
Gilbert W. King 

Table Look-up Procedures in Language Processing 
Part I 
The Raw Text 

Abstract: A method  of  addressing  memories is described  which is very powerful in the  processing  of nat- 

ural languages, where the  a’rithmetic  or logical operations are either nonexistent  or  do  not lend them- 
selves  to algorithmic description.  The main feature is the guarantee of initiation of an exhaustive search 
for a  linguistic word at a point just beyond  the  desired  address.  Sequential  search backwards not only 
locates an address if it is there but also provides identification of  a  longest  match  first.  The  method is 
further extended  to provide “conditional”  addressing by prefixing subsequent  addresses from informa- 
tion obtained in earlier searches. 

Introduction 

It is safe to say that  the processing of languages for in- 
formation retrieval or automatic translation will  always 
require a table look-up procedure, i.e., reference to a 
dictionary of some sort. There can never  be an algorithm, 
or stored program, which can give the meaning of a 
word from its spelling,  however  encoded. In a subse- 
quent paper of this  series we shall be able to show that 
more sophisticated  processing, to discern the grammati- 
cal structure of sentences and resolve the ambiguities of 
meaning, will not in general be  resolved by algorithms, 
but will  also require reference to tables in which the 
properties of the language are listed. The  art of data 
processing  with tables is  as  old  as computation, but in 
recent years has been  neglected, at least in scientific 
computation. 

This paper is concerned primarily with the first  look- 
up in a dictionary. Now this operation is characterized 
by the fact  that dictionaries are exceedingly large, of the 
order of a billion  bits.  Tables of this  size and character 
have certain characteristics which require novel ap- 
proaches to the procedure of search, and indeed an 
appropriate method of addressing  lends  itself to the exe- 
cution, by table look-up, of so-called  “logical” opera- 
tions  which are normally considered to require stored 
programs.1 

Table look-up 

The function of a very large memory in a machine or- 
86 ganization is to provide table look-up; that is,  given an 

a function of argument x, to find the value of x ,  f ( x ) .  
The necessity for table look-up arises  when f ( n )  cannot 
be computed from x by an arithmetic or logical  algo- 
rithm, or when the computation is too long. In  the early 
days of computing, almost all functions were obtained 
by table look-up. (This was done even for reciprocals, 
f ( x )  = 1 / x ,  before automatic division  was  available.) 
To obtain f(x) for x with many digits, a straightforward 
table would, of course, have to be of impractical size. 
However,  values  could  be obtained from tables of re- 
stricted values of x,  and f ( ~ )  constructed with the aid 
of interpolation tables or by further calculation (addi- 
tion theorems, et cetera) . 

In a stored-program machine a function is computed 
by an algorithm, such as a continued fraction. As long 
as computation of algorithms is faster than the neces- 
sary sequence of table look-ups, the latter is of no inter- 
est for the calculation of most mathematical functions. 

In non-numerical work the situation is quite different. 
For example, it is  impossible to calculate the meaning 
of a word from its spelling  by an algorithm in  the equiva- 
lent of a computer arithmetic unit. Thus, if words are to 
be  processed as they occur in natural languages, a dic- 
tionary storage and look-up  must be provided in a 
machine. 

The functions f(x) which cannot be calculated, such 
as  meanings of words in a dictionary, telephone numbers 
of subscribers, prices and inventory of merchandise, et 
cetera, have other concomitant properties. The set of val- 
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ues of x, for which f ( x )  is desired, is very  large, and large 
in  quite a  different way from  the set of x’s in numerical 
work. The  latter  are generally a finite set, say a  subset 
of all  ten-decimal  digit  numbers. It is interesting to  note 
that  there  are, however,  numerical  tables of the type  con- 
sidered  here,  namely, optimum interval  tables  with  varia- 
ble-length addresses (to stabilize precision). 

The x’s in  non-numerical  work (and  in  the case  just 
mentioned)  are, if not arbitrarily  restricted, essentially 
an  unbounded set from  an infinite set  which is every- 
where  dense. That is, given an xl, and  another nearby 
x2, we find that  in general the  number of digits in x1 
and x2 are of no  particular fixed length, and may be of 
indefinite length. Moreover, one  cannot tell, unless one 
in fact looks in  the table, whether  there is not  another x 
which lies between x1 and x2, since x, and  the  set of x’s, 
belong essentially to  the continuum. For example, in a 
dictionary with the  ordinary alphabetic order,  there  may 
be the  words “bee” and “beef.” Between these can be 
“beech,”  “beeches,” and  any idiomatic  phrases begin- 
ning with either of these words. 

Integral address 

It  is evident that  in lexical processing we have  in 
general  the  requirement of table look-up  in  mem- 
ories which have  to  be extremely  large, and  in which 
we cannot tell beforehand what  entries,  hence  addresses, 
exist. The  method of addressing, so current in  present- 
day  computers, by absolute  addresses is impossible. Ab- 
solute  addressing is impossible for  another reason. For 
the type of addresses, x, used in dictionaries,  directories 
and catalogs, there is no way to  compute  from x the page 
and line number  on which x will be found.  Instead,  an 
integral  addressing method is required  in which the ad- 
dress determining  the location of the value, f ( x ) ,  is 
found  by locating x itself? 

The combination x : f ( x )  will be called an entry and 
both x and f ( x )  are stored. The  memory stores a se- 
quence of entries. In general, x will be made  up of digits 
or characters, and  can be ordered. Since both x and f ( x )  
will be of variable  length, it is most  economical not  to 
store  an  entry  in a fixed cell, but  to  store  the  entries in  a 
continuous  stream.  This  means  that  the address of an 
entry, namely x, must  be recognized by a first symbol a, 
meaning “begin entry,” or  more specifically “begin ad- 
dress,” which  also  acts  as  “end f ( x ) ”  for  the previous 
entry. 

Because we cannot tell beforehand  whether or  not x 
is indeed an  entry,  nor  its length, the location of an  ad- 
dress,  hence an  entry,  must, in the final analysis, be by 
sequential  search.  However, this does not  mean  that  the 
whole memory  must  be exhaustively searched. The en- 
tries can be grouped  in blocks, corresponding to pages 
of a dictionary or directory. The division may be sys- 
tematic,  say,  by the first letter,  or pair of letters; or  the 
groups  may contain  a fixed number of entries, or of char- 
acters, or in any  arbitrary way. If the  information is 
stored  on a drum or disc, the pages correspond to a 
track; page turning corresponds to jumping tracks;  and 

sequential  search  corresponds to sitting in a track, real - d- 
ing everything that passes by. Similar analogies  could  be 
made in core  or  other memories. 

There is another  instruction symbol which we have 
represented  above by a  colon,  between the address x and 
value f ( x )  . To avoid confusion  with  a  colon  as  a  symbol 
in the text, and possibly in an address,  let us call  this 
instruction symbol T. Its  function is to indicate end of 
the  address, x ,  and beginning of the  function value, f ( x )  ; 
i.e., it  ends matching on x and initiates readout of ! ( x ) .  
The  entry  thus is composed of a series of symbols 
a X T f  (X ) .  

Search procedure 

The  search may  now  proceed by essentially random ac- 
cess to a  page.  Consider the look-up of an address x. 
Assume the search  mechanism, after  the last search, is at 
an address xl. The desired  address x and x1 may  be  im- 
mediately  compared.  Since in general x and x1 may  be 
of different length,  this comparison  is serial,  bit  by bit. 
Within a few  binary  characters  it  can be  determined 
whether x < x l  or x > x l  and  hence whether to look  back 
or  ahead.  Let  us first take  the case x > x l .  The  next page 
will be  examined, and  an  entry xi picked, perhaps  at 
random,  then a new comparison  made.  This  procedure 
is followed  page by page  until x<xc This  condition will 
first arise  within one page after  the location of the de- 
sired  address x (if it  exists).  (If  the first comparison 
resulted in x<x,, pages are turned  back until x>xi ,  then 
the  routine  for  the  former case is followed, giving only 
one page advance.)  Thus, by  sampling from successive 
pages, the search  mechanism reaches a point  in  the  store 
a short distance  beyond the desired address. If com- 
parison and  turning pages can be made very fast, as 
seems to be the case in practice, the search  mechanism 
has  made essentially random access to a  neighborhood 
just  beyond the desired entry.3 

One  can conceive of other methods of arriving at  the 
neighborhood of the desired address. For example, the 
first digit or two of x could  be  used  as an absolute  ad- 
dress. However,  since  in  general the  number of addresses 
beginning with the first one  or two characters  are  not 
uniformly  distributed,  a  small table  (or  matrix)  has  to 
be consulted.4 These techniques require additional  hard- 
ware, and  do  not  present  the  feature, which we shall see 
is really valuable, of arriving just beyond x. 

At this  point,  sequential  search is resorted to, as it 
must be. The  search  now proceeds in descending order 
of x. A matching  address may be found  on  the page 
during this  sequential  search in  the decreasing  direction 
(Le., toward  the  “top of the  page”). However, it  may be 
necessary to  turn  to  the previous page. If, in the page- 
turning process, the  time  to  turn a  page and  sample is 
short,  the sampling on successive pages occurs  at essen- 
tially the  same “eye level” or distance  down  a page. Con- 
sequently,  in the sequential-search  phase it will not be 
necessary to  continue backwards for a  distance appre- 
ciably longer than a page. The average  distance will be 
half a page. 
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If the initiation of the search starts  at some arbitrary 
point  in the  memory xi (corresponding  to  the last ad- 
dress found),  the distance (in  terms of number of pages 
turned)  to a new address xi is on  the average Ixi-xil. 
The average value of this when all addresses are equally 
probable is one-third the  number of pages in the dic- 
tionary.  Minimum access time is achieved when the  time 
to sequentially scan half a  page  equals the time to  turn 
one-third of the number of pages in the dictionary. This 
condition  in fact determines  the optimum size of a page. 

Principle of longest  match 

As we are considering  a function f ( x )  which may exist 
for  any value x from  the  continuum, we are assuming 
that addresses x, for which f(x) is desired,  arise in some 
processing, and  are samples from the continuum. If & 
are individual characters, binary or otherwise, an  ad- 
dress is some indefinite sequence of them, x=l1c2 . . . , 
which for  the  moment we shall assume lie in  a semi- 
infinite Input Register. 

A  consequence of the above  search procedure, espe- 
cially the final stage of sequential  search in descending 
order, provides a valuable feature, in that  the longest 
match of an address  with the contents of the  Input Reg- 
ister is obtained  in one  search, without  programming an 
assembly of subroutines. 

For example,  assume the numerical  equivalent for  the 
contents of the  Input Register is .14768 . . . , and  that 
the table  contains the addresses and  function values given 
in Table 1 .  

have been found.  The  total distance  scanned would have 
been less than  one page. 

An application 

An application of this method of search occurs in the 
preliminaries of mechanical  translation of languages. 
Another very  similar  application is the processing of text 
of natural language into a  canonical form  for  infor- 
mation retrieval. The  input text about which lexical 
information is desired for  the translation  process is com- 
posed of an indefinite sequence of characters. Chains of 
these characters constitute addresses to  the memory, or 
dictionary. The simplest case is when the chain is a single 
word. It is readily seen that despite  their  variable  length, 
words can be used as addresses in  the above  scheme and 
identified as addresses to  entries in the table, provided 
they are, indeed, listed in the table. 

In  automatic translation,  individual  words are not nec- 
essarily the linguistic units to deal with.5 It is, in  fact, 
often desirable to  treat  groups of contiguous  words or 
idiomatic  phrases  as  units.  Clearly, if the space between 
the words be given a numerical code  and  treated as  a 
character,  there is no difficulty at all in having  groups 
of words as addresses. The principle of longest match, 
however, offers an interesting feature.  It is not necessary 
to determine beforehand  whether a  word group is going 
to exist in the table-perhaps only the individual  words 
occur there.  Since the longest sequence is matched first, 
a word group will always be recognized if it is an entry. 
Otherwise,  its components  are looked up individually. 

Table I Note  that this decision is made automatically  in  the one 
_______ search. 

Page n Page n + 1 
~~ ~~~~ ~~~~~ ~~ ~~~ ~~ ~~~ 

.12 f(.12) 
.oo 1 5 f(.0015) 

.15 f(.15) .117 f(.117) 

.147 f(.147) .09999 f(.09999) 

.146 f(.146) .09 f(.09) 

.14 f(.14) .085 f(.085) 

.13 f(.13) 

.1192 f(.1192) .159 f(.159) 

.11,81 f ( . l l S l )  .15123 f(.15123) 

Assume  the  search started  at some  page <n. Sampling 
on these pages up to  and including  page n gives x greater 
than  the sampled  address. On page n+ 1 assume the 
sample  address is xi=.15123. Now x<xi, i.e., a number 
slightly larger than  the .14768 . . . in  the register, is 
found by random access; then the addresses .15123, .IS, 
.147, .146 in descending order  are scanned. The largest 
sequence  in the  Input Register for which  a  complete 
match can  be made is .147, and  the value for this would 
be read  out.  If, however, .147 was not an  entry,  then  the 
value for .14 would be located  in the search. 

If the desired address had been x=.l17, and  the 
sampling had been high on the pages, page n+l would 
have  been  reached  before x < x i .  The sequential  search 
would then have been up  through page n+ 1 ,  without 
success. But near  the bottom of page n, a match would 
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Conversely, the entries in  the table may correspond to 
parts of words, e.g., stems and endings, prefixes and 
suffixes, or  the dissections of compound words. Again no 
difficulty is encountered. For example,  assume “bag” is 
an  entry,  but “bags” is not. If “bags. .” were  in the 
Input Register, the  match would be on “bag.” The resi- 
due “s#” would be found  as  the next address. (The sym- 
bol # indicates the  character assigned to  the linguistic 
item  “space.”) This allows a  dictionary to be made of 
stems and endings  only, and avoids the wastefulness of 
having to  enter all the inflectional forms of every  word 
of the language. 

For example,  assume the  Input Register contained the 
text: “he singed the beard of the . . .” 

The first look-up would find “he” as  an address, and 
on  the  match this would be  shifted out, as would be the 
space. The register would now  contain 

“singed the  beard of the . . .” 
(Three new characters would be  inserted at  the right to 
make  up  for those  shifted out.)  Now a  second  search is 
made. If “singed the  beard”  had been considered an 
idiomatic  phrase, to be translated as a whole, an  entry 
with  this  as an address would exist. A match would be 
found,  and  the words “singed the  beard” shifted out, so 
that  the register would now contain 



“of the . . .” 
If the  phrase “singed the  beard’  had  not been consid- 

ered  particularly  idiomatic, and  not made an  entry, a 
shorter  match would have been found in  this  search. 
If  the word “singed” was an  entry, it would be found. 
Then the successive conditions in the register would be 

“the  beard of the . . .” 
“beard of the . . .” 
On the other  hand, it may have been decided that “singe” 
was a  straightforward  word so that its  various inflections 
need not have  been entered specifically. Then  the longest 
match would be on “singe,” giving the  information  about 
this stem. Then we would have 

“d  the  beard of the . . .” 
The next address found would be “d#,” giving the 

information  that this is a  verbal  past tense ending. 
Note  that “sing” would not be found, giving rise to  the 

incorrect dissection “singed.” 
The ability to  obtain  matches all the way from  parts 

of words to indefinitely long groups of words makes it 
unnecessary to process the text before  addressing the 
memory. (This could not be  done  anyway  in the case 
of newly constructed  compound words, like “leptonu- 
clear,” whose composition cannot be anticipated.) 

The  dynamic dissection of words,  however, can lead 
to errors. The word “needless” might not be  in the table, 
because it is a simple compound of “need” and “less.” 
But it would be split on  the longest match, “needle,” 
leaving “ss” which would not be found. Or if “needles” 
were an  entry, this would leave “s” which is an  entry  (an 
English ending to  nouns  and  verbs).  The remedy is to 
anticipate these peculiar cases, and  enter  the whole word. 

A significant feature of the longest-match  principle is 
that  one  can simultaneously  play  both the strategy of 
stems and endings, and of whole inflected forms,  adopt- 
ing whichever is of most assistance, with absolutely no 
modifications of hardware, control  or initial decision. 

When  a match  has been found,  the value f ( x )  is read 
out of memory, and  the contents of the  Input Register 
shifted forward by the corresponding  number of  char- 
acters in the address  just found. (Since  in  practice the 
Register is of finite length, new text is read  in  to fill it 
at the tail end.)  Then a new search is initiated,  scanning 
down the contents of the Register with its shifted 
contents. 

Break points 

If no match were found,  the scheme  as  outlined so far 
would allow the search to proceed  in  descending order  to 
the beginning of the  dictionary. The search may be 
stopped,  however,  soon after the  place is passed where 
the  address would have been. This is done by means of 
break points. These are one-letter  addresses  corres- 
ponding to all characters used, with f T ( x )  being x 
itself or a  “transliteration” of x. A match is always ob- 
tained on a  break  point, f T ( x )  is read  out,  and  the 

contents of the  Input Register are shifted one  charac- 
ter. The point  here is that transliteration is initiated  in 
the original  search procedure, without further  ado. 

In practice, break points  with more  than  one letter 
may be used, to speed up  the search. At least one should 
appear  on each page. 

This is the general procedure  for handling addresses, 
or sequences of characters, in  the Input Register which 
are not in  the memory. In the  application to dictionary 
look-up of running text, this condition will be produced 
by proper nouns or words not  in the dictionary. In this 
situation,  the  complete  word  should  be  transliterated. 
The  function value of the break  points, f T ( x ) ,  will then 
be the  transliterations of the break-point symbol x. The 
method by which the transliteration routine is pursued 
through the whole word is described below. 

In  the event  some of the single characters  are 
legitimate addresses, as in single-letter words like 
“a” in English, this  procedure,  without modification, 
would give false values (in  the example f ( a )  ) and the 
unidentifiable word  incorrectly dissected. The  same situ- 
ation arises if the single-letter word is a suffix such  as 
“s.” In languages, this difficulty can be avoided because 
single (or double)  letter words may be recognized by 
the preceding and following space (#). That is, the 
entry in the tabIe would be not “a,” but “#a#.”  Extra 
entries “##$a#” identify “A” when it begins a  sen- 
tence. (The symbol @ indicates  capitalization in the text 
of the following letter.) 

This  example shows another detail which must be ac- 
commodated; namely, that words may occur  at  the be- 
ginning of sentences, or, as is common  in  Russian or 
German, may  be  capitalized  within the sentence when 
used as  a title, e.g., Doctor. Obviously, assigning entries 
for every word that might  be  capitalized is impossible. 
Capitalization is indicated  in the incoming text by symbol 
(such as (e), with  value  “space-cap,” which then will be 
identified independently. The word  sought then resides 
in the register in  uncapitalized form. 

Proper nouns,  with  initial  letter  capitalized, will be 
transliterated  with the capitalization. Proper names, 
which happen  to be capitalized common nouns, such as 
“White,” thus would be capitalized  but  translated. To 
overcome this, entries with the  capitalization can be 
made with the correct  proper-name transliteration. 

Principle of address modification 

With  addition of very little hardware,  the above  address- 
ing  scheme can be extended to provide  a  conditional se- 
quence of events, which enormously  increases the power 
of table  look-up. 

An additional  scanning register (B-box) , with a 
capacity of one  or more characters, is placed  in front 
of the  Input Register. The entries now may be composed 
of three parts:  the address x, the  function f ( x ) ,  and  a 
prefix p. A new instruction p is introduced to replace T, 
so that  the  entry is x p p f ( x ) .  When p is recognized, the 
end of address is recognized as it was  with T, f ( x )  read 
out  from memory, and x shifted out of the Input Reg- 89 
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ister, exactly as before, but two new events happen. 
The information p immediately following p is read into 
the B-box, and  the next search  starts, not  at the begin- 
ning of the Input Register, but at the B-box, and  then 
proceeds normally  through  the Input Register. In this 
way the sequence of characters  in  the  Input Register 
immediately following the address x just  found is  pre- 
fixed  by p .  We shall now give some examples of how this 
address modification can be used. 

Long address 

The principle of longest-match was illustrated  with the 
concept that the Input Register is semi-infinite. In prac- 
tice, it  need not be longer than  the longest address in  the 
memory. This is not very economical if long addresses 
are infrequent,  as is usually the case. Addresses longer 
than  the  Input Register can easily be handled by the 
principle of address modification. 

Consider a long  address x. Split it  into  parts 

X = Y I + Y , +  - .  * * Y n  

such that the number of characters in each yi are  to be 
parts of addresses of new entries in the memory. The 
entry  for y 1  has  the structure y l p p l  with no value 
f(yl), but which will prefix y 2 .  There  are n-2 entries of 
the structure p . t - l y i p p i ,  and finally one which is  normal, 
p , - l y , T f ( x ) ,  giving the value of the whole  chain of y ; s .  
In this way indefinitely long addresses can be accom- 
modated. 

The sequence of events is that in attempting to find x, 
the longest match is only on y l .  This entry gives no 
output, but stuffs the prefix p 1  in  front of the  remaining 
contents of the  Input Register. The next scan  is  then  to 
find not y2y3 . . . , but p 1 y 2 y 3  . . . , and p l y z  is  located, 
stuffing p 2  to give p 2 y 3 ,  et  cetera,  until finally p n - l y n  
gives f(x) . Diagrammatically, the sequence of events6 is 
given in Table 2.  

Table 2 

1st  search 

state  after 
1st  search 

2nd search 
~ 

state after 
2nd search 

3rd  search 

state after 
n - 1 th search 

90 
nth search 

B-box Match Input 
Register 

Y 1 Y 2 .  * * 

Y 1  

P1 Y2Y3 * .  . 

P l y 2  

P2 Y3Y * . . 

P2Y3 

P n - 1   Y n  

Pn-1Yn 

output 

none 

none 

none 

Transliteration 

Another example is the  use of address modifica- 
tion in transliteration. We have  already  mentioned I 
that if a match with  a legitimate address cannot 
be found,  the search is terminated by a break point. 
This allows a  “match” on  the first character. If now 
the entry  for the  break  point, at z say, be z p p T f T ( ~ ) ,  
where f T ( z )  is the transliteration of z, the  latter is sent 
to  the  output, and  the symbol p T  is stuffed in  front of 
the next  character. If, in addition, we have  a set of 
entries p T ~ i p p T f T ( ~ 6 )  for  each character, zl, the trans- 
literation  proceeds character by character through the 
word in the Input Register. Finally, p T  is stuffed in front 
of the symbol for “space” (#). A normal entry p T # ~ #  
gives an  output, “space,” and terminates the translitera- 
tion. It is to be noted that  no programming is required. 
Transliteration  is  initiated by a break point, and  auto- 
matically proceeds until a  space  occurs. 

Syntactic clues 

The  same technique  can be used to transfer, in a  forward 
direction,  syntactical and semantic  information. For 
example, in English most nouns have a simple plural 
ending, e.g., “electron-electrons.’’ It would be wasteful 
to enter every plural form  in  the dictionary. Only the 
stem  (which in English is  merely  the singular form) is 
entered. An  entry s # T ~ ( s )  could be listed. Here f(s) 
supplies  the information  that a  plural  ending  must be 
supplied in  the  output language. However, in English 
verbs also have  an  ending s, e.g., “evaporate-evaporates.’’ 
In this case f(s) would have to  mean “third person 
singular.” In  order  to distinguish these two meanings of 
the endings, all  nouns are stuffed with pn, all verbs with 
pv, and we have not  one entry  for s but  two, p n S T f n ( s )  
and P , s T ~ , ( s ) ,  where f,(s) indicates  the  nominal  plural 
form  and f v ( s )  indicates  the third-person-singular verbal 
form. 

One  can go further and modify the output value f ( x )  
by the previous address. More precisely, if a sequence 
xx’ corresponds to two addresses giving f ( x )  and f ( x ’ ) ,  
there  may be a  variety of functions f c ( x ‘ )  depending on 
the nature of f ( x ) .  For example, if x is  a  verb  stem 
and x’ is  an  ending  indicating  past  participle,  then /(x) 
is the English equivalent of x, say  the  verb  stem “box” 
and f(Y) is  normally the suffix “-ed.” The combined 
output would be “boxed.” But if f ( x )  were say “drag,” 
f (Y) now should be not “-e&’ but “-ged” to give, not 
“draged,” but “dragged.” Stems  requiring  doubling of 
the  last  letter stuff p k ,  there being one p K  for each  con- 
sonant K occurring in English verb forms which require 
doubling  before “-ed.” There  are correspondingly a series 
of entries pKY giving f ( p K x ‘ )  =K ed. 

Similarly, plurals  such as “economy-economies’’ can 
be correctly spelt. 

Semantic clues 
The p-stuffing technique can be used to transfer  semantic 
clues from  one word to  the next. Let two successive 
words be A#B,  and assume that B has two meanings 
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f l (  B )  and f 2 ( B ) .  Suppose the word A selects one  mean- 
ing f l ( B )  . Then, of course, we could have  the pairA #B 
as an address  with  value f ( A  ) # f , ( B ) .  But it  often  hap- 
pens that  there is a class of words {A} which select the 
one meaning for B. Instead of listing all pairs A,#B, 
for &{A}, we can stuff a symbol p A  after  each Ai of 
the class. Once  the A, has been  looked up,  the next  ad- 
dress is no longer B but pAB. If now we have  an  entry 
p A B ~ f l (   B ) ,  we get the  correct selection of meaning. 
Then if we can identify another class {C] which deter- 
mines the  other meaning of B, all words C*E { C }  will 
have p c ,  and  there will be an  entry p c B ~ f z ( B ) ,  giving 
the  other meaning. 

e Relation to programming 

It is noteworthy that  the sequence of prefixing with p’s 
and successive searches goes on  without  any  program- 
ming. Further elaborations of table look-up with address 
modification, showing how  any  kind of data processing 
can be  executed, will be  presented  in later  papers of this 
series. The assignment of p’s and assembly of the  table 
define the basic requirements of the processing, and  cor- 
respond to  the “decisive” elements of programming.? 
Administrative program steps are eliminated by the use 
of  the single instruction, “look up in table.” 

Partial matching 

A  desirable feature in any addressing system is to recog- 
nize a partial  match,  under some rule. Take  the example, 
used above, of the expression “singe the beard.” If this 
is to be translated  idiomatically, the whole phrase may 
be used as an address. But this implies all the inflected 
forms, “singes the  beard,” “singed the  beard,” etc.  must 
be recognized as a group, too. In  order  to avoid the 
enumeration of all internally inflected forms  (many of 
which are very unlikely ever to  arise) we introduce an- 
other  instruction symbol, V. This may  be  used as a char- 
acter anywhere  in an address. The result of comparison 
of the binary digits of this  symbol with the correspond- 
ing digits in the  Input Register are ignored. 

In this  way, an  entry like “singev the  beard” allows 
a match with any one-letter inflection of the phrase. 
Similarly, “singevv . . .” allows matches  with  two-letter 
inflections. In this example, the  information  contained 
in the skipped ending is lost as, on  the completion of the 
match,  the whole  phrase is shifted out. 

A  subsequent paper  in this  series will elaborate  the 
use of partial  matching and show how  the skipped  in- 
formation  can be  retrieved. Basically, skipping  provides 
all the  functions of an “associative memory.” The  fact 
that comparisons are  made sequentially is irrelevant pro- 
vided they are done at high speed.8 

Error correction 

In numerical data processing, the addresses  in  general 
are a  selection from a finite set of numbers; e.g., an ad- 
dress “2456” implies that  the complete set 0000 to  9999 

is possible. An  error  of  one bit will change an address to 
another possible one, and, if undetected, the  computation 
proceeds  with the  erroneous  data  from  the  incorrect 
address. 

In lexical processing the addresses are a selection from 
an infinite set  which is everywhere  dense. For example, if 
we assign numbers  to  the letters of the  alphabet,  the 
word “bee” is .255000. . . and “beef” is .2556. Be- 
tween these there  is  an indefinite number of other words 
and idiomatic  phrases, e.g., “beech”  .25538. . . . Because 
of this, the  chances  that  an  error  in  the  input  or  in  the 
search will convert  an address to  another which exists 
in  the  memory is negligible. The worst  case is  for  short 
words. For example, an  error changing an “0” to a “u” 
would convert “pot” to “put.” By choosing the  code 
assignment to  the vowels, so that several  bits would have 
to be  changed to  convert  one  into  another,  the proba- 
bility of this happening  can be reduced to well below the 
frequency of typographical and  other errors. 

A consequence of these  observations is that  error- 
correcting  codes are  not necessary in  addressing  large 
memories of lexical material, although they  certainly can 
be included for  extreme safety. Error detection is af- 
forded by the  “no  match” signal. This institutes  a repeat 
of the search. If the  error was  statistical,  with  low fre- 
quency,  the second trial would be  very likely to be suc- 
cessful. Three or more trials may  have  to be made if 
very  high reliability is desired.  Typographical errors in 
the  input, however, remain a  problem.  A partial solution 
is to  add entries with typical spelling errors. 

Alternative methods of achieving high reliability are 
available  when the memory is very  large, on  the basis 
of the principle that half of a very large number is still 
a very  large number.  This principle is exploited  in  several 
ways. 

local repetition 

Some  addresses are very important.  For example, there 
should  be at least one  break  point  on  each page, and 
these  entries are repeated to  ensure recognition. In this 
kind of memory  addressing,  repetition  does  not interfere 
with the search  procedure. In  order to include possible 
errors  in scanning, the first entry  in  the dictionary is 
v ~ P T ( ) .  Here,  the ( )  indicates the  machine would not 
recognize the  character,  and v is the special character 
which allows a match  to be admitted in all cases. This 
entry is duplicated for complete  safety. 

There  are  many  other critical entries which are dupli- 
cated, whose details  need  not  be  described  here. 

Replication 

A crude  but effective way to increase reliability when 
storage capacity is available is  to replicate the  entire 
contents  in  a separate region of the memory. In a  mem- 
ory of the type envisaged here, replication is extremely 
economical, as only the additional amount of storage 
medium has  to be supplied, but  no  hardware  such as 
drivers and address  counters. After a failure  to  match, 
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the search is repeated  in  a different region. An  automatic 
way of doing this, requiring no additional hardware, is 
to  have  the “no match’ signal (e.g., a  break point) stuff 
a  new  symbol p D ,  which is assigned a code larger (or 
smaller)  than any character  (for example z z )  . Then the 
contents of the  Input Register are preceded by pD, so 
that  the next search  automatically is routed  to  the  end 
(or beginning) of the table,  where the table is duplicated 
with p D  prefixing every  address.  Break  points in  the p D  
region initiate  transliteration,  which is  continued in the 
normal region. 

In some  applications, such as  translation, the waste in 
capacity due  to repetition of the whole dictionary  can  be 
compensated for  in increased access time. The dictionary 
can be broken up  into microglossaries for various disci- 
plines (general, mathematics,  chemistry, et  cetera) . 
Every  word occurs  at least twice. Failure to find a word 
initiates  a  search  in successive microglossaries, beginning 
with the most likely. 

Summary 

The novel features of the table  look-up  procedures de- 
scribed here  are: 

1. The use of integral  addressing,  as  in  conventional 
dictionaries. 

- 

2. Random access to a point  in a  table  “beyond” the 
contents of the  Input Register being scanned. 

3. Exhaustive  backward  search  over  a  “page” or so to a 
breakpoint. 

4. Optional  skipping over part of the address. 

5. Address modification by the immediately  preceding 
look-up. 

Features 1 ,  2, and 3  provide automatic isolation of 
sequences  in the  Input Register which in  general cannot 
be predetermined. In  the processing of languages this 
permits automatic dissection of compound words or iden- 
tification of word groups as  a whole. Features 3,4,  and 5 
provide much  more  than work-for-word  look-up.  Indeed 
they  provide means of executing  all the ‘‘logic’’ of a 
stored  program. 

The use of tables  provides more power than is availa- 
ble in  a  stored  program  because  one can list functions 
whose values are  not computable. 

Programming is essentially eliminated. The decisive 
steps in  the processing are described  in the table  entries. 
The administrative  elements are reduced to  the single 
operation of looking in a table. 

Symbols 

n =page number  in Input Register 
x = address 

yi=portion of  an address 
{=individual character in register 
Y=skipping or masking character 
p = address  prefix 
z=breakpoint 
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