
P. E. Boudreau 
M. Kac 

Analysis of a  Basic  Queuing  Problem 
Arising  in  Computer  Systems 

Abstract: A model which describes a basic junction, or queuing structure, arising in a general computing 

system is subjected to a mathematical analysis. The results consist of several formulas describing the per- 

formance of various parts  of the system.  The feasibility  in analyzing  general queuing problems in this 

manner is  stated, together with the results of a Monte Carlo simulation used for comparison purposes. 

1. Introduction 

Modern  computers  and processing systems have posed 
many new  problems of system evaluation. The desirability 
of making  the original source of information  and  the 
input  source  to  the  computer coincide,  coupled  with 
efforts  in maximizing the use of all components of the 
system, has accented the  queuing aspects of such  prob- 
lems. The  standard  methods of attacking the problems 
have been Monte  Carlo simulations, and  the use of ele- 
mentary queuing theory, where  exponential service times 
or Poisson  distribution of arrivals are assumed. These 
methods  have been used to  attempt  to answer such ques- 
tions  as: 

1. What should be the relationship of input/output 
speeds to  central processing speeds? 

2. What is the size and type of buffer needed to  handle 
queues that  may develop in  the system? 

3. What action  should be  taken with  regard to these 
queues? 

The effort involved in simulations to answer  these 
questions  makes an analytic approach  more attractive. 
However, the  number of parameters  that may affect the 
answers to  such questions is so large that  standard 
queuing techniques can,  at best, provide only a  general 
indication of what one  may expect  in  a  realistic  situation. 

This  paper will study these  problems  by using a sim- 
plified model of the system rather  than simplifying con- 
ditions external  to  the system. The sensitivity to various 
parameters  may be studied on  such a simplified model, 
and  the feasibility of a  complete  analytic  solution in  the 
general  case can be discussed. 

The  method of attack  here is to have  the simplified 
system  represent  a basic junction  in any  total system. At 
the very least, every  processing  system  must perform  the 

132 functions assumed in  the model. 

The problem under study is analogous to the problem 
of handling  patients in a doctor’s office. An  input gener- 
ator generates  families of transactions in a given cycle 
time. (A secretary  schedules  appointments  with the doc- 
tor.)  The transactions are stored  in  a buffer (patients’ 
waiting room). An  output  computer takes transactions 
from  the buffer and processes them serially (the  doctor 
treats patients one  at a time).  In  the case of the simplified 
model, it is initially assumed that  the  output  computer 
needs two cycles to process a single transaction  (the doc- 
tor allows a fixed amount of time for each patient).  Other 
assumptions  which are  made: first, the size of a given 
family of transactions is subject to a  known  probability 
distribution;  second, the probability of the family  having 
zero members is not zero; and  third,  the buffer is of un- 
limited  capacity. The last assumption, though unrealistic, 
is not  as  restrictive  as it may sound since one  can still 
study  fluctuations in  the  number  of  transactions waiting 
and  the  frequency with  which overflows will occur. 

The analysis is set  up as a  simple Markov chain. The 
results are  that  the utilization of the  output  computer  and 
the average number of transactions waiting are  both de- 
pendent  on  the average family size. If the process  time is 
twice the generation time  and  the average  generation size 
is less than 0.5, then  the probability that  the  output com- 
puter is active at a given instant is twice the average 
generation size. If the  average generation size is greater 
than 0.5, then  the probability that  the  output  computer 
is active at a given instant is 1. The average number of 
words  in the buffer can be calculated using formulas of 
Section 4, Part C .  The average  time to  the first overflow 
of a fixed capacity buffer can be  calculated using formu- 
las of Section 4, Part B. When  the  output  computer needs 
k times the cycle time  to process one  transaction,  the 
results are similar, though  the underlying Markov  chains 
become more complex and  the analysis more tedious. 
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Figure I Block diagram of mathematical  model. 

Monte  Carlo routines have been run  on  an  IBM 704 
to simulate the model, and  the results compare quite 
favorably with those  predicted by the theory. 

2. The model 

A block  diagram of the model is shown  in Figure 1. The 
input  generator will produce in  a cycle time a number of 
transactions or words. These words will be  stored in  the 
buffer. The  output  computer will take words from  the 
buffer and process them one  at a  time. The time to proc- 
ess a single word will be two cycles. 

e Definitions 

At is the cycle time for the  input generator. 

k is the cycle number. 

~ ( k )  defines the status of the  output  computer  at  the kth 
cycle time. 

E ( k )  = 
1 if output  computer is busy at kth cycle time. 
0 if output  computer is not busy at kth cycle time. 

pi is the probability that a given family of words has size 
i. It is assumed that po#O. 
For consistency of notation pj =O for j < 0. 

M ( k )  denotes  the  number of words  in the buffer at  the 
kth cycle. 

X (  k )  denotes  the size of the kth family. 

It is assumed that X ( O ) ,  X (  1 ), . . . are independent  ran- 
d o m  variables, each  subject to the  distribution described 
by the p's. 

Description of system  status 

The process time for a  word is assumed to be ( 2 - ~ ) A t  
where E can be  arbitrarily  small. This allows  EA^ to com- 
pute X ( k ) ,  M ( k )  and ~ ( k )  prior  to  the  start of the k t h  

cycle. 
The timing chart shown in Fig. 2 describes how the 

model functions. Because it takes slightly less than 2At 
to process a word,  the value of E ( k  + 1 ) depends  entirely 
on ~ ( k )  and M ( k ) . l  

1 

[ l , i f a n d o n I y i f M ( k ) > O a n d ~ ( k ) = O  
)O, i fandonly i fM(k)=ore (k)= l  . ( l )  & ( k + l )  = 

Figure 2 Timing chart. 

The  number of words  in the buffer at  the ( k +  At 
depends  on  the  number of words in  the buffer at  the kth 
At, the  number of words  generated at  the ( k + l ) s t  At 
and whether or not a  word  was taken  out of the  buffer 
during  the k t h  cycle. This dependence is expressed by 
formula 

M(k+l)=Max(M(k)-[l-&(k)], O}+X(k+l).  ( 2 )  

The  state of the system is completely defined at  the kth 

At by M ( k )  and ~ ( k ) .  

Let I = M ( k )  

6 = E ( k )  

and ( 2 ,  6 )  denote  the  state of the system at  the kth cycle. 
If (X, n )  is another  state of the system, the transition 

probability from  state (I, 6 )  to  state (X, n) in one cycle 
is denoted by P( I ,  6 I X, n ) .  

It is clear from  Equation ( 2 )  and with our definition of 
the  state  that we are dealing  with  a Markov  chain. It is 
here  that the  assumption of independence of the X's plays 
a  critical part.  Transition probabilities are: r 

i 

prob.{Max[Z-(1-S),O]+X(k)=X) 

0, otherwise 
P(Z, SIX, 1)= if Z>O and 6=0 

and 
prob. {Max[Z-(1-8), O]+X(k) =X} 

0, otherwise . 
P(1, SIX, O ) =  if l=O,or S = l  

More specifically, 

(a )  P ( 0 ,  OIX, 1) =O 

(b) P ( 0 ,  1 IX, 1) =O 

(c) P(Z, OIX, 1 )  =px-(Z-l) 1>0 

(d) P(1, 1 (X, 1 )  =O 1>0 

(e) P ( 0 ,  OIX, 0 )  = P A  

( f )  P ( 0 ,  1 IX, 0 )  =PA 

(g) P(1, OIX, 0) =o l>O 

(h) P(Z, 1 I X ,  0 )  =px-z Z>O 133 
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These are evident from the cycle  definition chart shown 
in Fig. 3. For example if I = O ,  6=0 then n must  be zero, 
which  proves (a). 

3. Recurrence relations and generating functions 

e A .  Transition  probability 

Of considerable interest is the transition probability from 
state ( I ,  6) to state (X, n )  in s steps. 

Let P(s+l)(Z, 6 ]A, n )  = probability of going from state 
(1 ,  6 )  to state (X, n )  in s+ 1 steps. Since the process is 
Markovian, we have the recurrence relation 

P(8+1) ( I ,S [X ,n)=  2 P ( 8 ) ( I , 6 1 X ’ , n f ) P ( X ’ , n ’ [ h , n ) .  

Renaming the variables  gives: 

P(8+1)(10, SOIA, n )  = P(8)((20, 6012, 6 ) P ( l ,  6 l A ,  n )  . 

a l l  X‘,n‘  

a l l  1,6 
(3) 

For  the sake of brevity ZO and 60 will  be omitted from 
subsequent formulas so that, e.g., Formula ( 3 )  becomes 

P(s+l)(A, n ) =  2 P ( 5 ) ( l ,  S ) P ( I ,  SIX, n )  . 

If n = l ,  
1,o 

P ( S + I ) ( X ,  1 )  = 2 P ( S ) ( I ,  6 ) P ( I ,  6 ( A ,  1) 
1 ,  II  

and if n=O, 

P(S+l)  (A, 0) = 2 P(5)  (1, 6)P(Z, 6 IX, 0) . 
1,6 

Using the one-cycle transition probabilities (a) through 
(h) we have: 

M 
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because PC0) (X, 1) = O  for all h . 
Thus we have: 

G l ( z ,  w )  =wf( z )Go(z ,  w). (13) 

Similarly from  Equation ( 11) 

1 *  - x F o ( S + I )  0 z wS+l= -x P(')(O,  0)~' 
w s=o z s=o 

f ( z ) - p o  

- E 2 P ( S ) ( O ,  1)wS 

+- f ( z )  5 F1(S)(z)wS , 

m 

z s=o 1 

z s=o 

and again using Equation ( 12) we have: 

- [ G ~ ( z ,  W )  - F o ' o ' ( ~ ) ] =  ~x P ( s ) ( O ,  O)ws  
W z a=o 

1 f ( z )  " P o  

Figure4 Number  of  real roots between 0 and 1 

- p" P(S) (0, l )wS 
m for Eq. (21 I .  

z s=o 

f (7-1 + - G l ( z ,  w) . 
Z "z P ( 8 + 1 ) ( 0 , O ) w S + 1 = p l ) ~  P ) ( O ,  0)wa 1 " o  W 

However,  now w s=o a=o 

and eliminating G l ( z ,  w )  from Eqs. (13)  and  (14), we G , ( ~ ,  f ( z ) + w A ( w ) f ( z ) - A ( w )  ( 20) 
obtain: Z - W 2 f 2 ( Z )  

G O ( Z ,  w )  = 
~ ~ ~ ~ ~ ~ ~ I + ~ ~ ~ f ~ Z ~ - p o l ~ - ~ p o ~ ~ ~ ~  

z-w2f2(z) 
. (16) B. Determination of A(w) from structure of G's 

We now wish to relate A (w) to B( w). 

From  Equation (5) we  have: 

P ( S + l ) ( O ,  0) = P ( 8 ~ ( 0 , 0 ) p 0 + P ( ~ ~ ( 0 ,  1)po 

We  have used all the  information available from  the 
recursions.  However, A (w) must still be  determined. 
This  may  be  done by  analyzing the  structure of Go(z, w). 
For every w (0 I w 5 1 ) , Go ( z ,  w ) is an analytic  function 
of z in  the  open  unit circle. Consider the  equation: 

How  many real  roots  does Equation  (21)  have between 
( I7)  0 and 1 for given w? 

(since pj=O for j < O ) ,  d 

and taking  generating functions we obtain  from  Eq.  (17) Since- [ z - w 2 f Z ( z ) ]   = 1 - 2 w 2 f ( z ) f ' ( z ) ,  this  deriva- 
dz 135 
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1 
2wz 

tive is zero  only if f ( z ) f ’ ( z )  = - . For O l z <  1, 

f ( z ) f ’ ( z )  is monotonically increasing heme,  at most, one 
critical  point of z - w z f z ( z )  can lie in (0, 1). 

d2 
Because - [ z - w 2 f ( z ) ]  < O  for O<z< 1, z - w Z f 2 ( z )  

dzz 
has  either  a  unique  maximum, or  no critical  points be- 
tween 0 and l. 

In either case, the  graph in Fig. 4 shows there is a 
unique root of z - wzf2 ( z )  = 0 between 0 and 1. Let 0 (w ) 
denote  this  root. 
Since Go(z, w )  is analytic in the  open unit circle, we 
must also  have: 

f[e(w)I  +wA(w)fCe(w)l--A(w) = O ,  

or 

4. Formulas 

A. Output  computer utilization 

It is clear from  the definition of Fl(8) ( z )  that, Fl(8)( 1) 
is the probability that  the  output  computer is being used 
at time s. 

We shall calculate 

5 F I ( ~ ) (  1) prob. [ E ( s )  = 11 
n 

s=o 
a= lim 

which represents the average  probability that  the  output 
computer is in use. 

Intuitively, this average  probability also represents the 
percentage of time during which the  output computer is 
used. A  rigorous justification of this  equivalence can be 
based on  an  appropriate “law of large numbers.” How- 
ever, we shall  omit the justification and henceforth  iden- 
tify (Y with this percentage of time.2 

The calculation of a, as well as  the existence of the 
limit which defines it, is based on a  tauberian  theorem. 

Accordingly we must find 

8=0 
= lim 

n+m n n+m n 

W + l  
l im(l-w)Gl(l ,  w ) = a  

We write 

W + l  
lim(1- w ) G ~ ( l , w ) = l i m ( l -  

w+1 

and  the question is: What is 

lim ( l -w)f(@ 
136 w-tl ~ - ~ f [ e ( ~ ) ]  ? 

From 0 ( w  ) - w2f2 [ 0 ( w )  ] =0, we obtain by differentiation 

We now consider three cases: 

Case I f’(l)<-$ 

In this case we shall  prove that 0 (w)+  1 as w+ 1. SUP- 
pose to  the contrary, i.e., B(w)+y<l  as  w+l. 

The  graph of z-wZfz(z) in this  case is shown in Fig. 5 .  
d 
dz 

It is clearthat - [ z - w 2 f 2 ( z ) ] # 0 ,  O l z l l  

and  there is no maximum. 

Let p be such  that y < /3 < 1. 

Then ,8 - w2f2 ( p )  # 0 for all w.  

However, P-w2f2 (P)  I l - w z  for all w. 

Letting w+l  we obtain p - f z ( < p )  10. 

However, since /I> B(w) for all w, we have 
P-w2f2(P)  2 0  9 

hence p- w2f2 ( p )  =0, a  contradiction. 

Now, 

and since 

O(w)+l as w + l ,  l imf[O(w)]=l ,  

thus, 
W + l  

and 

for some e ( w ) < [ < l .  

We have 

1 1 
lim = lim 
w+1 l + w  1 - m w 1  W+l l + w  f‘(t-1 

l -O(w)  
1-w 1-w 

and clearly 

lim f’([) =f’( 1) . 

Finally, 
W + l  

1”0(W) 2 
lim = lim e’( w) = 
w+1 1-w w+1 1-2?(1) 

where we have made use of formula  (23) 
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Figure 5 Relationship between z and z-wZfZ(zl. 

Thus, 

lim (l-w)Gl( 1, w )  =f’( 1) 

and a=f’ (  1)  . 
u1+1 

Case2 f ’ ( l ) > +  

First we show that O(w)+y< 1 as w + l  . 
Since f ’( 1 ) > 3, there is a maximum for  z - wZf2 ( 2 )  in the 
interval (0, 1)  for each w.  Thus there is a zo such that 

1 
2w2 f (zo) f ’ (zo)  = - for w sufficiently  close to 1. 

We know that O (w) < zo since O(w) is unique and the 
maximum occurs at zo. 

Foragivenf’( l )>+,   zo<l ,  

thus O(w)+y  where y<zo<l . 
We conclude in  this  case that 

lim [:( 1 -  
m”r1 l + w  

hence 

lim(l-w)Gl(l, w)=+, (25) 

=+ 9 

W - b l  

thus a=+ . 

Case 3 f’( 1) =+ 

In this case a more elaborate analysis  is  needed; it is 
omitted  because the case is too special to justify the 

, amount of effort. 

0 B.  Average  time to first overflow of a finite capacity 
bufler 

Let N be the capacity of the buffer, and M (  k) is as before 
the number of words  in the buffer after the kth generation. 

Define 

Qn+l(gt 6) =Probability{M(O)<N, M( l )<N,  - * - 
M ( n )  < N, M(N+  1) =g 

and E(n+ 1) =S} . 
That is, Qn+1(g, 6 )  is the probability that the capacity of 
the buffer has not been  exceeded through cycle It, and 
that there are exactly g words in the bufler at  the (n+ 1) 
A?; further, the status of the output computer at the 
(n+ l ) s t  Atis 6. 

Thus 

Q n + l ( g ,  6) = 2 prob{M(O)<N, * M ( n )  =m , ~ ( n )  =E} * 
7I&E<N 

e 

prob{M(O)<N, e ,  M ( n )  =m,  E(n)  = e l  - 
M(n+l)=gandE(n+l )=6} ,  

or 

Qn+,(g,S)= x prob{M(O)<N, e . . ,  M ( n - l ) < N ,  
W%<N 

E 

M ( n )  =m,  E(n) = E } P ( ~ ,  Elg, 6 ) .  

Finally, we have the recursion 

Qn+l(g, 6) = 2 Qn(m, E )  - P(m, Elg, 6 ) .  (26) 
m<x 

& 

We are only interested in g < N, thus if we restrict m, g 
to the values 

m=O, 1,2, e ,  N-1 E=O, 1 

g = O ,  1,2, - * - N- 1 6=0,1  

then we can write Equation (26) in matrix notation. 
Consider the 2n X 2n matrix 

P-P(rn ,  Elg, 6)  
rowI- “Lcolumn 

(O,O)( l ,O)* .*(N- l ,O)(O,   l ) . . . (N- l , l )  

Qo(m, E )  =Prob(m(O)  =m, ~ ( 0 )  = e } = P ( O ,  Olm, E ) ,  

137 
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f& [ ) =Prob{M(O)<N, 

We have 

P n ( N )  -Pn+l(N)=Prob{M(0)<N, - - - , M ( n ) < N ,  

M(n+l )>N} ,  
and equals the probability that the capacity N is exceeded 

and FlcS) (z) we know that 

d W 

dz 1 = 1  

However, W S )  ( I ,  0) + P ( s )  ( I ,  1) is the probability that 
there are exactly 1 words  in the buffer at time sat. Let 
N ( s )  = average number of words in the buffer at time 
sat. Then 

- [ F , ~ ~ ~ ( z ) + z F 0 ~ ~ ~ ( z ) ] , ~ ~  = 2 I [ P ( S ) ( I ,  O ) + P ( 5 ) ( I ,  1) 

d 
dz 

NS= - [FI(')(z) + ~ F o ( ~ ) ( ~ ) l z , l  

= 5 Z[P@)(I ,  O)+P(8) (1 ,  l ) ]  (32) 
k 1  

Take a generating function of w on Eq. (32) 

for the first time at n + 1. 

By definition 

Average time to first overflow 
W 

= 2 (n+ 1) [ P n ( N )  - P n + l ( N )  1 

= ( p o ( N )  -Pl(N)) +2[P1(N)  -Pz(N)I 

n=o 

+~[P , (N) -PP , (N) ]+-* . ,  

and if nP,(N)+O, 

Average time to first overflow 

= P o ( N )  + P I ( N )  +Pz(N)  + * * - 
=CQO(P)~+Q(P)~+Q~O(P)~+...I(~) 
=Qo[Z+ (P)'+ (P)"+ * - -1 (1) 

=QOCI-(P) I -~(~) ,  

where Z is the identity matrix. 

dz d 

d 
dz 

= - [w+f(z) + Z l  

+ 
- ~1- f re (~ ) l I r1 -ZW~f l ( l ) l  

(1"w2)2 

If f'( 1) < 3 we find by an elementary  but  laborious cal- 
culation that 

Applying again the  tauberian  theorem we obtain - 
(3  1 ) Theorem: If the average generation size, f ' (  1 ) < 4 

then 

(34) 

Thus we have a  computational scheme for determining 
the average time before first overflow. Similar techniques 5 N ( s )  f"( 1) +f'(  1) [ 1 "f'( l ) ]  

138 can be employed to answer more complex questions. + 
1-2fl(l) (35) n 
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where y can be easily calculated. 
In this case we see that N ( s )  will have to become  very 

large on occasions and  frequent overflows will occur. 
However, we do not enter into  a detailed discussion of 
this case since in most practical applications f ' (  1) < 4, or 
can be made so. 

Note  that  Equation  (35) gives only the "time average" 
of the average number of words in the buffer. For better 
understanding,  fluctuations of the number of words in the 
buffer should be studied in detail. This is entirely feasible 
but  rather tedious. 

5. Analysis for a process time three times greater 
than the generation cycle 

Consider the case where the process time is 3At. 
The critical difference between this case and the 2A2 

case is that  the status of the  output computer at time kAt 
depends on  the status at (k-2)42 as well as (k-1)At. 

Here, 
r 1, if and  only if 

M(k)>Oand & ( k ) = O  

or 

M(k- l )>Oand&(k- l )=O 

0, if and  only if 

M ( k )  = O  and M ( k -  1) = O  

or 

I M ( k )  = O  and ~ ( k - 1 )  =1 

or 

~ ( k ) = l a n d M ( k - l ) = O  

or 

& ( k ) = l a n d ~ ( k - l ) = l  

Four variables are needed to define the  state  of  the model 

M ( k )  =1 e ( k )  = S  

M ( k - l ) = l ~  E(k-l)=81. 

' There  are  16 single-cycle transition  probabilities of the 

1 
P ( l ,  ll, 6, &,I A, hl, n, nt )  

where 

h = m ( k + l )  

& = m ( k )  = I  
n = & ( k +  1) 

n l = E ( k )  = 8 .  

An analysis similar to, but more complicated than,  the 
one used to obtain  Eqs. (24) and (25) yields 

lim prob{e(s) =I>  
n+m 

)t 

S=O =2f'(1) if f '(1)<+  (37) 
n 

and 
n 

lim 2 ~ r o b { & ( s )   = I >  
n + m  =3 if f'( 1) > f . (38) s=o 

n 

The  form of Eqs. (37) and (38) is so analogous to  that 
of Eqs. (24)  and  (25)  that one can surmise the following 
general theorem. 

Theorem: 

If the "speed" of the output computer is kAt then 

lirn 2 prob{&(s)=l) 
n + m  ==(k-l)f ' ( l )  if kf'(1)<1 

n 

s=o 

n 
(39)  

and 
n 

lim x prob{&(s) = I >  
n+m 

s = o  - - (k- l )   i fkf ' (1)>1 .  
n k 

(40) 

Expressions analogous to Go and GI of Sec. 111 can be 
found and  hence one  can discuss fully the fluctuations of 
the number of words  stored in  the buffer. 

6. Results of Monte Carlo methods 

The results of the Monte  Carlo routines run  on  the IBM 
704  can  be easily compared  to  the analytical results of 
Eqs. (24) and (35). 

Five distributions on  the p's have been considered,  and 
ten  runs  for each  distribution  have been made, each  run 
consisting of one-thousand cycles. 

The following tables and Fig. 6 indicate the results of 
the simulation versus the analytical results. 

Table 1 The five cases. 

Case 1 0.7 0.2 0.1 
~~~- 
Case 2 0.95 0.025 0.0125 
~ - ~ -  
Case  3 0.85 0.05 0.05 
~ - ~ -  
Case4 0.81  0.18  0.01 
"" 

Case 5 0.05 0.2 0.7 

P3 

0.0 

0.0125 

0.05 

0.0 

0.05 

f'(1) f"(1) 

0.4 0.2 
~- 
0.0875 0.1 
~- 
0.3 0.4 
~- 
0.2 0.02 
~- 
0.45 0.4 

139 
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I Table  2 Average number of words in buffer. 

Average I I of N(s) Case 1 Case2 

From Simulation I 2.45- ILI~ 
From 

Theory I 2.2 1 0.218 

Case3 Case 4 Case5 
-” 

1.47  0.298  5.73 

1.525 6.475 I 0.3 1 
The results  indicate that as f’ 

words  in the  buffer exhibits larger fluctuations. This is 
also predicted by theory since 1-2f’( 1)+0 as f’(l)+& 
(Eq. 35). 

Table3 M(k) for k=0-99. Case 1. 
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7. Conclusion 

An analytic approach to problems posed in  the  Introduc- 
tion is feasible and  fruitful.  Two  important simplifica- 
tions are  introduced: 
(a)  The buffer is assumed to be of infinite capacity. 
(b)  The processing time is assumed to  be a fixed multi- 

140 ple of the generation time. 
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Figure 6 Percent  of  time  computer  is  busy. 

- 

Horizontal line indicaies the analyiical f’( 1) 
while dots indicate results of simulation. 

The case when the processing time is a random multi- 
ple of the generation time  (subject to a prescribed dis- 
tribution  function) is now under study, and we hope  to 
present the results at  a later date. 

Should the capacity of the buffer be limited, an analytic 
approach  is probably hopeless because there is no longer 
a tractable  Markov chain. 

Even though  the assumption of infinite capacity is 
unrealistic, the  study of the fluctuation of the  number of 
words  in the buffer should yield a better  understanding 
of the  actual processes as they occur in  practice. 

In  particular, good estimates of the  frequency with 
which overflows occur  can certainly  be  obtained. 

The satisfactory  agreement between the  theory  pre- 
sented and  the results of Monte  Carlo calculations  should 
increase the belief in  the  accuracy of simulation  calcula- 
tions  when applied to situations too complex to be amena- 
ble to analytic  treatment. 

Finally, it is hoped  that this work will stimulate further 
thinking on  the  important  problem of computer system 
evaluation. 

Footnotes 

1.  Note the ~ ( k )  refers to the status of the  model  just before 
the k t h  cycle  begins;  this is why the E’S on the chart are 
placed a little to the left of the vertical  lines. 

2. Actually it is 2a which  is the percentage of time  the output 
computer is  used  because for every  “busy”  cycle  the fol- 
lowing  cycle is “not available.” 
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