G. J. Lasher

The Dynamics of a Subharmonic Oscillator

with Linear Dissipation

Abstract: A mathematical analysis of the dynamic behavior of subharmonic oscillators (parametrons) is made

assuming a nonlinear reactance but a linear dissipation or resistance. Simple equations of motion for the
subharmonic and pump amplitudes are derived in the quasistatic, or high-Q, approximation. Numerical
solutions are obtained for two cases. The first shows the subharmonic amplitude changing from a small value

to its steady state value when a constant pump signal is applied. The second shows decay when the pump

signal is removed.

Introduction

Several authors have given mathematical treatments of
the operation of subharmonic oscillators.! The case dis-
cussed here is that of a device with a nonlinear reactance,
such as a capacitor whose potential depends quadratically
on its charge but which has a linear dissipation, that is,
a constant resistance. Two types of devices are treated:
those having two modes, one tuned to the pump fre-
quency and one to the subharmonic frequency; and those
single-mode devices tuned to the subharmonic frequency.
In both cases the devices are assumed to be tuned to
perfect resonance. For each case we first define the chosen
set of parameters and variables, write the equations of
motion, manipulate them into a simple form with dimen-
sionless parameters, discuss the qualitative properties of
their solutions, and exhibit some particular numerical
solutions. The solutions we discuss are turning-on solu-
tions showing the subharmonic amplitude changing from
an initially very small value to its steady state value when
a constant pump signal is applied, and turning-off solu-
tions showing the decay of the subharmonic amplitude
when the pump signal is removed. These are solutions
which may be appropriate to the computer applications
of these devices discussed by Goto.?

The two-mode device

We begin the discussion of the two-mode devices by
defining the nonlinear capacitance parameter, 7, by the
equation

V=q/c+Tq*, (1)

where V is the potential and g the charge of the nonlinear
capacitor. The equations of motion of the system will be
simplest when written in terms of the normal mode

variables of the system considered, for this purpose, to be
without nonlinear or dissipative terms. We take these
variables, g1 and g., to have the units of charge and to
correspond to linear modes with frequencies o and 2o
respectively, but do not, here, make any assumption as to
their actual time dependence in the presence of the non-
linear capacitor. The charge g of the nonlinear capacitor
may then be written as a linear combination of these
variables:

q(t) =A1q:1(t) + A2q2(2) , (2)

where the A’s are pure numbers. The energy of the sys-
tem including the nonlinear capacitor, but still without
dissipation, may be written as

E=constant X [3(g12+02%q:12)
+3(g22+40°q22) + 3T (A1g:+ A2q2)°] , (3)

where the dot above a quantity indicates a time deriva-
tive. The first two terms are the usual expressions for the
energy of a linear vibrating system in terms of the normal
mode variables, g; and g2. The last term is obtained from
Eq. (1) by integration. Equation (3) may be used as a
Hamiltonian of a mechanical system to yield the equa-
tions of motion, To these equations we must add terms to
account for the small linear dissipation and the driving
force:

G1+o?q1+A1(A1g1+A2q1) = — (0/Q1) g1+ €1 sin 20t
g2 t4o°g2+A2(A1g1+ A292) 2=~ (20/02) g2+ essin2ot ,
(4)

where the left-hand side of the equations are the energy-
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conserving terms and the right-hand side are the dissipa-
tion and driving-force terms, respectively.

The parameters O, Q- are the ordinary quality factors
for the respective modes; the parameters e, e; are pro-

- portional to the level of the pump signal and the efficiency

with which it is coupled to the two modes. For a circuit
these terms describe the effect of resistance and of a
voltage generator of frequency, /.

We now transform from the real charge variables,
41,2, to complex amplitude variables, a;,2, by the rela-
tions:

q1=ay €xp(iot) +-a,* exp(—iot)

. 5
g2=ay exp(2int) +az* exp(—2iot) . )
If we were interested only in the steady state of these
devices, the amplitude variables, a;, 2, would be complex
numbers independent of time and would be proportional
to the ordinary complex currents of alternating current
circuit theory. Here we will make the assumption that
the fractional change in the amplitudes is small in a
period; i.e., that

d1,2<<u>a1,2 . (6)

In this case, since we assume Q1,,>>1, only terms of Eq.
(4) of the corresponding frequencies will contribute to
ai,2. This follows by the argument that although poten-
tials of all multiples of w are generated by the nonlinear
capacitor, these potentials generate very small currents
because the linear part of the circuit is not resonant for
them. Thus although these currents do combine in the
capacitor to give contributions to a; and a; these contri-
butions are small if Q1 »>> 1. Because of this we may
obtain equations of motion for the amplitude variables,
ai,2, by substituting equations (5) into the equations of
motion (4), equating coefficients of e!** and e?i®* respec-
tively and then dropping terms which are relatively small
by virtue of the inequality (6). The result is

a1=—(A12A,T/iv)ar*as— (0/201)ay
do=—(A12A4:T/4iv)a:— (0/Q2)a2— (e2/8w) .

It should be noted that the nonlinearity parameters enter
only in the combination 4,24,T. The parameter e, has
disappeared because the pump signal is out of resonance
with the subharmonic mode. These equations may be
further simplified by a change of scale and phase of the
amplitude variables:

bi=(\/010: A124:T/2\/T o*)ay
b=(2014,24:T/w?)az (8)
u=(010:414:T /40?) V>

yielding b;= (0/201) (b1*ba—by)

by=(w/Qs) (u—b:2—bs).

The time-dependent behavior of these oscillators is thus
determined by three parameters, one of which could be
removed by scaling the time and another, namely u, which

N
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is proportional to the pump signal. The change of com-
plex phase of the variables is significant in that it has
yielded equations whose coefficients are real. This sug-
gests that only the real parts of b; and b, need to be
considered. A complete demonstration of this requires
that the solutions with the imaginary parts of b, and b,
equal to zero be stable against small disturbances or noise.
This is easily shown to be the case by assuming the real
parts of b; and b. in equations (9) are fixed and showing
that the characteristic frequencies of the resulting linear
differential equations for the imaginary parts of b, and b,
have negative real parts. In the following it is therefore
assumed that b; and b» are real quantities.

The steady state solutions of equations (9), which may
be obtained by setting the time derivatives to zero and
solving for b; and b, are the trivial one, (b1=0, bo=u)
and the oscillatory steady state, (by==V/u—1, bo=1).
The latter set of values is a solution only for #>1, and
therefore u=1 is the threshold level for the pump signal.
The two possible signs of b, represent the two stable
phases of the subharmonic which are used to represent a
binary ONE or zERO in the computer applications. The
equations (9) can be transformed into a single second-
order equation by first performing the substitution
x=Inb,, which gives

i=(0/201) (bz—1)
l"z= (0/Q2) [u—exp(2x) —b-] .

If the time derivative of the first equation above is taken,
a total of three equations may be obtained, from which
by and b, may be eliminated to give

i+ (0/Q2)%
+ (02/201Q:) [exp(2x) — (u—1)1=0.

This differential equation may be compared to that for
the position, x, of a particle with a mass, m, subject to a
linear damping proportional to the velocity, x, and subject
to a force given by the third term of the equation:

(m/2)5+ (0/Q)x—F(x) =0.

This force may be integrated with respect to x to give the
potential energy

V(x) = (0?/201Q2) [ exp (2x) — (u—1)x], (12)

which is a simple curve, concave upwards. This analogy
is valuable since it gives one a feeling for the qualitative
properties of the solutions of Eq. (9). The obvious ques-
tion to ask is whether the particle is over- or under-
damped ~ that is, does it settle down to its equilibrium
value monotonically or does it undergo damped oscilla-
tions? The question is answered by expanding the third
term of Eq. (11) about its zero value and finding the
criterion that the resulting linear system be overdamped.
This procedure gives

u—1<(01/403) .

It thus becomes apparent that, although the rate of expo-
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Figure I Numerical solutions for the two mathematical models of subharmonic oscillators. Subharmonic am-

plitudes vs time.

nential rise of the subharmonic amplitude is proportional
to that excess pump signal level, (u—1), the use of too
large a pump signal will cause the subharmonic ampli-
tude to execute many large oscillations about its steady
value before settling down. This suggests that there is an
optimum pump signal level which gives a fast rate of
rise without causing oscillations of the amplitude which
are large enough to cause trouble.

Figure 1 shows in ascending curves the “turning on”
solutions for a two-mode subharmonic oscillator with
Q1/Q2=1 with the initial condition b,=u and b, positive
but very small. These initial conditions are equivalent to
assuming that subharmonic amplitude b, has such an
extremely small initial value that the pump amplitude b
reaches the value u before b, becomes sizable. Since b,
increases as e®=1! this requires an unrealistically small
initial value of by; the rate of increase of b, will be some-
what less than the solutions of Figure 1 if b, is initially
larger. There are solutions for four values of the pump
signal, u, the lowest one corresponding to critical damp-
ing. The optimum value of u for the ratio of Q’s lies well
into the underdamped region since the oscillations for

u=3/2 and u=2 are sufficiently small not to cause errors.
The turning off solutions, that is, the change of the sub-
harmonic amplitude from its steady value to zero when
the pump signal is turned off, are shown by the descend-
ing curves. Here the dependence on pump signal level is
much less marked. These solutions were obtained by
numerical integration of the equations (11).

The single-mode device

The case of a subharmonic oscillator which is not tuned
to resonance with the pump signal will be discussed with
most attention paid to the differences from the double-
tuned case. We assume the system has but one mode with
an equation of motion for the corresponding normal
coordinate, q:

d+oqg=—(0/Q)q+Tq*+e sin 20t (13)
and then make the substitution?
g=a, exp(iot) +az exp(2iot)

. (14)
-+complex conjugate .
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Figure 2 Solutions for the single-mode model showing complex phase of the subharmonic amplitude.

Here the justification for neglecting the higher frequencies
requires some calculation. If higher frequency terms are
included in Eq. (14), they contribute terms to the differ-
ential equation for a; of order

1 Pump signal level

Q x Threshold pump level

compared to the terms computed below. As in the single
mode case, we neglect terms which can be shown to be
small by invoking the slow-variation assumption of the
inequality (6). The result of making the substitution (14)
into equation (13) and equating coefficients of exp (iwt)
and exp(2iwt) is:
2imd1= — (imz/Q)al—I-ZTal*ag

(15)
— 3(.0202 = Ta12 + (8/21) .

The second of these equations gives the amplitude, az, in
terms of a; and this may be substituted into the first equa-
tion to give

a1=—(0/2Q)ar— (T?/3ie3) (a1*a)) a1

(16)
160 +(TV/6w0?)ay*.
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This time the real and imaginary parts of the amplitude
are necessary to describe the behavior of the device. Let-
ting ay=x-+1iy,
X=(v—r7)x—nr2y
17)
y=nrix—(v+1)y

where r2=x?+y?=a;*a;

v=TV /603
r=w0/20
n=T2/3w%.

The nontrivial steady state solution of equations (17) is
easily obtained by setting the determinant,

(v—7) —nr?

2

nr:  —(v+r)

of the right-hand side of the equations equal to zero and
solving for r2:

ro?=\/vi—7% /n, (18a)




and by substituting this result back into one of the equa-
tions to obtain

Yo/Xo=V (v—1)/(v+7) . (18b)

Thus we have the threshold condition, =7 and the phase
change with increasing pump signal level from zero
degrees (y=0; a,, real) at threshold to 45 degrees (x=y)
in the limit of high pump level. Examination of equations
(17) shows that for small a; the solution begins as

a;=(real constant) X exp(v—r7)¢, (19)

showing that the magnitude of the amplitude behaves
much like the first case, but that phase change from zero
to the steady phase takes place during the turning on
process. The initial exponential character of this solution
with the implied rise time was given by Goto.2 To investi-
gate the nature of the solutions in the neighborhood of
the steady state we substitute

x=Xo+¢ exp (At)
(20)
y=yo+8 exp (At)

into the equations (17), keep only term linear in ¢ and
8, and find A so that a nontrivial solution exists., This
gives

A=—7%/37-2u% . (21)
Again the subharmonic amplitude will execute damped
oscillations about its steady value if pump level is high.
The equations (17) have an analytic solution for u=0.
Thus when the pump signal is turned off, the subharmonic
amplitude will have this time dependence:
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|ay| =r=ro exp (—7t)
@ =arg(a,) =arctan(y/x) (22)
=00+ (nro?/27) [1—exp(—2+1)] .

The latter equation shows a continuous phase change
taking place as the oscillation dies out. The dashed line
of Figure 1 shows a “turning on” solution for 7/v=2,
n/r=1 normalized to the same steady value as the two
mode solutions. This is qualitatively a great deal like the
solutions of the single mode case. Figure 2 shows the
complex phase of the subharmonic for various times.

Conclusions

The “turning on” and “turning off” solutions of two
mathematical models of subharmonic oscillators with
linear dissipation have been discussed in the low-loss or
quasistatic approximation. The initial exponential rise of
the subharmonic amplitude, Eq. (19), is a result com-
monly found in the literature; Goto’s Eq. (15) is an
example. The contribution of this paper, aside from a
somewhat different mathematical approach, is in provid-
ing relatively complete and quantitative solutions with
special attention to the phenomenon of the oscillation of
the subharmonic amplitude about its steady value at high
pump levels. The results of these two analyses show that
this phenomenon is similar for the one- and two-mode
models.
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3. It has been pointed out to the author that a more general
assumption would include a quasiconstant term in this
expression and upon equating constant terms below yield
a third equation to the set (15). This would have the effect
of adding a term to Eq. (16); changing the value of the
parameter n to 2T/3w?; changing the sign of terms con-
taining » in equations (17); and, finally, reversing the sign
of the phase, Eq. (18b). The subsequent solution and dis-
cussion would remain the same. Whether or not such a
term exists depends upon the particular system treated,
but as Eq. (13) stands its inclusion is necessary to give a
correct solution.
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