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John A. Swanson*

Notes on Cumulative Photovoltages

Abstract: It is reasoned that the large photovoltages observed by Cheroff and Keller on ZnS crystals are

theoretically plausible and can result from a wide class of different mechanisms. Conversely, the condi-

tions under which a photoconductor with periodic inhomogeneities does not show a cumulative photo-

voltage are shown to be very restrictive and improbable. General theorems concerning the magnitude of the

photovoltage are proved, and remarks are made on its directionality.

Introduction

It has been suggested that the large photovoltages ob-
served recently! in some insulators are due to numerous
internal electrostatic barriers which under illumination
act as p-n junctions connected in series. The crystal
structure of these materials does not exhibit inversion
symmetry, and it is conceivable that the directionality of
the crystal induces directionality in the structure of the
internal barriers. Such an intrinsic directionality is nec-
essary, since a structure of randomly alternating con-
ductivity type could provide no basis for a preferred di-
rection in which the voltage accumulates.

The theory of such cumulative photovoltages can be
reduced almost to a theory of single-junction photo-
voltages by the assumption of periodicity in the structure
of the internal barriers. While such periodicity is not
necessarily to be expected in the actual material, the as-
sumption does not restrict a qualitative discussion. The
reason that the theory must be somewhat broader than
the single-junction theory is that at least two junctions
must occur in a single period. Since the photovoltages to
be obtained from these junctions are according to the
usual theory opposed to one another, the theory must ex-~
plain why the effect of one junction preponderates over
that of the other. The reduced theory in fact contains the
single-junction theory as a special case, in view of the
fact that ohmic contacts may be replaced by zero-life-
time regions regarded as part of a periodic structure.

The generality of the discussion is limited by the as-
sumption throughout much of the analysis of approxi-
mate thermal equilibrium in each band. However, results
to the effect that cumulative photovoltages are almost
always to be expected, for example, are not diminished
in interest or generality by a restriction in the cases con-
sidered. The main purposes of the discussion are in fact
(1) to make the preceding statement plausible, (2) to
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enumerate those special cases in which photovoltages are
intrinsically impossible, (3) to show the decisive im-
portance of recombination and generation mechanisms,
(4) to deduce some simple inequalities governing the
possible length of the fundamental period in actual cases.
Sections V, VI, and IX, have related purposes. Section V
among other things supports the third consideration just
mentioned by showing that a cumulative voltage may be
introduced in principle into a uniform material without
internal barriers merely by a (directional) periodicity in
the spatial distribution of the intensity of illumination.
Section VI supplements a theorem of Section IV by tend-
ing to show that the condition of the theorem (one of
the two carrier mobilities is zero) is not so pathological
that it cannot be relaxed in continuous fashion. Section
IX is intended as a complement to the discussion, in that
some of the important ways in which the assumption
of approximate thermodynamic equilibrium may break
down are mentioned.

I. Analysis: directionality criterion

We have as our fundamental set of equations

Jp=—0,V ¢y, (0rV,=—p,jp), (1)
in=—0uY $n (0T Vb =—pyis), (2)
V-j,=G, (3)
i=iy+in=0, “)

where G is the net generation rate (generation g minus
recombination r), j’s are current densities, ¢’s are elec-
trochemical potentials, ¢’s are (nonequilibrium) conduc-
tivities, p’s are resistivities, and p and n refer to holes
and electrons, respectively. The last equation implies
one-dimensional geometry and open-circuit conditions.
Equation (3) implies a steady state. Poisson’s equation
will not be needed. (There may be abrupt junctions in
the material; at such junctions j, and j, must be con-
tinuous unless there exists a recombination mechanism




at the junction itself. Whether ¢, and ¢,, are taken to be
continuous or not is inessential to the discussion. One
may in fact assume an infinite value for p,, say, at a

junction, but /_+ pndx across the junction must be finite,

and 8¢,= [* pudx=j, [* pudx.)

We are assuming periodic conductivity variations. Let
N be the number of periods contained in a sample. Then
the quantity AV is defined as

.V
A=
where V is the measured voltage across the sample. In
order that AV be different from zero, there must clearly
be a directionality in the crystal and a recombination
mechanism such that the establishment of equilibrium
does not depend on end effects. In the ideal case of an
infinite bar, conditions are strictly periodic except for an
average nonvanishing inclination of the bands, provided
(as we assume) the generation rate g(x) is also periodic.
In other words all quantities defined so far except ¢, and
¢, are periodic. Periodicity applies also to the concen-
tration of carriers p and n as well as their mobilities p,
and p,. These facts imply the periodicity of

AV AV AV
A

where ¢ is the electrostatic potential, and W is the length
of a period. We have in fact

av=[7Vo,dx= [ Vo,dx=[7 Vyax, (5)

in which the point x=0 is arbitrary. Our problem thus
can be reduced to one within the interval 0=X < W with
periodic boundary conditions, i.e., the point X=W is
congruent to the point x=0.

In view of Eq. (5) we may, upon integrating Eqs. (1)
and (2) and applying Eq. (4), write

—(a+b)AV= [7 (ap,—bpy) jpdx, (6)

where a and b are arbitrary constants. We may derive
various interesting relationships by choosing ¢ and &
properly. First note that by taking 6= —a, we show that

[ (py+pa) jpdx=0. (7

Since (p,+p,) is positive definite, this condition implies

that j, and j, must be oscillating functions, i.e., they

change sign at least once in the fundamental interval.
We next define the average of a function f as <f>=

—;I;ﬁ)wfdx. Taking a=<p,>"1, b=<p,>"1, we have
from Eq. (6)

AV p
—c—=(j (L __tn_ )\ 8
w ]"(<pp> <pn> )> ®
where C=a+b is positive definite, and AV /W is the
voltage per unit length of material.

Equation (8) becomes more interesting after suitable
reinterpretation of j,. We have in fact from (3) that

fp(x)= /;)” Gdx’+constant.
We define
F(x)=[,° Gax" (9)

Then F(x) is equal to j,(x) apart from a constant, and
this constant is determined by the choice of origin. We
may correctly write

AV p p >
—Cc=(F{=Lt2_—__Pr_ ) 10
w (<p,,> <pn>> (10)

since this equation is unaffected by a constant term in F
(the average of the term in parentheses is zero).

In view of the steady state condition (G)=0, F is a
periodic function. In general it is also an oscillating
function, and for a suitable choice of origin (F)=0.

Let P= (—p”——ﬂ—). Then P is also an oscillating
<pp> <pn>

function. The sign of AV depends on the correlation be-
tween F and P. Naturally Eq. (10) does not constitute a
solution of the problem. However, its form renders great
plausibility to the idea that the vanishing of AV is not
to be expected in general, since despite the constraint
imposed by the fundamental equations, the functions
F and P should be susceptible to variations that are to a
large degree independent.

il. The sensitivity of AV to g(x) and r(p,n,x)

As an example of the use of Eq. (10) we shall show in
this section that given any initial band edge configura-
tion (i.e., the equilibrium electrostatic potential ¢, (x)
in the absence of illumination) extreme choices of either
the generation function g(x) or of recombination func-
tion r(p,n,x) can make AV negative or positive, as de-
sired. This fact means that the directionality of the
initial electrostatic potential configuration has in a sense
less to do with the type of photovoltage to be expected
than the generation and recombination variations which
may exist, and (especially) the correlation of these vari-
ations with the initial band edge configuration.

Something of this sort is rather obvious from the fol-
lowing consideration. Suppose that the initial configura-
tion is a simple alternation of p-n and n-p junctions.
Suppose further that the excess carrier lifetime in the
vicinity of the p-n junctions is zero, while it is infinite
in the neighborhood of the n-p junctions. Then clearly
we obtain a photovoltage appropriate to nr-p junction
photocells connected in series. On the other hand a re-
versal of these conditions would produce the situation
analogous to p-n junction photocells connected in series,
i.e., the effect would be the same, except for a sign re-
versal. It should be noted that in this example no direc-
tionality of o(x) is required.

We may similarly determine the sign of AV by proper
choice of g(x), given that the behavior of r(p,n,x) does
not conspire against us. Taking for g(x) the delta-
function g(x)=8(x—x,) we observe that F(x) can
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Figure 1

have only one sign change in the interval (see Fig. 1).
The equilibrium resistivity function Py(x) in the case of
simple alternating junctions can also be made to have
only one sign change in the interval, but depending on
the choice of interval Py(x) and F(x) will correlate or
anticorrelate. We may thus determine the sign of AV by
proper choice of the point X,. In more physical terms,
by shining light exclusively in the neighborhood of the
p-n or the n-p junctions we can obtain either sign of
photovoltage. This intuitively evident fact may be of
interest in connection with reversals in the sign of the
photovoltage as a function of light frequency observed
by Keller and Cheroff and others.1:2 Different frequen-
cies may be absorbed at different points in the funda-
mental period.

lIl. Intrinsic vanishing of AV

The arguments of this section are designed to show that
one should expect a nonvanishing photovoltage except
in very special cases. These cases fall into three classes;
the vanishing of AV is respectively (a) due to symmetry,
(b) accidental, (c¢) intrinsic. Class (a) refers to struc-
tures having no directionality® exposed to uniform il-
lumination. We are naturally not concerned with such
situations. Class (b) refers to structures possessing direc-
tionality, but such that any variation in the initial electro-
static potential o(x) would with unit probability cause
AV to “reappear.” Class (c) refers to situations exhibit-
ing a vanishing of AV independently of the variation of
initial band-edge configurations.
To express this more precisely, AV is a function

AV:AV[‘[/()(x), ‘u‘p(p)nrx) ? H’n(p’n"x) )
r{p.nx), T(x), g(x)),

where T'(x) is some distribution of traps. (If a variation
of gap width is allowed we must explicitly add a gap-
width function E,(x) and define ¢,(x) uniquely. The
addition of such a function would not invalidate our
discussion—indeed it presents us with a further and un-
necessary degree of freedom.) Let 8y, be a variation of
P¥o{x). Then an intrinsic vanishing of AV is one such that
both

AV=0, and SAV/8¢;=0, (11)

where the variational derivative is taken keeping all
other functions the same. We further require as a sub-
sidiary condition that conditions (11) continue to hold
under replacement of g(x) by ag(x), where « is a con-
stant; i.e., an intrinsic vanishing of AV is by definition
not dependent on the over-all integrated light intensity.
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The general condition (11) for an intrinsic vanishing
will be satisfied by a certain ordered set of functions u,,
e 1, T, and g. However we are not interested in this
complete set, but only in the subset having some physical
likelihood. Thus, for example, the condition

r(P»n;x) :r(pO’nOsx) :g(x) s

is sufficient to make AV =0, but has little probability of
occurrence. We have seen above that AV is extremely
sensitive to r(p,n,x) and to g(x). Although it may often
be physically reasonable to assume g(x)=const., the
function r(p,n,x) will in general not depend on x vacu-
ously. We search first therefore for a condition yielding
an intrinsic disappearance of AV independent of g and
of r.

o The “strong” intrinsic case: SAV [8r=8AV [8g=0

In view of the discussion of Section II, it is clear that
we must have F=const. in Eq. (10) to insure that
AV =0 independent of variations of r and g. But F=
const. implies j,= const., and therefore (because of
Eq. (7)) jp=0. But j, vanishes in general only if

p=0, or p,=0. (12)

Eq. (12) constitutes the desired condition: both carriers
must be mobile in order to make a photovoltage possible
(with the fundamental assumption of thermal equi-
librium in each band).

& The “weak” intrinsic case: g=const., r=r(p,n)

This is an interesting case, since uniform illumination
may in many cases give rise to uniform generation and
since recombination mechanisms independent of position
exist. We argue again that although F and P are con-
nected by the equations of the system, the average of
their product is not fixed independently of the initial
band edge configuration. Let us first assume F=j,=—J,
=0. From Egs. (1) and (2) it follows that

¢,=const.,
¢n=const.,

and therefore ¢,—¢,=const. But it is easily checked
that ¢,—¢,=const. if and only if p*n=const. Since in
general neither p nor n will be constant individually,
and since the dependence of r upon p and n is to be
meaningful, we must have

r(pn)=f(pn), (13)

for the initial assumption F=j,=j,=0 to be self-con-
sistent. In particular bimolecular recombination (direct
recombination across the gap) satisfies this condition,
namely

r(p,n)=kpn,

where k is a constant independent of position in the usual
case of constant band gap. Deviations from the law (13)
will allow for weak photovoltages, depending on the
initial band edge configuration.




It is not likely that there exist any other intrinsic cases.
Although we cannot exclude the possibility that
“matched” functions r(p,n,x) and g(x), say, might lead
to AV=0 independently of y,(x), this is unlikely, the
more so in view of our subsidiary condition. Further-
more, such cases, should they exist, would appear to be
artificial from the physical viewpoint.

IV. Theorems involving AV—0

We can generalize some of the results of the preceding
section to nonperiodic structures. In the following two
theorems we are to imagine a piece of material of no
special shape upon which two ohmic contacts 4 and B
are placed. Theorem II requires a single semiconductor
of constant band gap—otherwise there are no restric-
tions, except approximate thermal equilibrium in each
band and steady-state conditions. (Note that Eq. (4)
does not necessarily hold; we have instead V *j=0.)

o Theorem I

The open-circuit voltage A between contacts A and B is
zero under illumination unless both carriers are mobile.

Proof: Suppose u,=0 but ¥=£0. Then j,=0, and
V *j.=0. Either j, =0, or j,<0 somewhere. If j,=0,
then according to Eq. (2) V:—/ABVan'ds:O, con-
trary to hypothesis. If j,><0 somewhere, then, since there
are no sources of j, within the material nor on the free
surfaces, it is possible to follow “lines of j,” from A to
B, such that the sign of j, does not change along these
lines. Let us integrate V¢, *ds along one of these lines.
Since p, is positive definite, we see from Eq. (2) that
the sign of AV is the same as that of j, along the line.
However since the total current from contact A4 is zero
there must exist lines having both signs of current. Thus
V=0.

o Theorem 11

If the recombination rate is a function of pn alone (not
of position) and if the generation rate is uniform in

.V , .
space, (%ng:o where d is the distance between con-
o0

tacts A and B.

Proof: We construct a solution of the fundamental set
of equations by taking ¢,=const., ¢,=const. (except in
the proximity of the contacts). Then choose ¢,—¢, such
that r(p,n) =f(pn) =g (recall that pn must be constant
if ¢,— ¢, is constant). We have now satisfied the equa-
tion V +j=0, since in fact j=j,=j,=0. The degree of
freedom left over, namely, the height of the average

E:ﬂ;——’i with respect to the band edges, is just suffi-

cient to enable us to satisfy Poisson’s equation; in fact
the form of Poisson’s equation is not essentially different
from that obtaining at equilibrium, for which condition
a solution must exist.

We now prove a third theorem rather unrelated to the
material thus far presented. It will provide a basis for
the following section.

o Theorem 111

Let two ohmic contacts A and B be placed upon a piece
of material having no internal fields at equilibrium (no
impurity gradations or interior dipole layers). There
may, however, exist lifetime variations. Let this material
be exposed to weak, but not necessarily uniform, radia-
tion. Then, if V is the open-circuit voltage between the
contacts and if 1 is the integrated intensity of radiation,
dV|dI=0 at 1=0, i.e., there is no photovoltage of first
order in the light intensity.

Proof: To first order in the case of light intensity

jp:"(TOpV¢p’ jn:—00nv¢n’

where oy, and oy, are the unilluminated conductivities.
Thus j=— V¢ where ¢p=04,¢,+ 09,Pp-

But since Vj=0, V2¢$=0. ¢=const. is a (unique) solu-
tion having j=0 on all surfaces and interfaces. But since
contacts 4 and B are ohmic ¢,=¢, at A and B. Thus
¢p(B) —¢,(A4)=0. But this quantity is equal to V. We
note that this theorem is without meaning when the dark
conductivities o, and o, are very small. Therefore we
shall now consider higher-order effects.

V. Materials with no internal fields

It has been seen from the preceding sections, and as 1s
well known, advantage can be taken of pre-existing elec-
trostatic fields in a material to separate light-created car-
riers, and thus to produce photovoltages. It has also been
noted that there is no limit to the cumulative value of a
photovoltage in an alternating structure. A natural and
rather interesting question now arises; namely, is it pos-
sible to produce arbitrarily large photovoltages in a
structure having no pre-existing electrostatic fields by the
device of nonuniform generation or recombination?
Specifically, let 0=x< W again be a fundamental inter-
val, with x=W congruent to x=0. Let (g)x and
r(p,n,x) be arbitrary, but ¢,(x)=0. Is it possible that
AV need not vanish?

That there can be no first-order effect is clear from
Theorem III. However two kinds of higher-order effects
may exist, as we shall show.

Consider first a nonuniform distribution of electron
traps such that the trapping levels are above the Fermi
level initially. Irradiation causes these traps to become
filled, and the space charge these created gives rise to
electric fields. These electric fields may separate mobile
charges in the usual way, causing photovoltages.

The second effect we shall discuss is bound to exist if
there is any directionality in g(x) or r(p,n,x) or both
(excluding the accidental cancelling of the two nonuni-
formities). It is due to the space charge of mobile car-
riers required to compensate for the mobility difference
of holes and electrons, and though small in one interval,
may of course be significant through many intervals.
However we are not concerned to calculate possible
magnitudes of the effect, but merely to show its existence.
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IBM JOURNAL * JULY 1961




214

For the same reason we specialize to an intrinsic sample,
i.e., one for which the equilibrium concentrations n, and
Do are equal. We assume no other change of charge
density than that due to the mobile carriers. Poisson’s
equation then takes the simple form

ey”’=n—p,
where (14)
V' =d2y ) dx.

We shall expand solutions in powers of &. To zeroth
order in ¢

n=p, (15)
and we find on setting j,=—j, that

1—-b p’
E—Vtm 3 (16)

where V, is the “thermal” voltage kT /e which enters
into the Einstein relation, b=p,/p,, p'=dp/dx, E=
—dy/dx=—y/. This a well known formula in the
semiconductor field. In deriving it we have used the
more familiar variants of Eqs. (1) and (2),

jp:ep‘p(pE_VTp,)s (1’)
jn=ep,(nE+4+Vyn’). (2)

The average <E> is clearly equal to zero, as one
might expect, so that the first possible contribution to
AV comes from the first-order solution. Since we are
secking merely to show the existence of an effect and not
to obtain a solution, we may without loss of generality
set the currents j, and j, to first order in ¢ equal to zero
(the zero*® order currents of course do not vanish). This
is equivalent to regarding the currents as prescribed,
and taking them equal to the zero*® order currents. This
is a consistent procedure, since there exists some correct
current distribution in any problem. The problem then
becomes: given j,(x) what is the solution ¢(x) ex-
panded in powers of £? If we can show that (W )4y (0)
for a j,(x) possessing “directionality,” we will have
proven what we set out to prove since certainly a direc-
tional j, can be produced by a direction g or r.

Proceeding then, on substituting j, —j, =0 in equa-
tions (17) and (27) and using the condition that p—n=0
to zeroth order in &, we find

O=pE+pE—Vrp'y, (17)
O=nE+pE,+V 'y, (18)

where the subscript “1” refers to terms of first order in
e, and lack of subscript indicates a zerot® order term.
Subtracting these equations we have

Vi(pi+n)'=(n1—p ) E=0,
or
Vy(p1+n,) +eE'E=0,

and
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Vi(pytn)=—ZE*+C. (19)

Adding Egs. (17) and (18), we have
(p1+n) E+2pE,+Vy(n—p)'=0,

or
(p1+n) E42pE{+V e E”=0,
and
El"_:—(p1+nl)E+£VTE , (20)
2p
_ £3—2EC—2VT2E”
=F 4Vop ‘
Now
E p’>
—y=(—=)=0.
<p> <p2
Thus
E3 E”
<E>=_° <___ o/EN\
! 4VT[ p> VT /)

This equation can be further simplified by substitution
of the expression (16) for E and subsequent integra-
tions by parts, down to

AV, ,b(1=b) /p?
= 2N, 21
L PG @1

It can be easily checked by simple trial distributions
p(x) having directionality that in general the average
occurring in Eq. (21) is not zero. Note that since p’ is

AV .
of first order in the light intensity, W1=— <E{> is of

third order. Thus no contradiction exists between our re-
sults here and Theorem III.

Remark: The generalization to nonintrinsic samples
of Eq. (16) is

4

p
b(ny—py)+(1+b)p’

which still implies a functional relationship between ¢
and p. Thus, in the zerot® order approximation (with re-
spect to ¢) there is no possibility of a periodic growth of
¢ in a sample of uniform mobilities and carrier concen-
trations, irrespective of generation and recombination
mechanisms. These facts may be regarded as well known.

In view of Theorem III the so-called Dember Effect
(creation of the field ¥/ by nonuniform irradiation) can-
not be measured with ohmic probes to first order in the
light intensity. In view of Eq. (16”) and the boundary
condition p=p, at ohmic contacts the zero order (in ¢)
Dember voltage vanishes between ohmic contacts, at
least in linear geometrics. Equation (16’) is of course
also generalizable by replacing the derivative d/dx (rep-
resented by the primes) by the gradient, providing only
that j=0 everywhere, so that this conclusion applies also
to more general geometries.

(167

¥'=(1-5)




VL. Selution® for u,/u, < <1

We can approach this case by expanding the solution in
powers of u,. The zero®® order solution is clearly that
applying to the case of strong intrinsic vanishing of AV,
We have then to zerot® order

O:jn:elu“n( "“n‘l”‘I_VTn,)
V=V, [n. (22)

The generation and recombination are everywhere
equal. Therefore

r(p,nx)=g(x).

Presuming we can solve this equation for p, we have

p=s(nx,g(x)). (23)
Poisson’s equation reads (assuming no traps)
ey”’=(n—p) +po(x), (24)

where po(x) is po(x)=—po(x) — (ny(x) —p,(x)),

where epy(x) is the equilibrium charge distribution and
nyg(x) and py(x) are the equilibrium carrier concentra-
tions. Combining Eqs. (24) and (22) we find

eVT(ln) +5(n,x,g(x)) —n=0, (25)

as the equation determining n(x). This is a nonlinear
second-order equation to be solved with periodic bound-
ary conditions.

The first-order current j,.(x) is now easily found
from the equation for hole current

Jar(x) = —jp (x) =eu, (py’+Vp’). (26)
We have

AV. — _dw®) A(x) Y o+ Vrp’
1 /m(x)n(x)x L, T o

which, upon an integration by parts and substitution of
(22), becomes

w ’,
AV, =—avpte [ P24
b fJo 12

Use of Eq. (25) reduces this to
v
AV =gV 22 Ly / L
0

and an integration by parts to

AV, =V 2t2 “" N (27)
nt/*

Substitution of the solution of Eq. (25) into (27)
allows us to calculate AV. It should be noted that Pois-
son’s equation plays an essential role in this calculation,
since setting £é=0 in Eq. (27) gives AV,=0. Observe
that despite the quite opposed points of departure Eq.
(21) becomes identical to Eq. (27) under the substitu-
tion of n for p in Eq. (21) in the limit of small b.

VIi. A classical problem

In order to counteract the possible misleading impression
given by the two preceding sections to the effect that
photovoltages depend on 40 it may be sufficient to
point out that in drawing the relevant conclusions from
Eq. (16”) (after Eq. (21)) in Section V it was neces-
sary to assume that p, and n, were constants. However,
to round out the discussion we recall to the reader’s
mind the “classical” discussion of junction photovoltages
which dispenses entirely with Poisson’s equation, and
which we shall base almost entirely on Eq. (10).
Suppose that a p-n junction occurs at x=0, and that

—%/—'<x<¥ is the fundamental interval. For sim-

plicity we make the junction entirely symmetrical about
the Fermi level, with equal mobilities for the two car-

riers. Let r=0 in the region —d<x<d, where d<—z—/,
(and all equivalent regions). Let the excess carrier life-
time be zero elsewhere. This is equivalent to placing
ohmic contacts at x==d. This implies that F=0 except
in the interval —d<x<d. Let g(x) be A8(x), where
8(x) is the Dirac 8-function. Then, multiplying by
<pp>=<p,> in Eq. (10),

A d
V:———z—[ ppd.x.
0

Since the material from O to W/2 is assumed to be
n-type, we have, providing the illumination is not too
intense, p,> > p,, and thus

A (¢
AV =— 7/ ppdx.
1]

To first order in the intensity of illumination, then

A d
V:—-Z—‘/o‘ Popdx,

where pq, is the equilibrium value of p,(x). It is clear,
however, that ﬁ)d ppdx decreases with illumination. Let
us try to obtain an idea of the variation of p,. In the
vicinity of the junction the difference ¢,—¢, reaches its
maximum and is approximately equal to AV, Recall
that

$s—¢n
”VT . (28)

Next to the junction on the n-type side the fractional
change in p is much larger than that in n, and we are
justified in setting

Ry ="noPoe

Pop p Ve )

The function p,(x) is as yet known only at x=d and
near the junction. Its exact nature is important in de-
termining the value of the integral. If py(x)= const.,
0<x<d, it is usually reasonable to suppose Eq. (1’) is
linear (predominantly diffusion current), and we obtain

AV
Pp _ _Po —e—
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upon infegration

AV _ Adp, AV[Vy (29)
w 2W exp (AV V) —1"
Thus
AV=V, ln[l—}— Ap"d] (30)
Vp

and the voltage is a slowly increasing function of the
light intensity.

Note that nothing has been said about the short-circuit
current—in general the increase in conductivity just
compensates the saturation of dAV /dA (eventually AV
itself saturates, but we shall not discuss this effect), so
that the current remains proportional to 4. The latter
phenomenon is to be expected, since if the electrostatic
potential configuration is more or less “stabilized” by
short-circuiting the terminals, the ability of the existing
junctions to separate positive and negative light-induced
charges should remain virtually unimpaired over a large
range of light intensity.

Viil. The short-circuit current: upper and lower
limits on the period

The first goal of this section is to deduce an equation
analogous to Eq. (10) for the short-circuited case. In a
sense this case is aesthetically superior to the open-
circuit situation in that all quantities are periodic, in-
cluding ¢,, ¢,, and y. We start by defining new quanti-
ties

U
+=% Uptin) =5 (31)
j—-:_;—(jp'—jn)’ (32)

in terms of which
=iy +io,
Ja=iy—i_.

As equations replacing Egs. (3) and (4) we have
V'i-=6G, (33)
j =const. (34)

We shall assume a total length L, composed of N peri-
odic structures (or cells) of length W.

In view of the periodicity of ¢, and ¢, we have from
Eqgs. (1) and (2)

[ opipdx= [ paindx=0. (35)
Thus
0= [, [appip+bpninldx

= [, (app+bpa)irdx+ [ (ap,—bp,)j_dx. (36)

Choose a=<p,>"1, b=<p,>~1. Then
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i =(F (<p,,> “Zns >> 47

or
j=—2<FP>. (38)

Eq. (37) is the short-circuit analogue of Eq. (10).
(Naturally <FP> need not have the same value for
open-circuited as for closed-circuited conditions.)

The measured short-circuit current permits us to
place a minimum on the possible length of a cell. Let
N, be the total short-circuit current in a sample divided
by the electronic charge (magnitude), and let N, be
the total number of photons (in the range of energies
exciting hole-electron pairs) absorbed by the entire sam-
ple. Let N, be the total number of photons absorbed by
a cell (fundamental period). Let

Q=N,/N,, (39)
and
QcENe/var (40)

be the effective quantum efficiencies per sample and per
cell, respectively. Let N be the number of cells in a
sample. Clearly

N=Q,/0=Q/N,/N,. (41)

Q. denotes the number of electron charges passing
through a fundamental period per photon incident on
the period. Most reasonable physical models limit Q, to
a maximum value 1, obtained by letting the electron
from one period recombine with the hole from the next
period. Invoking this criterion yields

N=N,/N.. (42)

If L is the length of a sample and W the length of a cell,
it follows that

W=N_L/N,. (43)

In terms of experimental values, let J be the current
in amperes, L the length in centimeters, I the total power
contained in a uniform monochromatic light beam in
watts, f the fraction intercepted by the sample, E, the
energy of one quantum in electron volts; then

UIEq;
If

It would be desirable also to have an experimental
upper limit on W. Such a limit is set by the equation

W= (44)

W<VG§, (45)

where V is the forbidden gap width in electron volts,
and L/V is the reciprocal of the average electric field.
Eq. (45) follows from the inequality

AV <V,. (46)

It is often possible to strengthen inequality (46) by re-
placing Vg by V,, where V, is the height of the barrier




effective in separating holes and electrons, if ¥V, is
known or can be estimated. Equations (44) and (45)
place upper and lower limits on the number of funda-
mental periods which can exist in a given crystal.

IX. The stacking-fault model: dipole junctions

Our discussion would not be complete without some
mention of how the preceding work applies (or does not
apply) to dipole junctions. Nevertheless we specifically
wish to avoid involvement with the details of various
mechanisms that have been informally proposed at this
laboratory in connection with dipole junctions to ex-
plain the observations by Cheroff and Keller on sign
reversals of AV, et cetera.

By a dipole junction we mean an abrupt junction
caused by some dipole layer associated with an inter-
face in the crystal, such as a stacking fault. The principal
characteristic of a dipole junction which differentiates it
from other junctions is that it cannot be removed by re-
arrangement of free carriers or by changes in the occu-
pation of impurity states. The appearance of the band
edges in an insulator possessing such stacking faults
might be something like configuration 4 before illumina-
tion. Illumination by producing free carriers shortens the
Debye length, and the appearance changes to configura-
tion B. (See Fig. 2.)

There is an important fact to be noted about the con-
figurations 4 and B: the tendency of the electric field is
always to sweep the electrons to the right and holes to
the left, except at isolated points. This means that it is
a priori more difficult to produce photocurrents flowing
to the right. Diffusion currents (of the type needed) in
Case B would be weak except very near the junction.
However another mechanism is available to make cur-
rent flow to the right. Consider electron-hole pairs cre-
ated with excess energy within a mean free path of the
dipole junction; electrons created on the right of a
junction may possibly pass to the left, holes created on
the left may possibly pass to the right—but the partner
particle is stopped. This is an example of a mechanism
depending essentially on the departure from thermal
equilibrium in each band.

Another possible mechanism depending on departure
from thermal equilibrium, but producing electron cur-
rent in the opposite direction, is the direct excitation of
electrons over the dipole barrier from the adjacent
“trough.” This mechanism could create a current even
though the hole mobility were zero.

This brief discussion serves to illustrate the limitations
of the foregoing treatment. However one point empha-
sized in that treatment remains valid; namely, the great
importance of the recombination mechanism. Consider,
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Figure 2

for example, the polarity of the normal short-circuit
current in two cases (a) and (b).

Case (a): Recombination only at stacking faults.

Case (b): No recombination at stacking faults.
The recombination referred to is that of electrons in the
trough next to the stacking fault with holes in the cor-
responding inverted trough to the right of the dipole
layer. By normal current we mean that produced by
generation across the gap in the bulk of the material.
Then in Case (a) the positive current flows to the left,
in Case (b) to the right (if at all).
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Editor’s note

While not specifically cited in any of the arguments, the
reader’s attention is directed to the author’s closely re-
lated earlier work “Clarification of First-Order Semicon-
duction Effects Through Use of Electrochemical Poten-
tials,” IBM Journal 1, 39 (1957).
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