A Direct Digital Method
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of Power Spectrum Estimation

Abstract: This paper discusses a method of digital power spectrum estimation involving the direct combi-

nation of the sample time function with sines and cosines. This treatment is in conirast to the normal

indirect digital method which proceeds through the intermediary of the autocovariance function. All the

practical design details necessary for the planning of a spectral estimation program are treated.

Introduction

Power spectra are generally estimated either digitally by
estimating the autocovariance function and taking its
Fourier transform or in an analog fashion using a bank
of bandpass filters followed by square law and integrating
devices. In this paper a digital method paralleling analog
filter bank techniques will be described. It is a direct
digital procedure (following the wording of Blackman
and Tukey!) in that it involves the direct combination of
sines and cosines with the sample time function. It has
been applied to the study of speech signals at the IBM
Research Center, Yorktown Heights, N. Y.

The general form of the procedure is as follows. We
will designate the sample time function by x(¢); from it
we will generate a digital approximation, P(¢; fo), to the
following random function:

‘/w x(t—1)w(r)exp(2njfor)dr 2.

P(t; fo) will then be sampled at a uniform rate and the
mean of these samples will constitute an estimate of the
power spectrum in the region about the point fo.

An outline of the paper is given below. Most of the
mathematical details are contained in the appendices.
Section 2 and Appendix A describe the procedures for
setting up the frequency location and resolution charac-
teristics of an estimation program. Sections 3 and 4 and
Appendices B, C, and D describe the accuracy character-
istics of an estimation program,; i.e., they give the conse-
quences of taking the mean of n samples from P(t; fo)
when the sampling period is AT. The problem of the
quantization of amplitudes is discussed in Section 5 and
Appendix E, and related to the available spectral dynamic
range. Sections 1 and 6 contain some discussion and
actual comparisons of the computational merit of the two
procedures, direct and indirect. Section 7 discusses the

speed and basic characteristics of the existing set of IBM
704 computer programs which implement the direct
procedure.

This paper is indebted to the background of spectral
estimation procedures and concepts due to Blackman and
Tukey.? In fact, this type of direct procedure is men-
tioned in Section 3 and Section B-4 of their paper but
described there as not preferable to the indirect method
in the digital case. As stated above, a discussion of this
question of preference is contained in Sections 1 and 6
of this paper.

The initial thought to use this type of procedure in
digital estimation is due to G. L. Shultz, who also wrote
the computer programs embodying the procedure.

1. Situations in which direct approach holds compu-
tational advantages over indirect

The approach which we will discuss yields complete con-
trol over the resolution and accuracy variables involved
in the estimation procedure. It makes possible estimates
of the spectrum of arbitrary resolution and accuracy at
arbitrary points throughout the available frequency
range. Because of this, it has strong computational ad-
vantages over the indirect procedure for estimation
requirements which deviate from the usual uniform reso-
lution and accuracy requirements considered in connec-
tion with the indirect procedure.
Consider the following examples:

A. An experimenter has data sampled from a time series
in such a way as to make possible frequency analysis up
to 4000 cps. However, he is interested only in the spec-
trum from 2000 to 3000 cps. If he uses the indirect
approach, there is no way he can calculate only that part
of the autocovariance function which yields frequency
estimates from 2000 to 3000 cps. He must calculate the
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same autocovariance function he would need for the
estimation of the entire spectrum.

B. An experimenter is studying a phenomenon such that
his requirements for frequency resolution and accuracy
differ from the low-frequency region to the high. Again
if he uses the indirect approach he must calculate that
autocovariance function which will meet his most strict
resolution and accuracy requirements everywhere, and
hence, which will probably (with the combinations of
spectral estimates) exceed his accuracy requirements in
most places.

C. An experimenter wishes to look “sequentially” at the
spectrum, viewing certain regions with increased resolu-
tion and accuracy based upon what he has thus far seen.
Again, this cannot be efficiently done indirectly.

We will return to this question with some specific cal-
culations in Section 7.

2. Location and resolution characteristics of spectral
estimation procedure

We are, in this and following discussions, considering a
stationary random process with a sample function, x(t),
and a two-sided power (or variance) spectrum P(f).
This spectrum is two-sided in that it is defined over posi-
tive and negative frequencies with P(—f) =P(f). In our
analysis we will be dealing exclusively with this two-sided
spectrum P(f); however, we will normalize our estimates
so that they properly estimate the one-sided power
spectrum

P.(f)=2P(f) for |f|>0,

=0 otherwise .
Further we are assuming that x(¢) is such that
E{x(1)}=0

and that x(¢) is limited to frequencies less than or equal
to W; i.e., that

P(f)=0 for |f|I>W.

In Appendix A we develop, from x(¢), a random
function

P(t; fo) =u2(t; fo) +02(t; fo)

—(1/2w § x(t—m/2W)w(m/2W)

m=-M

cos(2nfom/2W) }2

+{1/2W § x(t—m/2W)w(m/2W)

m=-M
sin(2nfom/2W) )2 .

The expected value of P(¢; fo) represents a look at the
spectrum P(f) through a “spectral window” (in the sense
of Blackman and Tukey!) whose shape is determined by
w(t) and whose location is determined by fo. It is a set
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of these quantities
{E P(t; foi) }

which we are going to estimate. In the discussion below,

AN =/ w(t)exp(—2mjft)dt,

i.e., A(f) is the Fourier transform of w(t).

In general

w
E{P(s; fo)}-/ Q(f; fo) P(f)df .
-w

In Appendix A three cases are considered which are
sufficient to enable us to construct a set of estimates
whose expectations cover the frequency range of x(1).
These three cases are described below. These cases will
be carried through Sections 3 and 4. An appropriate
sketch of the resulting Q(f; fo) is included for each (see
Figs. 1, 2 and 3).
® Case 1
A(f—fo)=0 for f<Oandf>W.

This case will cover all estimators of P(f) other than
those at the end points. In this case

w
E{P(1; fo)} =4 / (AG—1fo) 12+ [A(F+10) |53 PCRY df
-W

® Case 2
fo=0, A(f)=0 for [fI>w.

This case covers the lower end of the spectrum.
We have here

w
E{P(s 0)}=/ [A(f) |2 P(f)df .
-w

® Case 3

fo=W, A(f)=0 for |f|>W.

This case covers the high end of the spectrum.

w
E{P(t; W)}=/ (A=W |2+ | A(f+W) |2}P(f)df

The normalization of the spectral window such that

f " 0f foydf=2

is shown in Appendix A for all three cases to be equiva-
lent to normalizing w(¢)such that

/w w2(t)dt=2.

This normalization is proper for the estimation of the
one-sided spectrum P, (f).

Using these results we are now in a position to design
the location and resolution characteristics of a spectral




estimation procedure. With the restrictions of Cases 1,
2, and 3 in mind we select a set of center frequencies
{fo:} and a set of weighting functions {w;:(#) }. These yield
a set of random functions {P(¢; fo;) } whose expectations
we are going to estimate. The functions {w;(¢)} deter-
mine the type of average obtained at the points {fo:}
through the resulting spectral windows {Q(f; foi) }.

The set of functions |A4;(f) |2 constitute the Blackman
and Tukey' spectral windows. As concerns the choice of
functions w;(t), in the operation of our programs, we
used the cosine arch

wi(t)y =%(1+cos 2=t/T;) for —T./2<t<T;/2,

=0 otherwise ,

keeping the form of the function constant and varying only
the parameter T to vary the resolution. Any of the accept-
able “lag windows” of Blackman and Tukey would serve
as good choices for w;(t). The spectral windows would
not be the corresponding spectral windows of Blackman
and Tukey, however, but their square. Thus the side lobes
would be down twice as many decibels as in the indirect
approach.? In the case of the cosine arch this means the
first side lobe is down approximately 32 db from the main
lobe peak. In this sense one can obtain a better estimate
of the spectrum using this method than using the indirect
method.

3. Confidence intervals for estimation of E{P(t; f,)} —
the Gaussian case

Once the designer has settled the question of where and
to what degree of resolution he desires estimates of the
spectrum, that is, once he has settled on a set of random
functions {P(t; fo:)}, there remains the problem of the
estimation of the set {E  P(¢t; fo:) }-

E{P(t; fo;)} will be estimated by sampling P(?; fo;)
and averaging over the samples obtained. Thus the de-
signer needs to know for each P(r; fo:) the relationship
between the sampling period, A;T, the number of samples
taken, n;, and the accuracy to which he can estimate
E{P(t; fo;) } with the estimator

!
P(foz) = l/ni 2 P(kAiT’, f()i) .
k=1

We will treat the Gaussian case (i.e., assume that
x(?) is a sample function from a Gaussian random proc-
ess), and we will derive formulas for the variance of
P(foi) as a function of the sampling and averaging pro-
cedure. We will then follow Blackman and Tukey! and
suggest that to establish confidence intervals, we assume
P(f0:) to be a multiple of a x2 variable. Thus, to establish
confidence intervals, the x,? distribution can be used with
the number of degrees of freedom, k;, given by

k,=2E2{P(fol)}/Var{P(fo,)} B (31)

that is, a x? distribution with the same (mean)2-to-vari-
ance ratio as our estimator. These assumptions and the
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resulting confidence intervals are discussed in detail in
Blackman and Tukey,! Sections 6, 7, 8, and 9.

The single-sample case

We will first derive formulas for the ratio of the (mean)?
to the variance for the case of a single sample (that is, for
P(t; fo)) for the three cases considered in Section 2 and
Appendix A. We will be using the results of Appendix B
where the variance spectrum and total variance of P(#; fo)
are derived.

® Case [
From (A.2) we have

E{P(t;fo)}=i~/ (AG—10) |7+ | AF+fo) [2YP() df

=/ |A(f—fo) I? P(f)df,

0

and from (B.4)

Var{P(t; fo)}={/w IA(f*f0)|2P(f)df} ,

o0

and hence
E2{P(t; fo)}/Var{P(t; fo) } =1 (3.2)
and

k=2E2{P(t; fo) }/Var{P(t; fo) }=2.
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Hence, regardless of the shape of P(f) we get the equiva-
lent of 2 degrees of freedom in the estimation of
E{P(t; fo) } from one sample.

® Case 2
From (A.3) we have

E{P(t;O)}=/ |4 (f) |2 P(f)df
and from (B.5)

Var{P(t;O)}=2<{ / ) IA(f)I2P(f)df}2.

Hence
E2[P(t;0)}/Var{P(#;0) } =% (3.3)
and k=1.

This could be derived directly since P(¢; 0) =u?(¢) and
under the assumption of a Gaussian process this is dis-

tributed exactly as a constant times a x:? variable.
® Case 3

This is identical to Case 2 in that again P(¢; W) =u2(t)
and u?(t) is equal to a constant times a x? distributed
variable with one degree of freedom. Thus k=1 and
(3.3) holds for P(t; W).

The general case

We will now use the results of Appendix C, where an
expression for Var{P(fy;)} is derived, to obtain formulas
for the ratio

E2{P(fu)}/Var{P(fu:)}
and the value of k; which it yields. We recall that

P(fo) =1/m S P(KAT; for) -

k=1

Applying the expression for Var{P(fs:)} given by (C.4)
we obtain

(3.4)

E?{P(foi)} - E2{P(1; foi) }
Var{P(fo:) } Var(P(z; fm)}/w 31213(7111-?;3;]‘) ®
—w THiA; 2 fo-o0

where
N. Varp(,;fo) (f) =VarP(t;foi) (f)/Var{P(t; fOi)}

is the normalized variance spectrum of P(#; fo:). Apply-
ing (3.2) we get for Case 1

E*(P(fu)}

Var(P(fo)}
1

’

2 N. Varpg g, {f— (/AT) }df

® sin?(7mATf) =2
Y ('n’n;ALTf)Z j=—o0

(3.5)
where, using (B.3) and (B.4),
N. Varp s, 1) (f) =
[ |A(g~fo) |2 P(g) |A(f—g+fo) |2 P(f—g)de
{/ |A(f—fo)]2P(f)df}
(3.6)

Using (3.4) and (3.3) we get for Cases 2 and 3
E2{P(0or W)} _
Var{P(Oor W)}
1

© sin?(rmATf) 2
) / T SN, Varswoorw (f— G/AT) }df -
ce (mmiAf)?

j=—
144 3.7)
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> N. Varpg; st/ — (/AT }f

For Case 2 the normalized variance spectrum is, using
(B.5) and (B.6), given by (3.6) with fo=0. For Case 3,
using (B.7) and (B.8), we can obtain a similar expression
for the normalized variance spectrum.

Finally, the equivalent number of degrees of freedom,
k; is given in each case by (3.1).

4. Application of results of Section 3 to design of
estimating procedures

Equations (3.5) and (3.7) in combination with equation
(3.1) and the x?2 tables yield confidence intervals for esti-
mates of E{P(1; fo;) }. However, (3.5) and (3.7) involve
the unknown spectrum, P(f), and hence, any statement
about the accuracy of an estimate must be based upon an
assumption about P(f).

® Sharp concentration of power in pass band

Let us assume first that, within the resolution band? of the
esitmator, P(f) is concentrated in a very narrow region,
narrow in comparison to the width (approximately
1/m:A;T) of the averaging filter (see Appendix C) being
used. Then in Case 1 the function

o0
2 Prospon (f—i/AT)
f=—c0
will be concentrated about 0, +1/A,T, =*2/AT,...,
and there will be no reduction of the variance through
averaging. The ratio and degrees of freedom will be the
same as for a single sample. In Cases 2 and 3 half the area




under

E PP(t:Om‘W) (f_j/AiT)

=00

will be concentrated at 0, =1/A;T, =2/A;T, ... and the
other half at =2f', *1/AT+2f, =2/AT*2f,... where
f' is frequency location of the narrow region of concen-
tration in P(f). Hence, for these Cases and this assump-
tion concerning P(f), one-half the variance may be
removed by sampling, meaning a maximum gain of one
degree of freedom.

® P(f) constant over pass band

In the second and most important case we will assume
P(f) to be constant over the resolution band of the esti-
mator. This is a quite reasonable assumption since often
the resolution characteristics of the estimators are de-
signed in an attempt to achieve it.

With this assumption P(f) cancels out of the expres-
sion for N. Varp;, (f) for all three cases (see (3.6))
and consequently, the ratios (3.5) and (3.7) involve only
the characteristics of the spectral windows. Thus, under
these circumstances k;, the equivalent number of degrees
of freedom, can be calculated for any estimator P(fo:)
from its corresponding A;T and n;.

For Cases 1 and 2 we get, from (3.6) and our as-
sumption,

0

[A(g—fo) [?|A(f—g+ o) |2 dg

{/w IA(f~f0i)[2df}

Following the procedure discussed in Appendix C, we can
define a doubled-back (or aliased) spectrum.

N. Varp ;1) (f) = =

0
N. Var"‘p(t;,o“ = 2 N. Varp(,; foi) {f“ (]/AzT) }

j= o
for |f|<1/2A,T
=0 otherwise .
Then using (3.2) and (C.5), we get for Case 1

EXP(o))
Var{P(fo:)}
1

* sin?(7mATS) % N Varr " 1d
o W{Ew - Var'p ;o {f— (/A )}If

(4.1)

and using (3.3) and (C.5) we get the same expression for
Cases 2 and 3 with the exception of an additional factor
of 2 in the denominator. Now N. Varp;s, (f) is non-
negligible for frequencies whose absolute value is less
than the width of the resolution band of the estimator.
Hence, with 1/2A;T less than this width we will have
doubling back. |A(f) |2 as a spectral window will be gen-
erally smooth with one major lobe and consequently,

N. Varp; s, (f) will have 1ts maximum at zero and drop
off smoothly to either side. Now the larger A;T is chosen,
the more severe the doubling back, redoubling back, et
cetera, becomes and the closer N. Var®p;y,, (f) ap-
proaches the uniform spectrum from O to 1/2A;T. In
Appendix C we show that for this spectrum we get the
reduction in variance expected for uncorrelated variables.
This reduction yields using (4.1) and (3.1) for Case 1

ki=2n;, (4.2)

and using (3.1) and an appropriately modified (4.1) for
Case 2,

ki=ni . (43)

Hence, it would seem desirable to select a large AT so
that 1/2A;T is very much smaller than the width of the
resolution band of the estimator and thus assure this
strong reduction of the variance. However, there is good
reason for using a small A;T since mA;T determines the
record length required, and generally there is a cost pro-
portional to the record length.

The procedure followed in planning the speech signal
estimation programs was to assume P(f) to be constant
over the spectral window (in this case a reasonable assump-
tion), then choose a small A;T such that N. Var*p ¢; 5., (f)
is approximately uniform and use the x? confidence limits
where k; was determined from (4.2) and (4.3). For the
cosine arch weighting function

wi(t)=%1(14+cos(2xt/T:)) for —Ti/25t<Ti/2
=0 otherwise ,

we used

AT=2T;/3. (4.4)

Rough checks of the variations observed in the estimates
of spectra of noise-like speech sounds confirmed the x?
confidence intervals.

Case 3 is special since in this case N. Varp(; w)(f) 1s
not concentrated around zero only but also around the
points =+ 2W. Thus the doubling back of N. Var*s(; w) (f)
probably will not be as uniform as the comparable quan-
tity for Cases 1 and 2. This might mean a greater reduc-
tion in the variance or it might mean a smaller one.

® Periodic sample function

The estimation problem when x(¢) is a sum of sinusoids
and particularly when x(t) is periodic is discussed in Ap-
pendix D.

5. Weighting and sample time function quantiza-
tion and spectral dynamic range

So far we have discussed only the time sampling aspects
of the digital calculation. We will now discuss the ques-
tion of amplitude quantization of the quantities involved.
We want to know how many levels are required for the
quantization of the sample time function and for the
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weighting functions of the estimators; that is, when we
represent these quantities digitally what are the conse-
quences of a choice of so many bits for the representation
of each? We will see below that these choices determine
the dynamic range available for spectral estimation. The
question is an important practical one since many of the
engineering and computational problems involve diffi-
culties and costs strongly related to the number of levels
of these representations. Hence it is frequently important
that no more bits than necessary be used for their repre-
sentation.
In Appendix A we define a random function

P(t; fo) ={1/2W % x(t—m/2W)w(m/2W)

m=—M

cos(2nfom/2W) }2

+{1/2W % x(t—m/2W)w(m/2W)

m=—M

sin(2nfom/2W) )2,

which is the basis of our estimation of P.(f) at the point
fo. In actuality, one doesn’t evaluate exactly this but
rather something with further random contributions due
to the quantization of the functions involved.

We will assume the weighting functions to be

w(m/2W)cos 2nfom/2W) +eim
and
w(m/ZW)sm(ZTrfom/ZW) +eam ,

where ey, m=0, =1,..., £M;es,, m=0, £1,... +M
are all independently and identically distributed random
variables with a uniform distribution from —K/2N; to
K/2Ny; that is, that ey, has a density

fim(x)=N{/K for —K/2N,<x<K/2N,,
=0 otherwise ,

where K-—=max|w(t){. These weighting functions are
quantized into 2N;-+1 levels; i.e., that they are repre-
sented by log,N, bits plus a sign.

Further we will assume the sample time function to be

x(t—m/2W) +ezm ,

where esn,; m=0, £1,..., =M are independently and
identically distributed with density

f3rrl(x)=1 for —_%st%

=0 otherwise .

x(t) is quantized into 2N,+1 integer values 0, =1,
+2,..., =N, and we assume the variance of x(¢) is
controlled so the clipping which results from placing the
sample function in the range (—N.—%, N2+%) is negli-
gible. We also assume that e3), is independent of e;;, and
eq; for all i, j, k and also that ey;, es;, and es; are inde-
pendent of x(t—m/2W) for all i, j, k and m.
Hence, P(t; o) becomes
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P:i:(,; f0)={1/2W % [x(t—m/ZW)-l—egm]

m=-M

[w(m/2W)cos(2afom/2W) +e1]}?

+{1/2w § [x(t—m/2W) +esm]
m=—M

[w(m/2W)sin(2nformn/2W) +-eam] }2

={1/2W % x(t—m/2W)Yw(m/2W)

m=-M

cos(2nfom/2W) +x(t—m/2W)e1m

+63mW(m/2W)COS(27Tf0m/2W) +e3melm}2

+{1/2w g“ x(t—m/2W)Yyw(m/2W)

m=-M

sin(2aform/2W) +x(t—m/2W)eam
+ezmw(m/2W)sin(Rufom/2W) +esmeam }*
(5.1)

Now if the power within the resolution band of the esti-
mator is large, then the first terms within each of the
brackets in (5.1) will dominate and the discussion of
Sections 3 and 4 on confidence intervals for the esti-
mators, P(fo;), will be valid. However, as E{P(t; fo:) }
becomes small these confidence intervals become more
and more inaccurate (too narrow) because the effects of
the quantizing errors become non-negligible. Eventually
the variation caused by this quantizing will place a lower
limit on spectral averages which can be measured and
thus determine the dynamic range available for spectral
estimation.

To solve this problem completely one would have to
study the small-signal distribution of the estimator and
obtain exactly the pattern in which the confidence inter-
vals change as the signal power within the resolution band
decreases. We have not done this.* Instead, we took the
expectation of P*(f; fo) and obtained an approximate
lower limit for spectral estimates at the point where they
equal the expected value of the contributions due to the
quantization; that is, at the point the expected “signal
power” out of the estimator is equal to the expected quan-
tization “noise power.” This was felt adequate for plan-
ning purposes—a feeling which was confirmed empirically
through actual operation of the program.

If we expand (5.1) and make use of the independence
properties of the quantization error random variables,
we get

E{P*(t; fo) }=E{P(t; fo) }
+(1/2W)2(2M +1) Var(x) Var(ey)
+(1/2W)2(2M +1) Var(x) Var(ez)

F(1/2W)2 Var(es) S w2 (m/2W)
m=-M

cos?(2nfom/2W)




+(1/2W)2 Var(es) ﬁ w2 (m/2W)

m=-M
sin2 (2w fom/2W)
+(1/2W)2(2M +1) [Var(e;) Var(es)
+Var(ez)Var(es) ] . (5.2)

The last term of (5.2) we will neglect. If we combine the
fourth and fifth terms using the approximation

12w é wz(m/ZW)z/‘oo we(t)dt=2

m=-M )
and combine the second and third terms, we get
E{P*(t; fo) } =E{P(t; fo) } +2(1/2W)*(2M + 1)
Var(x) Var(e;) + Var(es) /W.
(5.3)

The first term of (5.3) is the quantity we are interested
in measuring. The second and third terms represent the
contributions due to the quantization.

We will now work on the second and third terms of
(5.3) to put them in a form more suitable for discussion
of the dynamic range. Consider first the second term

2(1/2W)2(2M +1)Var(x) Var(e,) =

(K1/N1)?
12

{max|w(t){}2

=P.(HH(1/2W)(2M+1) —
1

(Var(x) /W)Y(1/2W)(2M+1)

where

PiD=1/W / P df

=average power density.

To a good approximation

(1/2w) (2M+1){max|w(t)I}szo{w(t))fw w(t)dt

where

(w1} S Of w(D)max(w(0))
/ w2(r)dt

Hence -

2(1/2W)2(2M +1) Var(x) Var(e1) =P, (f) ko{w(2) } /6N4>.

Now consider the third term. For any sample function
x(t) to be quantized within the region (—Nz—4%, Nz +1%)
its variance must be such that Var(x) <(N2+4%)2= N2,
Hence depending upon the distribution of x(z) there
exists a constant k* such that whenever Var(x) =k;N,?
and k; <k* then the clipping which results from limiting
x(t) to the range (—N:—%, N.+1%) is negligible. Since

we are assuming this to be the case, the third term of
(5.3) becomes

Var(es) /W=1/12W=(1/12W)Var(x) /k:N,?

1 Var(x)
12k1N? w

f

PP /(12k:N,2) .

Combining these two reductions we get

E{P*(t; f0) }=E{(P(t; fo) } + P.(D)

ko{w()} + 1
6N 12k,N,2 |°
The first term is the expected signal power, the second the
expected quantization noise power.

As was stated above, we will consider that the lowest
meaningful estimate is given approximately by

ko{w()} 1
6N,2 12k;N,? ] S

E{P(1; fo)}=P+(f)[

From this expression it is evident that, if possible, one
should spread the bits for representation among N; and
N. s0 as to make the terms equal inside the bracket on the
right. We will consider dynamic range in terms of the
lowest output available relative to the average power
level, P,(f). The usual definition involves the comparison
of lowest to highest spectral estimates but it necessitates
an assumption concerning the shape of P,(f). The con-
sideration in terms of lowest to average power level is
conservative. From (5.4) we can define

ko{w(t)} 4 1
6N,2 12kNo2 |’

F(Na, Ne; ko, k1) =— 10 logm[

The expression f(Ny, N2; ko, k1) is the db dynamic range
(lowest estimate to mean power level).
For purposes of illustration consider Ny=N,=27%, then

1

[ko{w(t)} + 1 ]
3 6k,

+ (2rn+1)log 2]

£(27, 27; ko, k1) =10[loguo

is the db dynamic range as a function of the number of
bits, plus a sign, used in the representation of both the
weighting functions and the sample time function.
(27, 2%, ko, k1) is plotted in Fig. 4 for

ko{w(t)} =ko{cosine arch}=8/3
and
ki=1/9,

which is a correct k; for a normally distributed time func-
tion with the cutoff point out three standard deviations.
If the general shape of the spectrum is known, then the
ratio between the peak of the spectrum and its average
can be determined and this estimate of the dynamic range
can be increased by that amount. As it stands, it is con-
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servative, a good characteristic for a planning procedure
to possess.

This average level, due to quantization, was checked
empirically on sinusoidal and speech inputs and found to
describe accurately the lowest levels of the spectra. Also
the fluctuations of these lowest levels, with a fixed input
signal, convinced us that spectral estimates were essen-
tially irretrievable if they were significantly smaller.

6. Some comparisons of number of multiplications
required for direct and indirect methods

In Section 2 we stated that the direct approach in certain
situations had considerable computational advantages
over the indirect approach. In this section we will draw a
comparison of the number of multiplications required in
both cases for two particular sets of estimation require-
ments. In the discussion below we are assuming P(f) is
constant over the spectral window.

First, however, it should be pointed out that the sample
function duration requirements for the two cases are ap-
proximately the same. If we let Af be the half-power
width of the spectral window and k be the number of
degrees of freedom then (from Blackman and Tukey?)

duration (indirect case) =(k/2+1/3)/Af.

If for the direct case we consider the cosine arch weight-
ing function of length T and let AT be the sampling period
for P(t; fo) we get

duration (direct case) =T+ (k/2—1)AT
k+1
=T+ (k/2—1)2T/3=T (——i—)

=2(k/2+1/2) /Af.

We are, in this second derivation, assuming that AT is
selected as suggested by Eq. (4.4) and using the fact that
the half width of the spectral window is given by

Af(direct case, cosine arch) =3/2T. (6.1)
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In the indirect case letting W==1/2At be the frequency
range compatible with the sampling period, Az, for x(t),
one obtains (Blackman and Tukey')

number of multiplications (indirect case)

= ———4W2 (k/2+1/3)
RTSE

=2W2k/(Af)2. (6.2)

In the direct case with estimators P(fo;) with correspond-
ing degrees of freedom k; and spectral window half-
widths Af; and assuming cosine arch weighting functions,
we get using (6.1),

number of multiplications (direct case) =>k;T;/At
i

=3WDki/Af.
(6.3)

The first set of estimation requirements we will con-
sider is the one for which the indirect method is ideally
suited, namely, constant resolution and accuracy require-
ments throughout the available frequency range. For this
set and the direct case we get

number of multiplications (direct case) =3W2k/(Af)?.

Comparison of this with (6.2) reveals that in this situa-
tion the direct case requires half again as many multipli-
cations as the indirect case.

As a second set, for which the direct method is more
efficient, in our study of speech the following require-
ments for spectral estimation were among several speci-
fied:

a) resolution of 50 cps from 75 to 575 cps.

b) approximate 1/6 octave resolution from 575 cps to
16,000 cps.

¢) constant accuracy over the frequency range.

For this set of requirements we get from the applica-
tion of Eq. (6.2) with W=16,000 and Af=50

no. of multiplications (indirect case) = 102,000%.
Applying equation (6.3) we get
no. of multiplications (direct case) =16,000k .

Thus in this situation the direct case requires less than
one-sixth as many multiplications as the indirect. It is true
that we get more resolution and accuracy in the indirect
case but it is unneeded resolution and accuracy.

One might argue that by processing the sample time
series more than once (first at a low sampling rate to
obtain estimates in a low frequency range, then at a
higher sampling rate to obtain estimates in a higher fre-
quency range, and so on) one could greatly reduce the
number of multiplications required in the indirect case.
This is true, but by this same technique one could also
greatly reduce the number of multiplications required in
the direct case.




7. The 704 computer program embodying proce-
dure and its application to speech studies

This direct digital procedure has been embodied in an
IBM 704 EDPM program and applied to the study of
speech at the IBM Research Center. The input equipment
and the application are described in an IBM Research
Report by G. L. Shultz.® This report also contains sample
spectra produced by the method. The IBM 704 programs
were written by G. L. Shultz. The program presently used
was written for a 32,000 word core memory machine. It
stores the weighting functions within the core memory.
An earlier program written for an 8,000 word core mem-
ory machine stores the weighting functions on tape. Both
programs perform the multiplications using a table look-
up procedure at approximately ten times the speed of
ordinary machine multiplication.

The following formula gives the time for the 32,000
word core memory machine to obtain a set of spectral
estimates:

K174

n;
computing time = —— 3 —— seconds,
puting 3000 = Ay

where
Ai(f) =half width of it? estimator
n;=no. of samples used in " estimator.

We are assuming that W is related to the sampling period,
At, for x(t) by W= (1/2At); and that cosine arch weight-
ing functions are used.

Appendix A: Construction of an estimator with
given location and resolution

Let us consider a stationary random process with a sam-
ple function x(¢) and a two-sided power (or variance)
spectrum P(f). We want to estimate the one-sided power
spectrum

P.(fy=2P(f) for f20
=0 otherwise ,

of the process in the region about f, through a digital ap-
proximation to the following random function

2

/ x(t—7)w(r)e2™o7dr

L]

{/w x(t—7)w(r)cos 2nfordr }2

+ {/w x(t—71)w(7)sin 2xfordr }2 .

This digital approximation we will call P(¢; fo). In this
Appendix we will determine E{P(t; f5) } under conditions
of interest for spectral estimation.

Let w(¢) be an even function and let it have a Fourier
transform A(f). Then A(f) will be real and even. We

(A.1)

A(f)

Figure A.1

want to consider functions w(¢) such that 4(f) is a typi-
cal spectral window (in the sense of Blackman and
Tukey!); that is, we want 4(f) concentrated with a pre-
dominant main lobe about f=0 as indicated in Fig. A.1.

We will discuss the first term on the right-hand side of
(A.1) and carry this term to the sampled case before
considering the complete expression. Hence, consider
w(t)cos 2wfot. It has a Fourier transform A(f—fo)/2
+A(f-+f0)/2; i.e., it has a frequency composition cen-
tered about f, whose shape is determined by A4(f). Now
consider

i(t) =/°° x(t—71)w(s)cos 2nfordr .

The power spectrum of #(t) is
Pi(f) =3 A(f—fo) +A(f+1o) |* P(f)

and

E{ﬁZ(t)}=/°° Pa(f)df

=/°° HAG—1fo) +AG+f2) |2 PP df -

Now we will assume x(¢) to be limited to frequencies
in the band from —W to W, then x(¢) is determined by
its samples taken every 1/2W in time and®

x(t) = § x{n/2W)sinc 2W (t—n/2W) .

Conside>r

b(t)= S| w(n/2W)cos 2nfo n/2W sine 2W (t—n/2W) .
It has a_transform7

B(f) =% 3 (A(f—fo—n2W)

+A(f+fo—n2W)} for

=0 otherwise .

[fl<w

Finally consider

u(t) =[°° x(t—7)b(s)dr.

Substituting the above expansions for x(1—7) and b(7)
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and using the following property of the sinc function

/ sinc 2W t——n—
o 2w

sinc 20 { t— " Vi — 5
2W 2w

we get

w(t)=1/2W S x(t—n/2W)b(n/2W)

n=—o0

=1/2W § x(t—n/2W)w(n/2W)cos 2xfo

N=-—00

which is the sampled approximation to #i(¢) used in the
digital calculations. The spectral density of u(¢) is

Puf) =31 S A(f—fo—n2W)

Nn=—00

+A(f+fo—n2W) |2 P(f) for |fl<W

=0 otherwise ,
and

Ef{ur(0)}~ /

P.(f)df

w

- H 3 A(—fo—n2w)

~w n=-c0
+A(f+fo—n2W) |2 P(f)df .

By a similar argument

V() =1/2W S x(t—n/2W)w(n)2W)sin 2xfo n/2W

n=-—00

has the spectral density®

Py(f) =1 3 —jA(~fo—n2W)

fn=—0o0
F+jA(f+fo—n2W) |2 P(f)
=0 otherwise ,
and

E(v*(f)}= / * P

o0

w L]
- 3 3 —jA(f—fo—n2W)

W n=-o0

+iA(f+fo—n2W) |2 P(f)df .

We now define the random function
P(8; fo) =u*(t) +v*(1)
M
={1/2W 3 x(t—m/2W)w(m/2W)

m=—M

150 cos 2rrfo m/2W 2
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+{1/2W % x(t—m/2W)yw(m/2W)
m=- M

sin 27fo m/2W}2

whose expectation we are going to estimate.

We have restricted the summation from —M to M
since in practice we will select functions w(¢) of finite
nonzero extent.

Since we are interested in spectral estimation, we are
interested in functions A (f) whose width is small relative
to W. Hence, we can use the approximations

S A(f—fon2W) =A(F—fo) +A(f—for 2W)
and

S A(f+fo—n2W) =A(f+fo) + AU +o2W) .

n=-0

Thus

w
E{uz(t)}=/ A +fo—2W)+A(f—fo)
-w

+A(f+fo) +A(f—fo+2W) |2 P(f)df

and
w
E{vz(t)}=/ }HiA(f+fo—2W) ~jA(f—fo)
W

+jAd(f+fo) —jA(f~fo+2W) |2 P(f)df .

In the sampled case we have a doubling back of A(f) at
W and — W in addition to the usual unsampled doubling
back at zero.

We have in mind estimating the one-sided spectrum in
the region about the point f, by estimating

E{P(t; fo) }=E(u*() +v* () } =E{u* () }+ E{v*() } .

We will examine three cases which are sufficient to enable
us to design a set of region estimates with expectations
covering the entire spectrum.

® Case 1

We first consider the case where f, is such that the follow-
ing approximations can be made.

A(f+fo—2W)=0 lfl<w
A(f—fo+2W) =0 [fl<w
A(f—fo) =0 <0
A(f+fo) =0 =0

Under these conditions

E{P(t; fo) }=E{u*(1) +v*(1) }

w
=%/ (AU —fo) |2+ 1A(F+1o) [2YP(f)df .
v (A2)




® Case 2

Secondly consider the case where fo=0, then with the

approximations
A(f—2W)=A(f+2W)=0 for [fISW

we get
w
E{P(t;O)}=E{u2(t)}=/ AN 12 P(Hdf . (A3)
-w

® Case 3
Lastly consider the case where fo=W, then

E{P(t; W)}=E{u*(1)}

w
=/ (A=) |2+ | A+ W) |23P() df .

Now in each of these we have an expression of the
form

w
/ O(f; fo)P(f)df

w

and to estimate P,(f) at the point fo we want Q(f; fo) to
be such that

w
f Q(f; fo)df=2. (A4)
-W

This is 2 rather than 1 because P, (#) =2P(f). If we apply
the restriction (A.4) to the above three cases, and use
Parseval’s theorem, we get the following common require-
ment on w(t),

/w w2(t)dt=2.

Appendix B: The variance spectrum of Plt; f), the
Gaussian case

In this Appendix we will derive the variance or power
spectrum of P(t; fo) for the three cases considered in
Appendix A and Section 2 assuming our random process
to be Gaussian. We have two functions

u(t) =/w x(t—7)b(7)dr

'v(t)='/kotJ x(t—1)c(7)dr,

where b(?) has the Fourier transform
@, (f) =3[A(f—fo+2W) +A(f+fo)
+A(f—fo) +A(f—2W+fo)] for [fI<W
=0 otherwise ,
and c¢(¢) the transform
Do (f) =3[ —jA(f—fot+2W) +idA(f+fo)
—jA(f—fo) +iA(f+fo—2W)] for [f|<W

=0 otherwise .

Now the variance spectrum P(t; fo) =u?(t) +v2(¢) is the
Fourier transform of

E{(u?(t) +v2(1)) (u2(t+7) +v*(t+7))}
—E2{u? (1) +v*() }
=FE{u2(t) YE{u?(t+7)} +2E*{u(t)u(t+1)}
+E{uz (1) YE{v2(t+7) } 4+ 2E2{u(t)v(t+7)}
+E{v2(t) YE{u?(t+7) }+2E*{(v () u(t+7) }
+E{v2(1) }E{v2(t+7) }+2E*(v(t)v(t+7)}
—Ex{u2() +0%(0) }
=2[E2{u()u(t+7) }+E2{u(t)v(t+7)}
+E{ (v(Du(t+7)}+E{v()v(t+1)}] .
(B.1)
This equality is established using
E{wxyz}=E{wx}E{yz} + E{wy}E{xz}
+E{wz}E{xy},
a relation holding for normally distributed variables.

Taking the transform of (B.1) we obtain

Varp i, 1y (f) =20 @u(F) |2 P(f) #|2u(F) |2 P(f)
+0,(f) B, () P(f) * 2u(f) @ () P(f)
+@u () Pu(HP(f) * Do (f) Du(f)P()
+1®.() |2 P(£)%|B:(H ]2 P(f)] .
—
Here * indicates convolution and ®(f) is the complex
conjugate of ®(f). For a method of obtaining these con-

volved transforms see Davenport and Root,? page 182. We
will below consider the three cases treated in Section 2.

o Case 1
For this case we have

A(f—1o) A(f+fo)
2 2

(I)u(f) =

and

A(f— A(f+10)
Bu(f) =i 2"’) +i (zf“

where we are assuming

A(f—f)=0 for f<O0 and f>W
A(f+f)=0 for f>0 and f<—-W.
Hence we get

[A(f—fo) |2 + [A(f+fo) |2

[@u(f) |2=]®u()) ]2= n "

and
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— o
Dulf) o (f) = =20 () (/)
s AG=f R AGfo) |2
=—j +7 .
4 4

Substituting these expressions in (B.2) after expansion
and cancellation we obtain for the variance spectrum of

P(t; fo)

Vare 1, () =%/

{14(g—fo) 2|4 (f—g+fo) |2

+1A(g+fo) || A(F—g—fo) |2)
P(g)P(f—g)dg

=/ [A(g—fo) 2 P(g)|A(f—g~+fo) |2 P(f—g)dg .

(B.3)

This latter equality follows from the commutivity of the
convolution. The variance spectrum of P(f;f,) is the
envelope spectrum (that is, the low frequency portion)
of the spectrum after square law detection of the output

[A(f—1o)|?
—

of a filter with a power transfer function

The upper frequency portions, those due to the sum
terms, have been removed.1® This is the reason for using
u?(t) +v2(¢t) rather than just u2(t). With one additional
computation we insure the reduction of the variance by
a factor of two.

The total variance is given by

Var(P(1; fo) } = / ) / " A(e—1fo) 2 P(g)

x |A(f—g+fo) |2 P(f—g)dgdf .
Letting fy=g and fo=f—g,
we get

Var(P(r; fo)}={ / CAG— o) |2 P(fl)dfz}

oo

x{/w |4 Gatfo) I2P(fz)dfz}>

-{ ) IA(f—fo)lzP(f)df} . (B4)

& Case 2

We are considering fo=0 and assuming
A(f-2W)=A(f+2W)=0 for |f|<W.
We thus have

@u(f) =A(f)

,(f)=0.

Hence substituting in (B.2) we get for the variance spec-
trum of P(t; 0)
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VafP<t;0>(f)=2/ |A(g) |2 P(&)|A(f—2) |2 P(}—g)dg

) (B.5)
and for the total variance

Vf=1r{1’(t;0)}=2{/m l4(f)]? P(f)df} . (B.6)

® Case 3
Now let fo=W, hence

DI (f)=A(f-W)+A(J+W) for |fI<W
=0 otherwise

and @,%(f)=0.

Substituting in (B.2) we get for the variance spectrum of

P{; W)

Vat s () =2 / 2.7 (812 P(8) |27 (1—8) 2 P(f—8) df

—0
(B.7
and integrating we get the total variance as

w
Var{P(s; W)}=2/ {lA(GF—=W) |2+ |A(f+W) |2}P(f)df .
-w
(B.8

In this last case the high frequency content remains and
Varp(; w) (f) contains content around *=2W as well as
around zero.

Appendix C: The variance of P(fo:)

In this Appendix, we are going to derive the variance of
i

P(foi)=1/n: 3 P(KAT; foi)
k=1

our estimator of E{P(t; foi)}. We will first consider the
problem in general terms and then obtain the required
particular expressions,

Suppose we have a stationary random process with a
variance spectrum P,(f) and a sample function s(¢).
Further suppose that s(¢)is sampled with a sampling
period AT. We are going to derive the variance of

s

§=1/nv s(IAT)

k]

[}

in terms of n, AT and Py(f).

A random process with the same total variance as § can
be generated from s(¢) by the following two operations:

1) A sampler produces the function §(¢) defined by
()= S s(r)8(t+iAT+6) where 0 has the uniform
i=—o0

distribution!* from 0 to AT.




2) The output of the sampler is then passed through a
filter whose weighting function is

W()=1/n for —nAT/2<t<nAT/2

=0 otherwise .
The result of these two operations, the output of the filter,
we will call g(¢). This set of operations is illustrated in
Fig. C.1.

We want to express the variance of g(¢) in terms of the
variance spectrum Pi(f) of s(¢). This will be accom-
plished through the following steps:

1) The variance spectrum G(f), of 5(¢) will be de-
rived in terms of the variance spectrum, P;(f), of s(¢).

2) G(#) will be combined with the response curve of
the averaging filter to obtain the variance spectrum,
H({f), of g(t).

3) The integral of H(f) will be taken, this quantity
being Var(5).

The function §(¢) is the function

c(t)= > 8(t+iAT+8)

i=—o0
modulated by the input, s(¢z). In terms of its Fourier
expansion

C(t) —_ § equr(tw)iAT/AT .

-

The autocovariance function of §(¢) =s(¢)c(t) is
E{s()c(®)s(t+7)c(t+7)}

—E(s()s(t+7)) - (1/(AT)2)E{ 3 eleattrorisar

i=—c0

o
. 2 e;’zr(t+-r+e)k/AT}
k=—o00

—E{s()s(t+7)} - {1/(AT)?)} § i2wTi/AT

i=—c0

—E(s(t)s(t+1)} - (1/(AT)2} - AT S 8(t—iaT) .

iz

Taking its Fourier transform we get

G(H)={1/(AT)}P,(f) + S 8(f—i/AT)

i=—00

oo
—{1/(AT)?} 3 Pu(f—i/AT).
i=-o00
(For a “similar” argument see Davenport and Root,?
pages 263-4.)
The filter characteristic of the averaging function is the
Fourier transform of the weighting function, W(r), or

sin 7nATf

wnATf
Consequently the variance spectrum of g(t) is
sin?(wnATf)

H(f)= ‘(Tf)z @EwP s(f+i/AT)

S(t) —=
‘L<

AT i
T T
T ! | e 1 : :
= ) i : : i i
@ NN DS R R S
&
TIME, t —>
Figure C.1

and the total variance is given by

Var(s) = / * H(df

\\\\\\ { z Py(f+i/AT)}df . (C.1)

_ »© sin2(wnATf)
e (@nATH 5

00
The expression T(f) = 3 Py(f+i/AT) can be written

for —1/2aT<f<1/2AT
1/2AT<f<3/2AT
—3/20T<f<—1/2AT

T(f)=P(f)
=PF(f—1/AT) for
=P*(f+1/AT) for

where P,*(f) is the doubled back or aliased spectrum

1
with the doubling back at + SAT Hence we can write

o0 2(7nAT, *
Var(s) / S“(’ (nAan): ) (S Pe=i/aD)df .
(C.2)

Now if we choose AT so as to double the spectrum back
such that P,*(f) is approximately constant, that is such
that

Ps(f)=ATe? for —1/2AT<f<1/2AT
=0 otherwise ,

where o2 is the variance of s(¢) then integration of (C.2)
yields

Var(5) =o%/n
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as, of course, it should since a constant spectrum means
uncorrelated samples.

Applying (C.1) to

P(fo)) =1/m kz P(KAT; for)

1

we get
®  sin?(7mATf)
Var{P - _—
ar{P(fo) } /:w AT
- 3 Vare s (f—i/AT)df (C.3)
j=—c0

Further if we define a normalized variance spectrum as
N. Varp g, 10 (f) =Varp s, 1, () /Var {P(¢; foi) }

then (C.3) becomes

®  sin2(7r;A:TS)

Var{Pfo;) } =V ;
ar{Pfo;) } =Var{P(t fm)}'/:w (wnidTf)?

© 3 N Varpg s, (f—i/AT)df . (C4)

j=—o

Finally defining a doubled back N. Var},. i (), as we
did previously a doubled back P,*(f), (C.4) becomes

»  sin?(7mATf)
Var(P(fo) } = o) | CmadhT
ar{P(fo:) } =Var{P(t; fo )}[w (7niAiTS)?

© 3 N. Varbs, 1) (f—i/AT)df . (CS5)

j=-o

Appendix D: The sampling and estimation problem
for a periodic input signal

We will in this Appendix analyze the sampling problem
for Case 1 of Section 2 assuming the sample function,
x(t), to be a sum of sinusoids. The work will parallel
Appendices B and C. Consider

x(t)= é (Di/Z)ei¢ie27ijit

1=-%

where
Di=D., ¢i=—¢.

Again as in Appendix A we define

and fi=—f:.

u(t)-—*-'/‘Oo x(t—7)b(7)dr

=% i {A(fi—fo) D;eldiermifit

i=1

+A(—fi+fo) Die-idie-2mifit} .

Expressing the expansion in terms of cosines and phase
angles and squaring we obtain

w2 (1) =3{ S A(fi—fo) D cos(2fit+di) 2

i=1
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|4(f—fo) |2
2

Similarly
(1) =f°° x(t—7)c(7)dr

n
=} 3 {A(fi—fo) Diel (9ir™/D g2mifit

i=1
+A(—fi+fo) Die- (#i-m/2 g-2mifit}

and

n
v2(t) =#{ 3 A(fi—fo) Di cos2nfit+di—7/2) }*.

=1
Adding u?(t) and v%(#) and performing some trigono-
metric manipulation we get

P(t; fo) —E{P(¢; fo) } =u?(2) +v2(¢) — E{u?(t) —v2(t)}
=33 A(fi—fo) D:iA(f;—fo) Dj

<]
>0

cos[2x(fi—f)t+¢i—¢;] . (D.1)

Thus again here as in the case of Gaussian noise the dif-
ference terms are the only ones present, the others have
been cancelled out in the summation of u?(¢) and »2(¢).

Now if we have a periodic signal of fundamental fre-
quency, v, then (D.1) will yield a number of terms of
frequency v, a number of terms of frequency 2v, etc.;
over a range corresponding to the width of the interval
on which A (f) is not negligibly small. The total contribu-
tion to the power “spectrum” of P(f; fo) at the points
v, 2v, ..., will depend upon the relative phases of these
terms. Hence as much as can be said in general is that the
power “spectrum” of u%(t) +v2(t) when x(¢) is periodic
with fundamental frequency will have spikes at the points
v, 2v, 3v, ... the value of the spikes depending on the
phasing of the harmonies but being forced to zero as the
frequency increases by the character of A (f).

We will now treat the problem of sampling and averag-
ing P(t; fo) to obtain a good estimate of E{P(t; fo)}. If
the fundamental frequency is such that there is only one
harmonic in the pass band; that is, if the fundamental is
larger than the interval over which A4 (f) is non-negligible,
then P(t; fo) will not vary and only one sample will be
required. The value of P(t; f) will not be the power of
this harmonic but the product of this power and

at the position of the harmonic.

If more than one harmonic lies in the pass band then
P(t; fo) will vary and this variance can be reduced by
sampling and averaging. The spectrum of the sampled
P(t; fo) has the same repeated form described for sam-
pled noise spectra in Appendix C; that is, if Varp 4, 1, (f)
is the spectrum of P(t; fo) then

(1/AT)2 § VarP(t;jo) (f_]/AT)

j=—o0

is the spectrum of P(1; fo) sampled at a sampling period
AT. Also, as in Appendix C, averaging over n samples




sin2 (xnATF)
& (xnaTh?

Vunp(“ fo) {f)

Figure D.1

sin2 (vnATF)
(xnaTf)?

Vorp(';,o) (f +1/4T) Vurp(",,o) (f-1/AT)

. I/IAT
W—'y f

Figure D.2

corresponds to the passing of the sampled P(¢; f,) through
a filter whose pass band has the shape

sin?(7nATYf)

AT)?
(aT) (mnATf)?

Now in the design of a sampling procedure one must
select the variables AT and n. In our use of the program
under conditions of periodic signal input these were
selected as follows. We knew some bounds for the funda-
mental frequency. The quantity nAT was set large enough
so that the response of the averaging filter

sinz(wnATY)

(an? (wnATf)?

was down to the desired amount in the region where the
fundamental, v, was known to lie. For example, in its first
side lobe, sin2x/x? is down, at a minimum, approximately
13 db, in its second side lobe approximately 17 db. In our
experience with periodic speech signals the placing of the
fundamental in the first lobe resulted in variations in our
estimates of E{P(t; fo) } of about 1 db. This selection of
nAT is illustrated in Fig. D.1 where the fundamental has
been placed in the first side lobe of the averaging filter.
Now with nAT selected, we further select AT small
enough so that the terms Varpu.s,(f+1/AT) and
Varp. 1, (f—1/AT) in the spectrum of the sampled
P(t; fo) do not have any contributions in the main lobe
or lobes of the averaging filter. This means choosing AT
sufficiently small so that 1/AT is larger than the total
non-negligible width of A(f). This selection of AT is
illustrated in Fig. D.2. Thus choosing AT, n is determined
through the previous choice of nAT and the procedure is
defined.

For periodic inputs a normalization with peak spectral
window heights of unity and adjacent windows crossed at
their half power points was found desirable. With a
smoothly varying frequency scale addition of such nor-

malized spectral windows gives an almost flat response
of unit height making possible easy estimates of total
power in any selected region.

Appendix E: Some additional remarks on quantiza-
tion of weighting functions and the
sample time function

This problem is discussed in Section 5 from the stand-
point of spectral dynamic range determination. In this
Appendix we will discuss further the particular effects of
the two types of quantization, weighting function and
sample time function.

The effect of the quantization of the weighting function
is to produce instead of the nonrandom spectral window

Q(f; fo) =1Qs,u(f; f0) |2+ Q4,0 (f; fo) |2

the random spectral window

¥
O*(f; fo) =|Qs,u(f; fo) + 1/2W{ > eim €o8 2772—mW f
m=-M
. m 2
+e1m sin ZwW f}
¥ m
+|Q1,0(f; fo) +1/2W{m§He2m cos 27 —Z—Wf

m 2
+e2msin27r—2-v7 f}' for |fI<W

=0 otherwise .

Here Q1,2,4(f; fo) and Q1/2,+(f; fo) are the transforms of
the functions 5(¢) and c(t) of Appendix A while the ein
are random variables described in Section 5. If we take
the expectation of Q*(f; fo) and operate on the result as
we did the second term of (5.3) we get

E{Q*(f; f0) }=Q(f; fo) + (1/2W) ko{w(2) } /3N:?,

where again ko, and N, are constants described in Section
5. Thus with the quantization of the weighting functions
the spectral window does not reject more and more
strongly as one moves away from the main lobe, but
rather there is an average limit to the total rejection
attained anywhere in the frequency range. This is illus-
trated in Fig. E.1. The error introduced by this quantiza-
tion (i.e., the variance in the estimator P(¢; fo)) is not

Figure E.1
E{Q*(f;foll
] ] 1 . f
-w ~fo fo W
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reduced by the averaging procedure which produces
P(fo).

The quantization of the sample time function has the
same effect as sampling the function

(1) =x(1) +es(1),

where e3(t) is independent of x(¢), has the uniform dis-
tribution described in Section 1.5 and a uniform power
spectrum from —W to W(At = sampling period =
1/2W). The power spectrum of x*(#) is

P*(f)=P(f)+Var(es) /2W.

Thus we are effectively looking at a power spectrum
which is the one we are interested in plus a uniform noise
spectrum. Since x(#) has a much greater range than
es(t), if x(¢) is normally distributed then x*(¢) will be
approximately normally distributed. Thus the error in
estimating P*(f) will be given by the discussion of Sec-
tions 3 and 4. This sample time function quantization
will contribute to the dynamic range limitation described
in Section 5 since the confidence limits on the estimation
of P*(f) (and hence on the estimation of P(f) after
removal of the bias) have as lower limits, as P(f) ap-
proaches zero, those for the estimation of Var(es)/2W.
Thus the (mean) 2-to-variance ratios obtained in Sections
3 and 4 do not apply in regions where the magnitude of
P(f) approaches P*(f). This quantization error, unlike
that for the weighting functions, does get smaller with
averaging.
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