
Gilbert W. King

Table Look-up Procedures in Language Processing
Part I
The Raw Text

Abstract: A method of addressing memories is described which is very powerful in the processing of nat-

ural languages, where the a’rithmetic or logical operations are either nonexistent or do not lend them-
selves to algorithmic description. The main feature is the guarantee of initiation of an exhaustive search
for a linguistic word at a point just beyond the desired address. Sequential search backwards not only
locates an address if it is there but also provides identification of a longest match first. The method is
further extended to provide “conditional” addressing by prefixing subsequent addresses from informa-
tion obtained in earlier searches.

Introduction

It is safe to say that the processing of languages for in-
formation retrieval or automatic translation will always
require a table look-up procedure, i.e., reference to a
dictionary of some sort. There can never be an algorithm,
or stored program, which can give the meaning of a
word from its spelling, however encoded. In a subse-
quent paper of this series we shall be able to show that
more sophisticated processing, to discern the grammati-
cal structure of sentences and resolve the ambiguities of
meaning, will not in general be resolved by algorithms,
but will also require reference to tables in which the
properties of the language are listed. The art of data
processing with tables is as old as computation, but in
recent years has been neglected, at least in scientific
computation.

This paper is concerned primarily with the first look-
up in a dictionary. Now this operation is characterized
by the fact that dictionaries are exceedingly large, of the
order of a billion bits. Tables of this size and character
have certain characteristics which require novel ap-
proaches to the procedure of search, and indeed an
appropriate method of addressing lends itself to the exe-
cution, by table look-up, of so-called “logical” opera-
tions which are normally considered to require stored
programs.1

Table look-up

The function of a very large memory in a machine or-
86 ganization is to provide table look-up; that is, given an

a function of argument x, to find the value of x , f (x) .
The necessity for table look-up arises when f (n) cannot
be computed from x by an arithmetic or logical algo-
rithm, or when the computation is too long. In the early
days of computing, almost all functions were obtained
by table look-up. (This was done even for reciprocals,
f (x) = 1 / x , before automatic division was available.)
To obtain f(x) for x with many digits, a straightforward
table would, of course, have to be of impractical size.
However, values could be obtained from tables of re-
stricted values of x, and f (~) constructed with the aid
of interpolation tables or by further calculation (addi-
tion theorems, et cetera) .

In a stored-program machine a function is computed
by an algorithm, such as a continued fraction. As long
as computation of algorithms is faster than the neces-
sary sequence of table look-ups, the latter is of no inter-
est for the calculation of most mathematical functions.

In non-numerical work the situation is quite different.
For example, it is impossible to calculate the meaning
of a word from its spelling by an algorithm in the equiva-
lent of a computer arithmetic unit. Thus, if words are to
be processed as they occur in natural languages, a dic-
tionary storage and look-up must be provided in a
machine.

The functions f(x) which cannot be calculated, such
as meanings of words in a dictionary, telephone numbers
of subscribers, prices and inventory of merchandise, et
cetera, have other concomitant properties. The set of val-

IBM JOURNAL * APRIL 196 1

ues of x, for which f (x) is desired, is very large, and large
in quite a different way from the set of x’s in numerical
work. The latter are generally a finite set, say a subset
of all ten-decimal digit numbers. It is interesting to note
that there are, however, numerical tables of the type con-
sidered here, namely, optimum interval tables with varia-
ble-length addresses (to stabilize precision).

The x’s in non-numerical work (and in the case just
mentioned) are, if not arbitrarily restricted, essentially
an unbounded set from an infinite set which is every-
where dense. That is, given an xl, and another nearby
x2, we find that in general the number of digits in x1
and x2 are of no particular fixed length, and may be of
indefinite length. Moreover, one cannot tell, unless one
in fact looks in the table, whether there is not another x
which lies between x1 and x2, since x, and the set of x’s,
belong essentially to the continuum. For example, in a
dictionary with the ordinary alphabetic order, there may
be the words “bee” and “beef.” Between these can be
“beech,” “beeches,” and any idiomatic phrases begin-
ning with either of these words.

Integral address

It is evident that in lexical processing we have in
general the requirement of table look-up in mem-
ories which have to be extremely large, and in which
we cannot tell beforehand what entries, hence addresses,
exist. The method of addressing, so current in present-
day computers, by absolute addresses is impossible. Ab-
solute addressing is impossible for another reason. For
the type of addresses, x, used in dictionaries, directories
and catalogs, there is no way to compute from x the page
and line number on which x will be found. Instead, an
integral addressing method is required in which the ad-
dress determining the location of the value, f (x) , is
found by locating x itself?

The combination x : f (x) will be called an entry and
both x and f (x) are stored. The memory stores a se-
quence of entries. In general, x will be made up of digits
or characters, and can be ordered. Since both x and f (x)
will be of variable length, it is most economical not to
store an entry in a fixed cell, but to store the entries in a
continuous stream. This means that the address of an
entry, namely x, must be recognized by a first symbol a,
meaning “begin entry,” or more specifically “begin ad-
dress,” which also acts as “end f (x) ” for the previous
entry.

Because we cannot tell beforehand whether or not x
is indeed an entry, nor its length, the location of an ad-
dress, hence an entry, must, in the final analysis, be by
sequential search. However, this does not mean that the
whole memory must be exhaustively searched. The en-
tries can be grouped in blocks, corresponding to pages
of a dictionary or directory. The division may be sys-
tematic, say, by the first letter, or pair of letters; or the
groups may contain a fixed number of entries, or of char-
acters, or in any arbitrary way. If the information is
stored on a drum or disc, the pages correspond to a
track; page turning corresponds to jumping tracks; and

sequential search corresponds to sitting in a track, real - d-
ing everything that passes by. Similar analogies could be
made in core or other memories.

There is another instruction symbol which we have
represented above by a colon, between the address x and
value f (x) . To avoid confusion with a colon as a symbol
in the text, and possibly in an address, let us call this
instruction symbol T. Its function is to indicate end of
the address, x , and beginning of the function value, f (x) ;
i.e., it ends matching on x and initiates readout of ! (x) .
The entry thus is composed of a series of symbols
a X T f (X) .

Search procedure

The search may now proceed by essentially random ac-
cess to a page. Consider the look-up of an address x.
Assume the search mechanism, after the last search, is at
an address xl. The desired address x and x1 may be im-
mediately compared. Since in general x and x1 may be
of different length, this comparison is serial, bit by bit.
Within a few binary characters it can be determined
whether x < x l or x > x l and hence whether to look back
or ahead. Let us first take the case x > x l . The next page
will be examined, and an entry xi picked, perhaps at
random, then a new comparison made. This procedure
is followed page by page until x<xc This condition will
first arise within one page after the location of the de-
sired address x (if it exists). (If the first comparison
resulted in x<x,, pages are turned back until x>xi , then
the routine for the former case is followed, giving only
one page advance.) Thus, by sampling from successive
pages, the search mechanism reaches a point in the store
a short distance beyond the desired address. If com-
parison and turning pages can be made very fast, as
seems to be the case in practice, the search mechanism
has made essentially random access to a neighborhood
just beyond the desired entry.3

One can conceive of other methods of arriving at the
neighborhood of the desired address. For example, the
first digit or two of x could be used as an absolute ad-
dress. However, since in general the number of addresses
beginning with the first one or two characters are not
uniformly distributed, a small table (or matrix) has to
be consulted.4 These techniques require additional hard-
ware, and do not present the feature, which we shall see
is really valuable, of arriving just beyond x.

At this point, sequential search is resorted to, as it
must be. The search now proceeds in descending order
of x. A matching address may be found on the page
during this sequential search in the decreasing direction
(Le., toward the “top of the page”). However, it may be
necessary to turn to the previous page. If, in the page-
turning process, the time to turn a page and sample is
short, the sampling on successive pages occurs at essen-
tially the same “eye level” or distance down a page. Con-
sequently, in the sequential-search phase it will not be
necessary to continue backwards for a distance appre-
ciably longer than a page. The average distance will be
half a page.

IBM JOURNAL ‘

87

APRIL 1961

88

If the initiation of the search starts at some arbitrary
point in the memory xi (corresponding to the last ad-
dress found), the distance (in terms of number of pages
turned) to a new address xi is on the average Ixi-xil.
The average value of this when all addresses are equally
probable is one-third the number of pages in the dic-
tionary. Minimum access time is achieved when the time
to sequentially scan half a page equals the time to turn
one-third of the number of pages in the dictionary. This
condition in fact determines the optimum size of a page.

Principle of longest match

As we are considering a function f (x) which may exist
for any value x from the continuum, we are assuming
that addresses x, for which f(x) is desired, arise in some
processing, and are samples from the continuum. If &
are individual characters, binary or otherwise, an ad-
dress is some indefinite sequence of them, x=l1c2 . . . ,
which for the moment we shall assume lie in a semi-
infinite Input Register.

A consequence of the above search procedure, espe-
cially the final stage of sequential search in descending
order, provides a valuable feature, in that the longest
match of an address with the contents of the Input Reg-
ister is obtained in one search, without programming an
assembly of subroutines.

For example, assume the numerical equivalent for the
contents of the Input Register is .14768 . . . , and that
the table contains the addresses and function values given
in Table 1 .

have been found. The total distance scanned would have
been less than one page.

An application

An application of this method of search occurs in the
preliminaries of mechanical translation of languages.
Another very similar application is the processing of text
of natural language into a canonical form for infor-
mation retrieval. The input text about which lexical
information is desired for the translation process is com-
posed of an indefinite sequence of characters. Chains of
these characters constitute addresses to the memory, or
dictionary. The simplest case is when the chain is a single
word. It is readily seen that despite their variable length,
words can be used as addresses in the above scheme and
identified as addresses to entries in the table, provided
they are, indeed, listed in the table.

In automatic translation, individual words are not nec-
essarily the linguistic units to deal with.5 It is, in fact,
often desirable to treat groups of contiguous words or
idiomatic phrases as units. Clearly, if the space between
the words be given a numerical code and treated as a
character, there is no difficulty at all in having groups
of words as addresses. The principle of longest match,
however, offers an interesting feature. It is not necessary
to determine beforehand whether a word group is going
to exist in the table-perhaps only the individual words
occur there. Since the longest sequence is matched first,
a word group will always be recognized if it is an entry.
Otherwise, its components are looked up individually.

Table I Note that this decision is made automatically in the one
_______ search.

Page n Page n + 1
~~ ~~~~ ~~~~~ ~~ ~~~ ~~ ~~~

.12 f(.12)
.oo 1 5 f(.0015)

.15 f(.15) .117 f(.117)

.147 f(.147) .09999 f(.09999)

.146 f(.146) .09 f(.09)

.14 f(.14) .085 f(.085)

.13 f(.13)

.1192 f(.1192) .159 f(.159)

.11,81 f (. l l S l) .15123 f(.15123)

Assume the search started at some page <n. Sampling
on these pages up to and including page n gives x greater
than the sampled address. On page n+ 1 assume the
sample address is xi=.15123. Now x<xi, i.e., a number
slightly larger than the .14768 . . . in the register, is
found by random access; then the addresses .15123, .IS,
.147, .146 in descending order are scanned. The largest
sequence in the Input Register for which a complete
match can be made is .147, and the value for this would
be read out. If, however, .147 was not an entry, then the
value for .14 would be located in the search.

If the desired address had been x=.l17, and the
sampling had been high on the pages, page n+l would
have been reached before x < x i . The sequential search
would then have been up through page n+ 1 , without
success. But near the bottom of page n, a match would

IBM JOURNAL * APRIL 1961

Conversely, the entries in the table may correspond to
parts of words, e.g., stems and endings, prefixes and
suffixes, or the dissections of compound words. Again no
difficulty is encountered. For example, assume “bag” is
an entry, but “bags” is not. If “bags. .” were in the
Input Register, the match would be on “bag.” The resi-
due “s#” would be found as the next address. (The sym-
bol # indicates the character assigned to the linguistic
item “space.”) This allows a dictionary to be made of
stems and endings only, and avoids the wastefulness of
having to enter all the inflectional forms of every word
of the language.

For example, assume the Input Register contained the
text: “he singed the beard of the . . .”

The first look-up would find “he” as an address, and
on the match this would be shifted out, as would be the
space. The register would now contain

“singed the beard of the . . .”
(Three new characters would be inserted at the right to
make up for those shifted out.) Now a second search is
made. If “singed the beard” had been considered an
idiomatic phrase, to be translated as a whole, an entry
with this as an address would exist. A match would be
found, and the words “singed the beard” shifted out, so
that the register would now contain

“of the . . .”
If the phrase “singed the beard’ had not been consid-

ered particularly idiomatic, and not made an entry, a
shorter match would have been found in this search.
If the word “singed” was an entry, it would be found.
Then the successive conditions in the register would be

“the beard of the . . .”
“beard of the . . .”
On the other hand, it may have been decided that “singe”
was a straightforward word so that its various inflections
need not have been entered specifically. Then the longest
match would be on “singe,” giving the information about
this stem. Then we would have

“d the beard of the . . .”
The next address found would be “d#,” giving the

information that this is a verbal past tense ending.
Note that “sing” would not be found, giving rise to the

incorrect dissection “singed.”
The ability to obtain matches all the way from parts

of words to indefinitely long groups of words makes it
unnecessary to process the text before addressing the
memory. (This could not be done anyway in the case
of newly constructed compound words, like “leptonu-
clear,” whose composition cannot be anticipated.)

The dynamic dissection of words, however, can lead
to errors. The word “needless” might not be in the table,
because it is a simple compound of “need” and “less.”
But it would be split on the longest match, “needle,”
leaving “ss” which would not be found. Or if “needles”
were an entry, this would leave “s” which is an entry (an
English ending to nouns and verbs). The remedy is to
anticipate these peculiar cases, and enter the whole word.

A significant feature of the longest-match principle is
that one can simultaneously play both the strategy of
stems and endings, and of whole inflected forms, adopt-
ing whichever is of most assistance, with absolutely no
modifications of hardware, control or initial decision.

When a match has been found, the value f (x) is read
out of memory, and the contents of the Input Register
shifted forward by the corresponding number of char-
acters in the address just found. (Since in practice the
Register is of finite length, new text is read in to fill it
at the tail end.) Then a new search is initiated, scanning
down the contents of the Register with its shifted
contents.

Break points

If no match were found, the scheme as outlined so far
would allow the search to proceed in descending order to
the beginning of the dictionary. The search may be
stopped, however, soon after the place is passed where
the address would have been. This is done by means of
break points. These are one-letter addresses corres-
ponding to all characters used, with f T (x) being x
itself or a “transliteration” of x. A match is always ob-
tained on a break point, f T (x) is read out, and the

contents of the Input Register are shifted one charac-
ter. The point here is that transliteration is initiated in
the original search procedure, without further ado.

In practice, break points with more than one letter
may be used, to speed up the search. At least one should
appear on each page.

This is the general procedure for handling addresses,
or sequences of characters, in the Input Register which
are not in the memory. In the application to dictionary
look-up of running text, this condition will be produced
by proper nouns or words not in the dictionary. In this
situation, the complete word should be transliterated.
The function value of the break points, f T (x) , will then
be the transliterations of the break-point symbol x. The
method by which the transliteration routine is pursued
through the whole word is described below.

In the event some of the single characters are
legitimate addresses, as in single-letter words like
“a” in English, this procedure, without modification,
would give false values (in the example f (a)) and the
unidentifiable word incorrectly dissected. The same situ-
ation arises if the single-letter word is a suffix such as
“s.” In languages, this difficulty can be avoided because
single (or double) letter words may be recognized by
the preceding and following space (#). That is, the
entry in the tabIe would be not “a,” but “#a#.” Extra
entries “##$a#” identify “A” when it begins a sen-
tence. (The symbol @ indicates capitalization in the text
of the following letter.)

This example shows another detail which must be ac-
commodated; namely, that words may occur at the be-
ginning of sentences, or, as is common in Russian or
German, may be capitalized within the sentence when
used as a title, e.g., Doctor. Obviously, assigning entries
for every word that might be capitalized is impossible.
Capitalization is indicated in the incoming text by symbol
(such as (e), with value “space-cap,” which then will be
identified independently. The word sought then resides
in the register in uncapitalized form.

Proper nouns, with initial letter capitalized, will be
transliterated with the capitalization. Proper names,
which happen to be capitalized common nouns, such as
“White,” thus would be capitalized but translated. To
overcome this, entries with the capitalization can be
made with the correct proper-name transliteration.

Principle of address modification

With addition of very little hardware, the above address-
ing scheme can be extended to provide a conditional se-
quence of events, which enormously increases the power
of table look-up.

An additional scanning register (B-box) , with a
capacity of one or more characters, is placed in front
of the Input Register. The entries now may be composed
of three parts: the address x, the function f (x) , and a
prefix p. A new instruction p is introduced to replace T,
so that the entry is x p p f (x) . When p is recognized, the
end of address is recognized as it was with T, f (x) read
out from memory, and x shifted out of the Input Reg- 89

IBM JOURNAL * APRIL 1961

ister, exactly as before, but two new events happen.
The information p immediately following p is read into
the B-box, and the next search starts, not at the begin-
ning of the Input Register, but at the B-box, and then
proceeds normally through the Input Register. In this
way the sequence of characters in the Input Register
immediately following the address x just found is pre-
fixed by p . We shall now give some examples of how this
address modification can be used.

Long address

The principle of longest-match was illustrated with the
concept that the Input Register is semi-infinite. In prac-
tice, it need not be longer than the longest address in the
memory. This is not very economical if long addresses
are infrequent, as is usually the case. Addresses longer
than the Input Register can easily be handled by the
principle of address modification.

Consider a long address x. Split it into parts

X = Y I + Y , + - . * * Y n

such that the number of characters in each yi are to be
parts of addresses of new entries in the memory. The
entry for y 1 has the structure y l p p l with no value
f(yl), but which will prefix y 2 . There are n-2 entries of
the structure p . t - l y i p p i , and finally one which is normal,
p , - l y , T f (x) , giving the value of the whole chain of y ; s .
In this way indefinitely long addresses can be accom-
modated.

The sequence of events is that in attempting to find x,
the longest match is only on y l . This entry gives no
output, but stuffs the prefix p 1 in front of the remaining
contents of the Input Register. The next scan is then to
find not y2y3 . . . , but p 1 y 2 y 3 . . . , and p l y z is located,
stuffing p 2 to give p 2 y 3 , et cetera, until finally p n - l y n
gives f(x) . Diagrammatically, the sequence of events6 is
given in Table 2.

Table 2

1st search

state after
1st search

2nd search
~

state after
2nd search

3rd search

state after
n - 1 th search

90
nth search

B-box Match Input
Register

Y 1 Y 2 . * *

Y 1

P1 Y2Y3 * . .

P l y 2

P2 Y3Y * . .

P2Y3

P n - 1 Y n

Pn-1Yn

output

none

none

none

Transliteration

Another example is the use of address modifica-
tion in transliteration. We have already mentioned I
that if a match with a legitimate address cannot
be found, the search is terminated by a break point.
This allows a “match” on the first character. If now
the entry for the break point, at z say, be z p p T f T (~) ,
where f T (z) is the transliteration of z, the latter is sent
to the output, and the symbol p T is stuffed in front of
the next character. If, in addition, we have a set of
entries p T ~ i p p T f T (~ 6) for each character, zl, the trans-
literation proceeds character by character through the
word in the Input Register. Finally, p T is stuffed in front
of the symbol for “space” (#). A normal entry p T # ~ #
gives an output, “space,” and terminates the translitera-
tion. It is to be noted that no programming is required.
Transliteration is initiated by a break point, and auto-
matically proceeds until a space occurs.

Syntactic clues

The same technique can be used to transfer, in a forward
direction, syntactical and semantic information. For
example, in English most nouns have a simple plural
ending, e.g., “electron-electrons.’’ It would be wasteful
to enter every plural form in the dictionary. Only the
stem (which in English is merely the singular form) is
entered. An entry s # T ~ (s) could be listed. Here f(s)
supplies the information that a plural ending must be
supplied in the output language. However, in English
verbs also have an ending s, e.g., “evaporate-evaporates.’’
In this case f(s) would have to mean “third person
singular.” In order to distinguish these two meanings of
the endings, all nouns are stuffed with pn, all verbs with
pv, and we have not one entry for s but two, p n S T f n (s)
and P , s T ~ , (s) , where f,(s) indicates the nominal plural
form and f v (s) indicates the third-person-singular verbal
form.

One can go further and modify the output value f (x)
by the previous address. More precisely, if a sequence
xx’ corresponds to two addresses giving f (x) and f (x ’) ,
there may be a variety of functions f c (x ‘) depending on
the nature of f (x) . For example, if x is a verb stem
and x’ is an ending indicating past participle, then /(x)
is the English equivalent of x, say the verb stem “box”
and f(Y) is normally the suffix “-ed.” The combined
output would be “boxed.” But if f (x) were say “drag,”
f (Y) now should be not “-e&’ but “-ged” to give, not
“draged,” but “dragged.” Stems requiring doubling of
the last letter stuff p k , there being one p K for each con-
sonant K occurring in English verb forms which require
doubling before “-ed.” There are correspondingly a series
of entries pKY giving f (p K x ‘) =K ed.

Similarly, plurals such as “economy-economies’’ can
be correctly spelt.

Semantic clues
The p-stuffing technique can be used to transfer semantic
clues from one word to the next. Let two successive
words be A#B, and assume that B has two meanings

IBM JOURNAL ’ APRIL 1961

f l (B) and f 2 (B) . Suppose the word A selects one mean-
ing f l (B) . Then, of course, we could have the pairA #B
as an address with value f (A) # f , (B) . But it often hap-
pens that there is a class of words {A} which select the
one meaning for B. Instead of listing all pairs A,#B,
for &{A}, we can stuff a symbol p A after each Ai of
the class. Once the A, has been looked up, the next ad-
dress is no longer B but pAB. If now we have an entry
p A B ~ f l (B) , we get the correct selection of meaning.
Then if we can identify another class {C] which deter-
mines the other meaning of B, all words C*E { C } will
have p c , and there will be an entry p c B ~ f z (B) , giving
the other meaning.

e Relation to programming

It is noteworthy that the sequence of prefixing with p’s
and successive searches goes on without any program-
ming. Further elaborations of table look-up with address
modification, showing how any kind of data processing
can be executed, will be presented in later papers of this
series. The assignment of p’s and assembly of the table
define the basic requirements of the processing, and cor-
respond to the “decisive” elements of programming.?
Administrative program steps are eliminated by the use
of the single instruction, “look up in table.”

Partial matching

A desirable feature in any addressing system is to recog-
nize a partial match, under some rule. Take the example,
used above, of the expression “singe the beard.” If this
is to be translated idiomatically, the whole phrase may
be used as an address. But this implies all the inflected
forms, “singes the beard,” “singed the beard,” etc. must
be recognized as a group, too. In order to avoid the
enumeration of all internally inflected forms (many of
which are very unlikely ever to arise) we introduce an-
other instruction symbol, V. This may be used as a char-
acter anywhere in an address. The result of comparison
of the binary digits of this symbol with the correspond-
ing digits in the Input Register are ignored.

In this way, an entry like “singev the beard” allows
a match with any one-letter inflection of the phrase.
Similarly, “singevv . . .” allows matches with two-letter
inflections. In this example, the information contained
in the skipped ending is lost as, on the completion of the
match, the whole phrase is shifted out.

A subsequent paper in this series will elaborate the
use of partial matching and show how the skipped in-
formation can be retrieved. Basically, skipping provides
all the functions of an “associative memory.” The fact
that comparisons are made sequentially is irrelevant pro-
vided they are done at high speed.8

Error correction

In numerical data processing, the addresses in general
are a selection from a finite set of numbers; e.g., an ad-
dress “2456” implies that the complete set 0000 to 9999

is possible. An error of one bit will change an address to
another possible one, and, if undetected, the computation
proceeds with the erroneous data from the incorrect
address.

In lexical processing the addresses are a selection from
an infinite set which is everywhere dense. For example, if
we assign numbers to the letters of the alphabet, the
word “bee” is .255000. . . and “beef” is .2556. Be-
tween these there is an indefinite number of other words
and idiomatic phrases, e.g., “beech” .25538. . . . Because
of this, the chances that an error in the input or in the
search will convert an address to another which exists
in the memory is negligible. The worst case is for short
words. For example, an error changing an “0” to a “u”
would convert “pot” to “put.” By choosing the code
assignment to the vowels, so that several bits would have
to be changed to convert one into another, the proba-
bility of this happening can be reduced to well below the
frequency of typographical and other errors.

A consequence of these observations is that error-
correcting codes are not necessary in addressing large
memories of lexical material, although they certainly can
be included for extreme safety. Error detection is af-
forded by the “no match” signal. This institutes a repeat
of the search. If the error was statistical, with low fre-
quency, the second trial would be very likely to be suc-
cessful. Three or more trials may have to be made if
very high reliability is desired. Typographical errors in
the input, however, remain a problem. A partial solution
is to add entries with typical spelling errors.

Alternative methods of achieving high reliability are
available when the memory is very large, on the basis
of the principle that half of a very large number is still
a very large number. This principle is exploited in several
ways.

local repetition

Some addresses are very important. For example, there
should be at least one break point on each page, and
these entries are repeated to ensure recognition. In this
kind of memory addressing, repetition does not interfere
with the search procedure. In order to include possible
errors in scanning, the first entry in the dictionary is
v ~ P T () . Here, the () indicates the machine would not
recognize the character, and v is the special character
which allows a match to be admitted in all cases. This
entry is duplicated for complete safety.

There are many other critical entries which are dupli-
cated, whose details need not be described here.

Replication

A crude but effective way to increase reliability when
storage capacity is available is to replicate the entire
contents in a separate region of the memory. In a mem-
ory of the type envisaged here, replication is extremely
economical, as only the additional amount of storage
medium has to be supplied, but no hardware such as
drivers and address counters. After a failure to match,

IBM JOURNAL ‘ A

91

LPRIL 1961

the search is repeated in a different region. An automatic
way of doing this, requiring no additional hardware, is
to have the “no match’ signal (e.g., a break point) stuff
a new symbol p D , which is assigned a code larger (or
smaller) than any character (for example z z) . Then the
contents of the Input Register are preceded by pD, so
that the next search automatically is routed to the end
(or beginning) of the table, where the table is duplicated
with p D prefixing every address. Break points in the p D
region initiate transliteration, which is continued in the
normal region.

In some applications, such as translation, the waste in
capacity due to repetition of the whole dictionary can be
compensated for in increased access time. The dictionary
can be broken up into microglossaries for various disci-
plines (general, mathematics, chemistry, et cetera) .
Every word occurs at least twice. Failure to find a word
initiates a search in successive microglossaries, beginning
with the most likely.

Summary

The novel features of the table look-up procedures de-
scribed here are:

1. The use of integral addressing, as in conventional
dictionaries.

-

2. Random access to a point in a table “beyond” the
contents of the Input Register being scanned.

3. Exhaustive backward search over a “page” or so to a
breakpoint.

4. Optional skipping over part of the address.

5. Address modification by the immediately preceding
look-up.

Features 1 , 2, and 3 provide automatic isolation of
sequences in the Input Register which in general cannot
be predetermined. In the processing of languages this
permits automatic dissection of compound words or iden-
tification of word groups as a whole. Features 3,4, and 5
provide much more than work-for-word look-up. Indeed
they provide means of executing all the ‘‘logic’’ of a
stored program.

The use of tables provides more power than is availa-
ble in a stored program because one can list functions
whose values are not computable.

Programming is essentially eliminated. The decisive
steps in the processing are described in the table entries.
The administrative elements are reduced to the single
operation of looking in a table.

Symbols

n =page number in Input Register
x = address

yi=portion of an address
{=individual character in register
Y=skipping or masking character
p = address prefix
z=breakpoint

References and footnotes

1. Table look-up processing is not practical unless random
access is reasonably fast. This paper is based on actual
operations with the AN/GSQ-16 Photostore, with 30
msec random access.

2. This method is, of course, the ancient one used in dic-
tionaries, logarithm tables, et cetera. It was proposed
for a computer memory by G. W. King, G. W. Brown
and L. N. Ridenour, “Photographic Techniques for In-
formation Storage,” Proc. IRE 41, 1421 (1953).

3. The above basic routine is described in U. S. Patent
2,843,841, G. W. King, E. L. Hughes, G. W. Brown and
L. N. Ridenour (Application, Sept. 20, 1954).

4. W. W. Peterson, in his paper “Addressing for Random
Access Storage,” which appeared in the IBM Journal 1,
130 (1957), has proposed some precomputation on x or
part of x to make an absolute address, provided x can be
isolated before look-up, Le., without reference to the
table, as for instance a catalog number.

CY = instruction indicating “begin address”
p =instruction initiating prefixing
T =instruction symbol indicating end of address and begin-

ning of readout
=space between words

ci ==capitalization of following letter

5 . Previous work on dictionary look-up has assumed that
the linguistic units (presumed to be words) have been
isolated beforehand in the text. See for example, M.
Taube, “Automatic Dictionaries for Machine Transla-
tion,’’ Proc. IRE 45, 1020 (1957). Also R. W. Bemer,
“Do it by the Numbers,” Communications of the ACM
3, No. 10,530 (1960).

6. This scheme for handling long addresses by “p-stuffing”
was introduced by 1. Wieselman. See reports of Contract
AF 30(602)1566 between USAF and International
Telemeter Corp.

7. The distinction between “decisive” and “administrative”
instructions in a program has been suggested by Andrew
Gleason.

8. In the AN/GSA-16 equipment, the rate is three million
bits per second.

Received August 19, I960

92

IBM JOURNAL * APRIL 1961

