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An Approximate Method

M. A. Leibowitz

for Treating a Class of Multiqueue Problems

Abstract: The following problem is considered: N queues of unrestricted length are served in cyclic order by a

single server. Input to each queue is Poisson, the service time distribution may be arbitrary, and a finite time

is required by the server to go from one queue to the next. Supposing that at any queue the server serves

all units which he finds when he arrives, what is the probability p, that in a stationary state he finds exactly

n units? The method for solving this problem is based on the notion of a “self-consistent’” probability

distribution and is actually applicable to a general class of multiqueue situations of which the one

considered here is typical.

1. Introduction

Recently, papers devoted to queueing problems have ap-
peared with increasing frequency.! By now, problems
involving only a single queue have received an almost
exhaustive discussion and some attention has turned to
the analysis of systems containing many queues.

The difficulty in treating such systems is this: A com-
plete description of their state means the specification of
joint probabilities depending upon a large number of
indices, each index in general corresponding to a queue.
Hence, the determination of these probabilities usually
demands the solution of a large number of sets of equa-
tions. However, rarely is such a complete description
required. Generally, one is interested only in the proba-
bility distribution of the length of any single queue, or
the probability distribution of the waiting time or some
other distribution or parameter which gives a more or
less simple characterization of the system. But as a rule,
it is impossible to write down an equation containing
only these quantities and satisfied exactly by them, i.e.,
one cannot obtain an exact partial description of the
system without first obtaining an exact complete descrip-
tion.

Here we present an approximate method for treating
a class of problems, involving many queues, which has
arisen in connection with the design of a multiterminal
communication system. However, we believe that this
method is more widely applicable. Phrased in the tradi-
tional language of queueing theory, the situation in which
we are interested is the following:

We have N queues with a single server. The input to
any single queue is independent of the input to any other
queue and the position of the server. This input will be
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assumed Poisson with average interarrival time 1/A, so
that the probability density of the time ¢ between arrival
of units on the queue is Ae-}*. The queues are served in
cyclic order, i.e., they can be numbered 1,2,....,N
such that queue (j+1) is served immediately after queue
j and queue 1 immediately after queue N. At any queue,
the server serves all units which were on that queue at the
moment that he arrives. Units entering a queue while it
is being served must wait until the server has made a
complete cycle of the system before they can receive
service. We denote by s(t), the probability density of the
time required to service a unit (with mean service time
1/w) and we let w(t) denote the probability density of
the walking time. This is the time required by the server
to move between queues; that is, the time between the
completion of service at one queue and the inception of
service at the next. In particular w(¢) (or s(¢)) may be
delta functions, i.e., the walking (or service) time may
be constant. The functions A, s(¢) and w(¢) will be as-
sumed the same for each queue. Finally, no limit is
placed on the length of the queues.

Actually, the treatment given here can be considerably
extended. For example, at the expense of some additional
complication, A, s(¢t) and w(f) may be allowed to vary
from queue to queue. We can also consider the case of
queues served in random rather than cyclic order, or the
case where a limit is imposed on the number of units that
may be served at each queue. Some of these extensions
will be taken up in a later paper.

In the application that brought this problem to our
attention, the server was in fact a computer; the units,
messages; the queues, the messages stored in a terminal;




the service time, the time required to transmit a message;
and the walking time, the time needed to inform a termi-
nal that it may begin to transmit its messages to the
computer for processing.

The problem discussed here is similar to that of the
“patrolling repairman”? except that in that case, only one
unit is allowed on a queue.

We will consider here {p.} the stationary probability
distribution of the number of units on a given queue at
the moment of the server’s arrival. Knowing this distribu-
tion, and the waiting time distribution, the efficiency of
the system may be obtained. These will, however, be
discussed elsewhere. In Section 2, as an orientation, we
treat exactly the case N=1. In Section 3, we allow N to
be arbitrary and we present an approximate method for
finding {p.}. This method apparently gives correctly the
terms through (A/p)?® of a power series expansion of p,
in (A/un) with N fixed. Furthermore, we give, using this
method, an asymptotic expansion of p, in powers of 1/N
with NA/pu fixed. In Section 4, we compare our approxi-
mate method with an exact treatment of the case N=2.

2. Case of N=1

For the case® N=1, let P(n|n’) denote the conditional
probability that the server on his arrival finds # units on
the queue, given that on his previous arrival he found »'.
The quantities P(n|n’) (n, n'=0, 1, ... .) are the ele-
ments of a Markoff (stochastic) matrix. The stationary
state probabilities p, must satisfy the system of equations

pn= 2 P(n|n')pn . (1
n’'=0

To obtain an expression for P(rn|r') consider the time
that elapses between successive arrivals of the server at
the queue. This time consists of two parts, (a) the time
to serve n’ units, and (b) the walking time.

The probability density of the time (a) is just the n'th
fold convolution of the service time density, namely
s *(¢t); while the probability density of the time (b)
is just w(¢). Hence, the probability density of the sum
(a) + (b) is the convolution s *(r) *w(¢). During the
time ¢, the probability that exactly » units enter the queue
is e (Af)"/n!

Thus, on integrating over all possible times we have

0 p-Al n
P(nln’)=/ D™ s () () d )

n!

To solve the equations (1) we introduce the generating
function

G(x)=3 purr. (3)

n=0

Let ®(r), ¥(r) denote the Laplace transforms of s(¢),
w(¢) respectively:

(I)(r)=/we‘”s(t)dz,
0

\If(r)=/w ertw(e)dt . (4)
0

Multiply Eq. (1) by x*, sum over n, and use Eq. (2);
then

G(x)=§ %x”P(nln’)pn: (5)

n=0 5'=0
] ] -] ()\t)”
E [T
n’=0 1] n=0 nt

c xrs (D E () *w () dt

0 oG
=3 Pn'/ A IE (L) Eyw (t)dt
n'=0 0

= w po{®[A(1—x) ]} ¥[A(1—x)].

n'=0

Hence
G(x)=¥[A(1—x)]G(2), (6)
where
z=®[A(1—x)]. (7

We have used the fact that the Laplace transform of
the convolution of two functions is the product of their
Laplace transforms.

The property of z that will prove crucial is that

Z]m1=1 (8)

by Egs. (4) and (7). This will enable us to calculate
successively the moments of the distribution {p,} even
though an explicit solution of the functional Eq. (6)
appears impossible.

In fact, let
F(x)=log G(x) )]
so that
F(x)=log ¥[A(1—x)]+F(z). (10)

Denote by wi the j* moment of the walking time and
let 5% be the mean square service time. Finally, recall that
1/p is the mean service time. Then if 7, n? are the first
and second moments, respectively, of the distribution
{pn}, it is easy to verify from Eq. (9) that

F'(1)=h a1
F'(1)=n*—a—m? (12)
E=F'"(1)+F (1) +[F(1)]2. (13)

To obtain F'(1), F’'(1) differentiate Eq. (10) with
respect to x and then put x=1. Making use of Eq. (4)
to express the derivatives of

S[A(1—x)], ¥[A(1~x)]
in terms of W, w2, 5, s, we find that

F'(1)=A/pF'(1)+Aw (14)
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F'(1) =X22F (1) + (M/p) 2F" (1) +A282(w) , (15)

where §2(w) =w?—#2 Hence

. Am

eV (16)

ni= A8 (W) + N +A+AE. an
1—(A/u)?

From Eq. (16) we see that if the mean arrival rate X is
equal to or greater than the mean service rate u, the
mean queue length becomes infinite. A very similar result
holds for the case of N>1 queues. Actually, when A>pu,
it seems highly probable that no stationary state exists; in
fact, this was proved for a very similar queueing problem
by Foster.*

3. Case of arbitrary N — approximate treatment

With more than one queue, a complete description of the
system at the moment of the server’s arrival at any queue
requires not only a knowledge of the number of units n,
on that queue but also of the number of units ng, ....,
ny on the other queues. For this reason, the quantities p,
no longer constitute the stationary probability distribu-
tion of a Markoff process. In fact, one must consider the
joint probability distribution {pn,,. ..., ny} Of the vari-
ables ny, ..., ny. While it is possible to find a transition
matrix analogous to the matrix P(n|n’) and hence a set
of linear equations for p,,, ..., ny, the elements of this
matrix® rapidly increase in complication with growing
N. Hence, though p, may be obtained by summing
Dngs -+ +» Ny OVET ns, ..., Ry, this is apparently not a
feasible way of finding p, if N is large.

To motivate the treatment given here, consider the
following heuristic method used for finding the mean
a=3np, .

Let T denote the mean time required by the server to
make a complete cycle of the system; i.e., the time be-
tween the beginning of successive service periods at say
queue 1. Then T is composed of N walking times (with
mean total duration Nw) and the sum of the service
periods at each of the N queues. To find the mean dura-
tion of these service periods, we assume that (4) at each
queue i units meet the server. It follows that

T=N(a/p)+Nw.

During this time on the average 7i=TA\ units enter the
queue 1. Hence

A/A=N(i/p) +Nw

or

_ NAw

A= —————
1-NM/p

Note that for N=1, Eq. (18) reduces to (16). Actually,
it can be shown that (18) is correct for all N, i.e. the
assumption .4 above leads to the right result for 7. It

(18)
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seems reasonable to introduce an analogous but stronger
assumption and in this way obtain, hopefully, an approx-
imation to the probability distribution {p.}. Therefore,
we assume that (B) at each queue the same probability
distribution of units {p.} meets the server independently
of each other.

From this assumption, we can find what the distribu-
tion {p,} must be by using the following consistency
argument: If the server meets the same probability
distribution of units at each of the queues on one cycle of
the system beginning with queue 1, then the same distri-
bution must meet him when he returns to queue 1. {p.}
is thus a “self-consistent” distribution.¢ Note that 7 was
calculated in this way.

Before discussing the range of applicability of this
approximation, we determine the equation for the gener-
ating function

G(x)= § DnX™ .

n=0
It is almost identical with Eq. (6). Indeed,
G(x)={¥[A(1-x)]1G(2)}", (19)

where ¥ and z are given by Egs. (4) and (7). To show
this, observe that if n is the number of units which enter
queue 1 during a complete cycle of the system (begin-
ning with queue 1) and Arn; (j=1,2,...,N) is the
number which enter during the time between the begin-
ning of service at queue j and at queue j+1, then

n=An;+Ans+...+Any. (20)

Following the derivation of Eq. (6), the generating
function of the probability distribution of the random
variables An; is seen to be

YA(1—x)]1G(2).

Equation (19) is then a consequence of assumption B
and Eq. (20).

Introducing, as before, F(x) =log G(x), the moments
of the probability distribution {p,} may be calculated in
the same way as in the previous section. We have

F(x)=Nlog¥[A(1—-x)]+NF(2) 21

and

F'(1)=—N—)‘—F'(1)+)\W (22)
“

F’(1) =NA22F' (1) +N (-’\_>2F"(1)
M

+NAz82(w). (23)
Hence
Nw
e NP 24)
1-N(\/p)
—  NA2s2+NA28%(w)
2 Az, 25
n =N/ +A+n (25)




Note that Eq. (24) agrees with Eq. (18}. For a finite
mean (and most likely, for a stationary state as well) we
must have

NA/u<l. (26)

This means that the time interval between the arrival
of units at a given queue must be less than the time to
serve one unit for each queue.

Consider now the case of fixed N and small A/u. For
convenience, we choose our time scale such that u=1 so
that the denominators in (24) and (25) become just
1—NA, 1—-NA2, respectively. However, we retain the
same notation for s? and the moments of the walking
time distribution. This choice of time scale does not,
of course, affect the values of 7i and »? since they are
nondimensional.

It will be shown that we can obtain an expansion for
P in powers of A.

First, note that F'(1) is of order A and F”(1) is of
order A2 This follows from (22) and (23) with p=1.
It is easy to see from Eq. (21) that each successive
derivative of F(x) at x=1 involves a higher power of A,
so that, for example

FD(x) |21 is O(M).

Furthermore, note that the term in A3 in F"’(1) comes
entirely from Nlog¥[A(1—x)]. Hence, to terms of
O(A3) we have

F" (1) =23 (wP—3wwe+2w°) . (27)
Since
F”(l)
F(x)=—F(1)(1—x)+ 5 (1—x)2
Fill(l)
- (1—x)3+..... (28)
it follows that to terms of O(A3)
Fxy= 22 (1) (29)
VETT VT
N2ZA3wsZ 1—x)2
+ __JS__+NA232(W) a-x*
I—NA 2
(1—x)3

—NA3 (W3 —3wwe+2w?) —

The highest order term in F(x) is due entirely to the
randomness of the input to queue 1, i.e., F(x) would be
exactly

—Niw (1-1)
1-N» =
if the time required by the server to cycle the system
were fixed at T=7/A.
The term NA23§2(w) (1—x)2/2 has its origin in the var-
iance of the walking time. It is interesting to observe
that the effect of a nonconstant service time enters for

the first time in the A3 term.

Since G(x)=exp[F(x)1, we can obtain p, by using
Eq. (29) and expanding in a power series in x. We find,
to terms in A3,

po=1-+ar+[(a2/2) +b]A2+[c+d+(a3/6) +-ab]r?
(30)

p1=—{aA+(@+2b) A2+ [2¢+3d+ (a®/2) +3ab]A3}
pa=[(a2/2) +b1r2+[c+3d+ (a®/2) +3ab] A3
p3=—[d-+(a?/6) +ab]r?
Pa=0 forn>3,
where

—N#w N Nz st

82(w), c=
1-NA 7 Y em 5T

N — —
= — T (W3—3W W2+2W3) .

It will be shown in the next section that for N=2 Eq.
(30) does, in fact, give the probabilities p, correct to
terms in A% It is reasonable to expect that it should be
valid for all N. It is natural to suppose that our method
should give good results for small A, since then the input
to the system is small, the walking time is the predomi-
nant factor, and the dependence of the queues on each
other is relatively weak.

There is another case for which one would expect our
treatment to be applicable, and that is when N is large.
Then, though assumption B is violated at a number of
queues, these violations should cancel one another so
that assumption B holds in some average sense. But this
is sufficient for our method to be valid since the influence
of any one queue on another is small for large N.

Consider, then, the case of large N with «=NX fixed.
We can verify, as above, that correct to terms in 1/N

aw
F(x)= ——(1—x)
l—«a

30235 )2
+ _1_["‘ STW +a232(w):| (_1_2’“_)_ Fon

N}l 1-a
31

Hence expanding exp[F(x)] in a power series in x we
find to terms O(1/N)

g
gy
Poe‘(-l-ZN)

ef 8
—ed = 2
j 21 e‘(f—f- N N)

~ e fr-t f n(n—1)
—ef il _ 3 2 - [ —_—
T TN (n—2)!<2 Mt )

forn>2
(32) 207
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where

y aW as* W
l-a 8= l—a

+a282(w).

Note that in this case p,>0 for all »n, and that in the
limit of infinite N, the distribution {p,} reduces to a
Poisson distribution with the parameter f.

4. Exact treatment of the case N=2

In order to compare with the results of the previous
section, we treat exactly the case N=2. Let p.n denote
the joint probability that in a stationary state there are n
and m units in queues 1 and 2, respectively at the moment
when the server arrives at queue 1; and let P(n,m,|n’,m")
be the corresponding probabilities given that there were
n’, m’ units in queues 1 and 2 at the server’s last previous
arrival at queue 1. Then

0
Prm= > P(n,mln’, m')puop: . (33)
n, m=0

To find the “transition” probabilities P(n, m|n’, m’)
we proceed as follows:

Let D(t3, 13, I|n’, m") be the conditional joint proba-
bility density that, given there are ', m' units in queues
1 and 2, respectively, when the server begins service at
queue 1,

(a) atime ¢ is required to service queue 1 and move on
to queue 2

(b) there are ! units in queue 2 when the server arrives

(c) it takes a time £ to service queue 2 and return to
queue 1.

In a manner similar to that used in obtaining P(n|»’) in

Sec. 2, we have

D(tlﬁ t21 l,ln', m,)

() m
(I—m)!
From the definition of D (t4, t2, I|n’, m’) it follows that

=5 (1) *w(ty) e SO* (1) *w(tz) (34)

P(n,m|n,m')y=T [ {D(t, tz,1|n', m')
I=m’ 0 0

(Atz)™

m!

e Bt [N (t+12) [P e s dtdts . (35)

To solve Eq. (33) with P(n, m|n', m’) given by Eq.
(35) we again use the method of generating functions.
Let
G(x,y)= 3 pumX"y™. (36)
n, M=0

Then multiplying Eq. (33) by x"y™ and summing over
n and m, we obtain after some calculation

G(x,y)=¥(w)¥(v)G[2(u), 2(v)], (37)

where
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u=A(2—x-y) (38)
v=A(1—x)+A—A®(u). (39)
In verifying Eq. (37), one sums the terms

[A(tr )] o (At2)™ ym
n! m!

over n, m respectively, in Eq. (33), then integrates over
t;, sums over /, integrates over #;, and finally sums over
m’ and n’. The details are analogous to those met in
deriving Eq. (6).

Again, while an explicit solution of Eq. (37) seems
far too much to hope for, the moments of the probability
distribution can be found by using the fact that

P(u)|o=y-1=1, B(V) ooy =1.
Let F(x, y) =logG(x, y) so that
F(x,y)=log¥(u)+log¥(v)+F(®(u), ®(v)). (40)
If we define

0

NPrms 2= > N2Dum
0 N, M=0

fi—=
0y

3 s

then 7 and n? are just the first and second moments of
the probability distribution {p,} considered in the previ-
ous section, since

w
Prn= 2 Pnm -

m=0

To find 7 and ﬁ, we have
A=F,(1,1) (41)
ME=Fo(1,1) +A+72. (42)

Differentiating Eq. (40) with respect to x and y and
then putting x=y=1, we obtain a set of linear equations
for the first and second derivatives of F(x, y) at x=y=1.
After some extensive but fairly straightforward compu-
tation, we find with time units adjusted so that p=1:

_ 2@
1-2
DF = [82(w) + (1/2) As?]A(1+A2)
+ (32w +As2) A3 (14 A2)
+[82(w) +ASZIAZ(—4A3—A2+2)0-+1),  (44)
where D= (1—2)\) (1—X2) (2A24+-21+1).

(43)

X

For small A, we have correct to terms of O(A3?)
Foo=4\3Wst+2028%(w) , (45)

using Eq. (43) for 7.

To O(A3%), Eq. (45) is just the same as F.(1) in the
last section with N=2,

Furthermore, note that the logarithm of the generating
function of the probability distribution {p,} is just
F(x,1). If we expand F(x, 1) around x=1,




Fe(1,1)
F(x,1)=—F.(1,1)(1-x)+ — (1—x)?
Fre(1, 1)
——6———(1,1)(1—x)3+.... (46)

the only coefficient which is not 0(A3), [besides F,(1, 1)
and F,,(1,1)] is F,.(1, 1); and as can be seen by fur-
ther differentiating Eq. (40) the term in A3 in Fg..(1, 1)
is just

AS(W3—3% w2+2w3) . (47)

On comparing now Eq. (46) with Eq. (29) (the coefhi-
cients in (46) being given by Eqgs. (43), (45), (47)),
we see that they agree to O(A®). Hence it follows that
the probability distribution {p.} as calculated from the
exact generating function exp[F(x, 1)] agree to O(A3)
with the distribution obtained using our approximate
method.

5. Conclusions

An approximate method based on the idea of a “self-
consistent” probability distribution has been used to
analyze a multiqueue system. This method is at least
reminiscent of self-consistent field approximations in
atomic physics.

In general, the growing complication of the queueing
structures found in modern communication systems

means that exact analyses will be increasingly difficult to
obtain; suitable approximate techniques must therefore
be developed. As a source of clues to what these tech-
niques might be, we suggest the extensive theory of many-
body systems in mathematical physics.
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