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Notes on Cumulative  Photovoltages 

Abstract: It is reasoned that the large photovoltages observed by Cheroff and Keller on  ZnS  crystals are 

theoretically plausible and can  result from a wide class of different mechanisms.  Conversely, the condi- 

tions  under which a photoconductor with periodic inhomogeneities does not show a cumulative photo- 

voltage are shown  to be very restrictive and improbable. General theorems  concerning  the magnitude of  the 

photovoltage are proved, and remarks are made on its directionality. 

Introduction 

It  has been suggested that  the large  photovoltages  ob- 
served recently1 in some  insulators are  due to numerous 
internal electrostatic  barriers  which under illumination 
act  as p-n junctions connected  in series. The crystal 
structure of these  materials  does  not  exhibit  inversion 
symmetry, and  it is conceivable that  the directionality of 
the crystal  induces  directionality in  the  structure of the 
internal barriers.  Such an intrinsic  directionality is nec- 
essary, since  a structure of randomly  alternating con- 
ductivity  type  could  provide no basis for a preferred di- 
rection in which the voltage accumulates. 

The theory of such cumulative  photovoltages can be 
reduced  almost to a theory of single-junction photo- 
voltages by the assumption of periodicity  in the  structure 
of the  internal barriers.  While such periodicity is not 
necessarily to  be expected in  the  actual material, the as- 
sumption  does not restrict  a  qualitative discussion. The 
reason that  the  theory  must be  somewhat broader  than 
the single-junction theory  is  that  at least  two  junctions 
must occur  in a single period.  Since the photovoltages to 
be  obtained from these junctions  are according to  the 
usual theory opposed to  one  another,  the  theory must ex- 
plain why the effect of one  junction  preponderates over 
that of the other. The reduced theory  in  fact contains the 
single-junction theory as  a  special case, in view of the 
fact  that  ohmic contacts may be  replaced by zero-life- 
time  regions  regarded  as part of a  periodic  structure. 

The generality of the discussion is  limited by the as- 
sumption throughout much of the analysis of approxi- 
mate thermal equilibrium in each band. However,  results 
to the effect that cumulative  photovoltages are almost 
always to be  expected, for example, are  not diminished 
in interest or generality by a  restriction in  the cases con- 
sidered. The main  purposes of the discussion are in fact 
( 1) to make  the preceding statement plausible, ( 2 )  to 
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enumerate those special cases in which  photovoltages are 
intrinsically impossible, ( 3 )  to show the decisive im- 
portance of recombination and generation  mechanisms, 
(4) to  deduce some  simple  inequalities  governing the 
possible length of the  fundamental period  in actual cases. 
Sections V,  VI,  and  IX,  have related  purposes.  Section  V 
among  other things supports  the  third consideration  just 
mentioned by showing that a  cumulative voltage may be 
introduced  in principle into a uniform  material without 
internal  barriers merely by a (directional) periodicity  in 
the spatial  distribution of the intensity of illumination. 
Section VI supplements a theorem of Section IV by tend- 
ing to show that  the condition of the  theorem  (one of 
the two carrier mobilities is  zero) is not so pathological 
that  it  cannot be  relaxed in continuous  fashion.  Section 
IX is intended  as  a  complement to  the discussion, in  that 
some of the  important ways in which the assumption 
of approximate  thermodynamic equilibrium  may break 
down  are mentioned. 

1. Analysis: directionality criterion 

We have  as our  fundamental set of equations 

ip=-u,V+,, (orV+,=-ppi,), (1) 

in=-u,V+, (OrV+,=-p,in), (2) 

V - j ,=G, ( 3 )  

i=i,+i,=O, (4) 
where G is the  net generation rate  (generation g minus 
recombination r ) ,  j’s are  current densities, 9’s are elec- 
trochemical  potentials, U’S are  (nonequilibrium) conduc- 
tivities, p’s are resistivities, and p and n refer  to holes 
and electrons, respectively. The last equation implies 
one-dimensional  geometry and open-circuit  conditions. 
Equation (3)  implies a steady  state. Poisson’s equation 
will not be needed. (There may be abrupt junctions  in 
the material; at  such  junctions j ,  and j ,  must  be  con- 
tinuous unless there exists a  recombination  mechanism 
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at  the junction itself. Whether +, and +,, are taken to  be 
continuous  or  not is inessential to  the discussion. One 
may in fact assume an infinite  value for pn, say, at a 
junction,  but /-'p,dx across the junction  must  be finite, 
and S+,= J-' &dx=jn/? p,dx.) 

We are assuming  periodic  conductivity variations. Let 
N be the  number of periods  contained in a sample. Then 
the  quantity A V  is defined as 

V 
N+oo N 

AV= lim -, 

where V is  the measured  voltage  across the sample. In 
order  that AV be different from zero, there must clearly 
be a  directionality in  the crystal and a  recombination 
mechanism  such that  the establishment of equilibrium 
does  not  depend on  end effects. In  the ideal case of an 
infinite bar, conditions are strictly periodic  except for  an 
average  nonvanishing  inclination of the bands,  provided 
(as we assume)  the generation rate g(x) is also periodic. 
In  other words all quantities defined so far except + p  and 
+, are periodic.  Periodicity  applies also to  the concen- 
tration of carriers p and n as well as their mobilities y 
and p,. These  facts imply the periodicity of 

AV  AV AT/ 
W W +,"X, &--X, +"-x, 

where I) is the electrostatic  potential, and W is the length 
of a  period. We  have in fact 

in  which  the point x=O is arbitrary. Our problem thus 
can be  reduced to  one within the interval O A X <  W with 
periodic boundary conditions, i.e., the point X =  W is 
congruent  to  the point x=O. 

In view of Eq. (5) we may, upon integrating Eqs. (1) 
and ( 2 )  and applying Eq. (4) ,  write 

-(a+b)Av=JdY(ap,--pn)j,dx, (6) 

where a and b are  arbitrary constants. We may derive 
various interesting  relationships by choosing a and b 
properly. First note that by taking b=-a, we show  that 

Since (p,+p,) is positive definite, this  condition implies 
that j p  and jn must be oscillating functions, i.e., they 
change sign at least once  in  the  fundamental interval. 

We  next define the average of a function f as < f > = 

&h"fdx. Taking  a=<p,>-l,  b=<p,>-1, we have 

from Eq. (6) 

where C=a+b is positive definite, and AV/W is the 
voltage per  unit  length of material. 

Equation (8) becomes more interesting after suitable 
reinterpretation of j p .  We  have in fact  from ( 3 )  that 

j,(x) =r Gdx'+constant. 

We define 

F(x)  =h" Gdx'. (9) 

Then F (x )  is equal  to j p ( x )  apart  from a constant,  and 
this constant is determined by the choice of origin. We 
may correctly  write 

since  this equation is unaffected by a constant  term  in F 
(the average of the  term  in parentheses is zero). 

In view of the steady state condition (G)=O, F is a 
periodic function.  In general it is also an oscillating 
function,  and  for a suitable  choice of origin (F)=O. 

Let P= &-A). Then P is also an oscillating 
( < P p >  < P n >  

function. The sign of AV depends on  the  correlation be- 
tween F and P.  Naturally Eq. (10) does  not  constitute a 
solution of the  problem.  However,  its form renders great 
plausibility to  the idea that  the vanishing of AV is  not 
to be expected  in  general,  since  despite the  constraint 
imposed by the fundamental equations, the  functions 
F and P should  be  susceptible to variations that  are  to a 
large  degree  independent. 

II.  The sensitivity of AV to g(x)  and r(p,n,x) 

As an example of the use of Eq. (10) we shall  show  in 
this  section that given any  initial band edge configura- 
tion (i.e., the equilibrium  electrostatic  potential $o ( x )  
in  the absence of illumination)  extreme  choices of either 
the generation function g(x) or of recombination func- 
tion r(p,n,x)  can  make AV negative or positive, as de- 
sired. This  fact  means  that  the directionality of the 
initial  electrostatic potential configuration has  in a sense 
less to do with the type of photovoltage to be  expected 
than  the generation and recombination  variations  which 
may  exist, and (especially) the correlation of these vari- 
ations  with the initial band edge configuration. 

Something of this sort is rather obvious from  the fol- 
lowing consideration.  Suppose that  the initial configura- 
tion is a simple alternation of p-n and  n-p junctions. 
Suppose further  that the excess carrier lifetime in  the 
vicinity of the p-n junctions is zero, while it  is infinite 
in  the neighborhood of the n-p junctions. Then clearly 
we obtain a photovoltage appropriate  to n-p junction 
photocells  connected  in series. On  the  other  hand a re- 
versal of these conditions would produce  the situation 
analogous to p-n junction  photocells  connected  in series, 
i.e., the effect would  be the  same, except for a sign re- 
versal. It should  be  noted that in  this  example no direc- 
tionality of q0(x) is required. 

We may similarly determine  the sign of A V  by proper 
choice of g ( x ) ,  given that  the behavior of r (p ,n ,x)  does 
not  conspire  against us. Taking for g(x) the delta- 
function g(n)=G(n--X,) we observe that F (x )  can 21 1 
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Figure I 

have only one sign change in the interval  (see  Fig. 1). 
The equilibrium resistivity function P , ( x )  in  the case of 
simple alternating  junctions  can also be made  to  have 
only one sign change  in  the interval, but depending on 
the  choice of interval P , ( x )  and F ( x )  will correlate or 
anticorrelate. We  may  thus determine the sign of AV by 
proper choice of the  point X,. In  more physical terms, 
by shining  light exclusively in the neighborhood of the 
p-n or  the n-p junctions we can  obtain either sign of 
photovoltage. This intuitively  evident fact  may be of 
interest  in  connection  with  reversals  in  the sign of the 
photovoltage  as  a function of light frequency observed 
by ICeller and Cheroff and  others.lJ Different frequen- 
cies may be absorbed at different points  in the  funda- 
mental  period. 

111. Intrinsic  vanishing of AV 

The arguments of this section are designed to show that 
one should  expect  a  nonvanishing  photovoltage except 
in very special cases. These cases fall into  three classes; 
the vanishing of AV is respectively (a)  due to symmetry, 
(b) accidental, (c) intrinsic. Class (a) refers  to  struc- 
tures  having no directionality3 exposed to  uniform il- 
lumination. We  are naturally  not  concerned  with  such 
situations. Class (b)  refers  to  structures possessing direc- 
tionality, but  such  that  any variation  in the initial  electro- 
static  potential +o(x )  would with  unit  probability  cause 
AV to “reappear.” Class (c)  refers  to situations  exhibit- 
ing a  vanishing of AV independently of the variation of 
initial  band-edge  configurations. 

To express  this more precisely, AV is a function 

Av=Av[+,(x) ,  P ~ ( P P J ) ,  P ~ ( P A ~ )  9 

r(p,n,x),  T(x),g(n)l, 

where T ( x )  is some  distribution of traps. (If a  variation 
of gap width is allowed we must explicitly add a  gap- 
width function E , ( x )  and define \Go(n) uniquely. The 
addition of such a function would not invalidate our 
discussion-indeed it presents us with  a further  and un- 
necessary degree of freedom.)  Let S+o be  a  variation of 
q 0 ( x ) .  Then  an intrinsic  vanishing of AV is one  such  that 
both 

AV=O, and SAV/S+,=O, (11) 

where the  variational derivative is taken keeping all 
other  functions  the  same.  We  further  require  as a sub- 
sidiary  condition that conditions ( 1  1 )  continue  to hold 
under replacement of g(n) by a g ( x ) ,  where a is a con- 

212 
stant; i.e., an intrinsic  vanishing of AV is by definition 
not  dependent  on  the over-all integrated  light  intensity. 

The general  condition ( 1  1) for  an intrinsic vanishing 
will be satisfied by a certain  ordered set of functions p p ,  
p,, r, T,  and g. However we are  not interested in this 
complete set, but only in  the subset  having  some physical 
likelihood. Thus,  for example, the condition 

~ ( P , w )  =r(po,no,x) = g ( x ) ,  

is sufficient to  make AV=O, but  has little probability of 
occurrence. We have seen above that AV is extremely 
sensitive to r(p,n,n) and  to g ( x ) .  Although it may often 
be physically reasonable to assume g ( x )  =const.,  the 
function r(p,n,x) will in general not depend on x vacu- 
ously. We  search first therefore  for a  condition yielding 
an intrinsic  disappearance of AV independent of g and 
of r. 

0 The “strong” intrinsic case: 6AV/Sr=FAV/Gg=O 

In view of the discussion of Section 11, it is clear that 
we must  have  F=const.  in  Eq. (10) to  insure  that 
AV=O independent of variations of r and g .  But F= 
const. implies j p =  const.,  and  therefore  (because of 
Eq. ( 7 ) )  jp=O. But j p  vanishes  in  general  only if 

pp=O, or pn=O. (12) 

Eq. ( 12) constitutes the desired condition: both carriers 
must be mobile in  order  to  make a photovoltage possible 
(with  the  fundamental assumption of thermal equi- 
librium  in each  band). 

The “weak” intrinsic case: g=const., r=r(p,n) 

This is an interesting case, since uniform illumination 
may in many cases give rise to  uniform generation and 
since recombination  mechanisms  independent of position 
exist. We  argue again that although F and P are con- 
nected  by the  equations of the system, the average of 
their product is not fixed independently of the initial 
band edge configuration. Let us first assume F= j p =  - j ,  
=O. From Eqs. (1) and (2) it follows that 

+p=con~t. ,  

+,=const., 

and  therefore  +p-+n=const. But it is easily checked 
that &,-+,=const. if  and only if p-n=const. Since  in 
general  neither p nor n will be constant individually, 
and since the dependence of r upon p and n is to  be 
meaningful, we must have 

r b n )  = f ( p n )  9 (13) 

for  the initial  assumption F=jp=j,=O to be self-con- 
sistent. In  particular bimolecular  recombination (direct 
recombination  across the  gap) satisfies this  condition, 
namely 

r(p,n)  =kpn, 

where k is a constant  independent of position in  the usual 
case of constant  band gap.  Deviations from  the law (13) 
will allow for weak  photovoltages,  depending on  the 
initial  band  edge  configuration. 
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It is not likely that  there exist any other intrinsic cases. 
Although we cannot exclude the possibility that 
“matched”  functions r(p,n,x) and g ( x ) ,  say,  might  lead 
to AV=O independently of +o(x), this is unlikely, the 
more so in view of our subsidiary  condition. Further- 
more,  such cases, should  they exist, would appear  to be 
artificial from  the physical viewpoint. 

IV. Theorems involving AV=O 

We can generalize  some of the results of the preceding 
section to nonperiodic structures.  In  the following two 
theorems we are  to imagine  a piece of material of no 
special shape  upon which two ohmic  contacts A and B 
are placed. Theorem I1 requires a single semiconductor 
of constant  band gap-otherwise there  are  no restric- 
tions, except  approximate thermal equilibrium  in  each 
band  and steady-state  conditions. (Note  that  Eq. (4) 
does  not necessarily hold; we have  instead  V * j=O. )  

Theorem I 

The open-circuit voltage A between  contacts A and B is 
zero  under  illumination unless both carriers are mobile. 

Proof: Suppose pp=O but V#O. Then jp=O, and 
v * j,=O. Either jn=O, or j,#O somewhere. If j,,=O, 
then  according to  Eq. (2) V =  -/:V+, * ds=O, con- 
trary  to hypothesis. If j,#O somewhere, then, since there 
are  no sources of j ,  within the material nor  on  the  free 
surfaces, it  is possible to follow “lines of j,,” from A to 
B, such  that  the sign of j ,  does not change  along  these 
lines. Let us integrate V+, * ds along one of these lines. 
Since pn is positive definite, we see from  Eq. ( 2 )  that 
the sign of AV is the  same  as  that of j ,  along the line. 
However since the total current  from  contact A is zero 
there must exist lines having both signs of current.  Thus 
v=o. 
0 Theorem I1 

I f  the recombination rate is a function of pn alone (not 
o f  position) and i f  the generation rate is uniform  in 

space, lim-=O where d is the distance between con- V 
hrn d 

tacts A and B.  
Proof: We  construct a  solution of the  fundamental set 

of equations by taking +p=const., +,=const. (except  in 
the proximity of the  contacts).  Then choose + p - + n  such 
that r (p ,n )=f (pn )=g  (recall  that pn must  be constant 
if + p - + n  is constant).  We  have now satisfied the equa- 
tion V j=O,  since  in fact j = j p = j , = O .  The degree of 
freedom  left over, namely, the height of the  average 
- 
$1” ‘R+”p with respect to  the band edges, is just suffi- 

2 
cient to enable us to satisfy Poisson’s equation; in fact 
the form of Poisson’s equation is not essentially different 
from  that obtaining at equilibrium, for which condition 
a  solution  must exist. 

We  now  prove  a third theorem rather unrelated to  the 
material thus  far presented. It will provide  a basis for 
the following section. 

0 Theorem 111 

Let  two  ohmic contacts A and B be placed upon a piece 
of material having no internal fields at equilibrium (no 
impurity gradations or interior dipole layers).  There 
may,  however, exist lifetime variations. Let this material 
be exposed to  weak,  but not necessarily uniform, radia- 
tion. Then, if V is the open-circuit voltage between the 
contacts and if I is the integrated intensity o f  radiation, 
dV/dI=O at I=O, i.e., there is no photovoltage o f  first 
order in  the light intensity. 

Proof: To first order  in  the case of light  intensity 

jp=-uopV+p9 jn=-UonV+n, 

where uOp and u0, are  the unilluminated conductivities. 

Thus j =  - V+ where + - ~ ~ ~ + ~ + u ~ , + , .  

But since Vj=O, V2+=0. +=const. is a (unique) solu- 
tion  having j=O on all surfaces and interfaces.  But since 
contacts A and B are  ohmic &=+,, at A and B.  Thus 
+ p ( B ) - + p ( A ) = O .  But this quantity is equal  to V .  We 
note  that this theorem is without  meaning when the  dark 
conductivities and crop are very small. Therefore we 
shall now  consider  higher-order effects. 

V. Materials with no internal fields 

It has been seen from  the preceding sections, and as IS 

well known, advantage  can  be taken of pre-existing elec- 
trostatic fields in a  material to  separate light-created car- 
riers, and  thus  to  produce photovoltages. It  has also been 
noted that  there is no limit to  the cumulative  value of a 
photovoltage  in an  alternating  structure. A natural  and 
rather interesting  question now arises;  namely, is it pos- 
sible to  produce arbitrarily  large  photovoltages  in  a 
structure having no pre-existing electrostatic fields by the 
device of nonuniform generation or recombination? 
Specifically, let O&x< W again  be  a fundamental inter- 
val, with x=W congruent  to x=O. Let ( g ) x  and 
r(p,n,x) be arbitrary,  but +o(x)=O. Is it possible that 
AV need not  vanish? 

That there can be no first-order effect is clear from 
Theorem 111. However  two  kinds of higher-order effects 
may exist, as we shall show. 

Consider first a nonuniform distribution of electron 
traps  such  that  the  trapping levels are above the  Fermi 
level initially. Irradiation causes  these traps  to become 
filled, and  the space charge these  created gives rise to 
electric fields. These  electric fields may  separate mobile 
charges  in the usual way, causing  photovoltages. 

The second effect we shall discuss is bound  to exist if 
there is any  directionality  in g ( x )  or r(p,n,x) or both 
(excluding the accidental cancelling of the two  nonuni- 
formities).  It is due  to  the space charge of mobile car- 
riers required  to compensate for  the mobility difference 
of holes and electrons, and though small in one interval, 
may of course  be significant through  many intervals. 
However we are not  concerned to calculate possible 
magnitudes of the effect, but merely to show its existence. 213 
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For the  same reason we specialize to  an intrinsic  sample, 
i.e., one  for which the equilibrium concentrations no and 
p o  are equal. We assume no  other  change of charge 
density than  that  due  to  the mobile carriers. Poisson’s 
equation  then takes the simple form 

E$’’=n-p, 

where 

ly‘=dZ$/dxz. 

We shall  expand  solutions  in  powers of F .  To zeroth 
order  in E 

n=pt  (1.5) 

and we find on setting in= - j p  that 

where V ,  is  the “thermal”  voltage k T / e  which  enters 
into  the Einstein  relation, b=p,/pp,  p’=dp/dx,  E= 
-d$/dx=-+’. This a well known  formula  in  the 
semiconductor field. In deriving it we have used the 
more familiar  variants of Eqs. (1) and ( 2 ) ,  

ip =e&  (PE-  VTP’), ( 1 ’ )  

jn=epn(nE+V,n’). ( 2’) 

The average < E >  is clearly equal  to  zero, as one 
might  expect, so that  the first possible contribution  to 
AV comes from  the first-order  solution.  Since we are 
seeking merely to show the existence of an effect and  not 
to  obtain a  solution, we may  without loss of generality 
set the  currents j p  and j ,  to first order  in E equal to zero 
(the zeroth order  currents of course do  not  vanish).  This 
is equivalent to regarding the  currents as prescribed, 
and taking  them equal to the  zeroth  order currents. This 
is a  consistent  procedure, since there exists some correct 
current distribution in any  problem. The problem then 
becomes: given & ( x )  what is the solution # ( x )  ex- 
panded  in powers of E? If we can show that $( W )  #$( 0 )  
for a j p ( x )  possessing “directionality,” we will have 
proven what we set out  to prove since certainly  a direc- 
tional j p  can be produced by a  direction g or r. 

Proceeding then,  on substituting j p r = j n r = O  in equa- 
tions ( 1 ’ )  and (2’) and using the condition that p-n=O 
to zeroth order in E ,  we find 

O=P,E+PE,-VV,P’,, ( 1 7 )  

O=nlE+pEl+V,n’,, ( 1 8 )  

where the subscript “ 1 ”  refers  to  terms of first order  in 
E ,  and lack of subscript  indicates  a zeroth  order term. 
Subtracting these equations we have 

~ , ( P l + ~ l ) ’ = ( ~ l - P l ) E = O ,  

or 

Vdpl+nl)’+EE’E=O, 

214 and 
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This  equation  can be further simplified by substitution 
of the expression ( 1 6 )  for E and subsequent  integra- 
tions by parts,  down to 

It can be easily checked by simple trial  distributions 
p ( x )  having  directionality that in  general the average 
occurring in  Eq. ( 2 1 )  is not zero. Note  that since p’ is 

of first order in the light  intensity, 1= - <El>  is of 

third  order.  Thus  no  contradiction exists between our re- 
sults here  and  Theorem 111. 

AV 
W 

Remark: The generalization to nonintrinsic  samples 
of Eq. ( 1 6 )  is 

which still implies  a functional relationship between $ 
and p. Thus, in the zeroth order  approximation  (with re- 
spect to E )  there is no possibility of a  periodic  growth of 
$ in  a  sample of uniform mobilities and  carrier concen- 
trations,  irrespective of generation and recombination 
mechanisms. These  facts  may be  regarded  as well known. 

In view of Theorem I11 the so-called Dember Effect 
(creation of the field $’ by nonuniform  irradiation)  can- 
not be measured  with ohmic probes to first order in the 
light intensity. In view of Eq. (16’) and  the  boundary 
condition p = p o  at  ohmic contacts the  zero  order  (in E )  

Dember voltage vanishes between ohmic contacts,  at 
least  in linear geometrics. Equation (16’) is of course 
also generalizable  by  replacing the derivative d / d x  (rep- 
resented  by the  primes) by the  gradient, providing  only 
that j = O  everywhere, so that this  conclusion applies also 
to  more general geometries. 



VI. Solution4 for b / p n <  <I 

We  can  approach this  case by expanding the solution in 
powers of p p .  The zeroth order solution is clearly that 
applying to  the case of strong intrinsic  vanishing ofAV. 
We  have  then to zeroth order 

O=jn=epn( -n$’+V,n’) 

I/’= VTn’/n. 

The generation and recombination are everywhere 
equal. Therefore 

r ( p , n , x )   = A x ) .  

Presuming we can solve this equation  for p ,  we have 

p = s ( w , g ( x ) ) .  (23 1 
Poisson’s equation reads  (assuming no  traps) 

4 ” = ( n ” p )  + P O ( X ) ,  (24) 

where Po(x) is Po(x)=-po(x) - (no(x> - p o ( x >  1 ,  
where epo(x)  is the  equilibrium  charge  distribution and 
n o ( x )  and po(x) are  the equilibrium carrier  concentra- 
tions. Combining  Eqs. (24)  and  (22) we find 

-n=O, (25) 

as the  equation determining n ( x ) .  This  is a  nonlinear 
second-order  equation to be solved with periodic bound- 
ary conditions. 

The first-order current j n I ( x )  is now easily found 
from  the  equation  for hole current 

which, upon  an integration  by parts  and substitution of 
(22), becomes 

Use of Eq. ( 2 5 )  reduces  this to 

and  an integration by parts  to 

Substitution of the solution of Eq.  (25)  into  (27) 
allows us to calculate AV. I t  should  be  noted that Pois- 
son’s equation plays an essential role  in  this  calculation, 
since setting E=O in  Eq.  (27) gives AVl=O. Observe 
that despite the quite  opposed  points of departure  Eq. 
(21) becomes  identical to  Eq.  (27)  under the  substitu- 
tion of n for p in Eq. (21) in the limit of small b. 

VII. A classical problem 

In  order  to  counteract  the possible misleading  impression 
given by the two  preceding  sections to  the effect that 
photovoltages depend  on E#O it may be sufficient to 
point  out  that  in drawing the relevant  conclusions from 
Eq. ( 16’) (after  Eq.  (21) ) in Section V it was neces- 
sary  to assume that p o  and no were  constants.  However, 
to  round  out  the discussion we recall to  the reader’s 
mind  the “classical” discussion of junction photovoltages 
which dispenses entirely  with Poisson’s equation,  and 
which we shall base almost  entirely on Eq. (10). 

Suppose that a p-n junction occurs  at x=O, and  that 

-!‘<x<- is the  fundamental interval. For sim- W 
2  2 

plicity we make  the junction  entirely  symmetrical about 
the  Fermi level, with equal mobilities for  the two car- 

riers. Let r=O in  the region - d < x < d ,  where d<-,  
W 
2 

(and all equivalent regions).  Let  the excess carrier life- 
time be zero elsewhere. This  is equivalent to placing 
ohmic  contacts  at x = k d .  This implies that F=O except 
in the interval - d < x < d .  Let g ( x )  be A S ( x ) ,  where 
S ( x )  is the  Dirac  &function.  Then, multiplying  by 
<p,>=<p,> in  Eq. (101, 

J o  
Since the material from 0 to  W/2 is assumed to be 

n-type, we have,  providing the illumination is not  to0 
intense, p p >  >pn, and  thus 

To first order  in  the intensity of illumination,  then 

Jo 
where pop is the equilibrium  value of p , ( x ) .  It is clear, 
however, that [ p p d x  decreases  with  illumination. Let 
us try  to  obtain  an idea of the variation of pp. In  the 
vicinity of the  junction  the difference &,-I& reaches its 
maximum and is approximately equal  to AV. Recall 
that 

Next  to  the  junction  on  the n-type side the  fractional 
change  in p is much  larger  than  that in n, and we are 
justified in setting 

The  function p p ( x )  is as yet  known only at x=d and 
near  the junction. Its exact nature is important in de- 
termining  the  value of the integral. If po(x) = const., 
O<x<d,  it is usually reasonable to suppose Eq. (1’) is 
linear (predominantly diffusion current),  and we obtain 215 
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upon  integration 

Thus 

AV=V,In 1 + L  

and  the voltage is a slowly increasing function of the 
light  intensity. 

Note  that nothing has been said about the  short-circuit 
current-in general the increase in conductivity just 
compensates the  saturation of dAVjdA (eventually AT/ 
itself saturates,  but we shall not discuss this effect), so 
that  the  current  remains  proportional  to A .  The  latter 
phenomenon is to be expected,  since if the electrostatic 
potential  configuration is more  or less “stabilized” by 
short-circuiting the terminals, the ability of the existing 
junctions to  separate positive and negative light-induced 
charges  should remain virtually  unimpaired over a  large 
range of light  intensity. 

[ A2pYTd]> (30) 

VIII. The  short-circuit  current:  upper and lower 
limits on  the period 

The first goal of this section is to  deduce  an  equation 
analogous to  Eq. (10) for the  short-circuited case. In a 
sense this  case is aesthetically superior  to  the open- 
circuit  situation  in that all quantities are periodic,  in- 
cluding +,, &, and $. We start by defining new quanti- 
ties 

1 i 
2 

i 
2 

i+=-(i,+.i,) =T, 

j-=--(j,--Ll, 

in  terms of which 

ip=i++j-, 

jn=j+ - j - .  

(31) 

(32) 

As equations replacing  Eqs. (3) and (4) we have 

V - j-=G,  (33) 

j+=const.  (34) 

We shall  assume a total length L, composed of N peri- 
odic structures  (or cells) of length W .  

In view of the  periodicity of $, and +n we have from 
Eqs. ( 1 )  and ( 2 )  

/~ppjpdx=/~pnj,dx=O. ( 3 5 )  

Thus 

0 = [ap,j, + b pnjnldx 

= ~ ~ ( u p , f b p , ) j + d x + ~ ( a p , - b p , ) j - d x .  (36) 

216 Choosea=<p,>-1, b=<p,>-l. Then 

(37) 

or 

j = - 2 < F P > .  (38) 

Eq. ( 3 7 )  is the short-circuit  analogue of Eq. (10) .  
(Naturally < FP> need not have the  same value for 
open-circuited  as for closed-circuited  conditions.) 

The measured  short-circuit current  permits us to 
place a minimum  on  the possible length of a cell. Let 
N ,  be the  total short-circuit current  in a sample divided 
by the electronic charge  (magnitude),  and let N p  be 
the  total  number of photons  (in  the  range of energies 
exciting  hole-electron pairs) absorbed by the  entire sam- 
ple. Let N,, be  the total number of photons  absorbed by 
a cell (fundamental  period).  Let 

Q-N,/N,, (39)  

be the effective quantum efficiencies per  sample and  per 
cell, respectively. Let N be the  number of cells in a 
sample.  Clearly 

N=Qc/Q=QcNplNe* (41) 

Q, denotes the  number of electron charges passing 
through a fundamental period  per photon incident on 
the period. Most reasonable  physical  models  limit Q, to 
a  maximum  value 1, obtained by letting the electron 
from  one period  recombine  with the hole from  the next 
period.  Invoking this  criterion yields 

NIN, /N , .  (42) 

If L is the length of a  sample and W the length of a cell, 
it follows that 

WZN,LIN,. (43 1 
In  terms of experimental  values,  let J be the  current 

in amperes, L the length in centimeters, Z the  total power 
contained  in  a uniform  monochromatic light  beam in 
watts, f the  fraction  intercepted by the sample, E,  the 
energy of one  quantum  in  electron volts; then 

(44) 

It would be  desirable also to  have  an experimental 
upper limit on W .  Such a  limit is set  by the  equation 

w< va-, 
L 
V (45 1 

where VG is the  forbidden  gap width in electron volts, 
and L / V  is the reciprocal of the average  electric field. 
Eq. (45) follows from  the inequality 

A v <   V p  (46 1 
It is often possible to strengthen  inequality (46) by re- 
placing v, by v b ,  where v, is the height of the  barrier 
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effective in  separating holes and electrons, if V b  is 
known or  can be  estimated. Equations (44) and (45) 
place upper  and lower limits on  the  number of funda- 
mental  periods  which  can exist in a given crystal. 

IX. The stacking-fault  model: dipole junctions 

Our discussion would not be  complete  without  some 
mention of how the preceding  work applies (or does not 
apply)  to dipole junctions.  Nevertheless we specifically 
wish to avoid involvement  with the details of various 
mechanisms that have  been  informally  proposed at this 
laboratory in  connection  with dipole junctions to ex- 
plain the observations by Cheroff and Keller on sign 
reversals of AV, et cetera. 

By a dipole junction we mean  an  abrupt junction 
caused by some dipole layer associated with an  inter- 
face in the crystal,  such  as  a  stacking fault.  The principal 
characteristic of a dipole junction  which  differentiates it 
from  other junctions is that  it  cannot be  removed by re- 
arrangement of free  carriers  or by changes  in the occu- 
pation of impurity  states. The  appearance of the  band 
edges in  an insulator possessing such stacking faults 
might be  something like configuration A before  illumina- 
tion.  Illumination by producing  free  carriers shortens the 
Debye  length, and the appearance changes to configura- 
tion B. (See  Fig. 2 . )  

There is an  important  fact  to be noted about  the con- 
figurations A and B: the tendency of the electric field is 
always to sweep the electrons to  the right and holes to 
the  left, except at isolated points. This  means  that  it is 
a priori more difficult to  produce  photocurrents flowing 
to  the right. Diffusion currents (of the type needed) in 
Case B would be weak except very near  the junction. 
However another mechanism is available to  make  cur- 
rent flow to  the right. Consider  electron-hole  pairs  cre- 
ated  with excess energy within a mean  free  path of the 
dipole junction; electrons  created on  the right of a 
junction  may possibly pass to  the  left, holes created on 
the left  may possibly pass to  the right-but the  partner 
particle is stopped. This is an example of a  mechanism 
depending essentially on  the  departure  from  thermal 
equilibrium  in each  band. 

Another possible mechanism  depending on  departure 
from  thermal equilibrium, but producing  electron cur- 
rent  in  the  opposite direction, is the direct  excitation of 
electrons  over the dipole barrier  from  the  adjacent 
“trough.”  This  mechanism  could create a current even 
though  the hole mobility were zero. 

This brief discussion serves to illustrate the limitations 
of the  foregoing treatment. However one  point empha- 
sized in  that  treatment  remains valid; namely, the great 
importance of the recombination  mechanism.  Consider, 

C O N D U C T I O N   B A N D   E D G E  

A 

V A L E N C E   B A N D   E D G E  

Figure 2 

for example, the polarity of the  normal short-circuit 
current in two cases ( a )  and ( b )  . 

Case ( a )  : Recombination  only at stacking  faults. 
Case ( b )  : No recombination at stacking  faults. 

The recombination referred  to is that of electrons  in the 
trough next to  the stacking fault with holes in the  cor- 
responding  inverted  trough to  the right of the dipole 
layer. By normal  current we mean  that produced by 
generation  across the  gap in the bulk of the material. 
Then in Case ( a )  the positive current flows to  the left, 
in  Case ( b )  to  the right (if  at  all). 
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Editor’s note 

While  not specifically cited in any of the arguments, the 
reader’s attention  is directed to  the author’s closely re- 
lated  earlier  work  “Clarification of First-Order  Semicon- 
duction Effects Through  Use of Electrochemical  Poten- 
tials,’’ ZBM Journal 1, 39 (1957). 

References and footnotes 

1. G. Cheroff and S .  P. Keller, Phys. Rev. 111, 98 (1958). 
2. W. J .  Merz, Helv. Phys. Acta 31, 625 (1958). 
3. A structure or function of position  has “directionality” if 

there exists  no  reflection  symmetry  about  any  point on 
the x-axis. 

4. Similar  considerations  have  been undertaken by D. C .  
Mattis and R. C. Casella. 

Received February 25, 1960 

217 

IBM JOURNAL JULY 1961 


