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Acoustic-Mode Scattering of Holes 

Abstract: Matrix elements are calculated for acoustic-mode scattering of holes in the valence band structure 

typified  by germanium. Whitfield’s generalization of the deformation  potential theorem i s  used to calculate 

the electron-phonon interaction; his method is, however,  extended to include the spin-lattice coupling. A 

general expression for the electron-phonon interaction matrix  element i s  obtained, and calculations are 

presented for some special directions in k-space. 

Introduction 

This paper investigates the scattering of holes by acoustic 
phonons of long wavelength in systems typified by the 
valence band of germanium. The problem  has been dealt 
with in great  detail in two papers by Ehrenreich  and 
Overhauser,l who employ the standard  theories of elec- 
tron-phonon  interaction.2 A more comprehensive  theory 
of this interaction, which is essentially a generalization of 
the Bardeen-Shockley3 deformation  potential  theorem, 
has recently been formulated by Whitfield.4 The novel 
feature of the present  treatment is the use of this devel- 
opment. 

In Section 1 we briefly state Whitfield’s results and 
obtain  a general expression for  the electron-phonon  inter- 
action  matrix element. In Sections 2 and 3 this result is 
applied to  the germanium  type of valence band structure 
including spin-orbit interaction,  but neglecting the spin- 
lattice  coupling; this coupling is discussed in Section 4. 
Part I1 of this paper will deal with application of these 
results, in particular  to transport theory. 

1. The deformation  potential theorem 

Whitfield deduces a generalized deformation  potential 
theorem by adopting a new set of basis states  (“Orthogo- 
nalized Deformed Bloch” functions)  and expanding the 
one-electron  Hamiltonian  as  a  power series in the strains, 
instead of the usual  expansion in  the lattice displace- 
ments. It is shown in his work that, in nonpolar semi- 
conductors, the principal part of the electron-lattice 
interaction is given by the  matrix elements, taken between 
combinations of Bloch and phonon states, of the  operator5 

E’= x $(Sij DDii+a)ji Sij). (1.1) 
6, i 

Here S i j ,  a function of the electron  coordinate x and 
depending on  the lattice variables, is a  component of the 

122 strain  tensor, 

sij= 1 au. 

axt ’ (1.2) 

where u is the local lattice displacement6 from the peri- 
odic configuration and is given by 

u=xqvV,  exp(if. x). (1.3) 

The deformation  potential operator7 is the tensor with 

V 

components 

1 
m 

Dii= - ( - P i P j + f i K i p j )  +uii , (1.4) 

where Uij(x) is an unknown  function  with the lattice 
periodicity, and K is the  diagonal operator  in  the Bloch 
representation  with  the wave vectors as eigenvalues: 

K$z=k$l . (1.5) 

It is shown in Whitfield‘s work that  the diagonal ele- 
ments of Dij are the  deformation  potentials of the crystal, 
in  the sense that  the energies E,(k) of the Bloch states, 
when the crystal is subjected to a  homogeneous  strain ~ i j ,  

are given by the eigenvalues of the  unstrained  Hamil- 
tonian plus Y,+i$Yi. 

Whitfield does not include spin-orbit interaction terms 
in his one-electron  Hamiltonian; if this is done, Eq. (1.4) 
must be modified to contain the spin-lattice  interaction. 
The additional  terms which appear  are discussed in  the 
concluding  section - at present we proceed  with ( 1.4) as 
deformation  potential  operator. 

We write the electron-lattice  interaction  matrix ele- 
ment as 

M~,=(+IIE’I+~’). (1.6) 

Here +z is the usual  combination of Bloch functions  and 
lattice wave functions, 
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( 1.7) For  the valence band in germanium, ( 2 . 3 )  has a  threefold 
degeneracy, the wave functions  transforming  under cubic 
operations like x, y ,  z .  We denote these functions  (the 

(1.8) “w representation”) by wl, w 2 ,  w3, and  their  common en- 
ergy  by EO. The wave functions for  the  other bands at 

( lS9 )  k =  0 will be  denoted by gi and  their energies by E?. 
The first order  contribution of the k p term vanishes 

since  inversion is a  symmetry  operation. The second order 
contribution is given, in the w representation, by the 

(1.10) 

In these equations, rn and M are  the electron and cell Nklkz   MkZ+(L-M)k2*  Nkzk:l 
masses respectively, v refers  to  both  phonon wave num- 
ber f and polarization s, and x(N)(q) is given by Nklk3  Nkzks  Mk2+(L-M)kS2 1 ’  
X ( N ) ( 4 )  ‘n-PN”(4”) 3 ( 1.12) where (2.4) 

V 
f i 2  (W1,Plgi) (gi, PlWl) 

m2 t 
where each of the vpv(qv) satisfies a harmonic oscillator ’= - x’ 
wave eauation. I N )  refers  to  the  entire set of vhonon 

9 
Eo - Eio 

\ I  

occupation numbers, and q to  the whole set qv of normal f i z  (Vl, pzgd (gi, Pz2.’1) 

coordinates. m2 I En - E;’ 
M =  __ x’ , 

The  procedure  for obtaining the various transport co- 
” 

efficients is now exactly as  usual,  with  transition  proba- N =  - 
bilities m2 m Eo - EL’ 

( V I ,  plgi) (gi, ~ 2 ~ 2 )  +(VI, pzgj )  (gi ,  ~ 1 2 1 2 )  

(2.7) 
2 x  

P[l,  = - 
?l 

I M u ’ I Z 6 ( E ~ , - - B ) ,  ( 1.13) (The  prime  on  the  summations signifies that we are  not 
including the w functions  themselves.) 

where When spin is taken  into account, the degeneracy be- 
comes  six-fold, the valence band functions  being Wja and 

(l .14) wjP where 01 and P are eigenstates of a, with eigenvalues 
+ 1 and - 1 .  The degeneracy is partially  removed by the 

T O  apply this formalism, we require  the energy eigen- spin-orbit  interaction,12 ~ = ~ [ v ~ ~ ~ ~ ]  . ,,, where 

El=En(k) + x ( N v + + ) f i o v .  
V 

values and eigenfunctions near  the valence  band edge, to rl=fi/4rn2c2. The  matrix is found to be 
the lowest nonvanishing order. 

2. The valence band 1 0  - i  o o o 
l l  

The  structure of the  germanium  type valence band, in- 
cluding the effect of spin-orbit  coupling, has been treated 
by Dresselhaus, Kip  and Kitte1,s Adams,g and others.lO 
The discussion below is an extension of that of Adams, 
using the usual methods  to  obtain  the energy, as a func- 
tion of wave number  near k=O, and  the eigenfunctions 
with  respect to which the  matrix elements of E’ are  to be 
calculated. 

The Schrodinger equation  for  the periodic part of the 
electron wave function, neglecting spin, is 

I where It is a band index, and 

I ( A / r n )  k p is now treated as  a perturbation  on  the system 

i 0 0 0 0 - i  

0 0 0 - l i  0 

0 0 - - 1  O i  0 

0 0 “i - i  0 0 

1 i O O O O  

Q=a , (2.8) 

where 

a = i ~ ( w l , [ V V o X P 1 3  wz) , (2.9) 

V l P ,  W Z P ,  v3P. 
and  the ordering of the  matrix (2.8) is wla, %a, %a, 

The k . p contribution is now also given by a 6 X 6 
matrix, 

J 
(2*3) where H is given by (2.4). 

(2.10) 

123 
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It is convenient to transform to  a basis in which s= Ut QZJ is diagonal. The transformation matrix used 
here is 

and a=a 

1 0 0 0  0 0 

0 1 0 0  0 0 

0 0 1 0  0 0 

0 0 0 1  0 0 

0 0 0 0 - 2  0 

0 0 0 0  0 - 2  

(2.12) 

The new  basis states, Zi ( i=  1 . . . 6 ) ,  are 
i I 1  2 3 4 5  6 

(2.13) 
i 3 / 2   3 / 2   3 / 2   3 / 2  I 112 112 

The Zi are analogous to atomic states with quantum num- m, I 3 / 2   1 / 2   - 1 / 2   - 3 / 2   I 1 / 2  -112 
bers j ,  mi. (In  the tight-binding limit, we would call this 
a j ,  mj representation.) The correspondence is  expressed 
by 

Transforming (2.10) to the new representation, we 
find 

where the Hij denote the elements of the matrix H (Eq. 
2.4). 

We  now measure  all  energies  relative  to the top of the 
valence band (i.e., the E3/2(0) level) ; then we require the 
eigenvalues and eigenvectors of Ill+& a. It can be 
shown13 that  it is  permissible to neglect  those matrix ele- 
ments connecting states of different j (i.e., the lower left 
4  x 2 and the upper right 2 X 4 )  - they contribute only to 
order k 4 / a .  The secular determinant then factors into a 
4 x 4  and a 2 x 2 .  The 2 x 2  corresponds to the j=1/2 

124 
level and, in germanium, it is too far removed  in  energy1 
(-0.3 ev) from the two degenerate j=3/2 levels to be of 

importance in calculating transition rates.  Accordingly, 
we  will not list the energies and wave functions for this 
band. 

The remaining 4 X 4 results in two  twofold degenerate 
bands. Taking (2.2) into account, we find for the j=3/2 
band 

E=Ak'*(R(k) ,  (2.15) 

where 

i i 2  L+2M A = - + -  
2m 3 '  

(2.16) 
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1. - \ ”  ‘.I, 

1 3  (2.17) Nk3 x=- ( k l + i k z )  , 
The eigenvectors, referred to the basis Zi,  are found to be: ( i ) ,  t 2  =% (f) : E - A k z + ( R .  x= 

(L-”)  
(k2-3k32) -a . (2.19) 

6 
t1=% -x  The  functions t1 and & are associated with the larger 

- c* effective mass, t3 and t4 with the smaller mass. 
The t j  may all be written in the  form 

63 = % ( i* ) , &===X (-;*) ; E = A k ” & .  k=1 2 3 [CXfl jk+PbjklZ(k,  (2.20) 

(2*18) where the coefficients ajk and bik contain the k depend- 
Here ence. Making use of Eqs. (2.13) and (2.181, we  obtain 

- - ~~ ~ ~ ~ ~ ~ 

for  the a’s and b’s: 

+ 
G f i  

a12= -i (- f l f i  
a13 = 0 

-%x* - i %x* 2 x x  

fl fl fi 
%X* - i %x* 2x4 

lZ3l= T- fi fi 
- 2%x 

fi 
%X - i  %x - 2x.x 

fi fl 
b13= - 

fi 

a21= - u22= - a23= - 

a32= - a33= - 

u43= - 

bll= - biz= - 

b,,=-X(7 FS + ”) bZ2=i%(- +* - -) x 
b3,=%(- x - b:>2=-i%(T x f L) b33= - 2ZX* 

fi G f l  
b23 = 0 

fi fi 
%X i %x  2%+* b41= - fl b42= - b43= - 

fl fi 
(2.21 ) 

.___ ”” 

3. The electron-phonon interaction matrix element Making use of (1.3) we may write 

The matrix  element for  the electron-phonon  interaction Si{,, =ix Vj(v)fi(x(~) I qvJx(w.,)) X 

is given by Eq. ( 1.6) which, on  account of ( 1.1 ), we V 

may write 
eXp[i(f- (k-k”)) * X]W*,kW,. .k. .d3X. (3.3) 

 MI!,=*^ (Jln~~(~)IS~jpj~+a)i~S~iIJl,,r,~{~,)). (3.1) 
i, I The last  integral is nonzero only if f -  (k-k”) =27rg, 

We first calculate (Sij ~ ~ ~ ) * * , = ~ ~ , , S ~ ~ , , p ~ ~ ~ ,  , where  where g is any vector of the reciprocal lattice. Since for 
the situation we are considering here (long-wavelength 
phonons and small k), Umklapp processes do  not occur, 
we take g=O; then 

Si{,, = 

dqd3xx*{~)(q)x(~..)(q)exp[i(k”-k) ‘X]W*,k W n . . k . ! S i j  . 
(3.2) 

St!,, =i~Vj(v)fi(X(N)IqvIX(N,,)) 8 r , k - k ” l n n r ’ ( k ,  k” )  (3.4) 
V 125 
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where 

Inn..(k,  k") = & X W " , ~ W ~ . . ~ , .  . / 
The nonvanishing matrix elements of qv are 

with N'Ip=Np for p#v ; 

where n is the  number of unit cells in the cry~ta1.l~ We 
now set 

~,,={exp[%] -1) -l z - ,  kT 
f i W V  

(3.7) 

where  the  last  approximation is valid at all but  the very 
lowest temperatures. 

The matrix  element is now 

where 
4 

BiA, (k, k )  2 {Znns<(k, k)D$st(k') +ln,,n,D!k,,(k)) 

(3.9) 
nN=l 

and 

f = k - k .  (3.10) 

The quantity D j i   ( k )  appearing in ( 3 . 9 )  is defined by 

(3.11) 

and  depends on  the deformation  potential elementsl5 

and 
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high  symmetry, however, f, 8, j reduce to simple numbers 
independent of L, M ,  and N .  This is true when &, fr‘ both 
belong to the “star” of six (1 ,0 ,0)  directions, and  is  true 
when &, k‘ both belong to the  star of eight ( 1, 1, 1 )  direc- 
tions. One may  propose approximate theories of the 
transport  constants involving only the  matrix elements for 
these pairs of star directions, and so representing  some 
interpolation of the  matrix elements  between the special 
values of B.  In  the present work we will simply tabulate, 
in the Appendix, the coefficients f, g, j for  the (1 ,  0 , O )  
star and for  the ( 1, 1, 1) star together  with the I and D 
coefficients from which  they are derived. 

Recently Pikus  and Bir have  announced a treatment of 
lattice  scattering of holes  which, for  the acoustic  modes, 
is on  the  same basis as  the  work presented here  and  pre- 
sumably  leads to the  same results.16 In  two  papers which 
recently came  to  our notice,  they introduce  the  same 
presentation of the effects of strain on  the  electron  Hamil- 
tonian17 as is used here following Adams,g and essentially 
the  same  deformation potential  tensor-operatorla  as was 
independently  obtained by Whitfield.4 

4. The spin-lattice interaction 

Whitfield’s general  result is  that  the electron-lattice inter- 
action part of the  Hamiltonianlg  (to be evaluated in  the 
Bloch representation) is HI- H where H is the electron 
Hamiltonian in the unstrained  crystal, and H‘ is obtained 
by replacing p, V, etc., in H by 

p’=  TtpT, (4.1 ) 

etc., and  VO by Vo’ as given in Eq. (4.5) below. Here,  to 
first order in strain, 

i T=l”  ( U i P i  + Pil*j 1 * (4.2) 

We have so far  omitted  the contribution to HI-H from 
the spin-orbit term, Q, of H .  This contribution is 

2fi j 

___ 

In the 2 representation 

a>(&) = 

Q ’ - Q = v u -  [V’l/‘oXp”VVoXp]-vcr.R. (4.3) 

Making use of the resultszo 

and  the expression4 for V ‘ O  

v‘,=Vo+ sij W ( x )  , 
i, j 

we  findl9.20 

(4.4) 

(4.5) 

where 

The  contribution of 70 - R to  the  matrix elements for 
electron scattering is calculated  in the  same way as  in 
Section 3 for  the  operator Ez given by (1.1). It  is thus 
obtained  by  substituting, for Dji in (3.1 l ) ,  the coeffi- 
cient W i  in the expansion 

R =  2 S i i a j i .  (4.8) 
i, j 

It is convenient,  however, to  compare  the  matrices  for 
% Y i  and aji not  in  the  representation  expressed  by 
Dpm( k) , Eq. (3.1 1) , but  in  the “2 representation” given 
by (2.13). For compactness we shall  write down a single 
matrix for 

a>( E )  = I: E i j D j i  (4.9) 
i, 1 

(the &ij are of course c-numbers)  and  compare  it with the 
matrix of 

0 

(4.10) 

127 
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and in the v representation 

a( E )  = 

where 

o a  6 0  

-a 0 -5 - p  

- 6  P 0 - v  

0 -p* - y *  0 

p* 0 -x*  a 

v:k x* 0 s 

EL 

o x  

- x  0 

-a -6 

o <  
- P  0 

V 

+ 

(4.13) 

Transforming (4.12) to  the Z representation, we find that 
Q. ( E )  has precisely the  same  formz1 as (4.11 ) , but with 
F ,  G, J replaced by 

F8=i[2(C1-C2)  -C3] 

G, = iC3 

J,= -i(Cz+2C4) . 
(4.14) 

It is clear from these  results that (4.12) may be com- 
bined with (4.1 1) by introducing new constants 

F * = F + F 8 ,  

G * = G + G , ,  (4.15) 

J * = J + J , .  

The contributions from (4.14) are small. 
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Appendix 

It is not necessary to derive f, g, j for all pairs of direc- 
tions %, k' belonging to  the ( 1, 0, 0 )  and ( 1, 1 ,  1) stars, 
because a pair of directions is physically equivalent to a 
second  pair into which it is transformed by a  cubic sym- 
metry  operation. So we take only the pairs [ (1, 0, 0), 

forthe (1 ,0 ,0)  star,andthepairs [ ( 1 ,  1, l ) ,  (1, 1, l ) ] ,  

(i, 1 ,  i )  ] for the (1, 1, 1) star.  The  number of Z's, D's, 
and hence B's, to be evaluated is further reduced by some 
general  relations among them. For the Z's, these  have been 
given in Section 3. For the D's, the following  relations 
hold for all % and %': 

(1,0,0)1, [ ( 1 ,0 ,0 ) ,  (0,0,1)1,  and [(l,O,O), ( i , O , O ) l  

[ (I ,  1 ,  I ) ,  (1, i , i ) l ,  [ ( I ,  1 ,1 ) , (1 ,L  l ) l , a n d  [ ( I ,  1, I ) ,  

Furthermore, since D is a hermitian  operator,  the D's 
satisfy Dvp=Dpv*, so that for a given pair of super- 
scripts we need list at most four  independent D's. 

For both  the ( 1,0 ,0)  and (1, 1,  1) stars  the B's satisfy 

while the following  relationships  hold for  the ( 1,0,  0) 
star,  but  not  for  the (1, 1, 1) star: 

The absence of some  expected  symmetry  relations  in 
(A.2) is accounted for by the choice of eigenvectors as 
given in Eq. (2.18). By choosing  suitable  linear  combi- 
nations of the  two eigenstates for a given energy, one 
can  introduce additional  symmetries; the  form (2.18) 
was chosen  because it involves the smallest number of 
parameters. 

From Eq. (2.19) it is evident that  the D's and Z's, 
and hence the B's, are unchanged if k is changed to -%. 
This  means  that  the B's are exactly the  same for the 
transition (1, 0, O ) + (  i ,  0, 0 )  as  for  the  transit ion 
(1, 0, O ) + (  1 ,  0,O); hence we list only the  latter in 
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Tables 1-6. Likewise ( 1, 1, I)+( I ,  i, i )  has  the  same 
B's as ( 1 ,   1 ,  1)+(1, 1, l ) ,  and ( 1 ,  1 ,  l )+ ( l ,  i, 1) has 
the  same B's as (1 ,  1, 1)+(1, 1, i ) .  

For  the (l,O,O)+(l,O,O) and (1, l , l ) + ( l , l ,  1) 
transitions, we find  that lnm= a,,, so that B$A=2Dzm ; 
therefore  we  list  only the B's for  these  transitions. For 
( 1 ,  1, 1 ) + ( 1 ,  i, 1) we find: 

zll= - ; 133= - ; 1 3 4 = - 1 1 2 =  - ; I-i  1 f i  i 
3 3 3 

113 =z14= - ; I m n = I n m  9 (A.4) 

while for ( 1 ,  0, O)+(O, 0, I ) ,  

1 

fl 

1 1 4  = - 1 2 s  = I 3 2  = - 141 = \ /3 /2  ; 
I . . -  1 
12-z. (A.5) 

All other 1's are zero. Furthermore,  the  tensor compo- 
nents of the  form C;; have j = O  while  those of the  form 
C;r ( n f m )  have f=g=O; these  entries  are  therefore 
omitted  in the tables. 
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Table I f r = ( O ,  0, 1) 

n n' f g 

Dl1 1 1 1/6 5 / 6  

3 3 1/2 1 / 2  

1 3 0  0 

1 4 1 / 2 f l   - 1 / 2 f l  

D22 1 1 1/6  5/6 

3 3 1/2 1 /2 

1 3 0  0 

1 4 "1/2* 1/2* 

D33 1 1 2/3  1/3 

3 3 0  1 

1 3 0  0 

1 4 0  0 

B'2 

n n' f g 

1 1 2/3 1 /3  

3 3 0  1 

1 2 0  0 

1 3 0  0 

1 4 2 / f l  l / f l  

3 2 0  fl 

1 1 -1/3 4/3 

3 3 1  0 

1 2 0  0 

1 3 0  0 

1 4 l / f l  2 / f l  

3 2 l / f l  2/* 

1 1 2/3  1/3 

3 3 0  1 

1 2 0  0 

1 3 0  0 

1 4 0  fl 
3 2 2/* l / f l  

Dl3 

D23 

n n' j 

1 1 0  

3 3 0  

1 3 0  

1 4 i / f i  

1 1 0  

3 3 0  

1 3 - 1 / g  

1 4 0  

1 1 0  

3 3 0  

1 3 i / f i  

1 4 0  

n n' j 

1 1 --i 

3 3 i  

1 2 0  

1 3 0  

1 4 i / f l  

3 2 - i / f l  

1 1 0  

3 3 0  

1 2 - 1  

1 3 - l / f l  

1 4 0  

3 2 0  

1 1 0  

3 3 0  

1 2 i  

1 3 i / f l  

1 4 0  

3 2 0  
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Table 4 %= (1, I, 1) 

n n' f &? 

Dl' 1  1  1/3  2/3 

3  3  1/3  2/3 

1  3 - ( l+ i )  l + i  
6 f i  6 f i  

1  4  3-i  -(3-i) 
6 f i  6 f l  

1 1 1/3  2/3 

3  3  1/3  2/3 

1  3 - ( l + i )   l + i  
6 f l  6 f i  

1 4  -(3+i)  3+i 
6 f l  6 f l  

1  1  1/3 2/3 

3  3  1/3 2/3 

1 3 l + i  - ( l+ i )  
3 f i   3 f i  

1 4 i  
" 

1 

n n' j 

Dl2 1  1  -1/3 

~ 3  3  1/3 
1 3 - ( l+ i )  

3 d 3  

3 f l  

1 4 2i 

l- 
Dl3 1  1  1/3 

3  3  -1/3 

1  3 i-2 

3 f i  

3 f l  

1 4 i  

- 
0 ' 3  1  1  -1/3 

3  3  1/3 

1  3 2i-1 

3 f l  

3 f l  

1 4 -i 

I 

n n' f g n n' j 

Bll 1  1  2/3  4/3 BIZ 1 1 2/3 

3  3  2/3 4/3 3 3 -2/3 

1 3 i-1 -(i-1) 1 3  2(1-i) 
" 

3 f l   3 d 3   3 d 3  

1 4 3+i  -(3+i) 1 4 4i 

BZ2 1 1  2/3  4/3 B13 1 1 2/3 

3  3  2/3  4/3  3  3  -2/3 

1  3  i-1  1-i 
" 

3 f l   3 f i  
-2(2+i) 

3 f l  
1  4  i-3  3-i 
" 

1  4  -2i - 
3 f i   3 f i   3 4 3  - 

B 3 3  1 1  2/3  4/3 B23 1 1 2/3 

3  3  2/3  4/3 3 3 -2/3 

1 3  2(1-i)  2(i-1) 1 3 2(2i+l) 
" 

3 f l   3 f l   3 v 3  

3 f i   3 f i   3 d 3  
1 4 -2i  2i 
" 

1 4 -2i - 

10. E. 0. Kane, Intern. J .  Phys. Chem. Solids 1, 82  (1956); 
Ehrenreich and Overhauser, Ref. 1 .  See also Pikus and 
Bir, Ref. 17. 

1 1 .  The  parameters L, M, N that  appear in the Shockley 
matrix (2.4) are  the usual ones  found  in  the literature. 
Adams denotes them respectively by A ,   B ,  C .  It is possi- 
ble for confusion to arise here since Adams' A ,  B, and C 
are  not equivalent to the A ,  B, C that  appear in the stand- 
ard equation 

The constants  in the  latter  are given by: 
A = A 2 / 2 m + 3 ( L + 2 M ) ;   B = + ( L - M ) ;  

E = A k 2 k  [B'k4+C'(k~'k3'+k~'k3'+k3'kl')]f. 

C2=3[N2- (L-")2 ] .  
12. We are neglecting a term tqVVo X k 0 here;  this ap- 

proximation  is discussed in E. 0. Kane,  Ref. 10, where it 
is  concluded that  the term  is negligible. See also Pikus 
and Bir, Ref. 17. 
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1 1  0 2 
- (1-i) 
3 

3 3  2  2 
9 9 

-(2-i) -(1+4i 

1  2  -2i 0 
3 

1 3 3i-1 3i+l  
" 

3 f l  3 f l  

3 f l  3 d 3  

1  4 i + l  S i -  1 ~- 

3  4 4i 2i 
9 9 
" 

3 1 3i-1 3i+l 
" 

3 f l  3 d 3  

3 f l  3 f l  

4  1 i + l  S i -  1 ~- 

1  1  -2i  2 
3  3 
" 

3 3  4  2 
9 9 -(I +i) -( 1 +i) 

1 2  0 - 2i - 
3 

1  3  i-1  Si+  1 
" 

3 f l  3 f l  

n n' f L? n n' i 

1 4  3i-1  3i+  1 - 
3 f l   3 f l  

3 4  -2i  8i 
9 9 
- - 

3 1 i-1  5i+  1 - 
3 d 3  3 d 3  

3 f l  3 f l  

4  1 3i-1 3i+  1 - 

1 1  2 - 2i - - 
3 3 

3 3  2  2 
-(2i-  1) - (4+i) 9 9 

1 2  0 - 2i - 
3 

1  3 2( l+ i )  2(2i-1) 
" 

3 f l  3 f l  

3 d 3  3 d 3  

1  4 2i 4i - 

3  4  4i 2i 
9 9 
- - 

3  1 2( l+ i )  2(2i-1) 
" 

3 f l  3 d 3  

3 d 3  3 d 3  

4  1 2i 4i - 

Dresselhaus, Kip and Kittel, Ref. 8 ;  E. 0. Kane, Ref. 10. 
See, for example, R. E. Peierls, Quantum Theory of 
Solids (Oxford,  1956), Eq. (1.63). 
The  parameters F, G ,  J ,  defined in Eqs. (3.12) and (3.13) 
correspond to Adams' constants E n ,  E12, E44/2. Also 
observe that in  (3.13)  interchanging v1 and v2 leaves 
the integral  unaltered. The  form of Eq. (3.15) is a con- 
sequence of this  invariance. 
G. E. Pikus and G. L. Bir, Abstracts for the International 
Conference on Semiconductor Physics, Prague  1960; and 
to  be published. 
G. E. Pikus and G .  L. Bir, Soviet Physics - Solid State, 
1, 1502 (1960). See also 1, 1675 (1960). 
G. E. Pikus and G. L. Bir, Soviet Physics -Solid State, 
1, 136 (1959). 
These  results  include  terms only up to first order in the 
strain;  higher order  terms have been discarded. 

B13 

1 1  0 

3 3  0 

1 2  2 - 
3 

1 3  2i 
3 f l  

1 4 2(2i+l) 

3 f l  
3 4  2 - - 

3 

3 1  - 2i 
3 d 3  
- 

4  1 -2(2i+l)  

3 f l  

1 1  2 
3 -( 1 -i) 

3 3 -2 
T ( l + i )  

- 2i 
3 

1 3  0 

1 2  - 

n n' 1 

1 4  0 

3 4  - - 2i 
3 

3 1  0 

4 1  0 

1 1  

3 3  

1 2  

1 3  

1 4  

3 4  

3 1  

4 1  

0 

0 

-2 
3 

41 

- 

3 d 3  

3 d 3  

2(i-l)  

2 
3 

- 4i 

3f1 

3 d 3  

-2(i- 1) 

20. In Eq. (4.4), we have neglected a term  in V W ;  this gives 
a negligible contribution to  the  matrix element for 
acoustic modes. 

21. We are  not neglecting the contribution from  the anti- 
symmetric part of E i i ;  it makes a nonvanishing contribu- 
tion to  the  matrix elements  in the v representation, but 
when one transforms to  the Z representation the resuIting 
matrix is identically zero. 
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