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Bistable Systems of Differential Equations with 
Applications to Tunnel Diode. Circuits* 

Abstract: A mathematical analysis i s  developed for nonlinear circuits which have  at least two stable steady 

states, and therefore are of interest as computing or memory elements. Circuits containing one or two 

tunnel diodes will be  analyzed  in  detail a s  applications of the theory. 

The method is based on the study of  a certain ”potential function” whose extrema are the steady states of 

the circuit and whose minima correspond  to the stable switching states. This study leads to a qualitative 

description of all solutions in the large  and results in quantitative restrictions on the parameters ( R ,  L ,  C and 

nonlinear characteristics) which seem of practical importance. 

1. Introduction 

A basic problem of computing machines  is the construc- 
tion of elements which produce the well-known  flip-flop 
effect. This means  essentially that such elements,  which 
are usually electrical circuits, have  two stable steady 
states which represent two binary digits. Such circuits 
give rise to challenging mathematical problems in the 
field  of nonlinear ordinary differential equations. It seems 
desirable to develop a mathematical analysis for such 
nonlinear circuits to get a better understanding of their 
operation and, possibly, to indicate how to choose para- 
meters and nonlinear characteristics in the optimal way. 

The purpose of this paper is to present a method  which 
can be  used for such a mathematical analysis. In the 
following,  only the general  principle of the method will 
be  given. A further exploitation of this method for esti- 
mating  response  time and quantitative description of the 
solutions is under way but will not be undertaken here. 

I want to express my gratitude to W. Miranker and 
W. Mayeda for explaining the problem to me and for 
many stimulating discussions. Miranker also  developed a 
theory of his  own  which  is of asymptotic nature.l R. 
Brayton and R. Willoughby carried out calculations and 
extensions of these problems.2 

The circuits to be  discussed contain one or two tunnel 
diodes  whose typical feature is  described by the charac- 
teristic curve shown in Fig. 1. The  fact  that this curve 
has a region of negative  slope, or “negative  resistance,’’ 
makes the construction of a bistable circuit possible,  as 
will  be  seen later. 
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The twin circuit described by Got03 contains two 
tunnel diodes, as shown in Fig. 2. It turns out that for 
appropriate choice of the parameters E, L,  R ,  C1, C2 this 
circuit is bistable. There are two steady states: one in 
which  most of the energy  is in the first diode, and another 
in which  most of the energy  is in the second  diode. There 
is a third steady state in  which  both  diodes  have the same 
energy; this state turns out to be unstable. 

During the operation of the circuit the voltage E will 
be increased from 0 to  an end-value, and during this 
process the solution will fall into one of the two  possible 
steady states. In the following  discussion we  will ignore 
the time dependence of E and consider E as a parameter 
in the equation. For small  values of E one has only one 
steady state, which at some critical value of E bifurcates 
into three stable states. 

If one omits in the above circuit one of the diodes, i.e., 
the capacitance Cz and fz, then one has the single  diode 
circuit, which  also will  be  discussed. 

Instead of  explaining the phenomena in terms of the 
Goto circuit, we suggest a mechanical analogue which 
contains in fact all  essential features of bistability. 

Consider a curve of the shape shown in Fig. 3, e.g., 
y =x4- 2x2- Ex, where the above graph refers to E=O. 
On this surface we imagine a mass point sliding under the 
influence of gravity and friction. It is clear that the two 
minima represent two stable steady states while the maxi- 
mum is an unstable steady state. 

As E increases the above curve becomes  asymmetric, 
and for E = EO = 8/ fl, the left minimum  and the maxi- 
mum  grow together and disappear. 
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Figure I 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

The  operation of the single diode  circuit  can - in this 
analogy - be described as follows:  Choose E=Eo( L"), 
where 6 is a  small positive number, so that  the  left mini- 
mum  and  the maximum are close together (Fig. 4). 

If one now supplies  a signal by adding  to EO (1 - 6) the 
value k El> 6Eo, then  the mass point which  initially  was 
assumed to be in  the  left  trough will remain  there if the 
signal is -El ,  but will run over to  the right if the signal 
is +E1. 

The second  analogue  which we will need is described 
by a mass point sliding on the  curve y=x4-Ex2,  which 
for E<O has only one minimum at x=O. As E increases 
from E=O three  extreme points bifurcate  from x=O, 
namely, two minima  at x =  k and a maximum  at 
x=O, indicated in Fig. 5. A signal El can be supplied by 
tilting the whole curves by a small  angle El. If one  starts 
with E=O so that  the mass point will rest at  the origin 
then with  increasing values of E the mass point will fall 
into  one of the minima,  depending on  the sign of El .  

These  two analogues do  not only  illustrate the bistable 
character of a circuit but also the amplification which is 
an essential function of a computer device. The signal 
may  be a very  small quantity  but  the resulting possible 
end positions of the mass point will be far  apart. Mathe- 
matically this amplification has  its reason in  the discon- 
tinuous  behavior of the  number of extreme  points  in 
dependence on E.  

Intuitively it is clear that  the second of the above 
mechanical  analogues will be much  more sensitive and 
will be able to react to smaller signals than  the first, since 
in  the first analogue ]Ell  had  to be bigger than SE,. In 
the second  analogue such a requirement  on E1 is not 
needed. In  fact,  the difference in the  two analogues is 
understood by following the extreme points  for differ- 
ent values of E.  In  the first example  two  stationary 
points come together  as E approaches  the critical  value 
E = S/ fl while the  third - a  minimum - is at a differ- 
ent position. In  the second  example all three stationary 
points come together  as E+ +O. 

This difference gives rise to a classification of bistable 
systems: Those systems for which at  the  state of bifurca- 
tion  only  two  steady state solutions come together will 
be called systems of the first kind; if three steady state 
solutions come together we refer  to  them as systems of 
the second  kind. 227 
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only-be used for  memory devices (which  do  not  require 
a strong amplification). 

For  actual  computer elements the question of the speed 
with  which the final state is reached is resolved by finding 
the response  time for a  circuit. The above  analogues  serve 
to illustrate an answer to this  question: To reach the final 
state in a short time one should have a strong friction and 
a big curvature at the maximum. It is hoped that  the 
methods  developed here  can be  used for explicit  estimates 
of response  times; however, this will not be attempted in 
this  paper. 

The above  models can  then be  considered as repre- 
sentative for  the  phenomena to be described. In  fact,  the 
twin  circuits and  the  parametron  can be considered an 
ingenious  realization of the bifurcation of two  or  three 
steady states. On  the  other  hand,  the  theory developed in 
Section 3 will show that  those circuits  also are comprised 
within the  frame of the models. This will be done by 
construction of a “potential function”  for  the circuits 
which in  the analogues is the total  energy. 

The analogues  illustrate another  fact:  The bistable 
character of a  circuit, that is, the existence of two  stable 
steady  states, implies the existence of an  unstable steady 
state. This corresponds to  the geometrical (or topologi- 
cal) assertion: A positive function in several variables 
which has two local minima has  at least a third extremum 
which  is  a saddle point or a  maximum. 

Therefore  for  the construction of bistable circuits it is 
essential to  produce unstable steady states. In  the twin 
circuit, for instance,  this is achieved  by the negative  re- 
sistance of the  characteristic i = f ( v ) ,  while in  the  para- 
metron a  resonance  phenomenon is used. 

2. Three circuits 

The single diode circuit 

This circuit is described in Fig. 6. Here  the  square is the 
symbol for  the nonlinear  characteristic, given by i= f ( v ) .  
If i is the  current  and v the voltage in  the circuit,  then 

dv  
dt 

C - =i- f (v )  . 

In these  equations C is allowed to be  a function of v and 
L can  be a function of i. However,  in the following we 
discuss mainly the cases where C,  L are constants,  except 

Figure 6 

v2 are  the voltage drops across the first and second diodes, 
respectively, and i the  current in the circuit, then  one  has 
the  equations 

(k= l ,  2 ) .  

The twin circuit with bias 

The above  description of the twin circuit is actually  a 
simplification. In  Fig. 7 we give a more realistic descrip- 
tion which also  contains the signal EB. It will be shown, 
however, that  the corresponding equations  can be re- 
duced completely to (2.2). 

The  equations  for this circuit are: 

dvl Cl - =i-f 
dt l ( V 1 )  

dv2 R B  EB- ~2 c, - = 

These equations can be reduced  to  the  form (2.2) if one 
sets 

dt R2+RB ’+ RP+RB 
- f 2 .  

in  Section 3 under Nonlinear capacitance, page 233. 

The twin circuit 
Then (2.3) takes the  form 

di 
dt 228 This circuit (Fig. 2) contains two  tunnel diodes. If VI, L - =E-tzi-a,-a,  
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Figure 7 

Therefore,  the effect of EB can be  interpreted  as  a 
modification of f2(v2)  : The independent  variable is 
stretched  according to 

RB 
&+RB 

Bz= - 'u2 

and a linear  function is added  to f z :  

For RB + 00 one  has  the twin  circuit discussed under 
(2.2). 

From now on this  circuit will be dropped since it is - 
at least formally - included  in (2.2). The influence of 
EB will be interpreted as an asymmetry  in the two diodes. 

The  potential  function 

The  theory developed in  the following section is based on 
the observation that  the differential equations (2.1), 
(2.2),  (2.3) can be  written in the  form 

L - = -  di ap 
dt ai 

C k - = - - *  

This holds  even for  the complicated differential equations 
(2.3) in  which  case P has  the  form 

(2.4) 
d v k  ap 
d t  a u k  

In this  case vz in (2.4) has  to be replaced by 9,. The 
equations (2.4) are valid even if L = L ( i )  ; C k = C k (   v k )  . 
The  function P which has  the dimension of a  power 
suffices to describe the differential equations (2.4). 

In  order  to show that  the  structure (2.4) seems to be 
typical for electrical  circuits we set up the differential 
equations for  the  circuit which is obtained  from  the 
example of the twin diode with bias by inserting an 
inductance LB between EB and RE. This circuit gives rise 
to  four first-order  equations. 

Denoting  the  current  through L and LE by i and i and 
the voltages across the diodes by V I ,  vz we find 

di aP L - = -  
dt ai 

dj aP L E - = -  
dt aj 
dvl ap cl- =- - 
dt avl 

dvz ap c2-=-"., 

where 

dt avz 

(R l+Rz)  - +Rzij+(&+RB) - 
i2 
2 2 

- i ( v l + v z ) - j v z + ~ w l  f ~ d v 1 + ~ "   f z ( v z ) d v z .  

The  equations (2.4) are obtained from these  by  setting 
LB=O. In  the following5 we will work  only  with the equa- 
tions (2.4). 

3. A general method 

The  potential  function 

In  this  Section we study systems of the  form 

L - = E - R i -  2 v k  
di 
dt k = 1  

n 

(3.1) 
d v k  

dt 
C k  - = i - f  

where we consider E as  a fixed parameter, i.e., independ- 
ent of t .  As we saw previously this covers the circuits 
under discussion. 

It is our  main  purpose  here  to find  conditions  which 
ensure a bistable  situation of the system, for which,  more- 
over, all solutions tend  to steady state solutions. It is well 
known  that nonlinear systems need not  have this prop- 
erty,  and  that  there might  be bounded solutions  which 
never approach a steady state. In  fact, van der Pol's 
equation which  admits a limit cycle, i.e., self-sustained 
oscillations, describes a  phenomenon of this  kind. 

It is fortunate  that  the  equations (3.1) allow for very 
simple conditions  which guarantee  that all solutions  tend 
to steady  states,  as will be  shown in this section. The 
method employed is based on  an idea of Liapounov  to 
construct a function which  decreases  along  solutions  with 
increasing time. While usually the energy can be used as 
such a function this is not possible for circuits with 
negative resistance. For  the construction of such a 

k ( v k )  ( k = l , 2 , .  . . , n ) ,  

229 
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Liapounov function  the potential  function P will be of 
basic importance.  Moreover, the investigation of the 
stability of the solution is particularly simple. 

Setting 
I /  n \  

the above system takes the  form 

di dvk - = l ( i ,  v) ; -- dt dt 
- Vk(i, v )  (k=l, 2,. . . , n ) .  

(3.1*) 

Observing that  the coefficients of V k  in LI are - 1 and  the 
coefficient of i in CkVk is + 1 we see that 

This,  together  with the  fact  that v k  is independent of 
vl(Z#k) shows that  the integral 

P ( i ,  v) = Lldi- E CkVkdVk (3.3) 

taken as a line integral in  the n + 1 dimensional i ,  81,. . . , v, 
space is independent of the  path.  Hence integrating from 
i=v l=  . . . =vn=O to ( i ,  VI, . . . , v,) along any  path P 
is a function of the  end  point only. 

This  quantity P has  the dimension of a  power (i.e., 
voltage  times current)  and is attached  to  any  particular 
state of the circuit, no  matter how it was brought  into 
this  state. This concept is reminiscent of the concept of 
potential  energy and  ought  to be of physical significance. 
From  the  mathematical point of view the  importance of 
the  function P(i ,  v) is put  into evidence by the  remark 
that the differential equations (3.1) are completely deter- 
mined by the function  P. In  fact,  from (3 .3)  it follows 
that 

J ( i , V )  n 

(0,O) k=1  

ap   ap  
ai 

- = L I  ; - - =CkVk, (3.4) 

and (3.1) takes the  form 
a v k  

Moreover, the extrema  (critical points) of P are given by 

ap  ap  
- = O  ( k = l ,  2 , .  . . , n )  

ai a v k  
"- 

and coincide, by (3 .4) ,  with the steady state solutions of 
the system of differential equations (3.1 ) . 

For  the following it will be useful to have explicit ex- 
pressions for P .  Two  forms prove especially appropriate: 
Direct integration of (3 .3)  using (3 .2)  gives 

R i2 n n 

230 P=Ei- - - i  x vk+ 2 Fk(Vk), (3.5) 
2 k=1  k-1 

where Fk(Vk) are  the integrals of the charac 
linearities f k (  vk) , that is, 

F k ( v k ) = [   f k ( X ) d h .  

:teristic non- 

Secondly, if one uses I ,  VI, . . . , vn instead of i ,  VI, . . . , v,, 
as independent  variables one finds 

where the  function 

(3.7) 

is independent of 1. The  functions P and U ( v )  = P / I = o  
will be referred  to  as potential  functions. 

The  formula (3 .6)  can be  derived from (3 .5)  but  one 
has  an easier approach if one integrates (3 .3)  by parts: 

P=Lzi-l(Lidl+SCkVkdVk). (3.3*) 

Using I ,  vl, . . . , vn as independent  variables one has 

ai L ai 1 
ar 
- 7-  - - =- - 

R '  avk R 

and,  therefore,  from (3 .3*)  

This shows that aP/avk is independent of I ,  and integra- 
tion yields (3 .6) .  The integration constant corresponds 
to  the normalization P=O for i=v=O, or LI=E, Vk'o, 

but this is irrelevant. 

0 The  S-function 

For the following we use one  more  function: 

which vanishes only on  the steady  solutions and is posi- 
tive  otherwise. If one evaluates Q on a  solution one finds 
for  the t derivative 

d 
dt 

n 

- - Q = R P +  x fLVk2. (3 .9)  
k= 1 

If one would assume that fk( V k )  are increasing  functions, 
as is the case for  ordinary diodes, then  the right-hand 
side would be positive if one excludes the steady  states 
and Q would be a decreasing function  and tend to zero 
as t+m. This proves that all solutions  tend to steady 
states if f; (vk) > 0. 

IBM JOURNAL JULY 1961 



ance) . It is this fact which  permits  bistable behavior. 

slope we form 
To take  into  account characteristics  with  negative 

S = Q + X P ,  (3.10) 

where P, Q are  the functions defined in (3 .3 )  and (3 .8)  
and X is a positive constant  to be chosen  appropriately. 
An easy calculation  [using (3 .3 )  and (3 .9 ) ]  gives 

(3 .11)  

To ensure that  the right-hand  side is positive we choose X 
in the interval 

- f L  R 
- <x< 

~ C k  1 assuming  here that 

(3 .11*)  

(3 .12)  

~ The last  inequality is a  restriction on f k .  The slope f k  
is allowed to be negative but should remain > - CkR/L .  
In  the existing  circuit  this  condition turns  out to be satis- 

1 fied. At a later place we will give further motivation for 
the need of  such a  condition to avoid self-sustained 
oscillations. 

We show  now 

e Theorem 3.1 

The extreme  points (or critical points) of S coincide with 
the steady  states of (3.1), provided (3.11*) holds. 

Proof: We  calculate the partial  derivatives of S 

(3 .13)  

and see that  the gradient of S vanishes at steady state solu- 
tions. By (3.1 1) the directional  deviation dS/dt does not 
vanish at  any  other point, which proves the statement. 

Behavior of the solutions for t++m 

In  order  to establish the bistable character of a  circuit  in 
the sense that  the solutions approach two or more steady 
states, it is important to exclude the possibility of self- 
sustained oscillations, which  indeed can  occur  for systems 
of the  form (3.1 ) . From  the mathematical  point of view 
the boundedness of the solution also ought  to be guaran- 
teed in  order  to be sure of the existence of the solution for 
all t > O .  This last fact seems rather obvious from  the 
practical  point of view and we state  conditions for bound- 
edness of the  solutions without proof. 

Theorem 3.2 

I f  

x fk(x)  2 0 for all x and 

E2 (3 .14)  
X f k ( X )  > - fOrX > Ak 

R 

then all solutions of (3.1) remain bounded. 
For a  proof we  refer  to  the  appendix of Section 3. The 

above  general  conditions of f k  will be adopted through- 
out  the following. They  are certainly valid for  the circuits 
considered. 

The main  result,  however, is contained  in 

Theorem 3.3 

Under the condition 

all solutions of  (3.1) tend to the steady state solutions 
which are assumed to be finite in number. 

Proof: From (3 .11)  it is seen that S is a  decreasing 
function along the solutions, if X is chosen  according to 
(3.1 1 *)  . More precisely: For E > O  one  has outside the 
neighborhoods 

P + X V k " &  (3.15) 

about  the steady  states 

where 

c=Min(R-XL, f k  +-hck)>o. 
Hence 

S 5 S / t = o - c ~ t .  Since, however, S is bounded from below: 

IZL 
2R 

S=Q+XP>(R-XL)  - +XU(v)  

n 

2 x Fk(vk) 2 0  9 (3 .16)  
k.- I 

S cannot decrease indefinitely and  for t > & ) / C E  the solu- 
tion must  have penetrated  into  one of the neighborhoods 
described by (3 .15 ) .  In  fact,  the total time a  solution 
spends  outside  this  neighborhood is at most c - l ~ - ~ S o .  This 
proves the statement. 

Stable steady  states 

Since all solutions  tend to steady state solutions it seems 
most important  to investigate their stability behavior 
which can be done in two ways: 
a) The first method consists in investigating the linear- 

ized equations near a  steady state  and their  characteristic 
exponents  which are given as eigenvalues ao, a1, . . . , a, 
of the  matrix 23 1 
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0 
0 

~ 

(3.17) 

evaluated at  the steady state  to be  considered. 
p )  The second method uses the  fact  that  the steady 

states are  the  extreme values of the  function S which 
decreases  along the solutions. From this fact it follows 
that a  local minimum of S corresponds to stable steady 
states. This  argument goes back to Lagrange and Dirich- 
let6 and is well known. Therefore we will try to  determine 
the  minima of S. 

We  remark  that S has  at least one  minimum since S is 
nonnegative and tends to as i, v tend to infinity [here 
we use (3.14)].  This proves the existence of at least one 
stable steady state under  the conditions (3.12),  (3.14). 

To decide whether  an extreme  point of S is a minimum 
or  not we compute  the symmetric matrix of second  deriv- 
atives of S. For this purpose we introduce 

(G) = M  

one finds (s) = M T M .  

The  equation  (3.3) takes the  form 
n 

P=/LZdi- 2 CkVkdVk 
k = ~  

=/Xodxo- 2 XkdXk , 
k=l 

from which one finds 

which we combine  in  vector notation to 

ap 
ax 
- "JX 

with 

J=diag(l, -1, - 1 , .  . . , - 1 ) .  

Hence 

(&) =JM=N 

which defines the symmetric matrix 

R 1 

1 - 7 "  

1 

vw . . . " 
q/c,L 

0 
- 0  

combining  these results we have  from J T J = I  

(&) =MTM+AN=N2+AN 

Denoting  the real eigenvalues of N by VO, . . . , vn we have 
a minimum of S if 

V k ( Y k + A )  > 0 9 

Le., i f  all eigenvalues of N lie outside the interval 
(-A, 0 ) .  

Another sufficient condition  for a  minimum of S seems 
more useful and will be exploited in  the following Sec- 
tion:  With  (3.6)  and  (3.8)  Stakes  the  form 

This  formula shows  immediately: 

Theorem 3.4 

The extreme  points of S correspond to  the extreme  points 
of U .  Every local minimum of U represents a local mini- 
mum of S and hence a stable steady state of (3.1). 

This theorem allows us to  reduce  the  problem by one 
dimension and  therefore simplifies many calculations. 

Proof: From  (3.18)  one computes the identity 

So,+fiSi=- ( R - X )  

from which it is evident that  the points 

z=o; u,,=o 
yield extreme  points of S. Conversely, at extreme  points 
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of S one  has I=O,  hence from  the above equation Uv,=O. 
This proves the first half of the theorem. 

The second part is obvious from (3 .14) ,  since at a 
minimum point v = v' of U and I =  0, 

S=XU(w'),  

whereas for neighboring  values of v, I ,  

S>hU(v)  >hU(v') 

A Legendre transformation 

In  the following Section the  function U ( w )  will be  stud- 
ied for various circuits. Here we remark  that if in  the 
equations  for steady states of (3 .1)  

i- f k ( V k )  = 0 , 
the  variable i is eliminated, one obtains 1=0 and 

which are precisely the conditions for extreme  points of 
U ,  i.e., 

au 
- = o .  
avk 

This  fact  can be understood more clearly if one uses 
instead of i, Vk the variables I ,  V k .  These variables, i, v k  
and I ,  V k  are related by a  Legendre transf~rmation.~ 
Namely, if one uses (3 .3*)  with 

K ( I ,  V )  =SLidl+  CkVkdvk=Lli-P, 
k 

one  has 

This  transformation  can easily be carried  out explicitly 
since i and I are related by linear  equations. 

For some  purposes it  can be  useful to go from  the 
variables i, vk to I ,  Vk .  The steady states correspond 
exactly to  the points I =  Vk=O. It is clear,  however, that 
in the presence of more  than  one steady state solution the 
transformation  from  the i, v k  to  the 1, VI ,  is not  one  to 
one since all steady  states  correspond to  one point 
I=Vk=O. Indeed, this transformation is nonlinear and 
rather complicated.  However, if one restricts attention  to 
a domain  (in  the Vk variables)  where U is convex then 
the correspondence between ( i ,  vk) and ( I ,  v k )  is  one-to- 
one and this transformation  can be used with success. 

To prove  this statement  we use ( 3 . 6 ) .  With I ,  v k  as 
independent  variables one finds 

Hence,  for every given I ,  Vk the value of the V k  are 
uniquely  determined. This follows from  the convexity of 
U and  the  fact  that  for a  family of parallel  planes  there 

(3 .21)  

(3.22) 233 
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is at most one which  touches  a  convex surface. Indeed 
z =  U ( q ,  . . . , w,) can be considered  a  convex surface 
and  the vector 

,..., -,-1) au 
a wn 

defines a normal  to  the surface. Hence  for a given I ,  l/k 
there is at most one vector V k .  The  current i can  then be 
found  from  the linear equation 

LI=E-Zvk-Ri .  

Nonlinear capacitance 

The above  results were derived under  the tacit  assump- 
tion that L, C, R were positive constants. This is unreal- 
istic but frequently sufficient for  the description of a 
circuit. For a tunnel diode,  however, the  capacitance C 
is a function of a voltage usually approximated  by 

It is interesting that  the above  method can be modified SO 
as to extend to  the equations (3 .1 )  with  variable 

The  formulae derived for  the potential function P will 
generalize  without any change.  However, the  function Q 
defined by (3 .8 )  when differentiated will contribute new 
terms arising from differentiation of C k .  To avoid  these 
terms we add  to P not Q but a multiple of 12. It turns  out 
that 

Ck'Ck(V) > 0. 

L2  L2 
R 2R 

s= - 1 2 + P ( i ,  v) = - I2+U(w) (3.19) 

is the  appropriate  function  to  work with.8 
If we carry  out  the Legendre transformation of i, v 

into I ,  w discussed under stable  steady  states, the differen- 
tial equations (3 .1 )  go over  into 

d l  l n  
dt L k=1 

ck"=- -1-u 

With these  equations one finds readily 

d s  L21 d l  dvk 
dt R dt IC 

d s  - L2 
dt 

where 

- =- (+ - & ) I +  - x Ck-lU,, 

dwk L 
dt  R " '  

"E"" 2 uv, nt 

- 

1 n 1  
c 
We now make  the assumption 

1 1 R - sck-l= - < I. 
R Rc L 

_ =  

(3 .20)  



Then s is a decreasing function of t by (3.21) if one 
substitutes a solution into 3. 

Furthermore, the stationary points of s are given  by 

as L - =- - I+U,,=O, 
avk R 

which gives 

I=U,,=O. 

Hence the extreme points of s coincide with the steady 
states of the equation. 

Following the same ideas as in the Section on solutions 
for f++m, we have 

0 Theorem 3.5 

Under the condition (3.22): 

1 1 R  - s t - < -  
R c k  L 

all solutions of (3.1) (with nonlinear positive c k )  tend to 
steady state solutions which are assumed to be finite in 
number. 

0 Theorem  3.6 

The extreme points of s coincide with the extreme points 
of U(v), I = O .  Every local minimum of U corresponds to 
a local minimum of s and vice  versa. 

The proof of the last theorem follows immediately 
from (3.19). 

The last theorems show that the condition 

can be replaced by the new condition 

1 R 
CR L - < -  

without violating the conclusion. The last condition is 
satisfied for a simple circuit studied by Esaki where c ( v )  
indeed is assumed to be not a constant. However, in other 
cases (3.22) is  definitely violated and  one  has  to check 
the condition (3.12) which is a restriction on the char- 
acteristic function f k ( V k ) .  Notice that all above condi- 
tions are comparisons of two frequencies which have 
simple physical interpretations. On the other  hand  the 
potential functions U ( v )  entering Theorems 3.4 and 3.6 
are  the same and are basic for the following discussion. 

Appendix: Proof of Theorem 3.2 

We  use the energy expression 

1 1 "  
2 2 k = 1  

w= - Liz+ - 2 ckvk2 

234 of  the  circuit  and restrict attention to large values of w: 
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where Ak was  defined by (3.14). It is clear that this in- 
equality implies that at least one coordinate is large. To 
make this more explicit we show that one of the follow- 
ing ( n  + 1 ) relations holds 

E 
R 

l i l >  -; Ivkl >Ak .  

For, if the first is violated, then it follows from  the above 

stckvk' > sCkAkZ 

which implies that 1 vkl >Ak  for  at least one k.  
If one differentiates W along a solution one finds 

- - dW =RiZ-Ei+ 2 n f k v k  

dt k=1 

E E 
If I iI > - this is obviously nonnegative. But if [ il I - 

R  R 

then I V k l  >Ak  for  at least one k and by assumption 

E2 
Svkfk2  - R so that 

dW E2 
dt  R 

- - 2Ri2-Ei+ - 2 R i 2 2 0  

which proves that 

dW 
dt 
" 2 0  for W>WO. 

This shows that solutions starting in  the bounded domain 
W=const (> W o )  remain inside this domain for all posi- 
tive t. This proves the theorem and, moreover, gives 
explicit bounds for the solution. 

4. Applications to  circuits containing tunnel diodes 

The single diode circuit 

The equations for  the circuit to be  discussed here  cor- 
respond to n= 1 in (3.1). We may assume immediately 
that C = C ( v )  is a  function of v. 

For the characteristic function f ( v )  we  will assume 
that f is positive for v>O and f < O  for v<O', f ( O > = O .  
Moreover, the positive  v-axis (Fig. 8) decomposes into 
three intervals where f is alternately increasing, decreas- 
ing and increasing, i.e., 

f'>O in - m<v<a,  v>b>a>O 

f'<O in a<v<b. 

The potential function U ( v )  has the form 



and its  derivative 

dU E-v 
dv R 
- =- + f ( v ) .  

Therefore  the steady state solutions are obtained  as 
zeros of dU/dv ,  which  geometrically can be  constructed 
(Fig. 9) by  intersecting the  graph of the  curve i=f (v)  
with the straight line 

. E-v - 
R '  

as is well known.  Depending on  the values of E, R one 
will obtain 1,2  or  3 solutions. 

The  function U ( v )  can  then  be interpreted - up  to a 
constant - as the  area between the  curve i = f ( v )  and 
the straight  line. The  graph of U for  the above  situation 
is of the  shape depicted in  Fig. 10, which shows that U 
has two minima  and  one maximum. Therefore, by the 
discussion Section 3: If one of the  condition (3.22) or 
(3.12)  is satisfied then one  has two  stable  steady  states. 
The  third steady state is actually  unstable. 

To discuss the restrictions on  the  parameters we make 
the  requirement  that  three points of intersection will 
occur  for  appropriate choice of E ,  so that switching is 
possible. This leads to 

Max(-f')> - . 

This  inequality shows that  the condition (3.12) 

1 
R (4.1 1 

f' R 
" 

C L  
< - for all v 

implies 

1 1 R 
- < - (Max-f')< - CR C L 
and  hence implies (3.22).  Therefore it is less restrictive 
to assume  only 

Figure 8 

Figure 9 

Figure 10 

1 R -<-. 
C R  L 

(3 .22)  

Moreover the statements  concerning the nonlinear  ca- 
pacitance  were  derived under this  assumption only. 
Under this condition we have shown that  each solution 
tends to  one of these three steady state solutions. 

A more precise picture  can be  obtained by studying the 
level lines of the  function 

which we represent in  an I ,  v plane, Fig. 1 1 .  The extreme 
points occur all on  the v axis and we discuss a  case where 
all three points  occur. 

Since the value of the  function s along  a  solution  de- 
creases, every  solution cuts these level lines - always  in 
the  same sense. Almost  all  solutions  tend to the two 
stable  steady  states. The solutions  tending to  the saddle 

point of S form two  curves  which  spiral to infinity. The 
existence of these two solutions is an easy  consequence 
of a theorem of J. Hadamard.g 

In  the case  where E is zero or so large that  the straight 
line (4.0) hits the  curve only in one point, one will have 
only one stable  steady  state,  since in this  case U and also 

have only one extreme point which is a minimum.  The 
question  how fast a solution approaches this  steady state 
solution can easily be  answered  by appropriate estimates 
of the right-hand side in (3.21). 

In this  case one  can,  for instance,  estimate 

u'z 

u- uo > a ,  

where Uo is the minimum  value of U and a positive con- 
stant.  Then  one finds from (3.21) an estimate of the  form 235 
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Figure I1 

and a-l represents  a certain rseponse  time. Refinements 
of this method  are being worked out numerically by 
R. Brayton.2 

Finally we discuss the generation and disappearances 
of steady state solutions  as the  parameter E varies. For 
E=O there is one stable  steady state only at v = O  which 
increases as E increases. The  moment when the line 
i= (E-w)/R touches i = f  another steady state  occurs 
which  bifurcates into a stable  and  an unstable one. Finally 
when E is increased further  the first minimum  and  the 
saddle points of 3 concur  and disappear. The situation 
can be visualized easily with the  graph of U. 

The study of the  equation with  t-dependent E = E ( t )  
will not be undertaken  here but  requires special attention. 

Occurrence of limit  cycles 
In  the previous  investigation  two frequency relations 
were required, namely (3.12) and (3.22). We want  to 
show that  some  frequency restrictions of this  type are 
necessary indeed for  the bistable character of the sys- 
tem. We discuss the  equation (3.1 ) for n= 1 and a 
constant  capacitance C. For  the convenience of the  argu- 
ment we assume 

1 
R -f'< -, 

which guarantees  the existence of only one steady state 
[reversed  inequality of (4.1 ) 1. If one now violates condi- 
tion (3.12) and assumes 

236 (4.3) 

then  the  argument of Section 3 breaks down since in 
(3.1 1) the right-hand  side cannot be made positive. In 
this case, however, we can  prove  that all solutions  tend 
to  one  or possibly several  limit cycles for  t++w, i.e., 
one  has a self-sustained oscillation, if E is chosen so that 
(4.3) holds at  the steady state solution. 

For the  proof of this statement we remember  that all 
solutions are  bounded as was shown in  the appendix of 
Section 3. There exists exactly one steady state solution 
at which the  matrix of the linearized equation is [ - ?  -:I. 

+ -  - 
C 

The eigenvalues of this  matrix,  say (~1, (YZ, satisfy 

w + ( Y 2 = -  (; + ;) >o 

and 

1 +Rf' 
LC 

a!1012= ___ > O .  

This implies that Real>O, Rea!z>O so that all solutions 
escape from  the steady state as t+ + m. In  other words 
one  can  construct  an ellipse about  the steady state solu- 
tions in such  a manner  that  the vector field points out- 
wards  on this ellipse. The  theory of Poincare-Bendixson 
applies  exactly to this  situation and guarantees the ex- 
istence of at least one limit cycle. (We  refer  to E. A. 
Coddington and N. Levinson.lO) 

The conditions (4.2),  (4.3) are of course not exactly 
the negation of (3.12) or (3.22) and  our case distinc- 
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tion is not exhaustive. However, this result shows that  one 
needs some  parameter  restriction  to exclude the occur- 
rence of limit cycles. 

The conditions (4.2))  (4.3)  can be relaxed. It suffices 
that  (4.3) holds  for every steady state solution and  (4.2) 
can be omitted completely. Then  one  can still exhibit the 
existence of limit cycles. 

e The twin diode 

For discussion of the twin diode  circuit (as devised by 
E. Goto), we start with the  equations 

di L - =E-Ri -  x w k  
dt k=1 

2 

i.e., with the  equations (3.1) for n=2.  We omitted the 
bias (as discussed in Section 2 )  since those  equations 
can be reduced to (4.4) (see  Section 2). 

We will assume that  the diodes have practically the 
same  characteristic  functions 

f l ( X ) ' f 2 ( X )  ; C1=Cz (4.5) 

and  later discuss the modifications to be derived from an 
asymmetry. Such an asymmetry will in  fact be produced 
by a bias (see Section 2, Twin circuit with bias, page 228).  

Basic for  the theory  outlined in Section 3 is the func- 
tion 

Figure 12 

whose extreme points coincide  with the steady state solu- 
tions of (4.1). Even though U is only  a  function of two 
variables (and  not all 3 variables i, w1, WZ) it is hard  to 
visualize this surface.  Indeed the  number of critical points 
will depend very much  on the  shape of f l ,  f z  and  the size 
of E, R. There might be as  many  as  nine  steady  solutions 
under suitable conditions. 

Since it is difficult to picture this surface we suggest 
finding the  extreme  points  only from 

(4.6a) 

The solutions of these two  equations can geometrically be 
constructed by intersection in a three dimensional i, WI, 
w2 space of the two cylindrical surfaces 

i = f l ( w d  

i = f z ( v z ) .  (4.7) 

Their intersection consists of several pieces of curves 
which is drawn in Figure  12  under  the assumption f l (x )  = 

237 
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f 2 ( x )  = f ( x )  . In this case one branch of the curve (4.7) is 

2)1=wz=w ; i = f ( w ) .  

But there are two other branches, which bifurcate from 
the points w1=v2=m, i = f ( m )  where m is chosen so that 
f ’ ( m )  =O. 

Since the curves lie symmetric to wl = wz we have indi- 
cated only the part  in vz 2 wl. The curve on w1= wz in Fig. 
12 is denoted by A while the two other branches are 
called B, C. The intersection of A and C corresponds to 
the minimum, that of A and B to the maximum off.  

To solve (4.6a) one  has  to intersect this curve system 
A, B, C with the plane 

below, as one moves along B with increasing WZ, amounts 
to 

(4.10) 

which is a much more stringent condition than (4.9). In 
fact, if the curve i = f ( w )  were symmetric with respect to 
the line perpendicular to  the maximum then f’(v1) + 
f’ ( WZ) = 0 and (4.10) would be violated. 

Since f’(wz)<O (4.10) can  be written in the  form 

R<- (- 1 + -) 1 =- (2 + %) (4.10’) 
f’(v1) f’(v2) 

which also lies symmetric to w1 = wz . 
One can see easily that  for very large values of R the 

plane (4.8) is almost horizontal and with appropriate 
choice one can get three intersections of the plane with 
A ,  two symmetrical pairs of intersections with B and one 
symmetrical pair of intersections with C, hence alto- 
gether at least 3 +2  * 2 f 2  - 1 =9 steady states.ll This is an 
undesirable situation which can be avoided by appropri- 
ate  parameter restrictions. 

To ensure that  the  plane (4.8) and A have only one 
point of intersection we require 

2 
R 

-f’(x)< - . (4.9) 

A condition guaranteeing that the plane (4.8) intersects 
B only in  one pair of points is harder  to obtain and, in 
fact, depends on  the shape of the curve i=f(v). Here we 
give only one rough condition which shows that the 
decreasing part of i = f ( w )  should be  slower descending 
than the increasing part of the curve ascends to  the 
maximum. 

Let w1 and wz be determined so that 

f ( w 1 ) = f ( w z )  ; W l < W Z  

and use w2 as independent variable, Fig. 13. 
Then, differentiating, one has 

The condition, that  the branch B pierces the plane from 

Figure 13 

where f ( w l )  =f (wz)  =i, vl<wz. One easily computes 

as wl, w2 approach  the value m at which f attains its maxi- 
mum. Therefore (4.10) implies 

4 f”‘ 
3 f ” Z  

R< -- for w=m. (4.10”) 

This relation shows that f“‘>O at w=m and expresses 
that f descends slower than it ascends. 

To give this condition a  more concrete form we dis- 
cuss the cubic polynomial 

when c is a constant of the dimension c~rrent/(voltage)~. 
f has  a maximum at w=ml and  a minimum at w =mz if 
O<ml<mz. In order that f>O for v>O and that the 
maximum value is about 10 times the minimum value we 
choose 

29 
10 

m2= - ml- ( 3 -  +) mj 

One shows that the condition (4.10’) has to be  satisfied 
only at w = ml since 

1 
” ( f ’ (W1)  + 4 f ’ ( W 2 )  

increases as w~ increases, if f (  wl) =f(  WZ) . Therefore one 
has to check only (4.10’) which reads 

or 

1 3 c(mz-m1)2 3 
R 2  4 2 
- > - ~ ~ _ _  = - Max [-f’(w)]  

or 

2 1  
3 R  

- f ’ (w)<  -- for all v (4.11) 

in this case. This is a stronger requirement than (4.9), -~~ 
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1 

Figure 14 

since the right-hand side of (4.9) is multiplied by 1/3.  
Under this  condition we can have three steady  states 

which lie  on  the curves A and B.  Of course, it  can  happen 
that  there is only one steady state solution, for instance 
if E=O in which  case the plane (4.8) intersects the 
curves A ,  B,  C only  in i= v1 = v2 = 0. Ignoring the  curve 
C,  since it lies outside the range of interest, we discuss 
the number of extreme  points of U for different values 
of E .  

For sufficiently small E>O there is only one point of 
intersection between the  plane (4.8) and  the curves to be 
considered. The  number of extreme  points  can change 
only if 

vanishes. For v1 = vz and f'( w) >O this  expression is posi- 
tive and vanishes for  the first time at  the maximum  value 
of f .  If we denote this point by w=ml then  the critical 
value for E is 

E , = R f ( m l )  +2m1. 

As E increases beyond E,  one  has  one steady state  on 
A and a symmetric  pair  on B. For  larger values of E these 
three points come together  again and  continue  on A .  We 

indicate  this  behavior of the  steady  state solutions in 
Fig. 14, in  which A ,  B,  C and  the steady states  are pro- 
jected into  the vl-vz-plane. (At  the intersection of A and 
C there is another bifurcation  leading to five steady 
states.) 

Finally we discuss the situation where all three steady 
states occur, i.e., E>E,  and in  which the steady state on 
A lies on  the decreasing branch of f ,  i.e., f'( v) <O. 

To discuss the stability behavior of the  three solutions 
we determine  at which  point U assumes a  minimum. 
Since at any point on A one  has 

(-& - &)2u=2/'(1;)<0 (w~=vz=v)  

it is clear  that U has  no  minimum  there  and  the extreme 
point of U is a saddle  point or a  maximum.  Since U is a 
symmetric function of wl, v2 it follows that  the extreme 
points on B are  the minima of U .  In  fact  the  three station- 
ary points can be characterized by 

Min U = UA 

and 
vu1=v2 

Min U = U B .  

239 
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and if 

f ’ ( v )  R R 1  
“ < - ( k = l ,  2) or - > - - 

Ck L L R ( AI +&)’ 

Figure I5 

Figure I6 

This proves  with the  Theorems 3.4, 3.6 that  the steady 
states  solutions on B are stable, provided 

(4.12) 

R - > -  - + - .  
L ; (A, h 2 )  

However the last  condition  together with (4.1 1) implies 
the first. Therefore  it is less restrictive to assume (4.12) 
only. 

For a  situation  where three steady state solutions exist, 
the level lines of U will have the appearance as  shown in 
Fig. 15. 

Summary of twin  diode  section 

If one assumes that  the characteristic f ( v )  satisfies 
(4.10‘), which for a  cubic  takes the  form 

240 
- 

then  all  solutions  tend to steady state solutions. For small 
values of E there is only one stable  steady state for 
which vu1=v2. This solution  bifurcates at E=E,  into 
three steady states. The solution  with v1 = wz is unstable 
while the  other two  which  lie symmetric  to  the line 
v1=v2 are stable. In the  latter case  most of the energy is 
in  one of the diodes or  the  other while the case where 
both diodes have  the  same energy is unstable if f ’ (v)  <O. 

The influence of a bias 

As was discussed in Section 2, Twin  circuit  with  bias, the 
influence of a  bias current EB, i.e., a signal, is the  same  as 
a modification of the  characteristic of one of the diodes. 
Such  a  bias will destroy the symmetry of U in v1 and v2 
and we indicate how  Figure 14 has  to be modified. Fig- 
ure 16 shows that  the stable  steady state follows  a 
prescribed  curve. 
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