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A Direct  Digital  Method 
of Power  Spectrum  Estimation 

Abstract: This paper discusses a method of digital power spectrum estimation involving the direct combi- 

nation of the sample time function with sines and cosines. This treatment is  in contrast  to the normal 

indirect digital method which proceeds through the intermediary of the autocovariance function. All the 

practical design details necessary for the planning of a spectral estimation program are treated. 

Introduction 

Power  spectra are generally  estimated  either digitally by speed and basic characteristics of the existing set of IBM 
estimating the autocovariance function  and taking its 704  computer  programs which  implement the direct 
Fourier  transform  or  in  an analog  fashion using a bank procedure. 
of bandpass filters followed by square  law  and integrating This  paper is indebted to  the background of spectral 

1 devices. In this paper a digital method paralleling  analog estimation  procedures and concepts due  to Blackman and 
filter bank techniques will be  described. It is a direct Tukey.' In  fact, this  type of direct  procedure is men- 
digital procedure (following the wording of Blackman tioned  in Section 3 and Section B-4 of their  paper  but 
and Tukey') in  that  it involves the direct  combination of described there as not preferable to  the indirect  method 
sines and cosines with the sample  time function.  It  has in the digital case. As  stated  above,  a discussion of this 
been applied to  the study of speech signals at  the  IBM question of preference is contained in Sections 1 and 6 
Research Center,  Yorktown Heights, N. Y .  of this  paper. 

The general form of the  procedure is as follows. We The initial thought  to use this  type of procedure in 
will designate the sample  time function by x ( t ) ;  from it digital estimation is due  to G. L. Shultz,  who  also  wrote 
we will generate a digital approximation, P( t ;  f o )  , to  the the  computer programs  embodying the procedure. 
following random  function: 

11: x(t-T)W(T)eXp(2XjfOT)dT 

P ( t ;  fo) will then be  sampled at a uniform  rate  and  the 
mean of these samples will constitute an estimate of the 
power spectrum in the region about  the  point fo. 

An outline of the paper is given below. Most of the 
mathematical  details are contained  in the appendices. 
Section 2 and Appendix  A  describe the procedures for 
setting up  the  frequency location and resolution charac- 
teristics of an estimation  program.  Sections 3 and 4 and 
Appendices B, C, and D describe the accuracy character- 
istics of an estimation program; Le., they give the conse- 

1. Situations in which direct approach holds compu- 
tational  advantages over indirect 

The  approach which we will discuss yields complete con- 
trol over the resolution and  accuracy variables involved 
in the estimation  procedure. It makes possible estimates 
of the  spectrum  of  arbitrary resolution and  accuracy  at 
arbitrary  points  throughout  the  available  frequency 
range. Because of this, it  has  strong  computational ad- 
vantages  over the indirect procedure  for estimation 
requirements  which  deviate from  the usual uniform reso- 
lution  and accuracy  requirements  considered  in  connec- 
tion  with the indirect  procedure. 

Consider  the following examples: 

quences of taking the  mean of n samples from P ( t ;  to) A. An experimenter has  data sampled from a time series 
when the sampling  period is AT. The problem of the in such a way as to  make possible frequency analysis up 
quantization of amplitudes is discussed in Section 5 and to  4000 cps. However, he is interested  only  in the spec- 
Appendix E, and related to  the available  spectral dynamic trum  from  2000  to 3000 cps. If he uses the indirect 
range. Sections 1 and 6 contain  some discussion and approach,  there is no way he  can calculate  only that  part 
actual comparisons of the  computational  merit of the  two of the autocovariance function which yields frequency 
procedures,  direct and indirect.  Section 7 discusses the estimates from 2000 to 3000 cps. He must  calculate the 141 
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same  autocovariance  function  he would need for  the 
estimation of the  entire spectrum. 

B. An experimenter is studying  a  phenomenon such  that 
his requirements  for  frequency resolution and accuracy 
differ  from  the low-frequency  region to  the high.  Again 
if he uses the indirect approach  he must  calculate that 
autocovariance  function which will meet his most strict 
resolution and  accuracy requirements  everywhere, and 
hence, which will probably  (with  the combinations of 
spectral  estimates) exceed his accuracy  requirements  in 
most places. 

C. An experimenter wishes to  look “sequentially” at  the 
spectrum, viewing certain regions  with  increased resolu- 
tion and accuracy based upon  what  he  has  thus  far seen. 
Again,  this cannot be efficiently done indirectly. 

We will return  to this  question with some specific cal- 
culations  in  Section 7. 

2. location  and resolution characteristics of spectral 
estimation procedure 

We are, in  this and following discussions, considering a 
stationary  random process  with  a  sample function, x ( t ) ,  
and a two-sided power  (or  variance)  spectrum P ( f )  . 
This  spectrum is two-sided in that it is defined over posi- 
tive and negative frequencies  with P( -f) = P ( f ) .  In  our 
analysis we will be dealing exclusively with  this two-sided 
spectrum P ( f )  ; however, we will normalize our estimates 
so that they properly estimate the one-sided power 
spectrum 

= O  otherwise . 

1 
of these  quantities 

which we are going to estimate. In  the discussion below, 

i.e., A (f) is the  Fourier  transform of w(t). 

In general 

In Appendix  A three cases are considered  which are 
sufficient to enable us to  construct a set of estimates 
whose expectations  cover the  frequency  range of x ( t ) .  
These  three cases are described below. These cases will 
be carried  through Sections 3 and 4. An  appropriate 
sketch of the resulting Q(f ;  f o )  is included for  each  (see 
Figs. 1, 2 and 3 ) .  

Case I 

A ( f - f o ) = O  for   f<Oandf>W 

This case will cover all estimators of P ( f )  other  than 
those at  the end  points. In this  case 

This case  covers the lower end of the  spectrum. 
We have  here 

Further we are assuming that x ( t )  is such  that 

E { x ( t ) } = O  IA( f )  l Z  P(f)dj , 

and  that x ( t )  is limited to frequencies less than  or equal Case 3 
to W ;  i.e., that 

fo=W,  A ( f ) = O  for I f l>W.  
P ( f )  = O  for I f 1  > W  

In Appendix  A we develop, from x (  t ) ,  a random 
function 

p(C f n )  =ct’((t; fo) +v2( t ;  fo) 

=(1/2W 2 x(t-m/2W)w(m/2W) 
Y 

97,=-Y 

cos (2~fom/2W)}~  

+{1/2W 2 x(t-m/2W)w(m/2W) 
M 

m= -dl 

s in (2~f~rn /2W)}z .  

This case covers the high end of the spectrum. 

The normalization of  the spectral window such  that /I, Qtf; f d d f = 2  

is shown  in Appendix A for all three cases to be  equiva- 
lent  to normalizing w (  t )  such  that 

[ w2(t)dt=2. 
W 

J-m 

The expected  value of P ( t ;  fo) represents  a look at  the This normalization is proper for the estimation of the 
spectrum P ( f )  through a  “spectral window” (in  the sense one-sided spectrum P+(f). 
of Blackman and  Tukeyl) whose shape is determined by Using  these  results we are now in a position to design 
w( t )  and whose location is determined by fo. It is a set the location and resolution  characteristics of a  spectral 
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estimation  procedure. With  the restrictions of Cases 1, 
2, and  3 in  mind we select a  set of center frequencies 
{foi} and a  set of weighting functions { w i ( t ) } .  These yield 
a set of random functions { P ( t ;  foi)} whose expectations 
we are going to estimate. The  functions {wi(t)} deter- 
mine the type of average  obtained at  the points { f o i }  

through  the resulting  spectral windows { Q ( f ;  foi)}. 
The set of functions IAi( f )  I constitute the Blackman 

and  Tukeyl spectral windows. As concerns the choice of 
functions w,( t ) ,  in the operation of our  programs, we 
used the cosine arch 

wi(t)=)(l+cos 2 ~ ; r / T i )  for - T i / 2 _ < t I T i / 2 ,  

= O  otherwise , 

keeping the  form of the  function  constant  and varying  only 
the  parameter T to vary the resolution. Any of the accept- 
able “lag windows” of Blackman and Tukey would serve 
as good choices for wi( t ) .  The spectral windows would 
not be the corresponding  spectral windows of Blackman 
and Tukey,  however, but  their square. Thus  the side  lobes 
would be down twice as many decibels as  in the indirect 
approach.‘ In  the case of the cosine arch this means  the 
first side  lobe is down  approximately 32  db  from  the main 
lobe peak. In this sense one  can  obtain a  better  estimate 
of  the  spectrum using this  method than using the indirect 
method. 

3. Confidence intervals for estimation of E{P(t;fJ} - 
the Gaussian case 

Once  the designer has settled the question of where and 
to  what degree of resolution he desires estimates of the 
spectrum,  that is, once  he  has settled on a  set of random 
functions { P ( t ;  foi)}, there remains the problem of the 
estimation of the set { E  P ( t ;  f o i ) } .  

E { P ( t ;  f o i )  } will be estimated by sampling P (  t ;  f ~ i )  

and averaging  over the samples  obtained. Thus  the de- 
signer  needs to know for each P ( t ;  fa<)  the relationship 
between the sampling  period, AiT, the  number of samples 
taken, ni, and  the  accuracy  to which he  can estimate 
E{ P (  t ;  f o i )  } with  the estimator 

“i 
H ( f o i )  =l /n i  x P(kAiT; f ~ i )  

k= l  

We will treat  the  Gaussian case (i.e., assume that 
x ( t )  is a  sample function  from a Gaussian  random proc- 
ess),  and we  will derive formulas  for  the  variance of 
P(fo i )  as a function  of  the sampling and averaging  pro- 
cedure.  We will then follow Blackman and  Tukeyl  and 
suggest that to establish confidence intervals, we assume 
P ( f o i )  to be a  multiple of a X‘ variable. Thus,  to establish 
confidence intervals, the Xk: distribution can be used with 
the  number of degrees of freedom, ki,  given by 

ki=2E2{H(f0i)  )/Var{P(foi) 1 , (3 .1)  

that is, a x 2  distribution  with the  same  (mean) 2-to-vari- 
ance  ratio as our estimator. These assumptions and  the 

I Q (f; fo) 

f0 W f  - W  - f0 

Figure I 

Figure 2 

I L 
W f  

Figure 3 

resulting confidence intervals are discussed in  detail  in 
Blackman and  Tukey,l Sections 6,  7, 8, and 9. 

The single-sample case 

We will first derive formulas  for  the  ratio  of  the  (mean) 
to  the  variance  for  the case of a single sample (that is, for 
P ( t ;  f ~ ) )  for  the  three cases considered in Section 2  and 
Appendix A. We will be using the results of Appendix B 
where  the variance spectrum  and total  variance of P ( t ;  fo) 
are derived. 

Case I 
From (A.2) we have 

E { P ( t ; h H = * ~ ~  {IA(f-fo) 12++IA(f+fo) 12}P(f)df 

=LI IA(f-fo) l 2  P ( f ) d f  9 

var{p(t;fO))=(sm -m ~ ~ ( f - t o )  1 2 ~ f ) d f  

and  from  (B.4) 

and hence 

E 2 { P ( t ;  fo) >/Var{P(t; fa) I =  1 (3.2) 

and 

k = 2 E z { P ( t ;  fo)}/Var{P(t; f o ) } = 2 .  143 
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Hence, regardless of the  shape of P ( f )  we get the equiva- 
lent  of 2 degrees  of  freedom  in  the  estimation of 
E { P ( t ;  t o ) }  from  one sample. 

Case 2 

From (A.3) we have 

E { P ( t ;  O))= IA(f )  l 2  P(f)df i, 
and from (B.5)  

Hence 

E 2 { P ( t ;  O)}/Var{P(t; 0 ) } = 3  

and k = l  . 
This could be derived  directly  since P (  t ;  0 )  = u2( t )  and 

under  the assumption of a  Gaussian  process  this is dis- 

(3.5) 

Using (3 .4)  and (3 .3)  we get for Cases 2 and 3 

E 2 { P ( 0  or W ) }  
Var{P(O or W ) }  

- - 

1 

144 (3.7) 
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tributed exactly  as  a constant times  a xI2 variable. 

Case 3 

This is identical to Case 2 in  that again P( t ;  W )  = u2 ( t )  
and u2(  t )  is equal  to a constant times a x2 distributed 
variable  with one degree of freedom.  Thus k = l  and 
(3 .3)  holds for P ( t ;  W ) .  

The general case 

We will now use the results of Appendix C, where an 
expression for  Var(P(foi)} is derived, to  obtain  formulas 
for the  ratio 

E2{P(foi)}/VartP(foi)} 

and  the value of ki which it yields. We recall that 

P(f , i )  =l /n i  x P(kAiT; foil * 

* i  

k = l  

Applying the expression for Var{P(foi)} given by ((2.4) 
we obtain 

For Case 2 the normalized variance  spectrum is, using 
(B.5)  and (B.6) ,  given by (3 .6)  with fo=O.  For Case 3, 
using (B.7)  and (B.8) ,  we can  obtain a  similar  expression 
for  the normalized variance spectrum. 

Finally, the equivalent number of degrees of freedom, 
ki is given in  each case by (3 .1) .  

4. Application of results of Section 3 to design of 
estimating procedures 

Equations (3 .5)  and (3 .7)  in combination  with equation 
(3.1 ) and  the x2 tables yield confidence intervals for esti- 
mates of E { P ( t ; f o i ) } .  However,  (3.5) and  (3.7) involve 
the unknown spectrum, P ( f ) ,  and hence, any  statement 
about  the accuracy of an estimate  must  be based upon  an 
assumption about P ( f )  . 

Sharp concentration of power in pass band 

Let us assume first that, within the resolution band3 of the 1 
esitmator, P ( f )  is concentrated in  a  very narrow region, 
narrow  in  comparison to the  width  (approximately 
l/niAiT) of the averaging filter (see  Appendix C)  being 
used. Then in Case 1 the  function 

z P P ( t ; f O i )  ( f - i /A iT)  
m 

j=-m 

will be concentrated  about 0, +- l/AiT, + 2 / A i T , .  . . , 
and  there will be no reduction of the  variance  through 
averaging. The  ratio  and degrees of freedom will be the 
same  as  for a single sample. In Cases 2 and 3 half the  area 1 



under 

P r ( t : o o r w ) ( f - j / & T )  
j z - m  

will be concentrated  at 0, 2 l / A i T ,  f 2/AiT,  . . . and  the 
other half at k 2f' ,  f 1 /AiT& 2f' ,  I 2/AiT k 2f ' ,  . . . where 
f '  is frequency  location of the  narrow region of concen- 
tration  in P ( f )  . Hence,  for these  Cases and this  assump- 
tion concerning P ( f ) ,  one-half the  variance  may be 
removed by sampling,  meaning  a  maximum gain of one 
degree of freedom. 

0 P ( f )  constant  over  pass  band 

In  the second and most important case we will assume 
P ( f )  to be constant over the resolution  band of the esti- 
mator.  This is a quite  reasonable  assumption since often 
the resolution  characteristics of the estimators are de- 
signed in an  attempt  to achieve  it. 

With this  assumption P ( f )  cancels out of the expres- 
sion for N. Varp,t;fo,(f)  for all three cases (see ( 3 . 6 ) )  
and consequently, the  ratios ( 3 . 5 )  and ( 3 . 7 )  involve only 
the characteristics of the spectral windows. Thus,  under 
these  circumstances ki, the equivalent number of degrees 
of freedom,  can be  calculated for  any estimator P(f0 i )  

from its  corresponding AJ and ni. 
For Cases 1 and 2 we get, from ( 3 . 6 )  and  our as- 

sumption, 

1: Id(g-foi) Iz lA(f-g+foi)  I2dg 

N. VarP(t;to,) (f) = {/I IA(f - fo i )  I'd+)' 

Following the  procedure discussed in Appendix C, we can 
define a doubled-back (or aliased) spectrum. 

N. Var:kp(t;foi) = x N.  Varp(t;fai){f- ( i / A i T )  1 
a 

j =  m 

for I f 1  5 1/2AiT 

=O otherwise . 
Then using ( 3 . 2 )  and  (C.5), we get for  Case 1 

E 2 { P ( f o i )  1 - - 
Var{P(foi) 1 

1 

( 4 . 1 )  

and using ( 3 . 3 )  and  (C.5) we get the  same expression for 
Cases 2 and 3 with the exception of an additional factor 
of 2 in the denominator. Now  N.  Varp(t;fo) ( f )  is non- 
negligible for frequencies  whose  absolute  value is less 
than  the width of the resolution band of the estimator. 

~ Hence, with 1/2AiT less than this  width we will have 
doubling  back. I A ( f )  I as a  spectral  window will be gen- 
erally smooth with one  major lobe and consequently, 

N. Varpct,fo, (f) wlll have Its maximum  at  zero  and  drop 
off smoothly to either side. Now  the  larger AiT is chosen, 
the  more severe the doubling  back,  redoubling  back, et 
cetera, becomes and  the closer N. Var:*p(t;fol) ( f )  ap- 
proaches the  uniform  spectrum  from 0 to 1/2AiT. In 
Appendix  C we show that for this spectrum we get the 
reduction in variance  expected for uncorrelated  variables. 
This reduction yields using (4.1 ) and (3 .1  ) for Case 1 

ki = 2ni , ( 4 . 2 )  

and using (3.1 ) and  an  appropriately modified (4 .1  ) for 
Case 2,  

k i = n i .   ( 4 . 3 )  

Hence,  it would seem desirable to select a  large AiT so 
that 1/2AiT is very much smaller than  the width of the 
resolution band of the estimator and  thus assure  this 
strong reduction of the variance.  However, there is good 
reason for using a  small AiT since niAiT determines the 
record  length required,  and generally there is a  cost pro- 
portional to  the record  length. 

The  procedure followed  in  planning the speech signal 
estimation  programs was to assume P ( f )  to be  constant 
over  the spectral window (in this  case  a  reasonable assump- 
tion), then  choose  a  small AiT such  that N. Var*p(t;fOi, ( f )  
is approximately uniform  and use the x2 confidence limits 
where ki was determined from ( 4 . 2 )  and ( 4 . 3 ) .  For the 
cosine arch weighting function 

w i ( t ) = 3 ( 1 + c o s ( 2 d / T i ) )  for - T i / 2 5 t I T i / 2  

= O  

we used 

AiT=2Ti/3 . 

otherwise, 

( 4 . 4 )  

Rough  checks of the variations  observed in  the estimates 
of spectra of noise-like speech sounds confirmed the x z  
confidence intervals. 

Case 3 is special since in this  case N. Varp(t,w)(f) is 
not concentrated  around zero  only but also around  the 
points k 2W.  Thus  the doubling  back of N. Var*p(t, W )  (f) 
probably will not be as uniform as the  comparable  quan- 
tity for Cases 1 and 2.  This might mean a  greater  reduc- 
tion  in  the variance or it might mean a  smaller  one. 

Periodic  sample  function 

The estimation problem when x ( t )  is a sum of sinusoids 
and particularly  when x ( t )  is periodic is discussed in  Ap- 
pendix D. 

5. Weighting and sample time function quantiza- 
tion and spectral dynamic range 

So far we have discussed only the time  sampling  aspects 
of the digital calculation.  We will now discuss the ques- 
tion of amplitude quantization of the quantities involved. 
We  want to know  how  many levels are required for  the 
quantization  of  the sample  time function  and  for  the 145 
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weighting functions of the estimators; that is, when we 
represent these quantities digitally what are  the conse- 
quences of a choice of so many bits for  the representation 
of each? We will see below that these choices determine 
the  dynamic  range available for spectral  estimation. The 
question is an  important practical one since many of the 
engineering and  computational problems involve diffi- 
culties and costs strongly  related to  the  number of levels 
of these  representations. Hence  it is frequently  important 
that  no  more bits than necessary be used for  their repre- 
sentation. 

In Appendix A we define a random  function 

P ( t ;  fo)  ={1/2W x x(t-m/2W)w(m/2W) 
dI 

m=-Y 

cos (2~fom/2W)}~  

+{1/2W 2 x(t-m/2W)w(m/2W) 
df 

?I%=-" 

sin(2~fom/2W)}', 

which is the basis of our estimation of P+(f)  at  the point 
fo. In actuality, one doesn't evaluate  exactly  this but 
rather something  with further  random contributions due 
to  the  quantization of the  functions involved. 

We will assume the weighting functions to be 

w(rn/2W)cos(2~forn/2W) +el, 

and 

w (m/2 W )  sin(  2xfom/2 W )  +ezTrL , 

where el,,, m=O, i- 1, . . . , * M ;  eZ1,,, m=O, f 1, . . . * M  
are all independently and identically  distributed random 
variables  with  a uniform distribution from  -K/2N1  to 
K/2N1;  that is, that el, has a  density 

fl,,,(x)  =NJK  for  -K/2Nl<x<K/2N1, 

= O  otherwise ) 

where  K =max I w ( t )  I. These weighting functions  are 
quantized into 2N1+ 1 levels; i.e., that they are repre- 
sented by logzNl bits plus  a sign. 

Further we will assume the sample  time function  to be 

x(t-m/2W) +e3m , 
where esm; m=O, k 1, . . . , f M are independently and 
identically distributed  with  density 

fs,,(x) =1 for - 3 1 x 1 3  

= O  otherwise . 
x( t )  is quantized into  2Nz+ 1  integer values 0, f 1, 
2 2, . . . , t Nz and we assume the variance of x ( t )  is 
controlled so the clipping  which  results from placing the 
sample function  in  the  range ( - N z  - 3, Nz + 3) is negli- 
gible. We  also  assume that e3k  is independent of eli, and 
ezi for all i, j ,  k and also that eli, ezi, and e3k are inde- 
pendent of x(t-m/2W)  for all i, j ,  k and m. 

146 Hence, P(  t ;  fo) becomes 
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P(t;  fo) = {  1/2W 2 [xct-m/2W) +e3,,] 
M 

i l l  z ~ M 

[w(m/2W)cos (2~f~m/2W)  +el,,,l}z 

+{  1/2W x [x(t-m/2W) + e 4  
Y 

m=-N 

[w(m/2W)sin(2rrfom/2W) +ezm]}' 

={1/2W x x(t"m/2W)w(m/ZW) 

cos(2~f~m/2W)  +x(t-m/2W)el ,  

+es,w(m/2W)cos(2;;fom/2W) +e3,,Lell ,L}L 

Y 

m = - M  

+{1/2W 2: x(t-m/2W)w(m/2W) 

sin(2~fom/2W)  +x(t-m/2W)eatn 

+ e s , n w ( m / 2 W ) s i n ( 2 ~ f o m / 2 W )  +esmezm)' 

N 

m=" 

(5.1) 

Now if the power within the resolution band of the esti- 
mator is large,  then the first terms within each of the 
brackets in (5.1) will dominate  and  the discussion of 
Sections 3 and 4 on confidence intervals for the esti- 
mators,  P(f,i), will be valid. However,  as E { P ( t ;  foi)} 
becomes small  these confidence intervals  become more 
and  more  inaccurate  (too  narrow) because the effects of 
the quantizing errors become non-negligible. Eventually 
the variation  caused by this  quantizing will place  a  lower 
limit on spectral  averages  which can be  measured and 
thus  determine  the  dynamic range  available for spectral 
estimation. 

To solve this  problem  completely one would have to 
study the small-signal distribution of the estimator and 
obtain exactly the  pattern  in which the confidence inter- 
vals change as the signal power  within the resolution  band 
decreases. We  have not  done this.' Instead, we took the 
expectation of P ( ? ;  fo) and obtained an  approximate 
lower  limit for spectral  estimates at  the point  where  they 
equal  the expected  value of the contributions due  to  the 
quantization;  that is, at  the point  the  expected "signal 
power" out of the estimator is equal  to  the expected quan- 
tization "noise power." This was felt adequate  for plan- 
ning purposes-a feeling which was confirmed empirically 
through  actual  operation of the program. 

If we expand  (5.1 ) and  make use of the independence 
properties of the  quantization  error  random variables, 
we get 

E { P * ( t ;  fo) } = E { P ( t ;  fo)} 

+(1/2W)2(2M+l)Var(x)Var(el) 

+(1/2W)2(2M+1)Var(x)Var(ez) 

+(1/2W)'Var(es) 2 w2(m/2W) 

cos2(2~fom/2W) 

Y 

m=-Y 



+(1/2W)zVar(e3) 2 wz(m/2W) 

sin2 (27rfom/2 W )  

' d f  

m=" 

+(1/2W)2(2M+1)CVar(el)Var(e3) 

+Var(ez)Var(es)] . (5.2) 

The last term of (5.2) we will neglect. If we combine the 
fourth  and fifth terms using the approximation 

1/2W  w2(m/2W)=: wz( t )d t=2  

and combine the second and  third terms, we get 

E{P*(t;fn)}=E{P(r;f0))+2(1/2W)~(2M+I) 

Y 

m=-Y 1: 
Var(x)Var(el)  +Var(e,)/W. 

(5.3) 
The first term of (5.3) is the  quantity we are interested 
in measuring. The second and  third  terms represent the 
contributions  due  to  the  quantization. 

We will now  work on  the second and  third  terms of 
(5.3) to  put  them  in a form  more suitable for discussion 
of the  dynamic range.  Consider first the second term 

2( 1/2W)Z(2M+1)Var(x)Var(el) = 

(Var(x)/W)  (1/2W)  (2M+  1) 
(KI/NI)' 

12 

where 

p+(f) = 1 / W L W  P+(f)df 

=average power  density. 

To a good approximation 

(1/2W) (2M+1){maxIw(t)1)*=ko{w(t)) w2(t)dt I: 
=2ko(w(t) 1 , 

where 

{length of w(t)}max{wz(t)} 
ko{w(t) 1 = 1, w 2 ( t ) d t  

1 Hence 

2(  1/2W)'(2M+  l)Var(x)Var(el)   =mko{w(t)}/6N12 

Now consider the  third  term.  For  any  sample  function 
x ( r )  to be  quantized  within the region ( - Nz- 4, N2++) 
its variance must  be such  that Var (x) 5 ( NZ + 3) N 2 .  
Hence depending upon  the distribution of x ( t )  there 
exists a constant k* such  that whenever Var(x)  =klNz2 
and kl I k* then  the clipping  which  results from limiting 
x( t )  to  the  range ( - N z -  3, Nz++) is negligible. Since 

we are assuming this to be the case, the  third term of 
(5.3) becomes 

Var(e3)/W=1/12W=(1/12W)Var(x)/klN22 

The first term is the expected signal power, the second the 
expected quantization noise power. 

As was stated  above, we will consider that  the lowest 
meaningful  estimate is given approximately by 

From this  expression it is evident that, if possible, one 
should spread  the bits for representation among N1 and 
N2 so as to make  the terms equal inside the bracket on  the 
right. We will consider dynamic  range  in  terms of the 
lowest output available  relative to the average  power 
level, P+(f).  The usual definition involves the comparison 
of lowest to highest  spectral  estimates but  it necessitates 
an assumption  concerning the  shape of P+(f). The con- 
sideration  in  terms of lowest to average  power level is 
conservative. From (5.4) we can define 

- 

The expression f(N1, N z ;  ko, k l )  is the  db  dynamic  range 
(lowest  estimate to  mean power level). 

For purposes of illustration  consider N1 = Nz = 2n, then 

L 3  
t '3 6k1 

+ (2n+  1)logm 21 

is the  db  dynamic  range as  a function of the number of 
bits, plus  a sign, used in the representation of both the 
weighting  functions  and  the  sample  time  function. 
f(2", 2", ko,  kl) is plotted in Fig. 4 for 

ko{w(t)}=ko{cosine  arch}=8/3 

and 

kl= 1/9 , 
which is a correct kl for a  normally  distributed time  func- 
tion  with the cutoff point out  three  standard deviations. 

If the general shape of the  spectrum is known, then  the 
ratio between the  peak of the  spectrum  and its  average 
can be  determined and this  estimate of the  dynamic  range 
can be increased by that  amount. As it stands, it is con- 147 
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In  the  indirect case  letting W = 1 / 2 A t  be  the  frequency 
range compatible  with the sampling  period, At, for x (  t )  , 
one  obtains  (Blackman  and  Tukeyl) 

number of multiplications (indirect  case) 

= 2 W 2 k / ( A f ) ' .   ( 6 . 2 )  

/ In  the direct  case  with  estimators P(f0 i )  with correspond- 
ing  degrees of freedom ki and spectral  window  half- 
widths Afi and assuming  cosine arch weighting functions, 
we get using (6 .1 ) , 
number of multiplications (direct  case) = z k i T i / A t  

i 
I N U M B E R  OF B I T S  

Figure 4 

servative, a good characteristic for a  planning procedure  The first set of estimation  requirements we will con- 
to possess. sider is the  one  for which the indirect method is ideally 

suited,  namely,  constant  resolution and  accuracy require- 
This average level, due to quantization$ was checked ments throughout  the available frequency range, For this 

empirically on sinusoidal and speech inputs  and  found  to set and the direct we get 
describe  accurately the lowest levels of the spectra. Also 
the fluctuations of these  lowest levels, with  a fixed inDut number of multiplications (direct  case) = 3   W 2 k / ( A f )  . 
signal, convinced us that spectral  estimates  were essen- 
tially irretrievable if they were significantly smaller. 

6. Some comparisons of number of multiplications 
required for direct and indirect methods 

In Section 2 we stated that  the  direct  approach  in certain 
situations had considerable computational advantages 
over the  indirect  approach.  In  this section we will draw a 
comparison of the  number of multiplications required in 
both cases for two particular sets of estimation  require- 
ments. In  the discussion below we are assuming P ( f )  is 
constant over the spectral window. 

First, however, it should  be  pointed out  that  the  sample 
function  duration requirements for  the  two cases are  ap- 
proximately the same. If we let Af be the half-power 
width of the spectral  window and k be the  number of 
degrees of freedom  then  (from Blackman and  Tukeyl) 

duration  (indirect  case) = ( k / 2  + 1 / 3  ) / A f  . 
If for  the direct  case we consider the cosine arch weight- 
ing function of length T and  let AT be the sampling  period 
for P( t ;  fo) we get 

duration  (direct  case) = T +  ( k / 2  - 1 ) AT 

= T + ( k / 2 " 1 ) 2 T / 3 = T  - ( k : l )  

Comparison of this  with ( 6 . 2 )  reveals that  in this  situa- 
tion the direct  case  requires half again  as many multipli- 
cations as the indirect case. 

As  a  second  set, for which the direct method is more 
efficient, in our study of speech  the following  require- 
ments for spectral  estimation  were among several speci- 
fied : 

a)  resolution of 50 cps from 75 to 575 cps. 
b )  approximate 1 / 6  octave  resolution from 575 cps to 

c) constant accuracy  over the  frequency range. 

For this  set of requirements we get from  the applica- 

16,000 cps. 

tion of Eq. ( 6 . 2 )  with W=16,000 and A f = 5 0  

no. of multiplications (indirect  case) = 102,000k. 

Applying equation (6 .3 )  we get 

no. of multiplications (direct  case) = 16,000k . 
Thus  in this  situation the  direct case  requires less than 
one-sixth as many multiplications  as the indirect. It is true 
that  we get more resolution and accuracy in  the indirect 
case but it is unneeded  resolution and accuracy. 

One might argue  that by processing the  sample  time 
series more  than  once (first at a  low  sampling rate to 
obtain estimates in a  low frequency range, then  at a 
higher  sampling rate  to  obtain estimates in a  higher fre- 

We are,  in this  second  derivation,  assuming that AT is 
selected as suggested by Eq. (4.4) and using the  fact  that 
the half width of the spectral  window is given by 

quency  range, and so on)  one could  greatly reduce  the 
number of multiplications required in the indirect case. 
This is true,  but by this same technique one could  also 
greatly  reduce the  number of multiplications  required  in 

148 Af(direct case, cosine arch) = 3 / 2 T .   ( 6 . 1  ) the direct case. 
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7. The 704 computer program  embodying proce- 
dure and its application to  speech  studies 

This  direct digital procedure has been embodied in  an 
IBM 704 EDPM  program  and applied to  the study of 
speech at  the  IBM Research  Center. The  input equipment 
and  the application are described in  an  IBM Research 
Report by G. L. S h ~ l t z . ~  This report also  contains  sample 
spectra  produced by the method. The  IBM 704 programs 
were  written by G. L. Shultz. The  program presently used 
was written for a  32,000  word  core  memory machine. It 
stores the weighting functions within the core memory. 
An earlier program written for  an 8,000 word  core mem- 
ory  machine stores the weighting functions on tape. Both 
programs perform  the multiplications using a  table look- 
up procedure at approximately  ten  times the speed of 
ordinary  machine multiplication. 

The following formula gives the time for  the 32,000 
word core  memory  machine to obtain  a  set of spectral 
estimates: 

3W ni 
computing  time = - 2 - seconds, 

2000 3 Aif 

where 

A i ( f )  =half width of ith estimator 

ni=no. of samples used in ith estimator. 

We are assuming that W is related to the  sampling  period, 
At, for x( t )  by W =  ( 1 / 2 A t )  ; and that cosine arch weight- 
ing functions are used. 

Appendix A: Construction of an  estimator  with 
given location and resolution 

Let us consider a stationary random process  with  a sam- 
ple function x ( t )  and a two-sided power (or  variance) 
spectrum P ( f ) .  We want to estimate the one-sided power 
spectrum 

P + ( f ) = 2 P ( f )  for f20 

= O  otherwise , 
of the process in the region about f o  through a digital ap- 
proximation to the following random  function 

This digital approximation we will call P ( t ;  fo). In this 
Appendix we  will determine E{P(  t; fo) } under  conditions 
of interest for spectral estimation. 

Let w ( t )  be  an even function and  let it  have  a Fourier 
transform A ( ! ) .  Then A ( f )  will be real  and even. We 

I*"' 

Figure A.1 

want to consider functions  w(t)  such  that A ( f )  is a typi- 
cal  spectral window (in  the sense of Blackman  and 
Tukeyl) ; that is, we want A ( f )  concentrated  with  a  pre- 
dominant main lobe  about f = 0 as indicated in Fig. A. 1. 

We will discuss the first term on  the right-hand  side of 
(A. 1) and carry this term  to  the sampled  case  before 
considering the complete expression. Hence, consider 
w(t)cos 2nfot. It  has a Fourier  transform A ( f " f o ) / 2  
+ A ( f + f o ) / 2 ;  i.e., it  has  a frequency composition cen- 
tered about f o  whose shape is determined by A (f) . Now 
consider 

i i ( t ) =  X(t-T)W(T)COS  2iTfoTdT. I: 
The power spectrum of ii ( t )  is 

P a ( f ) a $ l A ( f - f o )  + . l ( f + f o )  I 2  P(f) 

and 

E{iiZ(f)l=/I Pa(f)df 

=/I #IA( f - fo )  + A ( f + f o )  I z  P ( f ) d f .  

Now we will assume x ( t )  to be limited to frequencies 
in the  band from - W to W, then x ( t )  is determined by 
its samples  taken every 1 / 2  W in time and6 

x ( t )  = 2 x(n/fW)sinc  2W(t-n/2W). 

Consider 

b ( t )  = 2 w(n/2W)cos 2xfO  n /2W sinc 2 W ( t - n / 2 W ) .  

It has  a transform7 

B ( f )  ==a I: { A ( f - f o - n 2 W )  

00 

n=-m 

m 

n=-m 

W 

n=-m 

+A(f+fo-n2W)]  for I f l - < W '  
= O  otherwise . 

Finally consider 

u ( t ) =  x ( t - T ) b ( T ) d T .  c 
Substituting  the  above expansions for x ( ~ - T )  and b ( ~ )  149 
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and using the following property of  the sinc  function 

we get 

u( t )  =1/2W 2 x ( t - n / 2 W ) b ( n / 2 W )  
m 

nc-m 

=1/2W 2 x ( t - n / 2 W ) w ( n / 2 W ) c o s 2 ~ f ~  -, 
m n 

Il"W 2 w  

which is the sampled  approximation to @ ( t )  used in the 
digital calculations. The spectral density of u( t )  is 

m 

+ { 1 / 2 W  2 x ( t - m / 2 W ) w ( m / 2 W )  
M 

m=- Y 

sin 2xfo m / 2 W } 2  

whose expectation we are going to estimate. 
We have restricted the  summation  from - M  to M 

since in practice we  will select functions w( t )  of finite 
nonzero extent. 

Since we are interested in spectral estimation, we are 
interested in functions A (f) whose width is small  relative 
to W .  Hence, we can use the approximations 

m 

2 A ( f - f o - n 2 W )  = A ( f - f o )  + A ( f - f 0 + 2 W )  
Il=-CU 

and 
00 

2 A ( f + f o - n 2 W )  = A ( f + f o >  + A ( f + f o - 2 W ) .  
m=-m 

Thus 

E ( u 2 ( t ) ) =  1; ~ I A ( f + f o - 2 W ) + A ( f - f o )  

Erw2( t ) I - jW -W a I j A ( f + f o - 2 W ) - i A ( f - f o )  

+A(f+fo)  + A ( f - - f o + 2 W )  12 P ( f ) d f  

and 

+ i A ( f + f o )  - j A ( f - f 0 + 2 W )  l 2  P ( f ) d f .  

In  the sampled  case we have a  doubling back  of A ( f )  at 
W and - W in addition to the usual unsampled  doubling 
back at zero. 

We have in mind estimating  the one-sided spectrum in 
the region about  the point f a  by estimating 

E{~(t~fo)}~E(~2(t)+~2(t)}=E{~~(~)}+E{~'(t)}. 

We will examine  three cases which are sufficient to enable 
US to design a set  of region estimates with  expectations 
covering the entire  spectrum. 

Case I 

We first consider the case where f o  is such that the follow- 
ing approximations can be made. 

A ( f + f o - 2 W )  =o If1 sw 
A ( f " f o + 2 W )  =o If1 g w  

A ( f - f o )  =o f S 0  

A ( f + f o )  =o f > O  

Under these conditions 

E{f'(C f o ) } = E ( ~ ~ ( t ) + ~ ~ ( t ) }  =+/I: {IAU-fo )  I?+ IA(f+fo)  I z l W ) d f .  
( A . 2 )  
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0 Case 2 

Secondly consider the case  where f o  =O,  then  with the 
approximations 

A ( f - - 2 W ) = A ( f + 2 W ) = O  for Ifl<W 

we get 

E ( P ( t ; O ) } = E { u Z ( t ) } =  I A ( f )  1 2 P ( f ) d f .  (A.3) 

Case 3 

Lastly  consider the case  where fo= W ,  then 

I:: 
E { P ( t ;  W ) ) = E { u 2 ( t ) )  

=/-I ( I A ( f - W ) l 2 + l A ( f + W ) l 2 1 P ( f ) d f .  

Now  in each of these we have an expression of the 
form 

lz Qtf ;  f ~ ) P ( f ) &  

and  to estimate P + ( f )  at  the point f o  we want Q ( f ;  f o )  to 
be such  that 

1: Q t f ;  f o ) d f = 2 .  (A.4) 

This is 2 rather  than 1 because P + ( f )  = 2 P ( f ) .  If we apply 
the restriction (A.4)  to  the above three cases, and use 
Parseval's theorem, we get the following common require- 
ment on w ( I ) ,  

/: w ' ( t ) d t = 2 .  

Appendix B: The variance spectrum of P(t; fJ, the 
Gaussian case 

In this Appendix we will derive the variance or power 
spectrum of P ( t ;  f o )  for  the  three cases considered  in 
Appendix  A and Section 2 assuming our  random process 
to be Gaussian. We  have two functions 

~ ( t )  = x ( ~ - T ) ~ ( T ) ~ T  1: 
1: v ( I ) =  x ( ~ - T ) c ( T ) ~ T ,  

where b( t )  has  the  Fourier  transform 

@u(f)  = : [ A ( f - f 0 + 2 W ) + A ( f + f o )  

+ A ( f - f o ) + A ( f - 2 W + f o ) I  for If1 IW 
=O otherwise , 

and c (  t )  the  transform 

@ . , W  = 3 [ - j A ( f - f 0 + 2 W > + i A ( f + f o )  

- j A ( f - f o )  + j A ( f + f o - - 2 W l  for If1 IW 
=O otherwise . 

Now the variance spectrum P (  I; fo) = u2 ( t )  + v 2  ( t )  is the 
Fourier  transform of 

E{(U2(t)f2)Z(f))(U2(t+~)f~z(ffT))) 

-E2{uZ( t )+v2( t ) )  

= ~ { ~ ~ ( t ) ) E ( ~ ~ ( f f ~ ) ) f 2 E ~ { U ( f ) U ( t f ~ ) )  

+E{uz((t))~(v2(t+~))+2E2(U(t)~(t+~)} 

+~(~2(~)}E(U2(~+T))~2~2(2)(f)U(~fT)) 

+~{W2(t)}~{v2(f~~))f2E2(W(t)Z)(If~)} 

- E 2 { u 2 ( t ) + v 2 ( f ) }  

=2[E2{u(f)U(f+T)}fE2{U(t)v(t+T)} 

+E2{(2)(f)U(f+~))+E2{Zl(f)W(f+~)}] . 
(B.1) 

This  equality is established using 

E(wxyz) = E { ~ ~ ) E { ~ z } + E { ~ Y } E { ~ z }  

+E(wz)E{xYl , 
a  relation  holding for normally  distributed variables. 

Taking  the  transform of (B. l )  we obtain 

var~,,,~,,(f)=2[1@u(f)12P(f)*l@u(f)12~(f) 
+ @ u ( f ) @ u ( f ) P ( f )  * % ( f ) @ v ( f ) P ( f )  

+@.,(f)@u(f)P(f> * %(f)@U(f)P(f)  

+ l @ u ( f )  I " P ( f ) * l @ n ( f ) l 2 W ) 1  * 

- c5r - - 
- 

Here * indicates  convolution and @(f) is the complex 
conjugate of @(f). For a method of obtaining  these  con- 
volved transforms  see Davenport  and Root,g  page 182. We 
will below consider the  three cases treated  in  Section 2. 

0 Case I 

For this  case we have 

A( f - fo )  + A ( f + f o )  
@ u ( f ) =  2 

and 

%(f) = -i A ( f - f o )  A ( f + f n )  
2 + i  

where we are assuming 

A(f - fo)=O for f < O  and f > W  

A( f+ fo )=O for f > O  and f < - W .  

and 151 
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- 
* u ( f > % ( f )  = - @ v ( f > @ u ( f )  

- 
= - j  IA(f"f0) I 2  IA(f+fo) 12 

4 + j  

Substituting these expressions in (B.2) after expansion 
and cancellation we obtain  for  the  variance  spectrum of 
P ( t ;  fo) 

I Var,,t;,,,(f)=+ {IA(g-f0)l21A(f-g+fo)12 1: 
+ I A ( ~ f f o )  121A(f-L?-fo) 1 2 1  

P ( g ) P ( f " g ) &  

=I: IA(g-fo) l 2  P ( g )  I A ( f - g + f o )  l 2  P ( f " g ) & .  

03.3 1 
This  latter equality  follows from  the commutivity of the 
convolution. The  variance  spectrum of P ( t ;  fo) is the 
envelope spectrum  (that is, the  low  frequency  portion) 
of the  spectrum  after  square  law detection of the  output 

of a filter with  a power transfer  function 

The  upper  frequency portions,  those due  to  the  sum 
terms, have been removed.1° This is the reason for using 
uz( t )  +v2( t )  rather  than just u 2 ( t ) .  With  one additional 
computation we insure  the reduction of the variance by 
a factor of two. 

IA(f-fo) 12 

2 

The  total  variance is given by 

Var{P(t; f 0 ) , _ j m  jw 1~ ( g - f o )  1 2  P ( g )  
-m -a 

x IA(f-g+fo) l 2  P ( f " g ) W f  * 

Letting fl=g and f z = f - g ,  

we get 

Var{P(t;f0)1={JW -m IA(f1- fo) I2  P(fl)dfl 1 
x{/-- IA(fz+f0)l2P(f*)df2 I 
\ --co Y -l/w I A ( f - f ~ ) l ~ P ( f ) d f  . 03.4) 

Case 2 

We  are considering fo = O  and assuming 

A ( f - 2 W ) = A ( f + 2 W ) = O  for I f l < W .  

We  thus  have 

@ u ( f )  

a v c f )  =o . 
Hence substituting in (B .2 )  we get for  the variance  spec- 

152 trum of P (  t ;  0) 
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Case 3 

Now let fo= W ,  hence 

ipUW(f) = A  ( f -  W )  
= O  

and  GVW(f) = O  . 
Substituting  in (B.2 
P ( t ;  W )  

) we get for  the variance spectrum of 

(B.? 
and integrating we get the  total variance  as 

In this  last  case the high frequency  content remains and 
Varpct, w) (f) contains content  around +2W as well as 
around zero. 

Appendix C: The variance of P(fod 

In  this Appendix, we are going to derive the variance of 

P ( f o i )  =l /% 2 P(kAiT; foi) , 

our estimator of E { P ( t ;  foi)}. We will first consider the 
problem  in general  terms and then obtain  the  required 
particular expressions. 

"i 

k = 1  

Suppose  we  have a stationary  random process  with  a 
variance  spectrum P , ( f )  and a sample  function s( 2 ) .  
Further  suppose  that s( t)is sampled  with  a  sampling 
period AT. We  are going to derive the  variance of 

n 
S=l /n  2 s(iAT) 

i=1 

in  terms of n, AT and P8(f). 

A random process  with the  same  total  variance as 3 can 
be generated from s ( t )  by the following two  operations: 

1) A sampler produces the  function $( t )  defined by 

~ ( t ) =  2 s ( t ) G ( f + i A T + Q )  where B has  the  uniform 

distribution1' from 0 to AT. 

W 

;=-a 



2) The  output of the sampler is then passed through a 
filter whose weighting function is 

W ( t )  = l / n  for -nAT/21 t<nAT/2  
= O  otherwise . 

The result of these  two  operations, the  output of the filter, 
we will call q ( t ) .  This  set of operations is illustrated  in 
Fig. C. 1. 

We  want  to express the variance of q( t )  in  terms of the 
variance spectrum P8(f) of s( I ) .  This will be accom- 
plished through  the following  steps: 

1 ) The variance spectrum G ( f ) ,  of S( t )  will be  de- 
rived in  terms of the  variance  spectrum, P,(f), of s ( t ) .  

2 )  G ( f )  will be combined  with the response curve of 
the averaging filter to  obtain  the  variance  spectrum, 

3 )  The integral of H ( f )  will be taken, this quantity 
H ( f 1 ,  of d l ) .  

being Var (3) .  

The  function ~ ( t )  is the  function 
m 

c ( t ) =  2 6(t+iAT+B) 

modulated by the  input, s ( t ) .  In  terms of its Fourier 
expansion 

i = - m  

c ( t )  = e!zT(t+o)iAT/AT. 
m 

- W  

The autocovariance  function of S (  t )  =s( t ) c (  t )  is 
E { s ( t ) c ( t ) s ( t + ~ ) ~ ( t + ~ ) }  

= E { s ( t ) s ( t + ~ ) }  {l/(AT)Z}E{ 2 eizT(t+e)i/AT W 

,=-m 

. 2 e j z n ( t + r + e ) k / A T  
cc 

1 
b."W 

m 

= E { s ( t ) s ( t + ~ ) }  . { l / ( A T ) 2 }  2 ej211Ti/AT 
i = - W  

= E ( S ( t ) S ( t + T ) } -  { l / ( A T ) 2 }  * A T  2 S( t - iAT) .  
W 

%=-m 

Taking its Fourier  transform we get 

G j f )  = { l / ( A T ) z } P 8 ( f )  * 5 s ( f - i / A T )  
z=-m 

= { l / ( A T ) ' }  2 P , ( f - i / A T ) .  
m 

%=-W 

(For a "similar" argument see Davenport and Root,D 
pages 263-4.) 

The filter characteristic of the averaging function is the 
Fourier  transform of the weighting function, W'( t ) ,  or 

sin m A T f  
m A T f  

AT---. 

Consequently the  variance  spectrum of q ( t )  is 

? 
I 

I 
I 

t I-""" 
1," t - 

Figure C.1 

and  the total variance is given by 

Var(3) =SI H ( f ) d f  

m 
The expression T ( f )  = 2 P, ( f+ i /AT)  can be written 

- W  

T ( f )  = P , ; * ( f )  for - 1 / 2 A T < f < l / 2 A T  

=P,*( f - l /AT)  for 1/2AT<f<3/2AT 

= P $ ( f + l / A T )  for -3 /2AT<f<  -1 /2AT 

where P, :>( f )  is the doubled back or aliased spectrum 

with the doubling  back at k - . Hence we can write 
1 

2AT 

(C.2) 

Now if  we choose AT so as to  double  the  spectrum back 
such  that P i * ( / )  is approximately constant,  that is such 
that 

p o ( f ) " a T u 2  for - 1/2AT<f<1/2AT 

= O  otherwise , 

where uz is the variance of s ( t )  then  integration of (C.2) 
yields 

Var ( S )  = u?/n 153 
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* 2 N. Varp,,,f,,,(f-i/AiT)df. (C.4) 

Finally defining a doubled back N. Var:(t;foi) (f) , as we 
did previously a doubled back P,* ( f )  , (C.4) becomes 

m 

i=- m 

W 

2 N.  Var",t,,~~,(f-i/AiT)df. (C.5) 

Appendix D: The sampling and estimation problem 

j=-m 

for a periodic input signal 

We will in this Appendix analyze the sampling problem 
for Case 1 of Section 2 assuming the sample function, 
x (  t ) ,  to be  a  sum of sinusoids. The work will parallel 
Appendices B and C. Consider 

x ( t )  = 2 (Di/2)ejhez"jfit 

where 

Di=D-i, +i=-+-i and f - i = - f i .  

Again as in Appendix A we  define 

n 

m=-n 

., 
=a 2 {~(fi - fo)~iel~iez"jf i t  

i=l 

+ A  (-fi+fo)Die-f~ie-Z"ifit) . 
Expressing the expansion in terms of cosines and phase 
angles and squaring we obtain 

n 
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Similarly 

~ ( t )  = x ( ~ - T ) c ( T ) ~ T  I: 
n =a 2 {A(fi-fo)Diej(si-"/2)e2"jfit 

i=1 

+ A (  --fi+fo)Die-i(~i-"/Z)e-2"lf.t 1 )  

and 
n 

@ ( t )  =a{ 2 A(fi"f0)Di COS(2Tfit+qkT/2)}2. 

Adding u 2 ( t )  and v2(t) and performing some trigono- 
metric manipulation we get 

P ( t ;  fo) - E { P ( t ;  f O ) ) = u 2 ( t )  +v2( t )  " E { u 2 ( t )  -v'(t>} 

= 3  2 A(f i - fo )DiA( f j - fo )Dj  
Z<j 
i > O  

~0~[2n(fi-fj)t++i-+j]  (D.1) 

Thus again here as in  the case of Gaussian noise the dif- 
ference terms are the only ones present, the others have 
been cancelled out in  the summation of u2 ( t) and vu2 ( t )  . 

Now if we have a periodic signal of fundamental  fre- 
quency, V, then (D. 1) will  yield a number of terms of 
frequency V, a  number of terms of frequency 2v, etc.; 
over a range corresponding to the width of the interval 
on which A ( f )  is not negligibly  small. The total contribu- 
tion to the power "spectrum" of P ( t ;  fo) at the points 
V ,  2v, . . . , will depend upon the relative phases of these 
terms. Hence as much as can be said in general is that the 
power "spectrum" of u2( t )  +v2( t )  when x (  1 )  is periodic 
with fundamental frequency will have spikes at the points 
V, 2v, 3 ~ , .  . . the value of the spikes depending on the 
phasing of the harmonies but being forced to zero as the 
frequency increases by the  character of A ( f )  . 

We will  now treat  the problem of sampling and averag- 
ing P ( t ;  fo) to  obtain  a good estimate of E { P ( t ;  fo)}. If 
the  fundamental frequency is such that there is only one 
harmonic  in  the pass band; that is, if the  fundamental is 
larger than  the interval over which A ( f )  is non-negligible, 
then P ( t ;  fo) will not vary and only one sample will  be 
required. The value of P ( t ;  fo) will not be the power of 
this  harmonic  but  the  product of this  power  and 

I A  ( f - f o )  I 
2 

at the position of the harmonic. 

If more than one  harmonic lies in the pass band then 
P ( t ;  f o )  will vary and this variance can be reduced by 
sampling and averaging. The spectrum of the sampled 
P ( t ;  fo) has the same repeated form described for sam- 
pled noise spectra in Appendix C;  that is, if Varp(t, to) ( f )  
is the  spectrum of P (  t; f ~ )  then 

m 

(l/AT) * 2 Varp(t,fo) ( f - i / A T )  
j=-m 

is the  spectrum of P ( t ;  fo) sampled at  a sampling period 
AT. Also, as in Appendix C, averaging over n samples 



I 

, I f C  
V 

Figure D.1 

Figure 0 . 2  

corresponds to  the passing of the sampled P (  t ;  fo) through 
a filter whose pass band has  the  shape 

( A T ) 2  (TnATf)  ' 

Now in the design of a  sampling procedure  one  must 
select the variables AT and n. In  our use of the  program 
under conditions of periodic signal input these  were 
selected as follows. We  knew  some bounds  for  the  funda- 
mental frequency. The  quantity nAT was set  large  enough 
SO that  the response of the averaging filter 

( A T )  

s in2(anATf)  

s in2(anATf)  
( a n A T f )  

was down to  the desired amount in the region where  the 
fundamental, Y, was known  to lie. For example,  in  its first 
side  lobe, sin2x/x2 is down, at a  minimum,  approximately 
13 db, in its second  side  lobe  approximately 17 db. In  our 
experience  with  periodic  speech signals the placing of the 
fundamental  in  the first lobe  resulted in variations in  our 
estimates of E { P ( t ;  fo)} of about 1 db. This selection of 
nAT is illustrated  in  Fig. D. 1 where the  fundamental  has 
been placed in the first side  lobe of the averaging filter. 
Now with nAT selected, we further select AT small 
enough so that  the  terms  Varp(t:fo) ( f + l / A T )  and 
Varp(t,f,,(f- l / A T )  in the  spectrum of the sampled 
P ( t ;  fo) do  not  have  any  contributions  in  the  main  lobe 
or lobes of the averaging filter. This  means choosing AT 
sufficiently small so that l / A T  is larger  than  the  total 
non-negligible width of A (f). This selection of AT is 
illustrated in Fig. D.2. Thus choosing AT, n is determined 
through  the previous  choice of nAT and  the  procedure is 
defined. 

For periodic inputs a  normalization  with  peak  spectral 
window  heights of unity and adjacent windows crossed at 
their half  power  points was found desirable. With a 
smoothly  varying frequency scale  addition of such  nor- 

malized spectral windows gives an almost flat response 
of unit height making possible easy  estimates of total 
power in  any selected region. 

Appendix E: Some additional remarks on quantiza- 
tion of weighting functions and the 
sample time function 

This problem is discussed in Section 5 from  the  stand- 
point of spectral dynamic  range determination. In this 
Appendix we will discuss further  the  particular effects of 
the two types of quantization, weighting function  and 
sample  time function. 

The effect of the  quantization of the weighting function 
is to  produce instead of  the  nonrandom spectral  window 

Q ( f ; f ~ > = I Q , , u ( f ; f ~ ) I ~ + l Q , , v ( f ; f ~ ) I ~  

the  random spectral  window 

+el, sin 2a - f 
2 w  

= O  otherwise . 
Here Qlp,,,(f; fo) and Ql/z,,,(f; fo) are  the  transforms of 
the  functions b ( t )  and c ( t )  of Appendix  A  while the eim 
are  random variables  described in Section 5. If we take 
the expectation of Q*( f ;  fo) and  operate  on  the result  as 
we did the second term of ( 5 . 3 )  we get 

E{Q*( f ;  fo) >=et!; f d  + ( 1 / 2 W ) k o { w ( t )  I/3Nl2 

where again ko and N 1  are  constants described in Section 
5. Thus with the  quantization of the weighting functions 
the spectral  window  does not reject more  and  more 
strongly  as one moves away from  the  main lobe, but 
rather  there is an average  limit to  the  total rejection 
attained anywhere in  the  frequency range. This  is illus- 
trated  in Fig. E. 1 .  The  error  introduced by this  quantiza- 
tion (i.e., the variance  in the estimator P ( t ;  f o )  ) is not 

Figure E.1 

A 
I I 

- W  - f0 

A- 
I , f  

f0 W -  
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reduced by the averaging  procedure  which  produces 

The  quantization of the sample  time function  has  the 
P ( f 0 ) .  

same effect as  sampling the  function 

x*(t) = x ( t )  +e3(t), 

where e3 ( t )  is independent of x ( t )  , has the  uniform dis- 
tribution described  in Section 1.5 and a uniform power 
spectrum  from - W to W(At = sampling  period = 

1/2W).  The power spectrum of x* ( t )  is 

P * ( f )  = P ( f )  +Var(e3)/2W. 

Thus we are effectively looking at a  power spectrum 
which is the  one we are interested  in  plus  a uniform noise 
spectrum.  Since x ( t )  has a much greater range  than 
e3( t ) ,  if x ( t )  is normally distributed then x* ( t )  will be 
approximately  normally  distributed. Thus  the  error in 
estimating P ( f )  will be given by the discussion of Sec- 
tions 3 and 4. This sample  time function  quantization 
will contribute to the  dynamic  range limitation  described 
in  Section 5 since the confidence limits on  the estimation 
of P*(f) (and hence on  the estimation of P ( f )  after 
removal of the  bias)  have as  lower limits, as P ( f )  ap- 
proaches  zero,  those  for  the estimation of Var(es)/2W. 
Thus  the  (mean) 2-to-variance  ratios  obtained  in  Sections 
3 and 4 do  not apply in regions  where the  magnitude of 
P ( f )  approaches P*(f). This  quantization  error, unlike 
that  for  the weighting functions, does get smaller  with 
averaging. 
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