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The Dynamics of a Subharmonic Oscillator 
with  Linear  Dissipation 

Abstract: A  mathematical analysis of the dynamic behavior of subharmonic oscillators (parametronsl is  made 

assuming a  nonlinear reactance but a linear dissipation or resistance. Simple equations of motion for the 

subharmonic and pump  amplitudes are derived in the quasistatic, or high-Q,  approximation.  Numerical 

solutions are  obtained for two cases.  The  first  shows the subharmonic amplitude changing from a small value 

to  its steady state value  when a constant pump  signal is  applied. The  second shows decay when the pump 

signal is removed. 

Introduction 

Several authors  have given mathematical treatments of 
the  operation of subharmonic osci1lators.l The case dis- 
cussed here is that of a device  with a nonlinear  reactance, 
such as a capacitor whose potential  depends  quadratically 
on its charge  but which has a  linear  dissipation, that is, 
a constant resistance. Two types of devices are  treated: 
those  having two modes, one tuned to  the  pump  fre- 
quency and  one  to  the  subharmonic  frequency;  and those 
single-mode devices tuned  to  the  subharmonic frequency. 
In  both cases the devices are assumed to be  tuned  to 
perfect  resonance. For each case we first define the chosen 
set of parameters  and variables,  write the equations of 
motion,  manipulate them  into a  simple form with  dimen- 
sionless parameters, discuss the qualitative  properties of 
their solutions, and exhibit  some particular numerical 
solutions. The solutions we discuss are turning-on solu- 
tions  showing the  subharmonic  amplitude changing from 
an initially  very  small value  to its steady state value when 
a constant  pump signal is applied, and turning-off solu- 
tions  showing the decay of the  subharmonic  amplitude 
when  the  pump signal is removed. These  are solutions 
which may be appropriate  to  the  computer applications 
of these devices discussed by Goto.' 

The two-mode device 

We begin the discussion of the two-mode devices by 
defining the nonlinear capacitance  parameter, T ,  by the 
equation 

V=q/c+TqZ,  ( 1 )  

where V is the potential and q the charge of the nonlinear 
capacitor. The  equations of motion of the system will be 
simplest when written  in terms of the  normal mode 

variables of the system considered, for this  purpose, to be 
without nonlinear or dissipative terms.  We take these 
variables, q1 and q2, to  have  the units of charge  and  to 
correspond  to linear  modes  with  frequencies o and 2 ~ )  
respectively, but  do  not, here, make any  assumption  as to 
their  actual  time dependence  in the presence of the non- 
linear capacitor. The  charge q of the nonlinear capacitor 
may  then be written as a  linear  combination of these 
variables : 

q ( t )  =A1q,(t)  + A 2 q 2 ( t ) ,  (2) 

where the A's are  pure numbers. The energy of the sys- 
tem including the  nonlinear  capacitor,  but still without 
dissipation,  may  be  written  as 

E=constant x [3(cj1z++w2ql2) 

+ ~ ( 4 2 2 + 4 0 2 4 2 2 ) + ~ T ( A l q l + A 2 q 2 ) 3 1  , (3) 

where the  dot above  a quantity indicates  a  time  deriva- 
tive. The first two  terms  are  the usual expressions for the 
energy of a linear  vibrating system in  terms of the  normal 
mode variables, q1 and q2.  The last term is obtained from 
Eq. ( 1 )  by integration. Equation (3) may be used as  a 
Hamiltonian of a mechanical  system to yield the equa- 
tions of motion. To these equations we must add  terms  to 
account  for  the small linear  dissipation and  the driving 
force: 

Bl+02ql+A1(A1q1+A2q1)2=-(o/Ql)cj1+el  sin 2ot 

i i z + 4 o ' q , + A ~ ( A l q , + A ~ q ~ ) ~ = - ( ( 2 o / Q 2 )  q2+e2sin2~t,  

(4) 

where the left-hand side of the equations are  the energy- 157 
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conserving terms  and  the right-hand  side are  the dissipa- 
tion  and driving-force  terms, respectively. 

The  parameters Ql, QZ are  the  ordinary quality factors 
for  the respective  modes; the  parameters el, e2 are  pro- 
portional  to  the level of the  pump signal and  the efficiency 
with  which it is coupled to  the  two modes. For a  circuit 
these terms describe the effect of resistance and of a 
voltage generator of frequency, W / T .  

We  now  transform  from  the  real  charge variables, 
q 1 , 2 ,  to complex amplitude variables, a1,2, by the rela- 
tions: 

q1= a1 exp ( i d )  + al* exp ( - iwt ) 

q z  = a2 exp ( 2iot) +az* exp ( - 2iot) . 
If we were  interested  only  in the steady state of these 
devices, the  amplitude variables, a ~ , ~ ,  would be  complex 
numbers independent of time and would be proportional 
to  the  ordinary complex currents of alternating  current 
circuit  theory. Here  we will make  the assumption that 
the  fractional  change in the amplitudes is small in a 
period; i.e., that 

( 5 )  

~l,z<<UJal,z.  (6) 

In  this case, since  we assume Ql, 2>> 1, only  terms of Eq. 
(4)  of the corresponding  frequencies will contribute  to 
~ 1 . 2 .  This follows by the  argument  that  although poten- 
tials of all multiples of UJ are generated by the nonlinear 
capacitor, these  potentials generate very  small currents 
because the  linear  part of the circuit is not resonant for 
them. Thus  although these currents  do combine in  the 
capacitor  to give contributions  to al and a2 these  contri- 
butions are small if QI,z>> 1 .  Because of this we may 
obtain  equations of motion  for  the  amplitude variables, 
~ I , z ,  by  substituting equations (5) into  the  equations of 
motion ( 4 ) ,  equating coefficients of eiot and e*iot respec- 
tively and  then  dropping  terms which are relatively small 
by virtue of the inequality ( 6 ) .  The result is 

al=-((A12A~T/io)al*az-  (o/2Ql)al 
(7) 

U Z = -  ( A ~ * A Z T / ~ ~ U J ) U ~ ~ -  (w/Qz)az- (e2/8o) . 
It should  be  noted that  the nonlinearity parameters enter 
only in  the combination A12AzT. The  parameter el has 
disappeared  because the  pump signal is out of resonance 
with the  subharmonic mode. These  equations  may be 
further simplified by  a change  of scale and phase of the 
amplitude variables: 

b l = ( ~ A l * A Z T / 2 f i o * ) a l  

~ z = ( ~ Q ~ A ~ ~ A z T / w * ) u ~  (8)  

(QlQZA1*AZT/4UJ2) VZ 
yielding &=(0/2Q1)  (bl*bz-bl) 

&=(o/Qz)(u-b1*-bz). ( 9 )  

The time-dependent  behavior of these  oscillators is thus 
determined by three parameters, one of which  could  be 

158 removed by scaling the  time  and  another, namely u, which 

is proportional  to  the  pump signal. The  change of com- 
plex phase of the variables is significant in that  it  has 
yielded equations whose coefficients are real. This sug- 
gests that only the  real  parts of bl and bz need to be 
considered. A complete demonstration of this requires 
that  the solutions  with the imaginary parts of bl and bp 
equal  to  zero be  stable  against  small  disturbances or noise. 
This is easily shown to be the case by assuming the  real 
parts of bl and bz in  equations (9) are fixed and showing 
that  the  characteristic frequencies of the resulting  linear 
differential equations  for  the imaginary parts of bl and bz 
have negative real parts. In  the following it is therefore 
assumed that bl and bz are  real quantities. 

The steady state solutions of equations (9),  which  may 
be  obtained  by  setting the  time derivatives to  zero  and 
solving for bl and bz, are  the trivial one, (bl=O, bz=u)  
and  the oscillatory  steady  state, (bl = * v”, b~ = 1 ) . 
The  latter set of values is a solution  only for u> 1, and 
therefore u = 1 is the threshold level for  the  pump signal. 
The  two possible signs of bl represent the two  stable 
phases of the  subharmonic which are used to  represent a 
binary ONE or ZERO in  the  computer applications. The 
equations (9) can be transformed  into a single second- 
order  equation by first  performing  the  substitution 
x=lnbl, which gives 

If the time  derivative of the first equation above is taken, 
a  total of three equations  may  be  obtained, from which 
bl and bl may be eliminated to give 

X+ (o /Qz) i  

+ (UJ*/~QIQZ) [exp(2x) - ( u -  l ) ]  -0. 

This differential equation may  be compared to that  for 
the position, x,  of a particle  with  a mass, rn, subject to a 
linear damping  proportional  to  the velocity, i, and subject 
to a force given by the  third  term of the  equation: 

(rn/2)X+(~~/Q)x--F(x)  = O  . 
This  force  may be  integrated  with  respect to x to give the 
potential  energy 

which is a  simple  curve,  concave  upwards. This analogy 
is valuable  since it gives one a feeling for  the qualitative 
properties of the solutions of Eq. ( 9 ) .  The obvious ques- 
tion  to ask is whether the particle is over- or under- 
damped - that is, does it settle down  to its  equilibrium 
value  monotonically or does it  undergo  damped oscilla- 
tions? The question is answered by expanding the  third 
term of Eq. ( 11) about its zero value and finding the 
criterion that  the resulting linear system be  overdamped. 
This  procedure gives 

It  thus becomes apparent  that, although the  rate of expo- 
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Figure 1 Numerical solutions for the two mathematical models of subharmonic oscillators. Subharmonic am- 
plitudes vs time. 

nential rise of the  subharmonic  amplitude is proportional 
to  that excess pump signal level, (u-  1) ,  the use of too 
large a pump signal will cause  the  subharmonic ampli- 
tude  to execute many  large oscillations about its  steady 
value before settling  down. This suggests that  there is an 
optimum  pump signal level which gives a fast  rate of 
rise  without  causing  oscillations of the  amplitude which 
are large enough  to cause  trouble. 

Figure 1 shows in  ascending  curves the  “turning  on” 
solutions for a two-mode subharmonic oscillator  with 
Q l / Q 2  = 1 with the initial  condition bz = u and bl positive 
but very small. These  initial  conditions are equivalent to 
assuming that  subharmonic  amplitude bl has  such  an 
extremely  small  initial  value that  the  pump  amplitude b2 
reaches the value u before bl becomes sizable. Since bl 
increases  as e ( b z - l ) t  this  requires an unrealistically  small 
initial  value of bl; the  rate of increase of bl will be  some- 
what less than  the solutions of Figure 1 if b1 is initially 
larger. There  are solutions for four values of the  pump 
signal, u, the lowest one corresponding to critical damp- 
ing. The  optimum value of u for the  ratio of Q’s lies well 
into  the  underdamped region since the oscillations for 

u = 3/2 and u = 2 are sufficiently small not  to  cause errors. 
The  turning off solutions, that is, the  change of the sub- 
harmonic  amplitude  from its  steady  value to  zero when 
the  pump signal is turned off, are shown by  the descend- 
ing  curves. Here  the dependence on  pump signal level is 
much less marked.  These solutions  were obtained by 
numerical  integration of the equations ( 11 ) . 

The single-mode device 

The case of a subharmonic oscillator  which is not tuned 
to resonance  with the  pump signal will be discussed with 
most attention paid to  the differences from  the double- 
tuned case. We  assume the system has  but  one  mode with 
an  equation of motion  for  the corresponding  normal 
coordinate, q :  

q+(&=- (w/Q)cj+Tq*+e sin 2 d  (13)  

and  then  make  the substitution3 

q = al exp ( i d )  + a2 exp ( 2 i d )  
(14) 

+complex conjugate . 159 
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0. 

Figure 2 Solutions for the single-mode model showing complex phase of the subharmonic amplitude. 

Here  the justification for neglecting the higher  frequencies 
requires some  calculation. If higher frequency  terms  are 
included  in Eq.  (14), they contribute  terms  to  the differ- 
ential equation  for al of order 

1 Pump signal level - X 
Q Threshold  pump level 

compared  to  the  terms  computed below. As in the single 
mode case, we neglect terms which can be  shown to be 
small by invoking the slow-variation  assumption of the 
inequality (6).  The result of making the substitution (14) 
into  equation (13) and equating coefficients of exp( i d )  
and exp(2 i~ t )  is: 

The second of these equations gives the amplitude, a2, in 
terms of a1 and this  may  be  substituted into  the first equa- 
tion to give 

This time the  real  and imaginary parts of the  amplitude 
are necessary to describe the behavior of the device. Let- 
ting a l = x + i y ,  

i = ( v - ~ ) x " n r 2 y  

y=nr2x-  ( v + T ) ~  
(17) 

where rz=x2+y2=al*al 

v = TV/603 

r =w/2Q 

n=T2/3w3. 

The nontrivial  steady state solution of equations ( 17) is 
easily obtained by setting the  determinant, 

( v - T )  -nrz 

nr2 - ( v + T )  I 7  

of the right-hand  side of the equations equal  to  zero  and 
solving for 1 2 :  

y o 2 = d v 2 - r 2  / n  9 (18a) 
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Thus we have  the threshold  condition, v = T and  the phase 
change with  increasing pump signal level from  zero 
degrees (y=O; ul, real)  at threshold to 45 degrees (x=y) 
in the limit of high pump level. Examination of equations 
(17) shows that for small a1 the solution begins as 

al=(real  constant) X exp(v-r)f ,  (19) 

showing that  the magnitude of the  amplitude behaves 
much like the first case, but  that phase change  from  zero 
to  the steady  phase  takes  place during  the  turning on 
process. The initial  exponential character of this  solution 
with the implied rise time was given by Goto.2 To investi- 
gate the  nature of the solutions  in the neighborhood of 
the steady state we substitute 

x=xo+e exp ( A t )  

Y = Y O + G  exp(Xt) 

into  the  equations ( 1  7),  keep  only  term linear  in E and 
6, and find h so that a  nontrivial  solution exists. This 
gives 

Again the  subharmonic  amplitude will execute damped 
oscillations about  its steady  value if pump level is high. 
The  equations  (17)  have  an analytic  solution for u=O. 
Thus when the  pump signal is turned off, the  subharmonic 
amplitude will have  this  time  dependence: 

The  latter equation  shows  a continuous phase change 
taking  place  as the oscillation dies out.  The dashed line 
of Figure 1 shows  a  "turning  on"  solution for T / 2 ) = 2 ,  
n / r = l  normalized to the  same steady  value  as the two 
mode solutions. This is qualitatively  a  great deal like the 
solutions of the single mode case. Figure 2 shows the 
complex  phase of the  subharmonic for various times. 

Conclusions 

The "turning on" and "turning off' solutions of two 
mathematical models of subharmonic oscillators  with 
linear dissipation have been discussed in the low-loss or 
quasistatic  approximation. The initial  exponential  rise of 
the  subharmonic amplitude, Eq.  (19), is a  result com- 
monly found  in  the  literature;  Goto's  Eq. (15) is an 
example. The  contribution of this  paper,  aside from a 
somewhat different mathematical  approach, is in provid- 
ing relatively complete and quantitative  solutions  with 
special attention  to  the  phenomenon of the oscillation of 
the  subharmonic  amplitude  about its  steady  value at high 
pump levels. The results of these  two  analyses show  that 
this  phenomenon is similar for  the one- and two-mode 
models. 

Acknowledgment 

The  author wishes to  thank Rolf Landauer for several 
valuable discussions during  the  course of this  work. 

References and footnotes 

1 .  S .  Bloom and K. K. N. Chang, RCA  Review, 18, 578 
(1957). 
J .  Hildebrand and W. R. Bean, RCA  Review, 20, 229 
(1959). 
A. H. Nethercot, Jr., ZBM Journal, 4, 402  (1960). 
Hildebrand and  Bean  discuss  devices  whose stable state is 
established by the forward current of a diode; that is, by 
a very nonlinear dissipation. Nethercot treats the switching 
of subharmonic  oscillators by an  over-riding  input  signal, 
using an energy  balance  method of N. M. Kroll and 
I. Palocz, ZBM Journal, 3, 345  (1959). This  method  might 
also be  used  in our case. 

2. For an illustration of the actual use of these  devices, there 
termed parurnetrons, in computer  circuitry see E. Goto, 
Proc. IRE, 47, 1304 (1959). His circuits seem to be at 
least  qualitatively  similar to our single-mode  case. 

3. It has been pointed  out to the author that a more  general 
assumption  would  include a quasiconstant  term in this 
expression and upon  equating constant terms below  yield 
a third equation to the  set ( 1 5 ) .  This would  have the effect 
of adding a term to Eq. (16); changing the value of the 
parameter n to 2 T / 3 d ;  changing the sign of terms con- 
taining n in equations (17); and, finally,  reversing  the  sign 
of the phase,  Eq. (18b). The subsequent solution and dis- 
cussion  would  remain the same.  Whether or not such a 
term  exists  depends  upon the particular system treated, 
but as Eq. (13) stands its  inclusion is  necessary to give a 
correct solution. 

Received August 22,1960 161 

IBM JOURNAL APRIL 1961 


