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An Approximate Method 
for Treating a Class of Multiqueue Problems 

Abstract: The following problem is  considered: N queues of unrestricted length are served in cyclic order by a 

single server. Input to each queue i s  Poisson, the service time distribution may  be arbitrary, and a finite time 

i s  required by the server to go from one queue to the next. Supposing that at  any queue the server  serves 

all units which he finds when he arrives, what is  the probability pn that  in a stationary state he finds exactly 

n units? The method for solving this problem i s  based on the notion of  a "self-consistent" probability 

distribution and is  actually applicable to a general class of multiqueue situations of which the one 

considered here is  typical. 

1. Introduction 

Recently,  papers  devoted to queueing  problems have  ap- 
peared with  increasing frequency.l By now, problems 
involving only a single queue  have received an almost 
exhaustive discussion and some attention  has  turned  to 
the analysis of systems containing many queues. 

The difficulty in  treating  such systems is this:  A  com- 
plete description of their  state  means  the specification of 
joint probabilities  depending upon a large  number of 
indices, each index in general  corresponding to a queue. 
Hence,  the  determination of these  probabilities usually 
demands the solution of a  large number of sets of equa- 
tions. However,  rarely is such a complete description 
required.  Generally, one is interested  only  in the  proba- 
bility distribution of the length of any single queue, or 
the probability  distribution of the waiting  time or some 
other distribution or  parameter which gives a more  or 
less simple  characterization of the system. But  as  a rule, 
it is impossible to write  down an  equation containing 
only these quantities and satisfied exactZy by them, i.e., 
one  cannot  obtain  an exact partial description of the 
system without first obtaining an exact  complete  descrip- 
tion. 

Here we present an  approximate  method  for treating 
a class of problems, involving many queues,  which has 
arisen in connection  with the design of a  multiterminal 
communication system. However, we believe that this 
method is more widely applicable.  Phrased  in the  tradi- 
tional  language of queueing  theory, the situation  in  which 
we are interested is the following: 

We  have N queues  with  a single server. The  input  to 
any single queue is independent of the  input  to  any  other 

204 queue  and  the position of the server. This  input will be 

assumed Poisson  with  average  interarrival  time 1/X, SO 

that  the probability  density of the time t between arrival 
of units on  the  queue is The queues are served in 
cyclic order, i.e., they can  be numbered 1, 2, . . . . , N 
such  that  queue ( j +  1 ) is served immediately after  queue 
j and  queue 1 immediately after  queue N .  At any  queue, 
the server  serves all units  which  were on  that  queue  at  the 
moment that  he arrives. Units entering  a queue while it 
is being served must wait until the server has  made a 
complete cycle of the system  before  they can receive 
service. We denote by s( t ) ,  the probability  density of the 
time  required to service a unit  (with  mean service time 
l /p)  and we let w (  t )  denote  the probability  density of 
the walking time. This is the time  required by the server 
to move between queues; that is, the time between the 
completion of service at  one  queue  and  the inception of 
service at  the next. In  particular w ( t )  (or s( t )  ) may  be 
delta  functions, i.e., the walking (or service)  time may 
be constant. The  functions X, s ( t )  and w ( t )  will be as- 
sumed  the  same  for  each queue.  Finally, no limit is 
placed on  the length of the queues. 

Actually, the  treatment given here  can be  considerably 
extended. For example, at  the expense of some  additional 
complication, X, s( t )  and w (  t )  may be allowed to vary 
from  queue  to queue.  We can also consider the case of 
queues served in random  rather  than cyclic order,  or the 
case  where  a  limit is imposed on  the  number of units that 
may  be  served at each  queue.  Some of these extensions 
will be  taken up  in a later paper. 

In  the application that  brought this problem to  our 
attention, the server was in  fact a computer;  the units, 
messages; the queues, the messages stored in a  terminal; 
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the service time, the time required  to  transmit a message; 
and  the walking  time, the time needed to  inform a  termi- 
nal that  it may begin to  transmit its messages to  the 
computer  for processing. 

The  problem discussed here is similar to  that of the 
"patrolling repairman"2 except that  in  that case, only one 
unit is allowed on a  queue. 

We will consider here {p,} the  stationary probability 
distribution of the number of units on a given queue at 
the  moment of the server's arrival.  Knowing  this  distribu- 
tion,  and  the waiting  time  distribution, the efficiency of 
the system may  be  obtained.  These will, however,  be 
discussed elsewhere. In Section 2, as an orientation, we 
treat exactly the case N =  1. In Section 3, we allow N to 
be arbitrary  and we present an approximate  method for 
finding {p,}. This  method  apparently gives correctly the 
terms  through ( A / P ) ~  of a  power  series  expansion of p ,  
in ( A / p )  with N fixed. Furthermore,  we give, using this 
method, an asymptotic  expansion of pn in  powers of 1 /N 
with N A / p  fixed. In Section 4, we compare  our approxi- 
mate method with an exact treatment of the case N = 2 .  

2. Case of N= 1 

For  the case3 N = 1,  let P ( n  I n') denote  the conditional 
probability that  the server on his  arrival finds n units on 
the  queue, given that  on his previous arrival  he  found n'. 
The quantities P (  n I n') (n, n'=O, 1, . . . .) are  the ele- 
ments of a Markoff (stochastic) matrix. The  stationary 
state probabilities pn must  satisfy the system of equations 

To  obtain  an expression for P ( n  1 n') consider the time 
that elapses between successive arrivals of the server at 
the queue. This time consists of two  parts, (a)  the time 
to serve n' units, and (b) the walking time. 

The probability density of the time (a) is just the d t h  

fold convolution of the service time density, namely 
dn') * ( t )  ; while the probability  density of the  time (b) 
is just w ( t ) .  Hence,  the probability  density of the  sum 
( a ) + ( b )  is the convolution s ( n ' ) * ( ~ ) * w ( t ) .  During  the 
time t ,  the probability that exactly n units enter  the  queue 
is e+( A t )  "/n !, 

Thus,  on integrating over all possible times we have 

To solve the  equations ( 1 )  we introduce  the generating 
function 

Let @( r )  , !P( r )  denote the  Laplace  transforms of s( t )  , 
w ( t )  respectively: 

@ ( r )  = c r t s ( t ) d t ,  Lm 

P ( I) = e-rtw ( t )  dt . 

Multiply Eq. ( 1) by xn, sum  over n, and use Eq. 
then 

Lm 
G ( x )  = x x x"P(nln')p,, m m  

n=o 7+'=0 

n'=O 

Hence 

G(x)=*[X(~-X)]G(Z) ,  

where 

z=@[A(l -x) 3 . 
We  have used the  fact  that th .e Laplace  transform of 

the convolution of two functions is the  product  of  their 
Laplace transforms. 

The  property of z that will prove  crucial is that 

z1,1=1 (8) 

by Eqs. (4)  and (7). This will enable us to calculate 
successively the  moments of the distribution {p,} even 
though  an explicit solution of the  functional  Eq. (6) 
appears impossible. 

In  fact, let 

F ( x )  =log G ( x )  (9) 

so that 

F ( x ) = ~ ~ ~ ! P [ X ( ~ - X ) ] + F ( Z ) .  

Denote by 7 the j t h  moment of the walking time and 
let s? be the  mean  square service time.  Finally,  recall that 
l / p  is the  mean service time. Then if A, n? are  the first 
and second  moments, respectively, of the distribution 
{ p , } ,  it is easy to verify from  Eq. (9)  that 

F'( 1)  = A  (11) 

- 
n ~ = F " l ) + F ' ( l ) + [ F ' ( 1 ) ] 2 .  (13) 

To obtain F'( 1 ) , F"( 1) differentiate Eq. ( 10) with 
respect to x and then put x =  1. Making  use of Eq.  (4) 
to express the derivatives of 

@CA(l -X)I ,~ . [A( l -X) l  

in  terms of m, T , s ,  s", we find that 
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From Eq. ( 1 6 )  we see that if the mean arrival rate X is 
equal to or greater than the mean  service rate p ,  the 
mean queue length becomes  infinite. A very similar result 
holds for the case of N > l  queues. Actually, when X>p, 
it  seems  highly probable that no stationary state exists; in 
fact, this was proved for a very similar queueing problem 
by F ~ s t e r . ~  

3. Case of arbitrary N - approximate treatment 

With more than one queue, a complete  description of the 
system at the moment of the server’s arrival at any queue 
requires not only a knowledge of the number of units nl 
on that queue but also of the number of units nz, . . . . , 
nN on the other queues. For this reason, the quantities pn 
no longer constitute the stationary probability distribu- 
tion of a Markoff  process. In fact, one must consider the 
joint  probability distribution {p, , ,  . . . . , ,,} of the vari- 
ables nl, . . . , nN. While it is possible to find a transition 
matrix analogous to the matrix P (  n I n‘) and hence a set 
of linear equations for pnl ,  . . . , ~ Z N ,  the elements of this 
matrix5 rapidly increase in complication with  growing 
N .  Hence, though p n  may be obtained by summing 
pnl,  . . . , nN over nz, . . . , nN, this is apparently not a 
feasible way  of finding p n  if N is large. 

To motivate the treatment given here, consider the 
following heuristic method used for finding the mean 
I?=%p,. 

Let T denote the mean time required by the server to 
make a complete  cycle of the system;  i.e., the time be- 
tween the beginning of successive  service  periods at say 
queue 1. Then T is composed of N walking  times (with 
mean total duration N w )  and the sum of the service 
periods at each of the N queues. To find the mean dura- 
tion of these service  periods, we assume that ( A )  ut each 
queue ii units meet the server. It follows that 

T=N( i i /p )  +NW . 
During this time on  the average A=TX units enter the 

queue 1 .  Hence 

ii/h = N ( i i / p )  + NW 

or 

NAP 
A= 

1-NX/p  ‘ 

Note that  for N =  1, Eq. ( 18) reduces to ( 1 6 ) .  Actually, 
it can be  shown that ( 1 8 )  is correct for all N ,  i.e. the 

206 assumption A above leads to the right result for I?. It 

seems reasonable to introduce an analogous but stronger 
assumption and in  this  way obtain, hopefully, an approx- 
imation to the probability distribution { p , } .  Therefore, 
we assume that ( B )  ut each queue the same probability 
distribution of units { p , }  meets the  server independently 
of each other. 

From this assumption, we can find what the distribu- 
tion { p , }  must  be by using the following  consistency 
argument: If the server meets the same probability 
distribution of units at each of the queues on one cycle of 
the system  beginning  with queue 1, then the same distri- 
bution must  meet  him  when he returns to queue 1. { p , }  
is thus a “self-consistent”  distribution.6 Note  that ii was 
calculated in this way. 

Before  discussing the range of applicability of this 
approximation, we determine the equation for the gener- 
ating function 

G ( x )  = p n P .  
9b=O 

It is  almost identical with Eq. ( 6 ) .  Indeed, 

G ( ~ ) = { + . C X ( ~ - - ~ ) I G ( Z ) } ~   ( 1 9 )  

where + and z are given  by  Eqs. (4) and ( 7 ) .  To show 
this,  observe that if n is the number of units  which enter 
queue 1 during a complete cycle of the system  (begin- 
ning  with queue 1 )  and Ani ( j =  1 ,2 ,  . . . , N )  is the 
number which enter during the time between the begin- 
ning of service at queue j and at queue j +  1, then 

n=An,+Anz+.  . . -kAnN. (20) 

Following the derivation of Eq. ( 6 ) ,  the generating 
function of the probability distribution of the random 
variables An, is  seen to be 

+ [ h ( l - ~ ) l G ( ~ ) .  

Equation ( 19) is then a consequence  of  assumption B 
and Eq. ( 2 0 ) .  

Introducing, as  before, F ( x )  =log G ( x ) ,  the moments 
of the probability distribution { p , }  may be calculated in 
the same way  as in the previous  section.  We have 

F ( ~ ) = N l o g . k [ X ( l - ~ ) l + N F ( z )  (21  1 

and 

F‘( 1 )  = - F’( 1 )  +xw NX 

P 
( 2 2 )  
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Note that Eq. ( 2 4 )  agrees with Eq. (18). For a finite 
mean (and most  likely, for a stationary state as well) we 
must  have 

N X / p < l .   ( 2 6 )  

This means that the time interval between the arrival 
of units at a given queue must  be  less than the time to 
serve one unit for each queue. 

Consider  now the case of  fixed N and small X/p. For 
convenience, we choose our time scale such that p = 1 so 
that the denominators in ( 2 4 )  and ( 2 5 )  become just 
1 - NX, 1 -NX2, respectively.  However, we retain the 
same notation for s2 and the moments of the walking 
time distribution. This choice of timescale does not, 
of course,  affect the values of i i and n2 since  they are 
nondimensional. 

It will  be shown that we can obtain an expansion for 
p n  in powers of X .  

First, note that F'( 1 )  is of order X and F"( 1 )  is of 
order X*. This follows from ( 2 2 )  and ( 2 3 )  with p= 1 .  
It is  easy to see from Eq. ( 2 1 )  that each successive 
derivative of F ( x )  at x =  1 involves a higher power  of X, 
so that, for example 

P )  ( x )  I is O( X I )  . 
Furthermore, note that the term in X3 in F( 1 )  comes 
entirely from Mag* [ X (  1 - x )  1. Hence, to terms of 
O(X3) we have - 
F"'( 1 )  = X 3 ( 7 - 3 i V ~ 2 + 2 W 3 ) .   ( 2 7 )  

Since 

F"( 1 )  
2 

F ( x )  ="F'( 1 )  ( 1 - X )  + - ( 1  - x ) Z  

( 1 - ~ ) 3 + .  . . . . ( 2 8 )  
F (  1 )  

6 
-~ 

it follows that to terms of O ( h 3 )  

- NXW 
1-NX 

F ( x )  - ( 1  - x )  

-NX3(7-3W)wZ+2W3) - . ( 1 - ~ ) 3  

6 

The highest order term in F ( x )  is due entirely to  the 
randomness of the input to queue 1 ,  i.e., F ( x )  would  be 
exactly 

- NXW 
1-NX ( 1 - x )  

if the time required by the server to cycle the system 
were  fixed at T=fi/X. 

The term NX2P(  w )  ( 1 - x )  2/2 has its origin in the var- 
iance of the walking  time. It is interesting to observe 
that  the effect of a nonconstant service time enters for 

the first time in the X3 term. 
Since G ( x )  = exp [ F ( x )  1, we can obtain p n  by  using 

Eq. ( 2 9 )  and expanding in a power  series  in x.  We ~ d ,  
to terms in X 3 ,  

p o = l + ~ h + [ ( ~ ~ / 2 ) + b ] X ~ + [ ~ + d + ( ~ ~ / 6 ) + ~ b ] X ~  
( 3 0 )  

p ~ = - { u X + ( ( E ~ + 2 b ) X ~ + [ 2 C + 3 d + ( a ~ / 2 ) + 3 a b ] ~ ~ }  

p 2 = [ ( ~ ~ / 2 ) + b ] X ~ + [ c + 3 d + ( a ~ / 2 ) + 3 ~ b ] X ~  

p 3 = -  [ d +  ( a 3 / 6 )  +ab]h' 

pn=O for n>3 , 
where 

- NW N N2 Ws2 a= ~ , b-  - P ( W ) ,  c= " 
1 -NX 2 2 I-NX 

- 

N -  
6 

d = -  - (w3-3@  w2+2W3). 
- 

It will  be  shown in the next section that for N = 2  Eq. 
( 3 0 )  does, in fact, give the probabilities pn correct to 
terms in h3. It is reasonable to expect that it should be 
valid for all N .  It is natural to suppose that our method 
should give  good  results for small X, since then the input 
to the system is small, the walking time is the predomi- 
nant factor, and the dependence of the queues on each 
other is relatively weak. 

There is another case for which one would  expect our 
treatment to be  applicable, and that is  when N is  large. 
Then, though assumption B is violated at a number of 
queues, these violations should cancel  one another so 
that assumption B holds in some  average  sense.  But this 
is sufficient for  our method to be  valid  since the influence 
of any one queue on another is  small for large N .  

Consider, then, the case of large N with aENX fixed. 
We can verify,  as  above, that correct to terms in 1 / N  

- 
ff3s2iV + - -  [ + a Z S Z ( w ) ]  ~ +. . . . . ( 1  - x ) 2  

N I - a  2 

Hence expanding exp[F(x) ] in a power  series in x we 
find to terms O (  1 / N )  

p1=e-f f" - -- ( :k :) 



where 

Note  that  in  this case pn>O for all n, and  that in the 
limit of infinite N, the distribution { p , }  reduces to a 
Poisson distribution  with the  parameter f. 

4. Exact treatment of the case N = 2  

In  order to compare with the results of the previous 
section, we  treat exactly the case N=2. Let pnm denote 
the joint  probability that  in a stationary  state  there  are n 
and m units in  queues 1 and 2, respectively at  the  moment 
when the server  arrives at queue 1; and let P(n,m, I n‘,m‘) 
be the corresponding  probabilities given that  there were 
n‘, m’ units in  queues 1 and 2 at  the server’s last previous 
arrival at  queue 1. Then 

prim= x P(n, m I n’, m‘)pn*m* . (33)  

To find the “transition”  probabilities P(n,  ml n’, m‘) 
we proceed  as follows: 

Let D (  t l ,  t z ,  Z(n’, m’) be the conditional  joint  proba- 
bility density that, given there  are n‘, m‘ units  in queues 
1 and 2, respectively, when  the server begins service at 
queue 1, 
(a )  a  time tl is required to service queue 1 and move on 

(b)  there  are 1 units  in queue 2 when the server  arrives 
(c)  it takes  a  time t2  to service queue 2 and  return to 

In a manner similar to  that used in  obtaining P(n1n‘) in 
Sec. 2, we  have 

D(t1, t 2 ,  Z,ln’, m ’ )  

W 

n, m=o 

to  queue 2 

queue 1. 

To solve Eq. (33) with P ( n ,  ml n’, m’) given by Eq. 
(35) we again use the  method of generating functions. 

Let 

G(x,  Y) E I: PnrnXnym. 
n ,  m=o 

W 

(36) 

Then multiplying Eq. (33) by xnym and  summing over 
n and m, we obtain after some calculation 

G ( X 9  Y)=Wu)Wv)G[@(u)*  @(VI], (37) 

208 where 

u = h ( 2 - x - y )  (38) 

v=X( 1-x) +X-X@(u). (39) 

In verifying Eq. (37) ,  one sums the  terms 

CX(t1+tz) l”  ( X t 2 ) m  
xn - ym 

n!  m! 

over n, m respectively, in  Eq. (33), then integrates  over 
t2, sums over I ,  integrates over t l ,  and finally sums over 
m’ and n‘. The details are analogous to those met  in 
deriving Eq. ( 6 ) .  

Again, while an  explicit  solution of Eq. (37) seems 
far  too  much  to  hope  for,  the  moments of the probability 
distribution can be found by using the  fact  that 

@ ( u )  l r = y = l = l ,  @(v) l r = y = l = l  . 
Let F ( x ,  y)  = logG(x,  y) so that 

F ( x ,  Y )  =log*(u)  +log.E.(v) + F ( @ ( u ) ,  @(v)). (40) 

If we define 
W - w  

A= 2 npnm, n2= 2 n2pnm 

then ri and 7 are just the first and second moments of 
the probability  distribution { p n }  considered in  the previ- 
ous section, since 

n, m=o n,m=o 

Pn= x Pnm * 
m=o 

W 

To find A and 2, we have 

A=F,( 1, 1 )  (41 1 - 
n2==F,,(1, 1 )  + A + A 2 .  (42) 

Differentiating Eq. (40) with respect to x and y and 
then  putting x = y =  1,  we obtain a set of linear equations 
for  the first and second  derivatives of F(x, y)   a t  x = y = l .  
After some extensive but  fairly  straightforward compu- 
tation, we find with  time  units  adjusted so that p = l :  

2gX 
1 -2x 

F Z =  - (43) 

1 

F,,=4h3W?+2A2S2(~), (45) 

using Eq. (43) for fi. 
To O(X3), Eq. (45) is just  the  same as F,( 1 )  in the 

last section with N =2. 
Furthermore,  note  that  the  logarithm of the generating 

function of the probability  distribution { p , }  is just 
F ( x ,  1 ) .  If we expand F ( x ,  1) around x = l ,  

DF,,= [ S z ( w )  +(1/2)ri2]XZ( 1 +X2)  

+(Fm+~>)x3(1+~2)  

+ [ 8 2 ( w ) + A ~ l h ’ ( - 4 X 3 - h 2 + 2 X + l ) ,  (44 

whereD=(1-2X)(1-Xz)(2XZ+2X+1). 

For small X, we have correct  to terms of O(h3) 
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the only coefficient which is not O(X3),  [besides F,( 1, 1 ) 
and F,,( 1, 1 ) ] is F,,,( 1, 1) ; and as can be seen by fur- 
ther differentiating Eq. (40) the  term  in X3 in F,,,( l ,  l )  
is just 

~ 3 ( 3 - 3 w  7 + 2 * 3 ) .  (47) 

On  comparing now Eq. (46) with Eq. (29) (the coeffi- 
cients in (46) being given by Eqs. (43),  (45),  (47) ), 
we see that they agree  to O(X3). Hence  it follows that 
the probability  distribution { p , }  as calculated from  the 
exact generating function  exp[F(x, 1 )  ] agree to O(X3) 
with  the  distribution  obtained using our  approximate 
method. 

5. Conclusions 

An  approximate  method based on  the idea of a “self- 
consistent”  probability  distribution has been  used to 
analyze a multiqueue system. This method is at least 
reminiscent of self-consistent field approximations in 
atomic physics. 

In general, the growing complication of the queueing 
structures  found in modern communication systems 

means  that exact  analyses will be  increasingly difficult to 
obtain; suitable approximate techniques must  therefore 
be  developed. As a source of clues to what  these tech- 
niques  might  be, we suggest the extensive theory of many- 
body systems in  mathematical physics. 
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