132

P. E. Boudreav
M. Kac

Analysis of a Basic Queuing Problem
Arising in Computer Systems

Abstract: A model which describes a basic junction, or queuing structure, arising in a general computing

system is subjected to a mathematical analysis. The results consist of several formulas describing the per-

formance of various parts of the system. The feasibility in analyzing general queuing problems in this

manner is stated, together with the results of a Monte Carlo simulation used for comparison purposes.

1. Introduction

Modern computers and processing systems have posed
many new problems of system evaluation. The desirability
of making the original source of information and the
input source to the computer coincide, coupled with
efforts in maximizing the use of all components of the
system, has accented the queuing aspects of such prob-
lems. The standard methods of attacking the problems
have been Monte Carlo simulations, and the use of ele-
mentary queuing theory, where exponential service times
or Poisson distribution of arrivals are assumed. These
methods have been used to attempt to answer such ques-
tions as:

1. What should be the relationship of input/output
speeds to central processing speeds?

2. What is the size and type of buffer needed to handle
queues that may develop in the system?

3. What action should be taken with regard to these
queues?

The effort involved in simulations to answer these
questions makes an analytic approach more attractive.
However, the number of parameters that may affect the
answers to such questions is so large that standard
queuing techniques can, at best, provide only a general
indication of what one may expect in a realistic situation.

This paper will study these problems by using a sim-
plified model of the system rather than simplifying con-
ditions external to the system. The sensitivity to various
parameters may be studied on such a simplified model,
and the feasibility of a complete analytic solution in the
general case can be discussed. '

The method of attack here is to have the simplified
system represent a basic junction in any total system. At
the very least, every processing system must perform the
functions assumed in the model.

IBM JOURNAL * APRIL 1961

The problem under study is analogous to the problem
of handling patients in a doctor’s office. An input gener-
ator generates families of transactions in a given cycle
time. (A secretary schedules appointments with the doc-
tor.) The transactions are stored in a buffer (patients’
waiting room). An output computer takes transactions
from the buffer and processes them serially (the doctor
treats patients one at a time). In the case of the simplified
model, it is initially assumed that the output computer
needs two cycles to process a single transaction (the doc-
tor allows a fixed amount of time for each patient). Other
assumptions which are made: first, the size of a given
family of transactions is subject to a known probability
distribution; second, the probability of the family having
zero members is not zero; and third, the buffer is of un-
limited capacity. The last assumption, though unrealistic,
is not as restrictive as it may sound since one can still
study fluctuations in the number of transactions waiting
and the frequency with which overflows will occur.

The analysis is set up as a simple Markov chain. The
results are that the utilization of the output computer and
the average number of transactions waiting are both de-
pendent on the average family size. If the process time is
twice the generation time and the average generation size
is less than 0.5, then the probability that the output com-
puter is active at a given instant is twice the average
generation size. If the average generation size is greater
than 0.5, then the probability that the output computer
is active at a given instant is 1. The average number of
words in the buffer can be calculated using formulas of
Section 4, Part C. The average time to the first overflow
of a fixed capacity buffer can be calculated using formu-
las of Section 4, Part B. When the output computer needs
k times the cycle time to process one transaction, the
results are similar, though the underlying Markov chains
become more complex and the analysis more tedious.

j GENERATES FAMILIES OF "WORDS*"
(TRANSACTIONS) IN A GIVEN
CYCLE TIME. SIZE OF FAMILY

1S SUBJECT TO A KNOWN
PROBABILITY DISTRIBUTION.

INPUT GENERATOR

BUFFER UNLIMITED CAPACITY

TAKES "WORDS" IN ORDER FROM

QUTPUT COMPUTER

PROCESS TIME FOR ONE WORD 1§
TWICE THE GENERATION CYCLE
TIME.

Figure I Block diagram of mathematical model.

Monte Carlo routines have been run on an IBM 704
to simulate the model, and the results compare quite
favorably with those predicted by the theory.

2. The model

A block diagram of the model is shown in Figure 1. The
input generator will produce in a cycle time a number of
transactions or words. These words will be stored in the
buffer. The output computer will take words from the
buffer and process them one at a time. The time to proc-
ess a single word will be two cycles.

® Definitions
At is the cycle time for the input generator.
k is the cycle number.

£(k) defines the status of the output computer at the ktt
cycle time.

1 if output computer is busy at kt* cycle time.

e(k) = 0 if output computer is not busy at kt® cycle time.

pi is the probability that a given family of words has size
i. It is assumed that po7<0.
For consistency of notation p; =0 for j<O0.

M (k) denotes the number of words in the buffer at the
kt cycle.

X (k) denotes the size of the kt® family.

It is assumed that X(0), X(1), ... are independent ran-
dom variables, each subject to the distribution described
by the p’s.

® Description of system status

The process time for a word is assumed to be (2—¢)Af
where ¢ can be arbitrarily small. This allows Af to com-
pute X (k), M (k) and (k) prior to the start of the k'®
cycle.

The timing chart shown in Fig. 2 describes how the
model functions. Because it takes slightly less than 2Ar
to process a word, the value of ¢(k+1) depends entirely
on (k) and M (k) .2

1, if and only if M (k) >0 and (k) =0

8("+1)=2go, if and only if M(k) = or e(k) —1 - (1)

THE BUFFER AND PROCESSES THEM.

X (0) X (1) X (2) X {3) X (k) X (k+1)

M (0) M) M (2) M (3) M (k) M (k+1)
€(0) (1) €(2) €(3) é('r) €(k+1)

i

" { 1 i ST +
Oth At st At 2nd At / / k th At /
€k

Figure 2 Timing chart.

The number of words in the buffer at the (k4 1)5t At
depends on the number of words in the buffer at the &t
At, the number of words generated at the (k+1)5t At
and whether or not a word was taken out of the buffer
during the ktt cycle. This dependence is expressed by
formula

M(k+1)=Max{(M(k)—[1—e(k)], 0} +X(k+1). (2)
The state of the system is completely defined at the ktb
At by M (k) and (k).
Let I=M(k)
8=e(k)
and (, 8) denote the state of the system at the k! cycle.
If (A, n) is another state of the system, the transition
probability from state (/, 8) to state (A, n) in one cycle
is denoted by P(l, 8[A, n).
It is clear from Equation (2) and with our definition of
the state that we are dealing with a Markov chain. It is

here that the assumption of independence of the X’s plays
a critical part. Transition probabilities are:

prob. {Max[l—(1—8), 0]+ X (k) =A}

P, 8\ 1)= if I>0and §=0
0, otherwise
and
prob. {(Max[l— (1—8),0]+X (k) =A}
P(l,8|A,0)= if I=0,0r 8=1
0, otherwise .
More specifically,

(a) P(0,0[\, 1)=0

(b) P(0,1[A,1)=0

(c¢) PUO[A1)=prq1y >0
(d) P, 1A, 1)=0 >0

(e) P(0,0[2,0)=py

(f) PO, 1]x,0)=px

(8) P(,0[X,0)=0 >0

(hy P, 1A, 0)=prs I>0

133

IBM JOURNAL * APRIL 1961

134

These are evident from the cycle definition chart shown
in Fig. 3. For example if /=0, 8 =0 then n must be zero,
which proves (a).

3. Recurrence relations and generating functions
® A. Transition probability

Of considerable interest is the transition probability from
state (I, 8) to state (A, n) in s steps.

Let P(+1 (], §|A, n) = probability of going from state
(1, 8) to state (A, n) in s+ 1 steps. Since the process is
Markovian, we have the recurrence relation

PEO(L 8lA, n)= 3 PO SN, n)P, n'[An).

allA’,n’
Renaming the variables gives:
P (Jo, olA, n) = 3 P& (L, 8|1, §)P(I, 8|, n) .
alll,d
3)

For the sake of brevity Iy and 8, will be omitted from
subsequent formulas so that, e.g., Formula (3) becomes

PEO(\, n)y=S P (1, 8)P(l, 3|Ar, n) .
1,8

If n=1,
PO (A, 1) =T PO(LI)P(, 3|, 1)
1,8

and if n=0,

PED (), 0)= 3 P (1, 8)P(,]), 0) .
1,6

Using the one-cycle transition probabilities (a) through
(h) we have:

0

PG, 1)=F P, 0)pran 4)
I=1

and

P&+ (A, 0) =P®) (0, 0) pa+P® (0, 1) pa

+ 3 PO, D prs. (5)

1=1

Next, we define the generating functions

F10(2)= S PO, D2

A=0

- (6)
Fo®(z) =3 P® (A, Q)21
A=1
f(2) =potzp1+z2pe+ - = pi2f. 7
i=0

Multiply both sides of Equation (4) by z* and sum on A
from O to co.

This gives:

00 L 00
2 PV (), 1)zt = F PO (1, 0) 3 pr-a-2t,

A=0 l=1 A=0

IBM JOURNAL * APRIL 1961

| é | __n
kth At ! {(k + t)At

Figure 3 Cycle definition chart.

which simplifies to
S Pe(\, 1) A —f(2) S PO (1, 0)21 . (8)
A=o =1

Referring to Equation (6) we have:
F1#+0(2) =f(z)Fo® () . €))]
Similarly from Equation (5) we obtain:

-] oo
Ep(su) ()\’ O)ZA—1=P(3) (0’ 0) 2 p)‘zk—l_i_P(s)((), 1)
A=1 A=1

-] o0 -]
S+ PO (L 1) T paazrt,
A=1 =1 A=1

which simplifies to:

$ pa(a, 0)2-1=P® (0, 0) S E TP _ piyo, 1)22
=1 z z
+ 1 Spon, 12, (10)
Z =0
or
Fos+1) (z) =P (0, 0) M_—Pm ,1) 2
z z

+ f(:) F19(2) . (11)

Now let,

)
Gi(z, w) =3 F1®(2)w*
8=0

- (12)
Go(z, w) =2 Fo® (z)w*.

8=0

Multiplying both sides of Equation (9) by w® and sum-
ming on s from 0 to o we obtain

1§ F1(8+1)(z)w8+1=f(z) § Fo(s)(z)w8

8=0 8=0
or, by use of Equation (12):
1
—W—[G1(z, w) —F19 (2}]=f(2) Go(z, W) .
However,

0
F10(2) = PO (A, 1)22=0

A=0

because P (A, 1)=0 for all A.

Thus we have:
Gi(z, w) =wf(2) Go(z, W) . (13)
Similarly from Equation (11)

o0 — -]
i S Fols+D) () weri= f(Z)_PgE P& (0, 0)ws
w 8=0 Z 8=0

_ 2 s pwo, 1ywe

Z s=0
+ f(z) 2 Fl(s)(z)ws y
Z 8=0

and again using Equation (12) we have:

L 16o(z w)—Fo® (2)1= 1B 2P0 S pesr (0, 0y we
w

Z 8=0

— PS5 per(0, 1)we
Z 8=0
f(z)

4

+

Gl(za W) .
However, now

(-] o0 —
Fo© (z) = 3 PO (A, 0)z22-1= 3 prz-1= F@) —po ,

A=1 As1 <

and we obtain

GO(Z, W) _ f(z) ~—Po +w [f(z) —po i P(s)(O, 0)w3
Z Zz 8=0

—ﬂ§l"”(0,1)ws+_’ﬂcl(z,w)]. (14)
Z g=¢ Z

Setting

o0
A(w)= 3 P®(0,0)w*,
*= (15)
o0
B(w) =S P® (0, 1)w,
8=0
and eliminating G;(z, w) from Egs. (13) and (14), we
obtain:

_ (wlAW)1+1}[f(z) —po] ~wpoB(w)

Go(z, w) (16)
z—wif*(z)
We now wish to relate A(w) to B(w).
From Equation (5) we have:
PE+1(0,0) =P® (0, 0) po+P® (0, 1) po
o0
+ S PO (1, 1) pos
l=1
=P (0,0)po+P* (0, 1)po, an

(since p;=0 for j<0),

and taking generating functions we obtain from Eq. (17)

z - w2f2(z)

(1,1 - w?)

(0, - p2 w?)

Figure 4 Number of real roots between 0 and 1
for Eq. (21).

o0)
__1_ 2 P(s+1)(0’ O)Ws"‘l:po 2 P(a)(o’ O)WB

W g=o 8=0
o0
+po X P@ (0, 1)w?,
8=0

or

L[S P®(0,0)ws—P® (0, 0)] =pod (W) +poB(w) .
w 8=0

Since P (0, 0) =p, we have

— LA —po] = A() +B()] (18)
Finally,

G1(z, w) =wf(2)Golz, W), (19)
and

Golz, w) = f(z)+sz—(:2)f7;((zz))—A(W) . (20)

® B. Determination of A(w) from structure of G’s

We have used all the information available from the
recursions. However, 4(w) must still be determined.
This may be done by analyzing the structure of Go(z, w).
For every w(0<w<1), Go(z, w) is an analytic function
of z in the open unit circle. Consider the equation:

z—w2f2(2)=0 O<w<l1. (21)
How many real roots does Equation {21) have between

0 and 1 for given w?

Sincedi [z—w2f2(z)] =1—2w?f(2)f (z), this deriva-
Z

135

IBM JOURNAL ~APRIL 1961

136

. . . 1
tive is zero only if f(z)f'(z)——*F. For 0<z<1,
w

f(2)f'(z) is monotonically increasing hence, at most, one
critical point of z—w2f2(z) can lie in (0, 1).
2
;zz [2—w2f(2)]<0 for 0<z<1, z—-w?f2(z)
has either a unique maximum, or no critical points be-
tween O and 1.

In either case, the graph in Fig. 4 shows there is a
unique root of z—w2?f2(z) =0 between 0 and 1. Let §(w)
denote this root.

Since Go(z, w) is analytic in the open unit circle, we
must also have:

fIOw)1+wd(w)f[6(w)]1—A(w) =0,

or

Because

1(6)

A(w)= __l—wf(B) .

(22)

4. Formvulas
® A. Output computer utilization

It is clear from the definition of F1(® (z) that, F;(#)(1)
is the probability that the output computer is being used
at time s.

We shall calculate

S F,6(1) S prob. [(s) =1]

. 8=0 - 8=0
a=lim =lim
n—>00 n n—oo n

which represents the average probability that the output
computer is in use.

Intuitively, this average probability also represents the
percentage of time during which the output computer is
used. A rigorous justification of this equivalence can be
based on an appropriate “law of large numbers.” How-
ever, we shall omit the justification and henceforth iden-
tify « with this percentage of time.2

The calculation of «, as well as the existence of the
limit which defines it, is based on a tauberian theorem.

Accordingly we must find

Iim (1-w)G1(1, w)=a.
w1

We write
lim(1-w)G1(1, w) =lim (1-w)wf(1)Go(1, w)
Y o N G oY) (U} }
Tooa | 1-w? [1+wI{1—wf[6(w)]}
i Y {1_ (I—W)f[O(W)]}
T Wt 1=wfl6(w)]
and the question is: What is
(1—-w)f(0)

i 9
Im =7 e0m

IBM JOURNAL * APRIL 1961

From 6 (w) — w2f2[§(w)] =0, we obtain by differentiation
2wf2{8(w)]
1-2w[0(w)1f[6(w)] ~

We now consider three cases:

6’ (w)= (23)

® Case 1

fH<i

In this case we shall prove that §(w)->1 as w—>1. Sup-
pose to the contrary, i.e., f(w)—>y<lasw—>1.
The graph of z—w?f2(z) in this case is shown in Fig. 5.

It is clear that diz-[z*wzfz(z) 150, 0<2z<1
and there is no maximum.

Let B be such that y<g<1.

Then B—w2f2(B)7#0 for all w.

However, 8—w?f2(8) <1—w? for all w.
Letting w—1 we obtain 8—f2(8) <0.

However, since 8> 8 (w) for all w, we have
B—wf(B8) 20,
hence B8—w2f?(8) =0, a contradiction.

Now,

(1—w)f[6(w)]) 1—w)
_ lim f[0
i T A ey T am AL]

and since

O0(w)—>1asw—1, limlf[a(w)]=1 s

thus,
" 1—w _5 1
o T—wil8(w)] wot Lty LOODT
1—w
and
1-fl8(w)] fay—femi1
1—6(w) 1—6(w) £
for some #(w)<E<1 .
We have
li L li !
im =1lim
— 1 1—
w14 1—f0(w)] ~ ws 14w 6(w) £(0)
1—w 1—w

and clearly

lim £(£)=f(1).

Finally,
. 1—-6(w) . 2
lim —— = lim 0’0 = 1>

where we have made use of formula (23).

z -~ w2f2(z)
(1,1 - w?2)

(0, -p2w?)

Figure 5 Relationship between z and z—w?f(z).

Thus,
lim (1—w)G1(1, w)=f(1)

w—1

and a=f(1).

(24)

e Case2 f(1)>3%

First we show that §(w)—>y<lasw—1.

Since f'(1) > 1, there is a maximum for z— w2f2(z) in the
interval (0, 1) for each w. Thus there is a z, such that

f(z0)f (20) =

S for w sufficiently close to 1.
w

We know that 6(w)<zo since #(w) is unique and the
maximum occurs at Zo.

For a given (1) >4, z<1,
thus 8 (w)—>y where y<z,<1.
We conclude in this case that

. [w < (1—w)f[8(w)])]
lim 1—
w-1]| 14w

—wieom])]~
hence

lim(1-w)Gi(1,w)=4%, (25)
w—1

thus a=3% .

eCase3 f(1)=1%

In this case a more elaborate analysis is needed; it is
omitted because the case is too special to justify the
amount of effort.

® B. Average time to first overflow of a finite capacity
buffer

Let N be the capacity of the buffer, and M (k) is as before
the number of words in the buffer after the kt* generation.

Define
Qn.1(8, 8) =Probability{ M(0) <N, M(1)<N, - -
M(n)<N,M(N+1)=g
and e(n+1)=38}.
That is, On.1(g, 8) is the probability that the capacity of
the buffer has not been exceeded through cycle », and
that there are exactly g words in the buffer at the (n-1)3t

At; further, the status of the output computer at the
(n+1)st Atis 8.

Thus
On.1(8, 8)= 3 prob{M(0)<N, ---M(n)=m, e(n)=¢} -

m<N
I3

prob{M(0)<N, -+, M(n)=m, e(n) =¢| -
M(n+1)=gand e(n+1)=38},
or

Qn+1(g9 8)= E prOb{M(O)<N’ Tty M(n“l)<N,
m<N

M(n)=m, e(n)=¢e}P(m, ¢|g, 8).
Finally, we have the recursion

Qn+1(g9 8) = E Qn(ma 8) ° P(m9 Elgs 8) .

m<¥N
[

(26)

We are only interested in g <N, thus if we restrict m, g
to the values

m=0,1,2,---,N—1
£=0,1,2,---N—1

e=0,1
§=0,1

then we can write Equation (26) in matrix notation.
Consider the 2n X 2n matrix

P=P(m, ¢|g, 3)

TOoW, column
(0,0)(1,0)---(N—1,0)(0,1) - - - (N—-1,1)
00 |
(1,0)
(N—1,0) P(m, g, 5) 27
0, 1)
(N—1,1) L
Note that
Qo(m, £) =Prob{m(0) =m, e(0) =¢}=P(0,0|m, ¢) ,
and P(0,0|m,)= §f,:flf:==l¢,
Ql(gs 8)= 2 QO(m, 8) " P(my E‘g’ 8) .
m<N

€

137

IBM JOURNAL * APRIL 1961

Write Qo(m, ¢) for m=0,1,--- ,N—1,e=0, 1 as a row
vector:

Qo={00(0,0)Q0(1,0), - - - Qo(N—1,0),
Q0(0,1)Q0(1,1) -+ - Qo(N—-1,1)},

and likewise

0.={0n(0,0), 0n(1,0), - - - Qu(N—1,0)@2(0,1) - - -
0.(N—1,1)}.

The recursion equation (26) can now be written in the
form Qn+1=Q‘nP s

hence
On=00P". (28)
Now
1
On 1 =Prob{M(0)<N,---
1
We have
1 1
Py(N)=Qn =Q(P") =QoP"(1) . (30)
1 1

Pp(N)—Pp1(N)=Prob{M(0)<N, -+ ,M(n)<N,

M(n+1) >N},

and equals the probability that the capacity N is exceeded
for the first time at n+1.

By definition

Average time to first overflow

= 3 (1+1) [Pu(N) —Pria (V)]

n=0

=(Po(N)—P1(N)) +2[P1(N) —P2(N)]
+3[P(N)—P3(N)]+---,

and if nP,(N)—0,

Average time to first overflow

=Py(N)+Py(N)+P(N)+ -

=[Qo(P)°+Q(P)*+Qo(P)2+---1(1)

=Qo[1+(P)*+(P)2+---1(1)

=Qo[I—(P)1*(1), (31)

where / is the identity matrix.

Thus we have a computational scheme for determining
the average time before first overflow. Similar techniques
138 can be employed to answer more complex questions.

IBM JOURNAL * APRIL 1961

® C. Average number of words in the buffer

By the definitions of this family in Eq. (6) of Fo® (z)
and F1(®(z) we know that

di [Fy® (2) + 2Fo®(2) Tax = I[P (1, 0)+ P (1, 1)].
Z l=1

However, P()(1,0)+P® (1, 1) is the probability that
there are exactly / words in the buffer at time sAr. Let
N(s) = average number of words in the buffer at time
sAt. Then

d
No= — [F1(2) +2Fo®(2) Loa
Z

= g‘; ITP®(,0)+P®(,1)] . (32)
=1

Take a generating function of w on Eq. (32)

[}

SIN(s)ws= § ws -a;i [Fi(2) +2Fo® (2) 12a1

M(n)<N}=P.(N). (29) s=0 o dz

i

—d— [Gi(z, w) +2Go(z, W) 1saa
dz

= 4 { [w+f(z)+z]
dz

f+ wiz)+fl6w)] fl6(w)]
z T-wil0(w)] 1—wfl8(w)]
z—w2f*(z) 21

= —d- [w+f(z)+z]
dz

[f(z)—fl6(w)]]
{1—wfl0(w) 1} [z—w22(2)] Lo-a

or,

- C1=/I8m] 1=wilew)]

ZNEw=— [T+wf(1)]
1+w I f(1)

+ 1——wf[0(w)]1 1—w?
~ {1—f[0(W)]}[l~zw2f’(l)]}
(1—w2)?)

If £(1)<% we find by an elementary but laborious cal-
culation that

*)+ 1—F)]

N(s)ws= - . (34)
Eo (1—w)[1-2zf(1)]
Applying again the tauberian theorem we obtain —
Theorem: If the average generation size, f'(1)<#%

(33)

then

SNG) e

ENO | rweron-rm) a5)
n 1—27 (1)

If /(1) > % one obtains

S N(s)

8=0

n2

-7, (36)

where y can be easily calculated.

In this case we see that N(s) will have to become very
large on occasions and frequent overflows will occur.
However, we do not enter into a detailed discussion of
this case since in most practical applications £ (1) <%, or
can be made so.

Note that Equation (35) gives only the “time average”
of the average number of words in the buffer. For better
understanding, fluctuations of the number of words in the
buffer should be studied in detail. This is entirely feasible
but rather tedious.

5. Analysis for a process time three times greater
than the generation cycle

Consider the case where the process time is 3At.

The critical difference between this case and the 2Az
case is that the status of the output computer at time kA¢
depends on the status at (k—2)At as well as (k—1)At.

Here,

(1, if and only if
M(k)>0and (k) =0
or
M(k—1)>0and e(k—1)=0
0, if and only if
o(kt1)=] M(k)=0and M(k—1) =0
or
M(k)=0and e(k—1)=1
or
¢(k)=1and M(k—1)=0
or
| e(k)=1and e(k—1) =1
Four variables are needed to define the state of the model
M(k) =1 e(k)=3
M((k—1) =1 e(k—1)=38;.

There are 16 single-cycle transition probabilities of the
form

P(L L, 8, 81,|\, A1, 1, 11)
where

A=m(k+1)
A=m(k)=I

n=e(k+1)
ni=e(k)=3§.

An analysis similar to, but more complicated than, the
one used to obtain Egs. (24) and (25) yields

lim 3 prob{e(s) =1}

o~ =2/(1) HF<E (BN

and

lim 3 prob{e(s)~1)
n—-o0 $=9 =§'
n

iff(1)>%. (38)

The form of Egs. (37) and (38) is so analogous to that
of Egs. (24) and (25) that one can surmise the following
general theorem.

Theorem:

If the “speed” of the output computer is KAt then

lim é prob{z(s) =1}

noven 222 = (k=D (1) ifkF (<1
n
(39)
and
lim EOPTOb{S(S):l} (k—1) .
n—>0 =T lfkf/(1)>1
n k
(40)

Expressions analogous to G and G+ of Sec. III can be
found and hence one can discuss fully the fluctuations of
the number of words stored in the buffer.

6. Results of Monte Carlo methods

The results of the Monte Carlo routines run on the IBM
704 can be easily compared to the analytical results of
Egs. (24) and (35).

Five distributions on the p’s have been considered, and
ten runs for each distribution have been made, each run
consisting of one-thousand cycles.

The following tables and Fig, 6 indicate the results of
the simulation versus the analytical results.

Table 1 The five cases.

po mn p2 p3 Y Lra)

Casel | 0.7 0.2 0.1 0.0 0.4 0.2

Case2 | 0.95 | 0.025 {0.0125|0.0125} 0.0875 | 0.1

Case3 | 0.85 | 0.05 |0.05 [0.05 0.3 0.4

Case 4| 0.81 | 0.18 [0.01 0.0 0.2 0.02

Case 5| 0.7 0.2 0.05 | 0.05 0.45 0.4

139

IBM JOURNAL ¢ APRIL 1961

Table2 Average number of words in buffer. 0.5 R
Average > .. T
of N{(s) Case 1 |Case 2 | Case 3 | Case 4 | Case 5 2 o4 : :
W ~ .
. L]
From e ¢
Simulation | 2.45 | 0.216 | 1.47 0.298 | 5.73 g 03 . o
From 9 *.*’. .
Theory 2.2 0.218 | 1.525 | 0.3 6.475 5
The results indicate that as f(1)—>4, the number of 5 E AR
words in the buffer exhibits larger fluctuations. This is ¥
also predicted by theory since 1—2f(1)—0as f(1)—>% =
(Eq. 35). 5 ol ...
- ¢ e o B
z . e
g
Table 3 Mlk) for k=0—99. Case 1. & CASE1 | CASE2 | CASE3 | CASE4 | CASES
k M(k) k M) k M) | k Mk Figure 6 Percent of time computer is busy.
Horizontal line indicates the analytical f (1)
0 0 26 4 51 5 76 2 while dots indicate results of simulation.
1 0 27 4 52 2 77 3
2 1 28 4 53 1 78 2
i (1) g(g) g §§ g ;g ? The case when the processing time is a rando¥n mul_ti-
5 1 31 5 56 3 81 3 ple of the generation time (subject to a prescribed dis-
6 1 32 6 57 2 82 2 tribution function) is now under study, and we hope to
7 0 13 6 58 2 83 3 present the results at a later date. o _
8) 34 6 59 1 84 5 Should the capacity of the buffer be hmlted,. an analytic
9 1 35 5 60 1 85 3 approach is probably hopeless because there is no longer
10 0 16 5 61 0 86 3 a tractable Markov chain. - o o
1 0 37 4 62 1 87 3 Even though the assumption of infinite capacity is
12 0 38 5 63 0 88 2 unrealistic, the study of the fluctuation of the number' of
13 0 39 4 64 0 89 3 words in the buffer should yield a bgtter un(_ierstandmg
14 0 40 4 65 0 90 2 of the actpal processes as 'they occur in practice, ‘
15 1 41 3 66 0 91 5 In particular, good estimates of the freguency with
16 0 42 3 67 1 92 1 which ovefﬂows occur can certainly be obtained.
17 0 43 3 68 0 93 1 The satisfactory agreement between the t‘heory pre-
18) 44 3 69 5 94 1 sented and the results of Monte Carlo c_alculat.lons should
19 2 45 3 70 2 95 1 increase the bel;ef in the accuracy of simulation calcula-
20 2 46 3 71 5 9 0 tions when applied to situations too complex to be amena-
21 3 47 2 72 1 97 1 ble to analytic treatment. o
22 4 48 9 73 1 98 1 Finally, it is hoped that this work will stimulate further
23 3 49 2 74 0 99 1 thinking on the important problem of computer system
24 4 50 3 75 2 evaluation.
25 4

7. Conclusion Footnotes

. . 1. Note the (k) refers to the status of the model just before
An analytic approach to problems posed in the Introduc- the kth cycle begins; this is why the ¢’s on the chart are

tion is feasible and fruitful. Two important simplifica- placed a little to the left of the vertical lines.)
tions are introduced: 2. Actually it is 2« which is the percentage of time the output

(a) The buffer is assumed to be of infinite capacity. computer is used becau_se for”every “busy” cycle the fol-
(b) The processing time is assumed to be a fixed multi- lowing cycle is “not available.

140 ple of the generation time. Received June 28, 1960

IBM JOURNAL »~APRIL 1961

