions (4.2), (4.3) are of course not exactly
the negation of (3.12) or (3.22) and our case distinc-

>0.

® X2 =




tion is not exhaustive. However, this result shows that one
needs some parameter restriction to exclude the occur-
rence of limit cycles.

The conditions (4.2), (4.3) can be relaxed. It suffices
that (4.3) holds for every steady state solution and (4.2)
can be omitted completely, Then one can still exhibit the
existence of limit cycles.

e The twin diode

For discussion of the twin diode circuit (as devised by
E. Goto), we start with the equations

L% _ERi-%

—_— =L —KIl— v

dt k=1 ’
d’Uk

c
Tt

=i—fr(v), (4.4)

i.e., with the equations (3.1) for n=2. We omitted the
bias (as discussed in Section 2) since those equations
can be reduced to (4.4) (see Section 2).

We will assume that the diodes have practically the
same characteristic functions

filx)=f(x) ; C1=C, (4.5)

and later discuss the modifications to be derived from an
asymmetry. Such an asymmetry will in fact be produced
by a bias (see Section 2, Twin circuit with bias, page 228).

Basic for the theory outlined in Section 3 is the func-
tion

Figure 12

U, v2) = — o+

+ f2(vs) dve (4.6)
0
whose extreme points coincide with the steady state solu-
tions of (4.1). Even though U is only a function of two
variables (and not all 3 variables i, vy, v2) it is hard to
visualize this surface. Indeed the number of critical points
will depend very much on the shape of f1, f» and the size
of E, R. There might be as many as nine steady solutions
under suitable conditions.
Since it is difficult to picture this surface we suggest
finding the extreme points only from

U —py—

? =— (E s 12)- +f1(v1) =0

o1 R

U (E—v1—v2) (4.62)
—v1— V2

Yoy - % +f2(v2) =0.

The solutions of these two equations can geometrically be
constructed by intersection in a three dimensional i, v1,
v, space of the two cylindrical surfaces

i=f1(v1)
i=fa(v2). 4.7)

Their intersection consists of several pieces of curves
which is drawn in Figure 12 under the assumption f1(x)=

V2
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f2(x) =7(x). In this case one branch of the curve (4.7) is
V1=v2=v ; i=f(v).

But there are two other branches, which bifurcate from
the points v1=v:=m, i=F(m) where m is chosen so that
f(m)=0.

Since the curves lie symmetric to v; =v; we have indi-
cated only the part in v2>v;. The curve on v, =, in Fig.
12 is denoted by A while the two other branches are
called B, C. The intersection of 4 and C corresponds to
the minimum, that of 4 and B to the maximum of f.

To solve (4.6a) one has to intersect this curve system
A, B, C with the plane

E-—’Ul‘—?)z
R

i= , (4.8)
which also lies symmetric to v, =, .

One can see easily that for very large values of R the
plane (4.8) is almost horizontal and with appropriate
choice one can get three intersections of the plane with
A, two symmetrical pairs of intersections with B and one
symmetrical pair of intersections with C, hence alto-
gether at least 3+2-2+42 - 1=9 steady states.!* This is an
undesirable situation which can be avoided by appropri-
ate parameter restrictions,

To ensure that the plane (4.8) and A have only one
point of intersection we require

2
—f{x)< =" (4.9)

A condition guaranteeing that the plane (4.8) intersects
B only in one pair of points is harder to obtain and, in
fact, depends on the shape of the curve i=f(v). Here we
give only one rough condition which shows that the
decreasing part of i=f(v) should be slower descending
than the increasing part of the curve ascends to the
maximum.
Let »; and v, be determined so that

fv1) =f(v2) ; 11<ve

and use v: as independent variable, Fig. 13.
Then, differentiating, one has

v f(v)
dvy f(v)

The condition, that the branch B pierces the plane from

Figure 13
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below, as one moves along B with increasing vz, amounts
to

1 f'(v2)
—fo)< —( 1+ =), 4.10
f(w2)< R( + f’(v1)> (4.10)

which is a much more stringent condition than (4.9). In
fact, if the curve i=f(v) were symmetric with respect to
the line perpendicular to the maximum then f'(v)+
f(v2) =0 and (4.10) would be violated.

Since f'(v2) <0 (4.10) can be written in the form

1 1 dvy dv,
R<—- = (—+ 4.10'
< (fl('l)x) + f’(v2)> (di di ) ( )

where f(v1) =f(v2) =i, v1<<v2. One easily computes
1 1 4 "
S LS T PR B L2
f(n) F(v2) 3 f2m)
as vy, vz approach the value m at which f attains its maxi-
mum. Therefore (4.10") implies

4 f/u
3 f//z

R< for v=m. (4.10”)
This relation shows that />0 at v=m and expresses
that f descends slower than it ascends.

To give this condition a more concrete form we dis-

cuss the cubic polynomial

3 +m
f(v)=c {—3— - -—————mlz : 1)2-|-m1M2’U}

when c is a constant of the dimension current/(voltage)®.
f has a maximum at v=m; and a minimum at v=m; if
0<my<mo. In order that f>0 for »>0 and that the
maximum value is about 10 times the minimum value we
choose

29 S L
Moo= —— Miy== —_— —}m .
0 0/

One shows that the condition (4.10') has to be satisfied
only at v=mj since

AR N )
( f(v1) f(ve)

increases as ¥ increases, if f(»;) =f(v2). Therefore one
has to check only (4.10") which reads

R<_8_c—1 ¥;
3 (me—n1y)?
or
1 3 c(me—my)? 3 ,
> 2 2 Max [ )]
or
(< —Z—L for all v (4.11)
3 R

in this case. This is a stronger requirement than (4.9),




Vi
Figure 14

since the right-hand side of (4.9) is multiplied by 1/3.

Under this condition we can have three steady states
which lie on the curves A and B. Of course, it can happen
that there is only one steady state solution, for instance
if E=0 in which case the plane (4.8) intersects the
curves A, B, C only in i=v,=v;=0. Ignoring the curve
C, since it lies outside the range of interest, we discuss
the number of extreme points of U for different values
of E.

For sufficiently small E>0 there is only one point of
intersection between the plane (4.8) and the curves to be
considered. The number of extreme points can change
only if

1

1 1
UU11‘1U0202 - U21'17.'2= [—R“ +f’(vl) ] [? +f’(v2)] - R?

_ ( Lo, R) (00 (v2)

f(v1) f(v2) R
vanishes. For v;=v; and f' (v) >0 this expression is posi-
tive and vanishes for the first time at the maximum value
of f. If we denote this point by v=m; then the critical
value for E'is

Em=Rf(m1) +21’YI1 .

As E increases beyond E;, one has one steady state on
A and a symmetric pair on B. For larger values of E these
three points come together again and continue on 4. We

V2

indicate this behavior of the steady state solutions in
Fig. 14, in which A4, B, C and the steady states are pro-
jected into the v;-vs-plane. (At the intersection of 4 and
C there is another bifurcation leading to five steady
states.)

Finally we discuss the situation where all three steady
states occur, i.e., E>E,, and in which the steady state on
A lies on the decreasing branch of £, i.e., f'(v)<0.

To discuss the stability behavior of the three solutions
we determine at which point U assumes a minimum.
Since at any point on 4 one has

2 2 \?2 ,
- U=2f(v)<0 (v1=v2=7)
3’01 31)2

it is clear that U has no minimum there and the extreme
point of U is a saddle point or a maximum. Since U is a
symmetric function of v, v. it follows that the extreme
points on B are the minima of U. In fact the three station-
ary points can be characterized by

Min U= UA
V1=Vy

and

Min U=Usg.

It is clear that the unconditional minimum is smaller than
the minimum on 1 =19, i.e.,

Up<U, .
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Figure 15

Figure 16

This proves with the Theorems 3.4, 3.6 that the steady
states solutions on B are stable, provided
f'(ve) R

+ —>0 4.12
C 3 (4.12)

or

R>1 1+1
L~ R\ c, )’

However the last condition together with (4.11) implies
the first. Therefore it is less restrictive to assume (4.12)
only.

For a situation where three steady state solutions exist,
the level lines of U will have the appearance as shown in
Fig. 15.

® Summary of twin diode section

If one assumes that the characteristic f(v) satisfies
(4.10"), which for a cubic takes the form

()< 2k
AW
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and if

f(v) R
Cs <T

R_1/1 1
k=1,2) or — > — (= ,
( )OrL>R<C1+C2>

then all solutions tend to steady state solutions. For small
values of E there is only one stable steady state for
which v,=v,. This solution bifurcates at E=FE,, into
three steady states. The solution with v,=v. is unstable
while the other two which lie symmetric to the line
1 =" are stable. In the latter case most of the energy is
in one of the diodes or the other while the case where
both diodes have the same energy is unstable if £ (v) <O0.

® The influence of a bias

As was discussed in Section 2, Twin circuit with bias, the
influence of a bias current Eg, i.e., a signal, is the same as
a modification of the characteristic of one of the diodes.
Such a bias will destroy the symmetry of U in v; and 2
and we indicate how Figure 14 has to be modified. Fig-
ure 16 shows that the stable steady state follows a
prescribed curve.
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